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Measuring the Quality of the Through-the-Cycle Probability of Default
Parameters Estimation

Abstract

The purpose of this thesis is to investigate the impact of non-normally distributed components on the estimation
of the through-the-cycle probability of default (TTC PD) parameters in the Asymptotic Single Risk Factor
(ASRF) model, which is used by financial institutions to calculate capital requirements under the Basel III
regime. The study uses a controlled Monte Carlo simulation experiment involving 10,000 simulations for two
countries, Lithuania and Germany, associated credit cycles. Each simulation involves generating a credit cycle,
creating portfolios with specific parameters, and evaluating the parameter estimates for each portfolio using the
General Method of Moments (GMM), a two-step regression (TSR), and a combination of them. The results show
that deviations from normality in the credit cycle significantly affect the accuracy of parameter estimates, with
larger deviations resulting in greater errors. In the more realistic scenario, the quality of the portfolio also plays
a role in the accuracy of the estimates. The study also finds that the GMM most of the time performs better
than TSR in estimating the TTC PD parameters and in certain cases, the most accurate results are provided by
a combination of these two methods. Additionally, the results show that neither the GMM nor the TSR method
is suitable for low default portfolios.

Key words: probability of default (PD), through-the-cycle (TTC), point-in-time (PIT), Gaussian Mixture

Model, Asymptotic Single Risk Factor model, General Method of Moments, two-step regression.

Ekonominio ciklo įsipareigojimų nevykdymo tikimybės parametrų vertinimo
kokybės matavimas

Santrauka

Šio darbo tikslas – ištirti nenormaliai pasiskirsčiusių komponenčių įtaką ekonominio ciklo įsipareigojimų nevyk-
dymo tikimybės parametrų įvertinimui asimptotinio vieno rizikos faktoriaus modelyje, kurį pagal Bazelio III
reikalavimą finansų institucijos naudoja kapitalo poreikiui apskaičiuoti. Tyrime naudojamas kontroliuojamas
Monte Karlo simuliacijų eksperimentas, apimantis 10 000 simuliacijų dviejų šalių kredito ciklams – Lietu-
vai ir Vokietijai. Kiekviena simuliacija apima kredito ciklo generavimą, portfelių su konkrečiais parametrais
generavimą ir kiekvieno portfelio parametrų įverčių vertinimą naudojant bendrąjį momentų metodą, dviejų
žingsnių regresiją ir šių dviejų metodų derinį. Rezultatai rodo, kad kredito ciklo nukrypimai nuo normalumo
reikšmingai veikia parametrų įverčių tikslumą, o didesni nuokrypiai lemia didesnes paklaidas. Realistiškesni-
ame scenarijuje portfelio kokybė taip pat turi įtakos įvertinimų tikslumui. Tyrime taip pat nustatyta, kad
bendrasis momentų metodas dažniausiai veikia geriau nei dviejų žingsnių regresija, įvertinant ekonominio ciklo
įsipareigojimų neįvykdymo tikimybės parametrus, o tam tikrais atvejais tiksliausius rezultatus pateikia šių dviejų
metodų derinys. Be to, rezultatai rodo, kad nei bendrasis momentų metodas, nei dviejų žingsnių regresija nėra
tinkami žemo nemokumo portfeliams.

Raktiniai žodžiai: ekonominio ciklo įsipareigojimų nevykdymo tikimybė, laiko momento įsipareigojimų nevyk-

dymo tikimybė, Gauso mišinio modelis, asimptotinio vieno rizikos faktoriaus modelis, bendrasis momentų meto-

das, dviejų žingsnių regresija.



Abbreviations

• ASRF - Asymptotic Single Risk Factor

• BCBS - Basel Commettee on Banking Supervision

• EU - European Union

• GMM - General Method of Moments

• IRB - internal rating based

• MCMC - Markov Chain Monte Carlo

• ODF - observed default frequency

• OLS - ordinary least squares

• PD - probability of default.

• PIT PD - point-in-time probability of default

• RWA - risk-weighted assets

• TSR - two-step regression

• TTC PD - through-the-cycle probability of default

• UCM - unobserved components model
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1 Introduction

The financial industry has used risk classification systems for a long time. According to Basel II and
the subsequent European Union (EU) regulations, commercial banks must determine the appropriate
level of risk-weighted assets (RWA) that will remain stable despite changes in the credit cycle. The Basel
risk-weight formula is used to calculate the capital needed to cover unexpected losses. The formula is
based on the probability of default (PD), loss given default, and exposure at default. The regulation
requires the use of “long-run average one-year default rates” for the PD which is the main research
object of the current thesis. If the probability of default is not through-the-cycle (TTC), it will vary
with the economic cycle, and the capital requirements will also change. It is even more necessary to
have a consistent methodology for using TTC probability of default in RWA formulas and to clearly
understand and quantify the state of the economic cycle and probability of default under the Basel III
regime.

Many recent papers (Carlehed and Petrov [2], Rubtsov and Petrov [15], Oeyen and Celis [8]) have
argued that both through-the-cycle and point-in-time (PIT) probability of default have their own
advantages and disadvantages and that a good steering system should ideally utilize both concepts.
Because most models in practice are hybrid models, it is important to transform hybrid PDs into TTC
PDs using a point-in-time-ness (PITness) parameter as an additional parameter in the Asymptotic
Single Risk Factor (ASRF) model. Financial institutions are required to follow the latter model for
capital calculations, where past and future fluctuations are expected to be explained by both systematic
and idiosyncratic movements. Systematic movements reflect default risk due to a common factor, while
idiosyncratic movements are specific to a particular credit risk profile.

ASRF model assumes that both, idiosyncratic and common components are Gaussian. However, in
real-life applications, when applied to relatively small heterogeneous observations, the data could not
meet such assumptions. For this reason, the purpose of the thesis is to investigate the quality of the
TTC PDs parameters estimation by conducting a controlled Monte Carlo simulation experiment.

In order to examine how non-normally distributed components affect estimates of the parameters,
two different scenarios are introduced:

1. Common component is generated by the stochastic simulations according to the structural un-
observed components model (UCM) and this component is taken as given. The idiosyncratic
component is generated as a normal random variable.

2. Common component is the same as in 1. The idiosyncratic component is generated as a random
variable from the mixture of Gaussian distributions.

A controlled simulation experiment was conducted using 10,000 Monte Carlo simulations. Each
simulation involved generating a credit cycle, creating several portfolios of different sizes with specific
parameters, and evaluating the parameter estimates for each portfolio using the General Method of
Moments (GMM), two-step regressions (TSR) and a combination of those two. For the experiment,
generating credit cycles, two countries have been chosen: Lithuania and Germany. Since ASRF model
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assumes normality of the common credit cycles related components, thus, in each simulation, the
normality hypothesis for the common component is tested.

The obtained results showed that in the cases of both countries, common components, i.e. credit
cycle, deviations from the normal distribution are not random. In the case of the first scenario, it was
observed that larger deviations from normality affect the accuracy of parameter estimates. The results
of the second scenario are quite similar, but here the accuracy of the estimates depended more on the
quality of the portfolio (i.e. on TTC PD). Additionally, the results highlighted the low default portfolio
problem that is quite often encountered in reality.

Content-wise, the thesis is structured as follows: Section 2 introduces some context about the Basel
regulations and main definitions. A concise review of the literature is presented in Section 3. Sections 4
and 5 describe all the methodology and empirical results, respectively. Finally, conclusions and possible
proposals for further work development are presented in Section 6. The computations for the thesis
were conducted using R version 4.1.2.

2 Theoretical context

2.1 Basel regulations

Basel regulations, also known as the Basel Accords, are a set of international banking standards
that were developed by the Basel Committee on Banking Supervision (BCBS) to promote the stability
and integrity of the financial system [11]. These regulations are primarily concerned with the risk
management practices of banks, including the measurement of credit risk, operational risk, and market
risk.

Basel regulations specify the minimum requirements for banks to use internal models for estimating
the probability of default (PD) [13]. These requirements include the use of appropriate data, assump-
tions, and methodologies, as well as the implementation of robust risk management practices to ensure
the accuracy and reliability of the estimates.

One key aspect of these regulations is the requirement for banks to use a through-the-cycle approach
to PD estimation, which means that the estimates should be based on a long-term perspective and take
into account the potential impact of cyclical and structural changes in the economic environment
[14]. This approach is intended to provide a more realistic and conservative estimate of credit risk, as
compared to a point-in-time approach that only considers the current economic conditions.

Basel I was the first set of international banking standards developed by the BCBS [9]. It was
introduced in 1988 and focused on the measurement of credit risk. Under Basel I, banks were required
to hold a minimum amount of capital based on the credit risk of their assets. The minimum capital
requirement was calculated using a standardized approach, which did not take into account the specific
risk characteristics of individual banks. While Basel I was seen as a step forward in promoting the sta-
bility and soundness of the financial system, it had some limitations, including its lack of differentiation
between different types of credit risk and its reliance on simple risk weights.

Basel II was introduced in 2004 as an update to Basel I, with the aim of improving the risk sensitivity
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of the capital framework and addressing some of the limitations of the previous framework [10]. It
introduced three “pillars” to the capital framework: a minimum capital requirement, a supervisory
review process, and market discipline. Under Basel II, banks were given the option to use internal
models to estimate their capital requirements, subject to regulatory approval. The internal models
approach (also known as an internal rating based or IRB) was intended to be more risk-sensitive
and allow banks to better reflect the specific risk characteristics of their portfolios. However, the
implementation of Basel II was criticized for being too complex and for creating incentives for banks
to optimize their capital ratios through the use of complex financial instruments.

Finally, Basel III was introduced in 2010 in response to the global financial crisis, with the aim of
strengthening the resilience of the financial system by increasing the quality and quantity of banks’
capital and liquidity [12]. It introduced additional requirements for the quality and quantity of capital,
as well as new liquidity ratios to ensure that banks have sufficient liquid assets to meet their short-
term funding needs. Basel III also made some changes to the IRB approach of Basel II, including the
introduction of a through-the-cycle approach to credit risk measurement, which takes into account the
potential impact of cyclical and structural changes in the economic environment. Basel III is currently
being implemented by banks around the world, and its implementation is being closely monitored by
regulators to ensure that it is effective in promoting the stability and soundness of the financial system.

2.2 PIT and TTC PDs

In this thesis, we understand the term “PIT PD for an obligor” to mean the probability that
the obligor will default within the next twelve months. It is obvious, that the point-in-time PD is
conditional on the information that we have on time t, i.e. on time when this probability is estimated.
Theoretically, this information could be split into two components: the state of the common factors at
time t, and other information that is possessed about the obligor at time t [2]. We will use a single
asymptotic common risk factor Z, also referred to as systematic risk.

Definition 2.1. The point-in-time probability of default (PIT PD), denoted by pi(z) for an obligor i,
is the probability that the obligor will default within the next twelve months if the common factor Z has
the value z, all else being equal.

By definition 2.1 we mean that “other information” about the obligor is constant and only systematic
variable Z varies.

Definition 2.2. The trough-the-time probability of default (TTC PD), denoted by qi for an obligor i, is
the average PIT PD. Here the average is over the common factor Z, i.e. over all states of the economic.

Here, again, the TTC PD qi depends only on information known at time t. Similar definitions can
be introduced for the portfolio level.

Definition 2.3. The point-in-time probability of default (PIT PD), denoted by pP (z) for a portfolio P ,
is the average of the PIT PDs for the obligors in the portfolio if the common factor Z has the value z,

6



all else being equal:

pP (z) =
1

#P

∑
i∈P

pi(z). (2.1)

Here #P is the number of the obligors in the portfolio.

Definition 2.4. The through-the-cycle probability of default (TTC PD), denoted by qP for a portfolio
P , is the average of the TTC PDs for the obligors in the portfolio:

qP =
1

#P

∑
i∈P

qi. (2.2)

3 Literature review

In many frameworks, it is considered that IRB modelled PDs have a hybrid nature: they are neither
perfectly point-in-time nor through-the-cycle (Aguais et al [1], Carlehed and Petrov [2], Rubtsov and
Petrov [15], Oeyen and Celis [8]). To comply with Basel regulations, banks must have estimates of both
PIT and TTC probabilities of default. As a result, various methods for obtaining these estimates have
been proposed by different authors.

One of the sophisticated approaches is proposed by Aguais et al [1]. The authors first categorize
obligors into different sectors and then gather default data for each sector. Then, default statistics
are translated to Merton’s distance to default (described more precisely in Section 4) by using inverse
standard normal cumulative distribution function and averaged across all sectors to obtain the final
estimates. It results in credit indexes (common components) Z for each sector which describe the level
of default risk within economic sectors. A modelled PD is commonly estimated by a logistic regression
model including deviations of the mentioned credit indexes from their long-run equilibrium levels as
additional explanatory factors. Since authors do not define the degree of PITness, their method is only
fit for 100% PIT models, i.e. not hybrid PDs as commonly modelled in IRB. After all, by setting credit
index deviations to zero and keeping the estimated regression coefficients unchanged, authors derive to
the assumed TTC PD.

The next available methodology is suggested by Carlehed and Petrov [2]. Similarly to Aguais et
al, they begin with an assumption of the hybrid PD availability, which is then decomposed to pure
PIT and TTC PDs. The authors assume that the observed default rate follows the asymptotic single
risk factor Merton-Vasicek model, in accordance with Basel regulations. Carlehed and Petrov assume
that there is a global portfolio for each given segment, with credit conditions that impact all obligors
uniformly through a common cycle Z and Vasicek correlation ρ. The authors use the General Method of
Moments (GMM) to estimate two parameters: B, which corresponds to the long-term default frequency
for a sector, and ρ, which is the correlation between the average portfolio and the economic cycle. The
degree of PITness is estimated with additional assumptions which say that the sub-portfolio is formed
of the obligors with a stable risk profile.

PIT and TTC theory in Oeyen and Celis [8] paper is fundamentally the same as in Carlehed and
Petrov, however, their estimation procedure differs. The authors use linear regression to calculate the
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TTC PD by calibrating the Vasicek correlation ρ and the PITness parameter α. This methodology
simplifies the statistical approach for calibrating TTC PD and reduces data requirements. Their TTC
PD is time-varying as they allow for changes in the idiosyncratic risk of any given obligor. However,
the time-dependent intercept causes problems with ordinary least squares (OLS) and direct implemen-
tation would give poor correlation estimates. Oeyen and Celis circumvent this by taking the first-order
derivative. The authors note that Vasicek correlation must be estimated first before determining TTC
PD. This is done using internal observed default frequency (ODF) and the common factor Z for each
(sub)sector. Oeyen and Celis also suggest a top-down, heuristic segmentation framework in order to
provide justification for any modeller-based definitions of the common factor.

Entirely different to Carlehed-Petrov and Oeyen-Celis is Rubtsov and Petrov [15] framework. PIT-
TTC transformation is done based on rating-grade PDs instead of obligor-specific PDs. The authors
assume that the TTC PD for each segment is stochastic and use logistic regression to estimate the
boundaries of the rating grades based on the quantiles of the empirical obligor distribution. They use
logit scores to track the movement of the economic cycle over time and adjust the empirical quantiles
accordingly. This is done by analyzing the migrations of non-defaulted customers from one time period
to the next. It allows to effectively remove the influence of the business cycle on the rating boundaries.
Thus, the degree of PITness is determined by the change in observed portfolio level PD for behavioural
customers belonging to each rating bucket.

Table 1 summarizes the results of these papers in few dimensions (see Table 1), excluding Aguais
et al that omits explicit assessment of the level of PITness.

Table 1: Comparison of TTC methods.

Dimension Carlehed & Petrov (2012) Rubtsov & Petrov (2016) Oeyen & Celis (2019)

Underlying interaction
between TTC and PIT
PDs

TTC means an unconditional
PD, PIT means a PD condi-
tional on the state of the eco-
nomic credit cycle

TTC PD is rating-grade spe-
cific, PIT PD is then calcu-
lated in the following calibra-
tion step

TTC means an unconditional
PD, PIT means a PD condi-
tional on the state of the eco-
nomic credit cycle

Dependence on an ex-
ternal credit cycle

Explicit Implicit Explicit

Estimating the level of
PITness

GMM Logistic scoring, and relative
(dynamic) portfolio move-
ments

Linear regression

Based on the comparison provided in Table 1, in the following work, it was chosen to examine
two directly competing methodologies with an explicit link to the external credit cycle, i.e. GMM
introduced by Carlehed and Petrov [2] and two-step regression introduced by Oeyen and Celis [8].
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4 Methodology

4.1 Asymptotic Single Risk Factor model

Vasicek, in his seminal 2002 paper [19], has shown that Merton’s model can be extended to a specific
Asymptotic Single Risk Factor credit portfolio model. It is assumed that the obligor defaults on his
credit obligations when the obligor cannot meet its liabilities because the value of the obligor’s assets
at the loan maturity T is lower than the contractual value B of its payable obligations. Let Ai denotes
the value of the i-th obligor’s assets. Dynamics through the time of Ai is described by the process:

dAi = µiAidt+ σiAidWi(t). (4.1)

Here µi denotes the asset-specific drift, σi represents volatility and Wi(t) denotes a Wiener process.
The solution for equation (4.1) can be derived by first dividing both sides by Ai and using Itô’s

formula [7]. Thus, the value of the assets at T can be expressed as:

logAi(T ) = logAi + (µi −
1

2
σ2
i )T + σi

√
TXi. (4.2)

Here Xi is a random variable that follows the standard normal distribution.
The probability of default for the i-th obligor at maturity time T is the probability of the value of

the obligor’s assets Ai being lower than the threshold value Bi:

qi = P(Ai(T ) < Di) = P(Xi < Bi) = Φ(Bi), (4.3)

where

Bi =
logDi − logAi − µiT + 1

2σ
2
i T

σi
√
T

(4.4)

and Φ is the cumulative normal distribution function.
Now, consider a portfolio that consists of n loans – all in equal amounts. Let the probability

of default on every loan be p and assume that, for any two companies, the values of assets of those
companies are correlated with a coefficient ρ. In addition, assume that all loans have the same maturity
term T . Let Li be the gross loss on the i-th obligor’s loan so that Li = 1 if the obligor defaults and 0
otherwise. In more mathematical form we can express gross loss as:

Li = 1{Xi<Bi} =

1,whenXi < Bi,

0 otherwise.
(4.5)

The portfolio percentage gross loss then can be expressed by

L =
1

n

n∑
i=1

Li. (4.6)
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By the central limit theorem, if the events of the obligor’s defaults in the portfolio were indepen-
dent of each other and identically distributed random variables, the portfolio loss distribution would
converge to a normal distribution as the size of the portfolio increases. However, the events of defaults
are not independent, thus the conditions of the central limit theorem are not satisfied and L is not
asymptotically normally distributed. Nevertheless, it turns out, that the distribution of portfolio loss
converges to a limiting form as derived in Vasicek [19].

In particular, as mentioned earlier in this section, asset values of the borrowers Ai are pairwise
correlated with a coefficient ρ for any two companies. It follows that variables Xi in equation (4.2)
have pairwise correlation ρ too. Because of it, Xi can be expressed with jointly standard normal
variables Z and εi and represented as:

Xi =
√
ρZ +

√
1− ρ εi. (4.7)

Here Z, ε1, . . . , εn are mutually independent random variables distributed according to the standard
normal distribution. The variable Z is systematic, or in other words, a common factor of the portfolio
that affects all the loans in the portfolio and can be interpreted as an economic index or the state of
the economy. It follows then, that the term √

ρZ is the obligor’s exposure to the common factor and
the term

√
1− ρ εi accounts for obligor-specific risk.

The probability of the portfolio loss can be evaluated as the expectation over the common factor
Z of the conditional probability given Z. First of all, fixing the common factor Z, the conditional
probability of default for any one obligor in the homogeneous portfolio is:

pi(Z) = P(Li = 1|Z) = P(Xi < Bi|Z) = Φ

(
Φ−1(qi)−

√
ρZ

√
1− ρ

)
. (4.8)

This provides the default probability of the i-th obligor under given conditions, i.e. given the state of
the economy. Averaging over the common factor Z, which represents various states of the economic
cycle, we obtain the unconditional (or TTC) default probability that makes the primary focus of the
current thesis:

qi = EZ [pi] = Φ(Bi). (4.9)

By inverting (4.8), for each obligor in the portfolio we can calculate:

Bi =
√
ρZ +

√
1− ρΦ−1(pi) (4.10)

and then the final result is:
qi = Φ

[√
ρZ +

√
1− ρΦ−1(pi)

]
. (4.11)

Denoting B as the Bi of the average obligor or central tendency obligor, the conditional probability
of the portfolio loss can be represented by:

pP (Z) = Φ

(
B −√

ρZ
√
1− ρ

)
(4.12)
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and as above
qP = Φ(B) = Φ

[√
ρZ +

√
1− ρΦ−1(pP )

]
. (4.13)

4.2 Hybrid rating model

In the subsection above, we described two boundary rating philosophies, so-called PIT and TTC
PDs, and each of which has its advantages and disadvantages [2]. In real modelling applications,
most models vary with the cycle to a certain extent, but not fully, i.e. they are so-called hybrid PD
models, which are neither perfectly point-in-time nor through-the-cycle [1]. In this context, the degree
of PITness should be introduced.

Let α be a real number between 0 and 1, i.e. 0 ≤ α ≤ 1. This variable will be called the degree of
PITness of the rating model. The PITness parameter is an additional parameter to the ASRF model,
which expresses the dependency of a modelled hybrid PD on a common factor Z [8]. Hybrid PD model
for an obligor i can be considered as in (4.8), but with correlation parameter ρ replaced with ρ̃ = ρα2:

pi,α(Z) = Φ

(
Bi −

√
ραZ√

1− ρα2

)
. (4.14)

When α = 1, it is truly PIT PD, and when α = 0, it is truly TTC PD model. Likewise, hybrid PD for
portfolio can be simply derived from (4.12) in the same way replacing ρ with ρ̃ = ρα2:

pP,α(Z) = Φ

(
B −√

ραZ√
1− ρα2

)
. (4.15)

Mimicking the steps in the previous subsection, we get:

qi = Φ
[√

ραZ +
√
1− ρα2Φ−1(pi,α)

]
(4.16)

and analogously
qP = Φ

[√
ραZ +

√
1− ρα2Φ−1(pP,α)

]
. (4.17)

4.3 Estimation of the parameters ρ, B and α

As mentioned in the literature review, parameters will be estimated using two different methods:
the General Method of Moments and two-step regression. In the following sections, we will describe
those methods in more detail. The important aspect of the derivation of formulas is that we consider
observed default frequency (ODF) to be analogous to PIT PD as in [8]. This simplification is useful
for the estimation of Vasicek correlation ρ, the parameter B, and the PITness parameter α.
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4.3.1 General Method of Moments

Taking the mean and the variance of (4.12) and using the simplification that is mentioned above,
we get:

E[Φ−1(ODFt)] = E

[
B −√

ρZt√
1− ρ

]
=

1√
1− ρ

(E [B]−√
ρE [Zt])

=
B√
1− ρ

(4.18)

and
V [Φ−1(ODFt)] = E[(Φ−1(ODFt)

2]− E[Φ−1(ODFt)]
2

=
B2 + ρ

1− ρ
−
(

B√
1− ρ

)2

=
ρ

1− ρ
.

(4.19)

Then, we can define m as the mean and σ as the standard deviation of the series Φ−1(ODFt), i.e.:

m =
B√
1− ρ

and σ =

√
ρ

1− ρ
. (4.20)

Identifying moments, and solving for ρ and B we get

ρ̂ ≈ σ̂2

1 + σ̂2
and B̂ ≈ m̂√

1 + σ̂2
. (4.21)

For α parameter estimation Carlehed and Petrov introduce the term “portfolio with stable risk
profile” [2] which is mentioned in the assumptions valid in this work (subsection 4.7). Conditional on a
portfolio with a stable risk profile, one way to estimate PITness parameter is to use (4.14). Considering
two-time points that represent a severe change in credit conditions, i.e. reflect the extent of boom-burst
cycle similar to global financial crisis of 2008 or coronavirus outbreak. Let without loss of generality
Z1 denotes the local peak in credit cycle and Z2 denotes the subsequent trough point, then, for each
obligor i:

Φ−1(pi,α(Z1)) =
Bi −

√
ραZ1√

1− ρα2
(4.22)

and
Φ−1(pi,α(Z2)) =

Bi −
√
ραZ2√

1− ρα2
. (4.23)

Averaging over the obligors (portfolio) and taking the difference between (4.23) and (4.22), we get:

∆

(
1

#P

∑
i∈P

Φ−1(pi,α(Z))

)
=

−√
ρα∆Z√

1− ρα2
, (4.24)

where the difference in the points of the corresponding functions is denoted as ∆. In (4.24) average of
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Bi is cancelled out as it was assumed that the risk profile is stable over time. From this equation the
degree of PITness α can be solved:

α̂ =
∆
(

1
#P

∑
i∈P Φ−1(pi,α(Z))

)
√
ρ̂

[
(∆Z)2 +

(
∆
(

1
#P

∑
i∈P Φ−1(pi,α(Z))

))2] . (4.25)

Since the estimate of Vasicek correlation ρ̂ depends on ODF moments, theoretically, there is no
endogeneity problem assessing the level of PITness by GMM approach.

4.3.2 Two-step regression

Two-step regression is another parameters estimation approach suggested and applied by Oeyen
and Celis [8]. Likewise in GMM approach, in this framework, Vasicek correlation ρ must be estimated
before determining PITness parameter α. To do that, first of all, we rely on OLS regression to estimate
the coefficients β0 and β1 in:

Φ−1(ODFt) =
B −√

ρZt√
1− ρ

=
B√
1− ρ

−
√
ρ

√
1− ρ

Zt

= β0 + β1Zt.

(4.26)

Equating the regression coefficients gives

ρ̂ ≈ β̂1
2

1 + β̂1
2 and B̂ ≈ β̂0

√
1− ρ̂. (4.27)

When ρ is already estimated, (4.15) readily implies

Φ−1(pP,α(Zt)) =
B −√

ραZt√
1− ρα2

=
B√

1− ρα2
−

√
ρα√

1− ρα2
Zt

= γ0 + γ1Zt.

(4.28)

Much like in (4.26), OLS can be employed to estimate coefficients γ0 and γ1, from which approximation
for PITness parameter α is derived:

α̂ ≈ γ̂1√
(1 + γ̂1

2ρ̂
. (4.29)

4.4 Credit cycles

Credit cycles, which will be used as a common factor, can be simulated according to the framework
described by Celov and Comunale [3]. This section will present the structural unobserved components
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model (UCM) used for stochastic simulations. A great advantage of such simulation is that we have full
knowledge of simulated elements and, hence, can account for the additional uncertainty when credit
cycles must be estimated from macroeconomic data.

The state-space representation of the structural UCM model that is also applied in the European
system of central banks:

Signal: yt − y∗t − δCt = νt, νt ∼ NID(0, σ2). (4.30)

Stochastic trend:

State: yt = y∗t−1 + µt−1 + εl,t, εl,t ∼ NID(0, σ2
l ), (4.31)

State: µt = mt−1 + εµ,t, εµ,t ∼ NID(0, σ2
µ). (4.32)

Stochastic cycle:

State: Ct = ct−1 + γcCt−1, (4.33)

State: (1− 2γcos(λ)L+ γ2L2)ct = (1− γcos(λ)L)ε1,t, ε1,t ∼ NID(0, 1). (4.34)

Here:

• yt represents the simulated time series;

• y∗t denotes a stochastic local liner trend model consisting of level state (4.31) with variance σ2
l

and time-varying drift µt (4.32) with variance σ2
µ;

• νt is a high-frequency irregular shocks that can have varying magnitude and direction;

• ct is the inner first-order stochastic cycle (4.34), where γ ∈ (0, 1) is a damping factor of the cycle;

• λ = 2π/T governs the cycle length. For example, λ of 0.2 results in a cycle length of 31 quarters
corresponding to approximately 7.5-8 years;

• Lct = ct−1 is a backshift operator;

• Ct is the long cycle that generates the autoregressive state equation (4.33) with dampening factor
γc and δ in (4.30) that controls for the overall variability of the stochastic cycle.

In the simulation, all four error terms νt, εl,t, εµ,t and ε1,t are generated as mutually and serially uncor-
related normally distributed random variables with zero mean and assessed variances. Those variances
control for the signal-to-noise ratios of the stochastic cycle and the stochastic trend.

4.5 Monte Carlo method

Monte Carlo simulation is a probabilistic numerical technique widely used to estimate the outcome
of an uncertain (stochastic) process. This means that it is a suitable method for simulating events that
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cannot be modelled implicitly, for instance, unobserved credit cycles or replicating the distributions of
ODFs similar to real credit portfolios without actual access to defaults and modelled PD data. Ease of
implementation, high computing power, and cheapness are the greatest advantages of the Monte Carlo
method.

In general, Monte Carlo simulations are based on the Weak Law of Large Numbers. If X1, X2, . . . , XN

are independent identically distributed variables with mean µ and variance σ2, then the term σ2

Nε2
in

the Chebyshev inequality (4.35) converges to 0 when N → ∞ [6].

P

(∣∣∣∣∣
∑N

i=1Xi

N
− µ

∣∣∣∣∣ ≥ ε

)
≤ 1

ε
E

(∑N
i=1Xi

N
− µ

)2
 =

σ2

Nε2
. (4.35)

Because of the advantages mentioned above, this method will be used for our controlled simulation
experiment: simulations of common component Z and portfolios.

4.6 Gaussian Mixture Model

The modelled PD distributions in real applications are often imperfectly segmented, especially when
the higher granularity leads to poor quality of modelled PD. Hence, the data of the real application
tend to have features (bimodality, asymmetry, shape) that are better gauged by the Gaussian mixture
model. This is a probabilistic model that is based on the assumption that the data is generated using
a finite number of Gaussian distributions [16]. Mixture models include latent variables indicating to
which Gaussian component of the model a given point belongs.

Let latent variable be zi | ωωω ∼ Categorical(ωωω). Thus, ωj describes the probability that zi is equal
to the j-th cluster number:

P(zi = j | ωωω) = ωj , (4.36)

where ωωω = {ω1, . . . , ωNc} - vector of mixture weights,
∑Nc

j=1 ωj = 1, 0 ≤ ωj ≤ 1 and Nc is number of
clusters. If Nc = 1 then it is simple Gaussian distribution.

The xi are then generated from the corresponding Gaussian distribution based on the zi values, i.e.

xi | zi = j ∼ N(µj , σ
2
j ), (4.37)

where µj , σ
2
j - the mean and variance of the j-th cluster, j = 1, . . . , Nc.

In general, mixture models are based on the assumption that the data are obtained in the following
way. First, the zi variables are simulated, and then, based on the obtained zi values, the xi are
simulated, i = 1, . . . , N from the corresponding Gaussian distribution.

It follows that the density function of a Gaussian mixture model is the weighted sum of density
functions of normal distributions:

p(xi) =

Nc∑
j=1

ωjf(xi | µj , σ
2
j ), (4.38)
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where f(xi | µj , σ
2
j ) is density function of normal distribution.

The main idea of the Gaussian mixture model is that each component of the model (cluster, class)
is a separate normal distribution and each of them describes different groups of data. In the context
of the thesis, clusters can be interpreted as groups of obligors making up the portfolio, e.g. better and
worse customers, i.e. customers with lower and higher PDs. In our case, the Gaussian mixture will be
used to generate asymmetric distribution.

4.7 Controlled simulation experiment

For the controlled simulation experiment, two countries were chosen: Lithuania and Germany.
Lithuanian case represents small economies with more volatile and deeper credit cycles, while Germany
represents the average of the euro area as the main contributor to the club. Common components,
i.e. credit cycles, will be generated based on parameters of the UCM model obtained by applying the
Bayes Markov Chain Monte Carlo (MCMC) approach to the real gross domestic product (GDP) data
of these selected countries, using 22,200 simulations with 2200 used as a burn-in. Obtained parameters
are provided by the supervisor and presented in Table 2. Figure 1 shows the observed time series of real
GDP, extracted trend, and cycle components for Germany and Lithuania in 1a and 1b respectively.

Figure 1: Real GDP observed time series, GDP-related trend and cycle.

(a) Germany (b) Lithuania

Posterior means from Table 2 are used to define the corresponding DE and LT Monte Carlo simu-
lation scenarios.

4.7.1 Scenarios and assumptions

In order to examine how non-normally distributed components affect estimates of the parameters,
two different scenarios are introduced:

1. Common component is generated by the stochastic simulations according to structural unob-
served components model and this component is taken as given. The idiosyncratic component is
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Table 2: MCMC estimated parameters of Germany and Lithuania real GDP models.

DE real GDP, log-transformed LT real GDP, log-transformed
mean s.d. 5% 95% mean s.d. 5% 95%

δ 0.00852 0.00006 0.006 0.012 0.01107 0.00006 0.008 0.015
σ 0.0000486 0.0000008 0.0000150 0.000082 0.0000404 0.0000007 0.000010 0.000077
σl 0.0000316 0.0000008 0.0000050 0.000088 0.0000547 0.0000015 0.000007 0.000154
σµ 0.0000046 0.0000001 0.000002 0.000010 0.0000124 0.0000002 0.000003 0.000032
γ 0.72067 0.01008 0.461 0.919 0.82559 0.00632 0.607 0.955
γc 0.33405 0.01467 0.059 0.666 0.56937 0.01444 0.259 0.876
λ 0.18685 0.00548 0.064 0.378 0.19113 0.00426 0.066 0.352

generated as a normal random variable.

2. Common component is the same as in 1. The idiosyncratic component is generated as a random
variable from the mixture of normal distributions.

The first scenario is considered the perfect case as Z component is assumed to be known and every-
thing else generated as in regulations. After that, Gaussian mixture model is used for the generation
of obligor-specific default threshold Bi by bringing the simulation closer to the real situation.

In the thesis, the following simplifying assumptions are made:

• Methodology is primarily intended to be used for corporate portfolios;

• Portfolio composition is constant;

• At every moment in the sample, an obligor can either be in default or performing independently
of its previous states (multiple defaults are possible);

• Observed defaults are simulated applying PIT PD framework;

• Parameters ρ, B and α are not time-varying.

4.7.2 Algorithm of the experiment

As mentioned earlier, an experiment is implemented using Monte Carlo simulations. The subsequent
algorithm aims to introduce the practicalities of the proposed estimation methodology. The first step
of each simulation is to generate a common component Z for 100 time periods, i.e. 25 years of quarterly
observations. For each Z, we create 5,000 realizations of idiosyncratic component εi. Portfolios can be
of four sizes: 100, 500, 1000, and 5000 entities. To save computation time, εi is not regenerated each
time, but the needed number of entities is randomly selected from the total set of 5,000 entities.

Then, an obligor i defaults at time t when its distance to default space √
ρZt +

√
1− ρεi,t drops

below its default threshold Bi. Here, ρ is given and selected based on the distribution of pairwise
correlation estimates (Figure 2) that are reported by Moody’s KMV in July 2006 and related to 10,891
non-financial firms [17]. In addition, B is also given and derived from the TTC PD as in equation (4.13).
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Figure 2: Distribution of pairwise correlations.

Source: Tarashev, N. and Zhu, H. (2007). Modelling and calibration errors in measures of portfolio credit risk [17].

Bi generated for each obligor and its distribution depends on the scenario. For the first scenario, Bi is
generated as a Gaussian random variable Bi ∼ N(B, 1). In the second scenario, the distribution of Bi is
constructed as a mixture of two Gaussian distributions, keeping the mean of the mixture approximately
equal to B, but with the distribution being made asymmetric and skewed to the right, i.e. signifying
that there are more bad clients in the portfolio (Figure 3). Parameters of the normal distributions from
which the mixtures are made are selected experimentally, generating many samples according to the
selected mixtures and checking their averages. Those parameters were selected with which the average
of the samples generated by the mixture is closest to the true value B, but the distribution is sufficiently
skewed and visually corresponds to the distributions found in reality. Parameters of Gaussian mixture
components are provided in Table 3. In all cases, weights ω1 = ω2 = 0.5. The other parameters used
for the simulation are summarized in Table 4.

Table 3: Gaussian mixture components parameters.

B Gaussian components
-2.326 x1 ∼ N(−1.59, 0.70), x2 ∼ N(−3.06, 1.20)
-2.054 x1 ∼ N(−1.32, 0.70), x2 ∼ N(−2.79, 1.20)
-1.645 x1 ∼ N(−0.93, 0.70), x2 ∼ N(−2.36, 1.20)
-1.282 x1 ∼ N(−0.54, 0.70), x2 ∼ N(−2.02, 1.20)

Table 4: Simulation parameters.

Number of simulations 10,000
Time period (quarters) 100
Vasicek correlation (ρ) 0.02, 0.05, 0.10, 0.15, 0.20, 0.25
Degree of PITness (α) 0.5
TTC PD 1%, 2%, 5%, 10%
Portfolio size 100, 500, 1000, 5000
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Having the number of defaulted entities in time t, the observed default frequency is calculated by
dividing the number of defaults by the number of entities in the portfolio. After that, hybrid PDs for
each obligor or portfolio (depending on the method) is calculated. Finally parameters ρ,B and α are
estimated based on (4.21), (4.25), (4.27) and (4.29). The algorithm is repeated 10,000 times for each
scenario.

Figure 3: Example of Gaussian Mixture.

5 Empirical results

5.1 Normality of simulated credit cycles

As previously mentioned, the normality hypothesis was tested for each simulation of the credit cycle
(common component Z) for both simulated credit cycle cases that resemble Lithuania’s and Germany’s
data. To do that, two well-known statistical tests were employed: the Shapiro-Wilk test and the Jarque-
Bera test. The Shapiro-Wilk test is used for assessing the degree to which a dataset follows a normal
distribution, based on the W statistic, which is calculated as the sum of the squares of the standardized
ranks of the data. The Jarque-Bera test is another commonly used test for normality, which is based
on the sample skewness and kurtosis and is often used as an alternative to the Shapiro-Wilk test in
cases where the distribution of the data is unknown. In both cases, the hypotheses were tested with a
significance level of α = 0.05.

Table 5: Percentage of rejected normality hypotheses.

Germany Lithuania
Shapiro-Wilk test 25.2 % 50.4 %
Jarque-Bera test 11.5 % 20.2 %
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The results of the tests (Table 5) suggest that the generated stochastic credit cycle is not normally
distributed in a significant number of cases for both countries, Germany and Lithuania. Specifically, the
Shapiro-Wilk test rejected the null hypothesis of normality in 50.4 % of the simulations for Lithuania
and 25.2 % of the simulations for Germany. Similarly, the Jarque-Bera test rejected the null hypothesis
of normality in 20.2 % of the simulations for Lithuania and 11.5 % of the simulations for Germany. Since
the W statistic of the Shapiro-Wilk test is heavily influenced by the values of the extreme observations in
the sample and is, therefore, more sensitive to deviations from normality at the tails of the distribution
[4], a high percentage of hypotheses rejected by this test may (but not necessarily) indicate that there
are some sharp ups and downs in the simulated cycles. For Lithuania, the Shapiro-Wilk test rejected
the null hypothesis especially often, but it is quite expected because the parameters are more strict
(see Table 2) and cycles are much deeper (see Figure 1b), that is, large deviations are more likely. In
contrast to Shapiro-Wilk, the Jarque-Bera test is more sensitive to deviations from normality in the
central part of the distribution since, as mentioned, it is based on asymmetry and peakedness of the
data. Thus, the central part of the distribution of the cyclical components is more often similar to the
normal distribution, i.e. Jarque-Bera test rejected the normality hypothesis less frequently for both
countries.

Figure 4: Distribution of the simulated credit cycle component (combined from all simulations).

(a) Germany (b) Lithuania

According to asymptotic theory, when the sample size becomes infinitely large, the distribution
will return to normality. We decided to examine this by combining the time series from all 10,000
simulations into one long time series (1 million observations) and testing the normality of such a
sample. Distributions of joined time series are presented in Figure 4. Graphical representation of
the distribution of the component Z appears to be similar to the normal and it confirms the theory.
However, the fact that the normality hypothesis for small samples, i.e. 100 quarterly observations were
rejected for more than 5 % of all simulations means that it is rejected not randomly, i.e. non-normality
is detected.
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5.2 Parameter estimates

5.2.1 Scenario 1

In the methodological section, it was introduced that, in the first step, for the estimation of param-
eters ρ and B ODF data is needed. It may happen that, at a given time t, all obligors in the portfolio
will fulfil their liabilities successfully (for example, if the portfolio consists of only good clients) and
the number of observed defaults will be equal to zero. Such cases1 in theory are called low default
portfolios.

Figure 5: Percentage of simulations in which at least one point in time t the number of defaults was
equal to zero: Scenario 1.

(a) Germany (b) Lithuania

Figure 5 shows the percentage of simulations in which, for at least one time point t out of 100
observations, there were no defaults. The common tendency shows that the more negative is the value
of B (i.e. lower TTC PD) and the higher is the value of ρ, the higher the percentage of cases where
defaults do not occur. In other words, the portfolio of better clients, whose distance to default space is
more strongly correlated with the common component Z, is more likely to be a low default portfolio.
Looking at Germany and Lithuania cases separately, it could be seen that in Germany, as the size of
the portfolio grows, the number of cases where there was no default decreases, and for a portfolio of
size 5,000, there is a very small percentage of such cases at all. Meanwhile, in Lithuania, even for large
(in the context under consideration) portfolios, the case of a low default portfolio is highly probable. It
is possible that this is determined by the characteristics of the credit cycle, i.e. cycles are deeper and
Z values can be higher, thus when the correlation between Xi and Z is growing it is more likely that
the obligor will not default.

Unfortunately, such cases of low default portfolios complicate the evaluation of the parameters, and
consequently the evaluation of the PD itself, thus additional methods should be used [5], [18]. For our
chosen estimation methods, it is necessary to calculate Φ−1(ODFt), which means that the parameters
ρ, B, and also α cannot be feasibly estimated when some observations are −∞. Further in this thesis,

1Also when the number of defaults is not zero, but only a few default observations occur.
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the averages of the parameter estimates and their interpretations will be presented for all the examined
cases2, but it is important to keep in mind that, in some cases, the parameters were not estimated for a
large number of simulations and the average is calculated for a relatively small sample, so the estimates
may be significantly biased and unreliable.

Continuing on defaults, Table 9 shows that the percentage of defaults in the portfolio does not
depend on the size of the portfolio. The ODF varies only through different values of ρ and B. For
Germany, the ODF varies little across different ρ values. The difference between the ODF values when ρ

takes its maximum and minimum values (i.e. the difference between the rightmost and leftmost values
of Table 9) varies between 1.6 and 2.1 percentage points. Meanwhile, for Lithuania, this difference
ranges between 9.0 - 9.8 p.p. Additionally, when comparing the countries, in the case of Lithuania, the
ODF is higher than that of Germany in all cells. It is interesting that Lithuania has more cases of low
default portfolios, but when they are excluded, the ODFs for Lithuania are larger.

Figure 6: Deviations of the parameter ρ estimates from the true values of the parameter: Scenario 1.

(a) Germany (b) Lithuania

Figure 6 presents deviations of the estimated parameter ρ from its true value, i.e. the difference
between the estimate and true value of the parameter, while Table 6 presents estimates of ρ. In the
case of Germany, when the true value of ρ is small (e.g. 2 % or 5 %), the two-step regression estimates
ρ fairly accurately, but as the value of ρ increases, the deviation from the true value increases rapidly.
GMM estimates the ρ parameter much more accurately and stably for Germany. Figure 6b shows quite
the opposite situation in the case of Lithuania. Here GMM loses its stability and differences start to
increase for higher ρ values. Thus, the TSR method works quite similarly in both cases while GMM
performs poorly in the case of Lithuania, which means that the not normally distributed common
component Z affects estimates obtained by the GMM method. Additionally, when the number of
obligors in the portfolio is growing, the true value of B no longer affects ρ̂, i.e. lines in the graphs
overlap. Although this also applies to the GMM method in the case of Lithuania, it can be seen (top
row of Figure 6b) that for a larger B, i.e. for the portfolio of worse clients, ρ is more overestimated in

2Except two cases of Lithuania in Scenario 2., when ρ = 0.25, TTC PD ∈ {1%, 2%} and portfolio size = 100, because
100% of simulations were zero default cases.
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the GMM case.
Parameter B is overestimated by both methods and for both countries, i.e. we consider the portfolio

worse than it actually is (Figure 7 and Table 7). As the true value of B increases, the deviations of
the estimates from it decrease slightly, i.e. for poorer portfolios, we can more accurately estimate the
parameter. In the case of two-step regression, all the blue lines in Figure 7 are quite close to each other,
which means that the accuracy of B̂ does not vary strongly for different values of ρ. Whereas, in the
GMM method, the estimate of B for different values of ρ is quite different, especially for Lithuania.

The last parameter assessed in Scenario 1. is α. Estimates of this parameter are presented in Table
8 and visually plotted in Figure 8. The true value of α is equal to 0.05 and is marked in the graphs as
a red dashed line. It can be seen, that TSR overestimates it for both Germany and Lithuania, and true
values of ρ and B do not affect the α̂ in this method. GMM performs quite accurately for Germany
but underestimates the parameter for Lithuania. Since for the assessment of α an estimate of ρ is used
and, as discussed, is overestimated, this potentially affects the underestimation of α̂.

5.2.2 Scenario 2

In the second scenario, everything remains as in the first, but the distribution of Bi is changed by
creating asymmetry and skewing the distribution to the right using the Gaussian mixture method. The
obtained results are presented analogously as before.

Percentages of no default portfolio cases are presented in Figure 15. The graphs show that the
results are very similar to the results of the first scenario. Since Bi is shifted to the right, it was
expected that there would be fewer such portfolios where no obligor defaults. It also follows that ODFs
in Scenario 2. increase by approximately 1 - 3 p.p. (see Table 16).

When estimating the parameter ρ, the overall trends remain the same: GMM method overestimates
and TSR underestimates ρ̂, but the main difference obtained between scenarios is the dependence of
the accuracy of parameter estimates on the true value of parameter B (see Figure 12). The difference
in GMM is more clearly visible, and TSR is less but compared to Scenario 1., there is a change. In
the case of Germany, dependence on B became evident, i.e. the wider spread between lines, while the
lines in Lithuania’s graphs overlap more, so when we make Bi as a Gaussian mixture, the influence
of the actual value of B decreases. Interestingly, the GMM for Germany estimates ρ more accurately
when the TTC PD is higher (light blue lines in Figure 12a are lower). The opposite situation occurs
for Lithuania and the deviations are smaller, when the TTC PD is lower (see Figure 12b).

Figure 13 shows that the generation of Bi as a mixture did not have a significant effect on the
estimation of the B parameter by the GMM method. The only slightly more pronounced change is
that when TTC PD is higher, GMM assesses more similarly for different ρ. TSR with Bi as a mixture
performs worse in the evaluation, deviations increased both in Germany’s and Lithuania’s cases. In the
case of Germany, GMM and TSR perform very similarly, while in Lithuania’s case, there are greater
differences between these methods.

Finally, estimates of the parameter α for Scenario 2. are presented in Figure 14 and Table 15.
Consistent with the already discussed results of Scenario 1., the GMM method underestimates and
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TSR overestimates the value of α̂. As in the case of other parameter estimates, larger differences
appear between various variants of B (except for Lithuania’s GMM case).

5.2.3 Hybrid estimation method

The results of the first and second scenarios revealed that, in general, the GMM method overesti-
mates the ρ parameter, while the TSR underestimates it. For the α parameter, the methods work the
other way around: GMM underestimates, while TSR overestimates. This suggests that the methods
seem to work in opposite directions, and from this follows the possible idea that the combination of
GMM and TSR would be a better hybrid approach for TTC parameters estimation. To test this hypoth-
esis, Monte Carlo simulations were repeated for the previously generated Z values, slightly changing the
principle of parameter estimation. Initially, ρ̂GMM , ρ̂TSR, B̂GMM and B̂TSR were estimated by GMM
and TSR methods as before. New estimates of these parameters then were calculated as the average
of the estimates obtained by the different methods:

ρ̂hybrid =
ρ̂GMM + ρ̂TSR

2
and B̂hybrid =

B̂GMM + B̂TSR

2
. (5.1)

After that, the α parameter was again estimated by two methods, GMM and TSR according to equations
(4.25) and (4.29), but using the hybrid ρ estimate ρ̂hybrid. Finally, a hybrid estimate of α was also
obtained by averaging α̂GMM and α̂TSR:

α̂hybrid =
α̂GMM + α̂TSR

2
. (5.2)

The estimates of the parameters obtained in Scenario 1. are given in Tables 10, 11, 12 and graphi-
cally represented in Figures 9, 10 and 11 for ρ, B and α respectively. Since for Germany, the estimates of
the ρ and α parameters for different methods had deviations in different directions at a similar distance
for small ρ values, the hybrid method, when the estimates are averaged across methods, works well and
gives relatively accurate estimates of ρ and α (see Figure 9a and Figure 11a). However, for larger true
values of ρ, severely underestimated TSR estimates weigh the average down, and deviations from the
true values of the hybrid estimates remain large. The accuracy of estimates of the parameter B was not
improved much by the hybrid method. In the case of Lithuania, GMM overestimates ρ more strongly
than TSR underestimates it, therefore, when averaging, ρ̂hybrid remains significantly overestimated and,
consequently, α̂hybrid - underestimated, as is shown in Figure 9b and Figure 11b.

The results of Scenario 2. are presented analogously in tables (Tables 17, 18, 19) and graphs (Figures
16, 17, 18). The insights that follow are broadly similar to those of Scenario 1., but here the case of
Germany stands out with relatively accurate estimates of the parameters ρ and α. As for the GMM
and TSR methods in this scenario, there also remains a variation in estimates for different actual values
of B due to the simulation of Bi as a Gaussian mixture.
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6 Conclusions

The normality hypothesis for small samples with 100 quarterly observations was rejected in more
than 5% of all simulations for both countries, Germany and Lithuania, indicating that non-normality is
present in data samples similar to real applications and is not just occurring randomly. This indicates,
that if the credit cycle is used as a common component in the ASRF model, the assumption that the
systematic factor is distributed according to the standard normal distribution is likely to be violated.
For the Lithuania case, the percentage of the rejected hypothesis was especially high and as further
results have shown, this has a rather significant impact on the accuracy of parameter estimation.

The obtained parameter estimation results of Scenario 1. showed that the deviations of the common
component from normality significantly affect the GMM results. The estimates of both main TTC PD
parameters, Vasicek’s correlation and degree of PITness, were significantly more accurate for Germany
than for Lithuania when evaluated by the GMM method. Meanwhile, the TSR, in the cases of both
Lithuania and Germany, evaluated underlying parameters much more inaccurately than the GMM, but
almost identically wrong in the cases of both countries. That means that the non-normality of the
common component has not detrimentally affected the TSR estimates.

Since the data of the real application tend to have features, such as asymmetry or shape, in Sce-
nario 2., the obligor-specific default threshold, which accounts for idiosyncratic effects, was generated
according to the Gaussian mixture model. The main difference between the results of the scenarios is
the dependence of the accuracy of parameter estimates on the quality of the portfolio.

The comparison of the two methods showed that the GMM method tends to overestimate, while the
TSR tends to underestimate when evaluating the Vasicek correlation. When estimating the PITness
parameter, the methods work in the opposite way - GMM underestimates and TSR overestimates the
parameter. However, this is directly related to the deviation of the correlation parameter estimate
from its actual value, since both methods use the estimate of the first parameter to assess the PITness
parameter non-normality of the common component has not affected the estimates.

Having noticed that the GMM and TSR methods work in “different directions”, it was decided to
test a combination of these two by introducing a hybrid method that takes an average of GMM and
TSR parameter estimates. The results showed that such a method does not work well for the case
of Lithuania neither in Scenario 1. nor Scenario 2. because GMM overestimates the ρ parameter too
much, thus the hybrid estimate remains overestimated. In the case of Germany, the hybrid method
performed well for lower actual values of Vasicek correlation but the accuracy dramatically decreased
for higher ones. However, in Scenario 2., the combination of GMM and TSR provides relatively accurate
estimates of the Vasicek correlation and PITness parameter even for the higher true values of ρ. To sum
up, such a method could also be possibly used for the estimation of TTC PD parameters for comparison
with other methods and the actual averaging scheme could be farther elaborated.

Finally, the results highlighted the importance of the low default portfolio problem that is quite
often encountered in reality. GMM and TSR methods employ ODF in the parameter estimation, thus,
when the number of defaults in the portfolio is equal to zero for at least one point time, the TTC PD
parameters cannot be feasibly estimated. Results have shown that the portfolio of better clients, as

25



well as those whose distance to default space is more strongly correlated with the common component,
is more likely to observe zero defaults. This means that it is important to know the characteristics of
the portfolio before choosing a valuation method. The problem is also well-understood by regulators,
as the forthcoming Basel IV will no longer allow low default portfolios to use internal rating models.

In the context of this thesis, a common component, i.e. credit cycle, is considered as known, but
in real-life applications, the credit cycle is not observed, so it must be extracted from macroeconomic
data, e.g. by decomposing it or other methods. Since our data is simulated we have full knowledge
of simulated elements, i.e. cycle, trend, and noise, and can account for the additional uncertainty.
Therefore, for the extension of the thesis, it would be possible to extract the cycle component from the
simulated macroeconomic data using e.g. Hodrick-Prescott or other filters, compare it to the actual
cyclical component and assess how much the cycle estimation errors, in such case, would contribute to
TTC PD parameters estimates.
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7 Appendix A. Figures and tables

Figure 7: Deviations of the parameter B estimates from the true values of the parameter: Scenario 1.

(a) Germany (b) Lithuania

Figure 8: Estimates of the parameter α: Scenario 1.

(a) Germany (b) Lithuania
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Figure 9: Deviations of the parameter ρ hybrid estimates from the true values of the parameter:
Scenario 1.

(a) Germany (b) Lithuania

Figure 10: Deviations of the parameter B hybrid estimates from the true values of the parameter:
Scenario 1.

(a) Germany (b) Lithuania

Figure 11: Deviations of the parameter α hybrid estimates from the true values of the parameter:
Scenario 1.

(a) Germany (b) Lithuania
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Figure 12: Deviations of the parameter ρ estimates from the true values of the parameter: Scenario 2.

(a) Germany (b) Lithuania

Figure 13: Deviations of the parameter B estimates from the true values of the parameter: Scenario 2.

(a) Germany (b) Lithuania
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Figure 14: Estimates of the parameter α: Scenario 2.

(a) Germany (b) Lithuania

Figure 15: Percentage of simulations in which at at least one point in time t the number of defaults
was equal to zero: Scenario 2.

(a) Germany (b) Lithuania
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Figure 16: Deviations of the parameter ρ hybrid estimates from the true values of the parameter:
Scenario 2.

(a) Germany (b) Lithuania

Figure 17: Deviations of the parameter B hybrid estimates from the true values of the parameter:
Scenario 2.

(a) Germany (b) Lithuania

Figure 18: Deviations of the parameter α hybrid estimates from the true values of the parameter:
Scenario 2.

(a) Germany (b) Lithuania
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Table 6: Estimates of Vasicek correlation parameter ρ: Scenario 1.

Portfolio
size

B

ρ
0.02 0.05 0.10 0.15 0.20 0.25

GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR

Germany

100

−2.326
0.059 0.010 0.083 0.024 0.121 0.046 0.146 0.064 0.161 0.115 0.189 0.141

(0.666) (0.852) (0.963) (0.992) (0.999) (0.999)

−2.054
0.055 0.011 0.084 0.026 0.124 0.049 0.157 0.070 0.193 0.093 0.223 0.112

(0.204) (0.511 (0.792) (0.917) (0.969) (0.986)

−1.645
0.047 0.011 0.083 0.027 0.132 0.051 0.170 0.075 0.201 0.099 0.227 0.120

(0.007) (0.098) (0.352) (0.627) (0.805) (0.879)

−1.282
0.041 0.010 0.078 0.026 0.133 0.052 0.178 0.077 0.212 0.100 0.248 0.124

(0.000) (0.014) (0.086) (0.256) (0.500) (0.651)

500

−2.326
0.033 0.010 0.070 0.026 0.123 0.051 0.163 0.076 0.197 0.100 0.234 0.125

(0.001) (0.020) (0.198) (0.465) (0.694) (0.849)

−2.054
0.031 0.010 0.068 0.026 0.124 0.051 0.171 0.077 0.208 0.101 0.245 0.126

(0.000) (0.002) (0.062) (0.210) (0.452) (0.637)

−1.645
0.029 0.010 0.065 0.025 0.122 0.051 0.173 0.076 0.216 0.101 0.255 0.126

(0.000) (0.000) (0.008) (0.047) (0.155) (0.300)

−1.282
0.028 0.010 0.064 0.025 0.121 0.050 0.172 0.076 0.220 0.101 0.261 0.126

(0.000) (0.000) (0.000) (0.010) (0.033) (0.107)

1000

−2.326
0.029 0.010 0.066 0.026 0.122 0.051 0.170 0.077 0.206 0.101 0.240 0.125

(0.000) (0.002) (0.052) (0.196) (0.441) (0.640)

−2.054
0.028 0.010 0.064 0.025 0.121 0.051 0.171 0.076 0.215 0.101 0.249 0.126

(0.000) (0.000) (0.003) (0.073) (0.204) (0.395)

−1.645
0.027 0.010 0.063 0.025 0.120 0.050 0.172 0.076 0.219 0.101 0.260 0.126

(0.000) (0.000) (0.002) (0.008) (0.043) (0.132)

−1.282
0.027 0.010 0.063 0.025 0.119 0.050 0.171 0.075 0.219 0.100 0.262 0.126

(0.000) (0.000) (0.000) (0.002) (0.009) (0.041)

5000

−2.326
0.026 0.010 0.062 0.025 0.118 0.050 0.170 0.076 0.217 0.101 0.258 0.126

(0.000) (0.000) (0.002) (0.014) (0.052) (0.157)

−2.054
0.026 0.010 0.062 0.025 0.118 0.050 0.170 0.075 0.218 0.101 0.261 0.126

(0.000) (0.000) (0.000) (0.001) (0.016) (0.062)

−1.645
0.025 0.010 0.061 0.025 0.118 0.050 0.170 0.075 0.218 0.100 0.262 0.125

(0.000) (0.000) (0.000) (0.000) (0.005) (0.015)

−1.282
0.025 0.010 0.061 0.025 0.118 0.050 0.170 0.075 0.218 0.100 0.263 0.125

(0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

Lithuania

100 −2.326
0.117 0.009 0.199 0.022 0.333 0.046 0.400 0.076 0.454 0.096 0.523 0.124

(0.926) (0.988) (0.996) (0.998) (0.999) (0.999)

Continued on next page
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Table 6 – continued from previous page

Portfolio
size

B

ρ
0.02 0.05 0.10 0.15 0.20 0.25

GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR

100

−2.054
0.121 0.010 0.200 0.024 0.236 0.043 0.286 0.063 0.338 0.082 0.245 0.085

(0.733) (0.960) (0.995) (0.998) (0.998) (0.999)

−1.645
0.128 0.010 0.216 0.025 0.334 0.048 0.385 0.072 0.393 0.092 0.413 0.112

(0.287) (0.769) (0.936) (0.986) (0.995) (0.997)

−1.282
0.130 0.010 0.237 0.025 0.336 0.049 0.392 0.073 0.424 0.096 0.444 0.119

(0.079) (0.506) (0.858) (0.957) (0.985) (0.993)

500

−2.326
0.121 0.010 0.221 0.025 0.318 0.049 0.390 0.075 0.404 0.101 0.443 0.126

(0.151) (0.681) (0.946) (0.987) (0.994) (0.996)

−2.054
0.121 0.010 0.231 0.025 0.333 0.050 0.408 0.075 0.469 0.099 0.529 0.123

(0.043) (0.434) (0.860) (0.957) (0.986) (0.992)

−1.645
0.120 0.010 0.239 0.025 0.355 0.050 0.427 0.075 0.476 0.100 0.510 0.124

(0.002) (0.186) (0.632) (0.857) (0.945) (0.971)

−1.282
0.119 0.010 0.244 0.025 0.368 0.050 0.444 0.075 0.499 0.101 0.526 0.125

(0.001) (0.061) (0.420) (0.715) (0.874) (0.938)

1000

−2.326
0.119 0.010 0.229 0.025 0.341 0.050 0.388 0.075 0.467 0.098 0.518 0.122

(0.031) (0.405) (0.836) (0.958) (0.984) (0.990)

−2.054
0.118 0.010 0.235 0.025 0.352 0.050 0.416 0.074 0.454 0.098 0.491 0.124

(0.009) (0.209) (0.700) (0.895) (0.959) (0.982)

−1.645
0.118 0.010 0.243 0.025 0.363 0.050 0.445 0.075 0.506 0.100 0.542 0.125

(0.001) (0.075) (0.464) (0.733) (0.868) (0.948)

−1.282
0.117 0.010 0.246 0.025 0.378 0.050 0.456 0.075 0.514 0.100 0.548 0.125

(0.000) (0.016) (0.259) (0.569) (0.765) (0.873)

5000

−2.326
0.116 0.010 0.241 0.025 0.363 0.050 0.444 0.075 0.496 0.100 0.536 0.125

(0.000) (0.068) (0.460) (0.750) (0.898) (0.955)

−2.054
0.116 0.010 0.244 0.025 0.371 0.050 0.451 0.075 0.507 0.100 0.551 0.125

(0.000) (0.032) (0.320) (0.642) (0.808) (0.910)

−1.645
0.116 0.010 0.245 0.025 0.383 0.050 0.465 0.075 0.523 0.100 0.566 0.125

(0.000) (0.008) (0.151) (0.439) (0.651) (0.813)

−1.282
0.115 0.010 0.245 0.025 0.389 0.050 0.476 0.075 0.537 0.100 0.580 0.125

(0.000) (0.002) (0.075) (0.272) (0.504) (0.690)

Note: in the parentheses bellow estimates is specified the ratio of simulations in which at at least one point
in time t the number of defaults was equal to zero.
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Table 7: Estimates of parameter B: Scenario 1.

Portfolio
size

B

ρ
0.02 0.05 0.10 0.15 0.20 0.25

GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR

Germany

100

−2.326 −1.568 −1.612 −1.509 −1.569 −1.421 −1.531 −1.324 −1.443 −1.168 −1.445 −1.128 −1.415

−2.054 −1.424 −1.454 −1.378 −1.374 −1.311 −1.374 −1.251 −1.335 −1.192 −1.306 −1.113 −1.248

−1.645 −1.155 −1.173 −1.133 −1.131 −1.090 −1.131 −1.044 −1.101 −0.989 −1.067 −0.956 −1.248

−1.282 −0.903 −0.914 −0.891 −0.891 −0.869 −1.131 −0.842 −0.874 −0.806 −0.852 −0.771 −0.831

500

−2.326 −1.632 −1.643 −1.611 −1.607 −1.573 −1.607 −1.529 −1.578 −1.481 −1.550 −1.413 −1.520

−2.054 −1.443 −1.643 −1.426 −1.421 −1.396 −1.421 −1.362 −1.397 −1.328 −1.372 −1.281 −1.345

−1.645 −1.153 −1.159 −1.140 −1.134 −1.119 −1.134 −1.097 −1.117 −1.075 −1.099 −1.046 −1.078

−1.282 −0.900 −0.904 −0.890 −0.885 −0.873 −0.885 −0.858 −0.872 −0.843 −0.858 −0.824 −0.842

1000

−2.326 −1.632 −1.640 −1.613 −1.606 −1.582 −1.606 −1.547 −0.872 −1.506 −1.552 −1.462 −1.522

−2.054 −1.441 −1.447 −1.424 −1.416 −1.398 −1.416 −1.371 −1.395 −1.341 −1.372 −1.310 −1.347

−1.645 −1.154 −1.447 −1.141 −1.134 −1.120 −1.134 −1.100 −1.117 −1.080 −1.098 −1.056 −1.079

−1.282 −0.899 −0.903 −0.889 −0.883 −0.872 −0.883 −0.857 −0.870 −0.842 −0.856 −0.826 −0.840

5000

−2.326 −1.632 −1.638 −1.613 −1.602 −1.584 −0.883 −1.556 −1.578 −1.529 −1.552 −1.499 −1.525

−2.054 −1.440 −1.445 −1.424 −1.414 −1.398 −1.414 −1.374 −1.393 −1.350 −1.370 −1.326 −1.345

−1.645 −1.153 −1.157 −1.140 −1.132 −1.119 −1.132 −1.100 −1.115 −1.082 −1.097 −1.064 −1.077

−1.282 −0.899 −0.902 −0.888 −0.882 −0.872 −0.882 −0.857 −0.869 −0.843 −0.855 −0.829 −0.839

Lithuania

100

−2.326 −1.398 −1.567 −1.169 −1.524 −0.776 −1.471 −0.695 −1.494 −0.605 −1.384 −0.505 −1.364

−2.054 −1.299 −1.422 −1.109 −1.382 −0.857 −1.343 −0.838 −1.346 −0.764 −1.317 −1.064 −1.253

−1.645 −1.074 −1.159 −0.937 −1.136 −0.727 −1.097 −0.493 −1.053 −0.518 −1.002 −0.458 −1.010

−1.282 −0.851 −0.912 −0.748 −0.893 −0.598 −0.865 −0.481 −0.852 −0.413 −0.820 −0.386 −0.792

500

−2.326 −1.545 −1.643 −1.390 −1.624 −1.140 −1.588 −0.899 −1.562 −0.917 −1.565 −0.785 −1.537

−2.054 −1.369 −1.449 −1.246 −1.436 −1.061 −1.412 −0.884 −1.380 −0.633 −1.356 −0.478 −1.335

−1.645 −1.099 −1.162 −1.008 −1.152 −0.861 −1.135 −0.722 −1.113 −0.578 −1.096 −0.531 −1.071

−1.282 −0.854 −0.903 −0.790 −0.896 −0.683 −0.883 −0.568 −0.867 −0.466 −0.855 −0.418 −0.831

1000

−2.326 −1.550 −1.640 −1.417 −1.625 −1.205 −1.599 −1.055 −1.574 −0.875 −1.538 −0.744 −1.518

−2.054 −1.371 −1.448 −1.268 −1.437 −1.084 −1.417 −0.936 −1.388 −0.823 −1.355 −0.681 −1.335

−1.645 −1.097 −1.158 −1.015 −1.150 −0.890 −1.133 −0.749 −1.115 −0.628 −1.095 −0.516 −1.072

−1.282 −0.856 −0.903 −0.795 −0.897 −0.701 −0.884 −0.606 −0.870 −0.508 −0.856 −0.447 −0.838

5000

−2.326 −1.552 −1.637 −1.441 −1.624 −1.283 −1.602 −1.111 −1.578 −0.984 −1.551 −0.848 −1.526

−2.054 −1.371 −1.446 −1.273 −1.435 −1.142 −1.415 −1.004 −1.393 −0.886 −1.369 −0.767 −1.342

−1.645 −1.098 −1.158 −1.020 −1.149 −0.914 −1.133 −0.816 −1.116 −0.718 −1.099 −0.630 −1.079

−1.282 −0.856 −0.902 −0.795 −0.895 −0.713 −0.883 −0.642 −0.870 −0.564 −0.855 −0.488 −0.840
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Table 8: Estimates of parameter α: Scenario 1.

Portfolio
size

B

ρ
0.02 0.05 0.10 0.15 0.20 0.25

GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR

Germany

100

−2.326 0.295 0.714 0.393 0.733 0.460 0.740 0.511 0.775 0.557 0.658 0.575 0.666

−2.054 0.306 0.697 0.391 0.704 0.454 0.722 0.494 0.737 0.518 0.738 0.538 0.750

−1.645 0.332 0.690 0.396 0.692 0.444 0.702 0.479 0.709 0.508 0.716 0.533 0.725

−1.282 0.355 0.701 0.410 0.698 0.443 0.698 0.468 0.702 0.494 0.709 0.511 0.714

500

−2.326 0.396 0.698 0.432 0.697 0.460 0.699 0.488 0.704 0.510 0.708 0.523 0.707

−2.054 0.410 0.702 0.439 0.700 0.459 0.700 0.477 0.701 0.497 0.704 0.512 0.706

−1.645 0.424 0.705 0.448 0.704 0.463 0.703 0.475 0.703 0.489 0.703 0.503 0.705

−1.282 0.432 0.706 0.452 0.705 0.465 0.705 0.476 0.704 0.486 0.704 0.497 0.705

1000

−2.326 0.424 0.702 0.447 0.701 0.463 0.700 0.479 0.701 0.500 0.704 0.518 0.707

−2.054 0.434 0.705 0.452 0.704 0.464 0.703 0.477 0.703 0.491 0.703 0.508 0.704

−1.645 0.441 0.705 0.456 0.706 0.468 0.705 0.477 0.705 0.487 0.705 0.498 0.705

−1.282 0.445 0.707 0.459 0.707 0.469 0.707 0.478 0.706 0.487 0.706 0.496 0.706

5000

−2.326 0.452 0.706 0.461 0.706 0.470 0.705 0.479 0.705 0.488 0.704 0.500 0.704

−2.054 0.454 0.706 0.462 0.706 0.471 0.706 0.479 0.706 0.487 0.705 0.497 0.705

−1.645 0.456 0.707 0.463 0.707 0.472 0.707 0.480 0.707 0.488 0.706 0.496 0.706

−1.282 0.456 0.707 0.463 0.707 0.472 0.707 0.480 0.707 0.488 0.707 0.495 0.707

Lithuania

100

−2.326 0.210 0.742 0.252 0.761 0.275 0.738 0.306 0.705 0.332 0.723 0.346 0.711

−2.054 0.209 0.713 0.256 0.720 0.344 0.770 0.393 0.786 0.413 0.796 0.505 0.859

−1.645 0.203 0.699 0.246 0.712 0.278 0.724 0.317 0.725 0.361 0.740 0.392 0.751

−1.282 0.202 0.696 0.235 0.703 0.278 0.716 0.314 0.717 0.348 0.724 0.379 0.725

500

−2.326 0.209 0.696 0.243 0.703 0.285 0.713 0.316 0.708 0.357 0.702 0.382 0.704

−2.054 0.210 0.699 0.238 0.703 0.279 0.708 0.308 0.708 0.331 0.711 0.346 0.712

−1.645 0.211 0.703 0.234 0.703 0.270 0.706 0.300 0.709 0.327 0.709 0.353 0.710

−1.282 0.213 0.704 0.232 0.704 0.265 0.704 0.294 0.706 0.319 0.706 0.347 0.709

1000

−2.326 0.212 0.701 0.239 0.702 0.275 0.705 0.315 0.707 0.331 0.715 0.350 0.715

−2.054 0.213 0.703 0.236 0.703 0.271 0.706 0.304 0.712 0.337 0.715 0.361 0.710

−1.645 0.214 0.704 0.233 0.704 0.267 0.705 0.294 0.707 0.317 0.708 0.343 0.708

−1.282 0.214 0.705 0.231 0.705 0.261 0.705 0.290 0.706 0.315 0.706 0.340 0.708

5000

−2.326 0.215 0.705 0.233 0.705 0.266 0.706 0.294 0.706 0.320 0.707 0.344 0.706

−2.054 0.215 0.706 0.232 0.705 0.264 0.705 0.292 0.706 0.317 0.707 0.339 0.708

−1.645 0.216 0.706 0.232 0.706 0.260 0.706 0.287 0.706 0.312 0.706 0.335 0.706

−1.282 0.216 0.707 0.232 0.706 0.258 0.706 0.284 0.706 0.308 0.707 0.330 0.706

Note: true value of α is 0.5.
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Table 9: Observed default frequency: Scenario 1.

Portfolio
size

TTC
ρ

0.02 0.05 0.10 0.15 0.20 0.25

Germany

100

1% 5.1% 5.3% 5.6% 6% 6.3% 6.7%

2% 7.5% 7.8% 8.2% 8.6% 9% 9.4%

5% 12.5% 12.8% 13.2% 13.7% 14.1% 14.6%

10% 18.4% 18.7% 19.2% 19.6% 20.1% 20.5%

500

1% 5.2% 5.4% 5.7% 6.1% 6.4% 6.8%

2% 7.5% 7.7% 8.2% 8.6% 9% 9.3%

5% 12.5% 12.8% 13.2% 13.7% 14.2% 14.6%

10% 18.4% 18.7% 19.2% 19.7% 20.1% 20.5%

1000

1% 5.2% 5.4% 5.7% 6.1% 6.4% 6.8%

2% 7.5% 7.8% 8.2% 8.6% 9% 9.4%

5% 12.5% 12.8% 13.2% 13.7% 14.1% 14.6%

10% 18.5% 18.8% 19.2% 19.7% 20.1% 20.5%

5000

1% 5.1% 5.4% 5.7% 6.1% 6.4% 6.8%

2% 7.5% 7.8% 8.2% 8.6% 9% 9.4%

5% 12.5% 12.8% 13.2% 13.7% 14.1% 14.6%

10% 18.5% 18.8% 19.2% 19.7% 20.1% 20.5%

Lithuania

100

1% 6.1% 7.7% 10.1% 12.1% 13.9% 15.5%

2% 8.6% 10.4% 12.9% 15.1% 16.9% 18.4%

5% 13.8% 15.7% 18.3% 20.4% 22.1% 23.6%

10% 19.7% 21.6% 24% 25.9% 27.4% 28.7%

500

1% 6.1% 7.7% 10% 12.1% 13.9% 15.4%

2% 8.6% 10.4% 12.9% 15.1% 16.9% 18.4%

5% 13.7% 15.6% 18.2% 20.3% 22% 23.5%

10% 19.8% 21.6% 24.1% 26% 27.5% 28.7%

1000

1% 6.1% 7.7% 10.1% 12.1% 13.9% 15.4%

2% 8.6% 10.4% 12.9% 15% 16.9% 18.4%

5% 13.7% 15.7% 18.3% 20.4% 22.1% 23.5%

10% 19.7% 21.6% 24% 25.9% 27.4% 28.7%

5000

1% 6.1% 7.7% 10% 12.1% 13.9% 15.4%

2% 8.6% 10.4% 12.9% 15% 16.9% 18.4%

5% 13.7% 15.6% 18.3% 20.4% 22.1% 23.5%

10% 19.7% 21.6% 24% 25.9% 27.4% 28.7%
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Table 10: Estimates of parameter ρ by hybrid method (average of GMM and TSR): Scenario 1.

Portfolio
size

B
ρ

0.02 0.05 0.10 0.15 0.20 0.25

Germany

100

−2.326 0.034 0.054 0.079 0.100 0.133 0.171

−2.054 0.033 0.055 0.087 0.113 0.137 0.152

−1.645 0.029 0.055 0.092 0.122 0.152 0.180

−1.282 0.026 0.052 0.092 0.127 0.157 0.185

500

−2.326 0.022 0.048 0.087 0.120 0.148 0.176

−2.054 0.021 0.047 0.088 0.124 0.157 0.185

−1.645 0.020 0.045 0.086 0.125 0.159 0.190

−1.282 0.019 0.045 0.086 0.124 0.160 0.194

1000

−2.326 0.020 0.045 0.087 0.123 0.155 0.184

−2.054 0.019 0.045 0.086 0.124 0.157 0.189

−1.645 0.019 0.044 0.085 0.124 0.160 0.193

−1.282 0.018 0.044 0.085 0.123 0.160 0.195

5000

−2.326 0.018 0.043 0.084 0.123 0.159 0.192

−2.054 0.018 0.043 0.084 0.123 0.159 0.193

−1.645 0.018 0.043 0.084 0.122 0.159 0.194

−1.282 0.018 0.043 0.084 0.122 0.159 0.194

Lithuania

100

−2.326 0.062 0.109 0.172 0.186 0.227 −
−2.054 0.065 0.111 0.181 0.205 0.198 0.237

−1.645 0.069 0.123 0.186 0.244 0.304 0.269

−1.282 0.070 0.130 0.193 0.235 0.256 0.271

500

−2.326 0.066 0.122 0.183 0.226 0.282 0.301

−2.054 0.065 0.127 0.192 0.240 0.279 0.314

−1.645 0.065 0.133 0.202 0.251 0.292 0.318

−1.282 0.064 0.135 0.209 0.262 0.302 0.327

1000

−2.326 0.065 0.128 0.193 0.236 0.263 0.312

−2.054 0.065 0.131 0.199 0.252 0.282 0.314

−1.645 0.064 0.134 0.209 0.259 0.302 0.333

−1.282 0.063 0.135 0.213 0.265 0.305 0.335

5000

−2.326 0.063 0.133 0.206 0.259 0.299 0.333

−2.054 0.063 0.135 0.211 0.263 0.306 0.342

−1.645 0.063 0.135 0.216 0.270 0.313 0.345

−1.282 0.063 0.135 0.219 0.276 0.317 0.352
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Table 11: Estimates of parameter B by hybrid method (average of GMM and TSR): Scenario 1.

Portfolio
size

B
ρ

0.02 0.05 0.10 0.15 0.20 0.25

Germany

100

−2.326 −1.587 −1.533 −1.462 −1.422 −1.398 −1.352

−2.054 −1.442 −1.404 −1.350 −1.295 −1.240 −1.217

−1.645 −1.170 −1.154 −1.115 −1.079 −1.034 −0.988

−1.282 −0.906 −0.897 −0.878 −0.854 −0.826 −0.798

500

−2.326 −1.638 −1.621 −1.591 −1.554 −1.511 −1.465

−2.054 −1.445 −1.431 −1.407 −1.377 −1.346 −1.316

−1.645 −1.157 −1.146 −1.127 −1.107 −1.085 −1.061

−1.282 −0.901 −0.892 −0.878 −0.864 −0.848 −0.832

1000

−2.326 −1.637 −1.622 −1.595 −1.564 −1.531 −1.492

−2.054 −1.443 −1.429 −1.406 −1.381 −1.355 −1.322

−1.645 −1.157 −1.146 −1.127 −1.109 −1.089 −1.067

−1.282 −0.901 −0.892 −0.878 −0.863 −0.849 −0.834

5000

−2.326 −1.635 −1.619 −1.593 −1.567 −1.541 −1.512

−2.054 −1.443 −1.429 −1.406 −1.384 −1.361 −1.336

−1.645 −1.156 −1.145 −1.127 −1.108 −1.090 −1.072

−1.282 −0.900 −0.892 −0.877 −0.863 −0.849 −0.835

Lithuania

100

−2.326 −1.503 −1.399 −1.272 −1.173 −1.077 −
−2.054 −1.353 −1.241 −1.082 −1.012 −0.905 −0.858

−1.645 −1.118 −1.037 −0.908 −0.792 −0.744 −0.657

−1.282 −0.887 −0.823 −0.731 −0.656 −0.614 −0.547

500

−2.326 −1.594 −1.510 −1.371 −1.256 −1.124 −1.077

−2.054 −1.410 −1.341 −1.228 −1.126 −1.037 −0.974

−1.645 −1.127 −1.079 −0.996 −0.914 −0.844 −0.804

−1.282 −0.880 −0.845 −0.785 −0.721 −0.659 −0.618

1000

−2.326 −1.598 −1.526 −1.406 −1.320 −1.252 −1.114

−2.054 −1.410 −1.350 −1.251 −1.148 −1.077 −0.977

−1.645 −1.129 −1.085 −1.012 −0.939 −0.864 −0.805

−1.282 −0.880 −0.845 −0.792 −0.735 −0.679 −0.633

5000

−2.326 −1.595 −1.532 −1.445 −1.350 −1.262 −1.188

−2.054 −1.409 −1.355 −1.279 −1.204 −1.120 −1.040

−1.645 −1.127 −1.083 −1.023 −0.967 −0.905 −0.853

−1.282 −0.878 −0.844 −0.798 −0.754 −0.709 −0.662
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Table 12: Estimates of parameter α by hybrid method (average of GMM and TSR): Scenario 1.

Portfolio
size

B
ρ

0.02 0.05 0.10 0.15 0.20 0.25

Germany

100

−2.326 0.387 0.488 0.568 0.619 0.621 0.604

−2.054 0.395 0.482 0.542 0.583 0.613 0.648

−1.645 0.423 0.484 0.527 0.558 0.577 0.594

−1.282 0.448 0.499 0.529 0.549 0.570 0.586

500

−2.326 0.486 0.517 0.542 0.565 0.586 0.600

−2.054 0.499 0.524 0.540 0.555 0.569 0.585

−1.645 0.513 0.532 0.545 0.554 0.565 0.577

−1.282 0.518 0.535 0.546 0.555 0.563 0.572

1000

−2.326 0.514 0.532 0.544 0.557 0.572 0.586

−2.054 0.520 0.536 0.546 0.556 0.568 0.579

−1.645 0.527 0.539 0.549 0.556 0.564 0.574

−1.282 0.530 0.541 0.550 0.557 0.564 0.571

5000

−2.326 0.536 0.543 0.551 0.558 0.566 0.575

−2.054 0.537 0.544 0.551 0.558 0.565 0.573

−1.645 0.539 0.545 0.552 0.559 0.565 0.572

−1.282 0.539 0.545 0.552 0.559 0.565 0.572

Lithuania

100

−2.326 0.290 0.342 0.386 0.421 0.439 −
−2.054 0.282 0.340 0.376 0.434 0.502 0.513

−1.645 0.275 0.324 0.372 0.393 0.408 0.435

−1.282 0.274 0.315 0.364 0.404 0.448 0.481

500

−2.326 0.283 0.326 0.375 0.413 0.427 0.463

−2.054 0.284 0.320 0.366 0.400 0.428 0.449

−1.645 0.285 0.313 0.356 0.390 0.416 0.446

−1.282 0.287 0.310 0.350 0.382 0.410 0.439

1000

−2.326 0.286 0.319 0.365 0.402 0.440 0.451

−2.054 0.287 0.315 0.358 0.389 0.424 0.450

−1.645 0.288 0.311 0.350 0.383 0.409 0.435

−1.282 0.289 0.311 0.347 0.379 0.407 0.434

5000

−2.326 0.290 0.313 0.353 0.384 0.412 0.436

−2.054 0.290 0.311 0.348 0.381 0.407 0.430

−1.645 0.291 0.311 0.344 0.375 0.402 0.428

−1.282 0.291 0.311 0.342 0.372 0.399 0.423

Note: true value of α is 0.5.
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Table 13: Estimates of Vasicek correlation parameter ρ: Scenario 2.

Portfolio
size

B

ρ
0.02 0.05 0.10 0.15 0.20 0.25

GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR

Germany

100

−2.326
0.062 0.012 0.091 0.027 0.131 0.051 0.162 0.077 0.197 0.098 0.274 0.135

(0.434) (0.734) (0.943) (0.979) (0.993) (0.999)

−2.054
0.055 0.012 0.088 0.028 0.133 0.054 0.168 0.077 0.196 0.101 0.232 0.126

(0.098) (0.357) (0.709) (0.885) (0.959) (0.983)

−1.645
0.046 0.011 0.084 0.027 0.136 0.053 0.175 0.078 0.208 0.102 0.231 0.124

(0.002) (0.028) (0.264) (0.552) (0.768) (0.881)

−1.282
0.040 0.010 0.076 0.026 0.131 0.051 0.177 0.076 0.216 0.100 0.245 0.123

(0.000) (0.002) (0.044) (0.179) (0.392) (0.600)

500

−2.326
0.035 0.011 0.075 0.028 0.132 0.056 0.179 0.083 0.214 0.110 0.247 0.134

(0.000) (0.006) (0.169) (0.446) (0.689) (0.841)

−2.054
0.032 0.011 0.071 0.027 0.131 0.055 0.180 0.082 0.219 0.108 0.254 0.134

(0.000) (0.006) (0.169) (0.446) (0.689) (0.841)

−1.645
0.029 0.010 0.067 0.026 0.125 0.052 0.178 0.079 0.223 0.105 0.260 0.130

(0.000) (0.000) (0.002) (0.033) (0.145) (0.308)

−1.282
0.027 0.010 0.063 0.025 0.118 0.049 0.170 0.074 0.216 0.099 0.257 0.124

(0.000) (0.000) (0.001) (0.004) (0.030) (0.102)

1000

−2.326
0.031 0.011 0.070 0.028 0.131 0.055 0.182 0.083 0.223 0.110 0.256 0.136

(0.000) (0.000) (0.035) (0.193) (0.418) (0.648)

−2.054
0.029 0.011 0.068 0.027 0.128 0.054 0.182 0.082 0.227 0.109 0.267 0.135

(0.000) (0.000) (0.035) (0.193) (0.418) (0.648)

−1.645
0.028 0.010 0.065 0.026 0.123 0.052 0.177 0.078 0.225 0.104 0.266 0.130

(0.000) (0.000) (0.000) (0.005) (0.049) (0.156)

−1.282
0.026 0.010 0.061 0.025 0.117 0.049 0.168 0.074 0.217 0.099 0.260 0.124

(0.000) (0.000) (0.000) (0.001) (0.002) (0.033)

5000

−2.326
0.028 0.011 0.067 0.027 0.128 0.055 0.184 0.083 0.233 0.110 0.276 0.138

(0.000) (0.000) (0.002) (0.011) (0.069) (0.193)

−2.054
0.027 0.011 0.065 0.027 0.125 0.054 0.181 0.081 0.231 0.108 0.276 0.135

(0.000) (0.000) (0.000) (0.002) (0.021) (0.075)

−1.645
0.026 0.010 0.063 0.026 0.121 0.052 0.175 0.078 0.225 0.104 0.271 0.130

(0.000) (0.000) (0.000) (0.000) (0.005) (0.017)

−1.282
0.025 0.010 0.060 0.024 0.115 0.049 0.167 0.074 0.215 0.099 0.260 0.123

(0.000) (0.000) (0.000) (0.000) (0.002) (0.003)

Lithuania

100 −2.326
0.124 0.011 0.205 0.024 0.313 0.034 0.413 0.052 0.498 0.072 − −

(0.903) (0.990) (0.999) (0.999) (0.999) (1.000)

Continued on next page
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Table 13 – continued from previous page

Portfolio
size

B

ρ
0.02 0.05 0.10 0.15 0.20 0.25

GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR

100

−2.054
0.128 0.011 0.207 0.025 0.308 0.046 0.379 0.069 0.448 0.093 − −

(0.650) (0.934) (0.992) (0.995) (0.999) (1.000)

−1.645
0.131 0.011 0.226 0.025 0.314 0.048 0.350 0.067 0.398 0.085 0.369 0.106

(0.229) (0.696) (0.945) (0.990) (0.994) (0.997)

−1.282
0.126 0.010 0.227 0.025 0.326 0.046 0.396 0.067 0.413 0.085 0.434 0.106

(0.050) (0.429) (0.823) (0.941) (0.977) (0.991)

500

−2.326
0.128 0.011 0.229 0.027 0.325 0.052 0.393 0.076 0.442 0.097 0.438 0.125

(0.121) (0.635) (0.932) (0.985) (0.993) (0.996)

−2.054
0.127 0.011 0.236 0.027 0.336 0.051 0.400 0.074 0.436 0.093 0.465 0.111

(0.037) (0.434) (0.849) (0.954) (0.984) (0.995)

−1.645
0.122 0.010 0.241 0.026 0.352 0.050 0.421 0.072 0.464 0.093 0.489 0.113

(0.003) (0.171) (0.636) (0.851) (0.946) (0.978)

−1.282
0.116 0.010 0.239 0.024 0.355 0.048 0.428 0.069 0.478 0.089 0.509 0.109

(0.000) (0.048) (0.392) (0.704) (0.854) (0.935)

1000

−2.326
0.127 0.011 0.240 0.027 0.348 0.053 0.410 0.075 0.424 0.096 0.462 0.117

(0.019) (0.408) (0.832) (0.957) (0.987) (0.993)

−2.054
0.124 0.011 0.244 0.027 0.354 0.051 0.428 0.075 0.461 0.097 0.497 0.119

(0.009) (0.231) (0.701) (0.899) (0.966) (0.983)

−1.645
0.120 0.010 0.246 0.026 0.364 0.050 0.436 0.073 0.490 0.094 0.513 0.115

(0.000) (0.066) (0.450) (0.726) (0.883) (0.949)

−1.282
0.114 0.010 0.239 0.024 0.365 0.048 0.439 0.070 0.491 0.091 0.525 0.110

(0.000) (0.020) (0.247) (0.559) (0.758) (0.887)

5000

−2.326
0.125 0.011 0.254 0.027 0.372 0.053 0.448 0.077 0.501 0.100 0.535 0.122

(0.000) (0.082) (0.494) (0.764) (0.901) (0.955)

−2.054
0.122 0.011 0.252 0.026 0.375 0.052 0.452 0.076 0.504 0.099 0.538 0.121

(0.000) (0.039) (0.347) (0.651) (0.825) (0.910)

−1.645
0.118 0.010 0.248 0.026 0.382 0.050 0.460 0.074 0.513 0.097 0.552 0.118

(0.000) (0.039) (0.347) (0.651) (0.825) (0.910)

−1.282
0.113 0.010 0.239 0.024 0.377 0.048 0.461 0.071 0.513 0.092 0.557 0.114

(0.000) (0.000) (0.078) (0.276) (0.526) (0.696)

Note: in the parentheses bellow estimates is specified the ratio of simulations in which at at least one point
in time t the number of defaults was equal to zero.
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Table 14: Estimates of parameter B: Scenario 2.

Portfolio
size

B

ρ
0.02 0.05 0.10 0.15 0.20 0.25

GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR

Germany

100

−2.326 −1.502 −1.543 −1.450 −1.512 −1.365 −1.481 −1.291 −1.436 −1.220 −1.383 −1.059 −1.495

−2.054 −1.328 −1.355 −1.288 −1.328 −1.230 −1.300 −1.170 −1.262 −1.106 −1.234 −1.047 −1.219

−1.645 −1.058 −1.073 −1.044 −1.065 −1.010 −1.045 −0.968 −1.020 −0.927 −0.999 −0.892 −0.976

−1.282 −0.788 −0.797 −0.781 −0.792 −0.766 −0.782 −0.744 −0.768 −0.715 −0.753 −0.679 −0.731

500

−2.326 −1.537 −1.549 −1.517 −1.539 −1.479 −1.519 −1.434 −1.497 −1.390 −1.471 −1.343 −1.445

−2.054 −1.341 −1.349 −1.325 −1.340 −1.298 −1.325 −1.266 −1.307 −1.230 −1.286 −1.190 −1.263

−1.645 −1.053 −1.058 −1.041 −1.051 −1.023 −1.039 −1.004 −1.025 −0.982 −1.010 −0.954 −0.992

−1.282 −0.790 −0.793 −0.782 −0.788 −0.770 −0.779 −0.759 −0.769 −0.748 −0.759 −0.732 −0.747

1000

−2.326 −1.535 −1.544 −1.516 −1.534 −1.485 −1.516 −1.453 −1.496 −1.417 −1.473 −1.372 −1.447

−2.054 −1.339 −1.346 −1.324 −1.337 −1.299 −1.322 −1.273 −1.305 −1.247 −1.287 −1.213 −1.266

−1.645 −1.054 −1.058 −1.042 −1.051 −1.024 −1.039 −1.007 −1.025 −0.988 −1.011 −0.968 −0.995

−1.282 −0.790 −0.792 −0.782 −0.787 −0.770 −0.778 −0.759 −0.768 −0.749 −0.758 −0.737 −0.747

5000

−2.326 −1.536 −1.542 −1.517 −1.532 −1.489 −1.514 −1.462 −1.494 −1.434 −1.473 −1.403 −1.450

−2.054 −1.339 −1.345 −1.324 −1.336 −1.300 −1.320 −1.277 −1.303 −1.255 −1.284 −1.231 −1.265

−1.645 −1.053 −1.057 −1.042 −1.050 −1.024 −1.037 −1.007 −1.024 −0.992 −1.009 −0.977 −0.994

−1.282 −0.789 −0.791 −0.781 −0.786 −0.769 −0.777 −0.758 −0.767 −0.748 −0.756 −0.739 −0.745

Lithuania

100

−2.326 −1.325 −1.508 −1.087 −1.502 −0.552 −1.388 −0.382 −1.378 −0.255 −1.380 − −
−2.054 −1.215 −1.338 −1.050 −1.315 −0.744 −1.305 −0.496 −1.275 −0.607 −1.372 − −
−1.645 −0.985 −1.065 −0.858 −1.049 −0.659 −1.012 −0.436 −0.994 −0.305 −0.996 −0.484 −1.014

−1.282 −0.751 −0.800 −0.676 −0.792 −0.518 −0.776 −0.404 −0.776 −0.318 −0.750 −0.262 −0.717

500

−2.326 −1.455 −1.553 −1.316 −1.543 −1.097 −1.523 −0.881 −1.515 −0.680 −1.475 −0.724 −1.450

−2.054 −1.273 −1.353 −1.157 −1.345 −0.973 −1.326 −0.800 −1.308 −0.687 −1.265 −0.467 −1.232

−1.645 −1.006 −1.064 −0.930 −1.061 −0.790 −1.050 −0.667 −1.036 −0.541 −1.018 −0.418 −0.991

−1.282 −0.757 −0.798 −0.711 −0.800 −0.626 −0.797 −0.514 −0.792 −0.421 −0.783 −0.335 −0.770

1000

−2.326 −1.459 −1.549 −1.334 −1.542 −1.138 −1.524 −0.935 −1.496 −0.840 −1.451 −0.715 −1.414

−2.054 −1.275 −1.351 −1.179 −1.346 −1.013 −1.332 −0.844 −1.315 −0.717 −1.282 −0.648 −1.252

−1.645 −1.005 −1.061 −0.935 −1.060 −0.822 −1.053 −0.708 −1.043 −0.594 −1.030 −0.513 −1.012

−1.282 −0.756 −0.796 −0.710 −0.797 −0.638 −0.797 −0.553 −0.792 −0.462 −0.785 −0.368 −0.772

5000

−2.326 −1.459 −1.545 −1.352 −1.539 −1.202 −1.525 −1.055 −1.507 −0.911 −1.484 −0.787 −1.456

−2.054 −1.275 −1.348 −1.187 −1.344 −1.066 −1.334 −0.941 −1.320 −0.822 −1.302 −0.738 −1.279

−1.645 −1.005 −1.061 −0.940 −1.059 −0.850 −1.055 −0.768 −1.048 −0.681 −1.037 −0.576 −1.022

−1.282 −0.756 −0.795 −0.712 −0.797 −0.652 −0.798 −0.593 −0.796 −0.526 −0.791 −0.455 −0.783
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Table 15: Estimates of parameter α: Scenario 2.

Portfolio
size

B

ρ
0.02 0.05 0.10 0.15 0.20 0.25

GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR GMM TSR

Germany

100

−2.326 0.288 0.668 0.375 0.684 0.443 0.703 0.490 0.704 0.515 0.714 0.478 0.681

−2.054 0.307 0.672 0.382 0.677 0.440 0.687 0.479 0.702 0.512 0.707 0.525 0.706

−1.645 0.337 0.687 0.395 0.682 0.438 0.688 0.471 0.696 0.498 0.702 0.527 0.712

−1.282 0.361 0.703 0.415 0.701 0.446 0.702 0.468 0.705 0.489 0.709 0.511 0.716

500

−2.326 0.388 0.671 0.418 0.668 0.444 0.669 0.466 0.672 0.490 0.676 0.510 0.683

−2.054 0.405 0.683 0.430 0.680 0.446 0.678 0.464 0.679 0.485 0.681 0.502 0.685

−1.645 0.423 0.698 0.444 0.695 0.457 0.693 0.468 0.692 0.482 0.692 0.497 0.694

−1.282 0.439 0.716 0.458 0.714 0.471 0.713 0.480 0.712 0.490 0.711 0.500 0.712

1000

−2.326 0.413 0.676 0.432 0.674 0.446 0.672 0.462 0.673 0.481 0.675 0.500 0.678

−2.054 0.423 0.683 0.439 0.682 0.451 0.680 0.463 0.679 0.476 0.679 0.490 0.681

−1.645 0.437 0.696 0.451 0.695 0.461 0.694 0.470 0.693 0.479 0.693 0.492 0.693

−1.282 0.451 0.715 0.463 0.714 0.473 0.713 0.482 0.712 0.489 0.711 0.498 0.711

5000

−2.326 0.435 0.677 0.443 0.676 0.452 0.675 0.460 0.674 0.470 0.673 0.483 0.674

−2.054 0.441 0.685 0.448 0.684 0.457 0.683 0.465 0.682 0.473 0.681 0.482 0.681

−1.645 0.449 0.696 0.456 0.696 0.464 0.695 0.472 0.694 0.480 0.694 0.488 0.693

−1.282 0.462 0.715 0.468 0.715 0.476 0.714 0.484 0.713 0.491 0.713 0.498 0.712

Lithuania

100

−2.326 0.204 0.692 0.248 0.723 0.283 0.854 0.302 0.846 0.317 0.831 − −
−2.054 0.202 0.683 0.250 0.711 0.291 0.739 0.320 0.739 0.334 0.734 − −
−1.645 0.200 0.688 0.240 0.705 0.286 0.721 0.335 0.751 0.363 0.768 0.417 0.767

−1.282 0.205 0.707 0.240 0.717 0.281 0.741 0.312 0.752 0.351 0.773 0.382 0.769

500

−2.326 0.203 0.670 0.238 0.679 0.282 0.695 0.313 0.704 0.342 0.720 0.381 0.711

−2.054 0.205 0.679 0.235 0.687 0.277 0.702 0.310 0.711 0.343 0.732 0.371 0.750

−1.645 0.210 0.694 0.233 0.698 0.270 0.711 0.301 0.724 0.332 0.734 0.361 0.746

−1.282 0.215 0.714 0.235 0.716 0.269 0.726 0.299 0.739 0.326 0.750 0.353 0.760

1000

−2.326 0.205 0.675 0.233 0.680 0.272 0.691 0.307 0.708 0.346 0.723 0.370 0.735

−2.054 0.208 0.683 0.232 0.686 0.269 0.697 0.299 0.708 0.332 0.719 0.358 0.727

−1.645 0.211 0.696 0.231 0.698 0.266 0.708 0.296 0.718 0.322 0.730 0.351 0.737

−1.282 0.217 0.716 0.235 0.718 0.266 0.724 0.295 0.735 0.322 0.744 0.347 0.755

5000

−2.326 0.208 0.678 0.227 0.680 0.263 0.688 0.292 0.696 0.319 0.706 0.345 0.717

−2.054 0.210 0.686 0.228 0.688 0.261 0.694 0.291 0.703 0.318 0.712 0.343 0.721

−1.645 0.213 0.698 0.230 0.700 0.260 0.705 0.288 0.713 0.314 0.720 0.338 0.729

−1.282 0.219 0.717 0.235 0.719 0.262 0.723 0.288 0.729 0.315 0.737 0.337 0.743

Note: true value of α is 0.5.
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Table 16: Observed default frequency: Scenario 2.

Portfolio
size

TTC
ρ

0.02 0.05 0.10 0.15 0.20 0.25

Germany

100

1% 6.3% 6.5% 6.9% 7.3% 7.7% 8.1%

2% 9.1% 9.4% 9.9% 10.3% 10.7% 11.1%

5% 14.6% 14.9% 15.3% 15.7% 16.2% 16.6%

10% 21.6% 21.9% 22.3% 22.6% 23.0% 23.3%

500

1% 6.2% 6.5% 6.9% 7.3% 7.7% 8.0%

2% 9.0% 9.3% 9.8% 10.2% 10.6% 11.0%

5% 14.7% 14.9% 15.4% 15.8% 16.3% 16.7%

10% 21.5% 21.8% 22.2% 22.5% 22.9% 23.2%

1000

1% 6.3% 6.5% 6.9% 7.3% 7.7% 8.0%

2% 9.0% 9.3% 9.8% 10.2% 10.6% 11.0%

5% 14.6% 14.9% 15.4% 15.8% 16.2% 16.6%

10% 21.5% 21.8% 22.2% 22.5% 22.9% 23.2%

5000

1% 6.2% 6.5% 6.9% 7.3% 7.7% 8.0%

2% 9.0% 9.3% 9.8% 10.2% 10.6% 11.0%

5% 14.6% 14.9% 15.4% 15.8% 16.2% 16.6%

10% 21.5% 21.8% 22.2% 22.5% 22.9% 23.2%

Lithuania

100

1% 7.3% 9.0% 11.4% 13.4% 15.1% 16.6%

2% 10.2% 12.0% 14.4% 16.4% 18.1% 19.5%

5% 15.9% 17.7% 20.0% 21.9% 23.4% 24.7%

10% 22.7% 24.2% 26.2% 27.7% 29.0% 30.0%

500

1% 7.3% 9.0% 11.3% 13.3% 15.0% 16.5%

2% 10.2% 12.0% 14.5% 16.5% 18.1% 19.6%

5% 15.9% 17.6% 20.0% 21.9% 23.4% 24.7%

10% 22.6% 24.1% 26.1% 27.6% 28.9% 29.9%

1000

1% 7.3% 9.0% 11.4% 13.3% 15.0% 16.5%

2% 10.2% 12.0% 14.5% 16.5% 18.1% 19.6%

5% 15.9% 17.7% 20.0% 21.9% 23.4% 24.7%

10% 22.6% 24.1% 26.1% 27.6% 28.9% 30.0%

5000

1% 7.3% 9.0% 11.4% 13.4% 15.1% 16.5%

2% 10.2% 12.0% 14.5% 16.5% 18.1% 19.6%

5% 15.8% 17.6% 20% 21.9% 23.4% 24.7%

10% 22.6% 24.1% 26.1% 27.6% 28.9% 30.0%
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Table 17: Estimates of parameter ρ by hybrid method (average of GMM and TSR): Scenario 2.

Portfolio
size

B
ρ

0.02 0.05 0.10 0.15 0.20 0.25

Germany

100

−2.326 0.036 0.059 0.090 0.115 0.152 0.172

−2.054 0.034 0.059 0.093 0.123 0.148 0.167

−1.645 0.028 0.055 0.095 0.128 0.157 0.183

−1.282 0.025 0.051 0.091 0.126 0.157 0.185

500

−2.326 0.023 0.052 0.095 0.132 0.164 0.191

−2.054 0.021 0.049 0.093 0.131 0.165 0.195

−1.645 0.020 0.046 0.089 0.128 0.164 0.196

−1.282 0.019 0.044 0.084 0.122 0.158 0.191

1000

−2.326 0.021 0.049 0.094 0.133 0.168 0.198

−2.054 0.020 0.048 0.091 0.131 0.168 0.200

−1.645 0.019 0.046 0.088 0.127 0.165 0.199

−1.282 0.018 0.043 0.083 0.121 0.158 0.192

5000

−2.326 0.019 0.047 0.092 0.133 0.172 0.207

−2.054 0.019 0.046 0.090 0.131 0.169 0.205

−1.645 0.018 0.045 0.087 0.127 0.165 0.200

−1.282 0.017 0.042 0.082 0.120 0.157 0.192

Lithuania

100

−2.326 0.067 0.113 0.181 0.218 0.254 0.286

−2.054 0.070 0.115 0.170 0.219 0.249 0.298

−1.645 0.070 0.126 0.187 0.223 0.240 0.274

−1.282 0.068 0.126 0.188 0.227 0.254 0.275

500

−2.326 0.069 0.129 0.195 0.231 0.267 0.286

−2.054 0.069 0.132 0.197 0.237 0.261 0.284

−1.645 0.066 0.133 0.201 0.249 0.279 0.302

−1.282 0.063 0.131 0.201 0.247 0.284 0.310

1000

−2.326 0.069 0.134 0.200 0.245 0.282 0.293

−2.054 0.068 0.135 0.201 0.246 0.273 0.298

−1.645 0.065 0.136 0.206 0.253 0.290 0.314

−1.282 0.062 0.132 0.206 0.254 0.288 0.317

5000

−2.326 0.068 0.140 0.213 0.262 0.298 0.327

−2.054 0.066 0.139 0.216 0.264 0.302 0.326

−1.645 0.064 0.137 0.216 0.267 0.304 0.335

−1.282 0.061 0.132 0.212 0.265 0.304 0.334
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Table 18: Estimates of parameter B by hybrid method (average of GMM and TSR): Scenario 2.

Portfolio
size

B
ρ

0.02 0.05 0.10 0.15 0.20 0.25

Germany

100

−2.326 −1.517 −1.471 −1.402 −1.335 −1.257 −1.157

−2.054 −1.350 −1.317 −1.264 −1.220 −1.166 −1.135

−1.645 −1.062 −1.049 −1.016 −0.985 −0.953 −0.919

−1.282 −0.796 −0.790 −0.777 −0.759 −0.738 −0.710

500

−2.326 −1.543 −1.528 −1.498 −1.463 −1.424 −1.388

−2.054 −1.345 −1.333 −1.312 −1.288 −1.259 −1.225

−1.645 −1.057 −1.047 −1.032 −1.016 −0.998 −0.978

−1.282 −0.792 −0.785 −0.775 −0.764 −0.753 −0.741

1000

−2.326 −1.542 −1.527 −1.503 −1.476 −1.447 −1.413

−2.054 −1.341 −1.329 −1.309 −1.288 −1.264 −1.238

−1.645 −1.055 −1.046 −1.031 −1.016 −1.000 −0.981

−1.282 −0.791 −0.785 −0.774 −0.764 −0.753 −0.742

5000

−2.326 −1.539 −1.525 −1.501 −1.478 −1.454 −1.430

−2.054 −1.342 −1.330 −1.310 −1.290 −1.271 −1.250

−1.645 −1.055 −1.046 −1.031 −1.016 −1.001 −0.986

−1.282 −0.789 −0.783 −0.772 −0.762 −0.752 −0.741

Lithuania

100

−2.326 −1.413 −1.293 −1.131 −1.084 −1.006 −0.938

−2.054 −1.271 −1.168 −0.972 −0.856 −0.866 −0.890

−1.645 −1.025 −0.948 −0.833 −0.710 −0.745 −0.706

−1.282 −0.783 −0.744 −0.658 −0.568 −0.494 −0.434

500

−2.326 −1.502 −1.426 −1.291 −1.211 −1.106 −1.042

−2.054 −1.312 −1.253 −1.145 −1.060 −0.976 −0.894

−1.645 −1.034 −0.997 −0.924 −0.841 −0.773 −0.728

−1.282 −0.777 −0.754 −0.710 −0.659 −0.608 −0.541

1000

−2.326 −1.505 −1.437 −1.325 −1.227 −1.146 −1.130

−2.054 −1.313 −1.263 −1.169 −1.089 −1.006 −0.932

−1.645 −1.033 −0.997 −0.938 −0.874 −0.809 −0.755

−1.282 −0.776 −0.755 −0.718 −0.674 −0.625 −0.579

5000

−2.326 −1.503 −1.446 −1.365 −1.276 −1.199 −1.124

−2.054 −1.312 −1.266 −1.198 −1.128 −1.068 −0.999

−1.645 −1.032 −0.999 −0.951 −0.906 −0.856 −0.799

−1.282 −0.776 −0.755 −0.726 −0.694 −0.661 −0.625
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Table 19: Estimates of parameter α by hybrid method (average of GMM and TSR): Scenario 2.

Portfolio
size

B
ρ

0.02 0.05 0.10 0.15 0.20 0.25

Germany

100

−2.326 0.375 0.464 0.533 0.575 0.576 0.604

−2.054 0.392 0.468 0.524 0.557 0.586 0.616

−1.645 0.426 0.482 0.520 0.546 0.568 0.588

−1.282 0.456 0.505 0.531 0.550 0.569 0.586

500

−2.326 0.472 0.498 0.519 0.538 0.557 0.575

−2.054 0.489 0.510 0.525 0.539 0.554 0.569

−1.645 0.507 0.526 0.537 0.546 0.557 0.569

−1.282 0.525 0.541 0.552 0.559 0.567 0.576

1000

−2.326 0.495 0.510 0.522 0.535 0.549 0.565

−2.054 0.505 0.519 0.529 0.539 0.549 0.563

−1.645 0.519 0.531 0.540 0.547 0.555 0.564

−1.282 0.536 0.546 0.555 0.562 0.568 0.575

5000

−2.326 0.515 0.521 0.528 0.535 0.543 0.553

−2.054 0.521 0.527 0.534 0.540 0.547 0.556

−1.645 0.531 0.536 0.543 0.549 0.556 0.562

−1.282 0.545 0.551 0.557 0.564 0.569 0.575

Lithuania

100

−2.326 0.277 0.337 0.372 0.415 0.444 0.468

−2.054 0.273 0.335 0.389 0.418 0.449 0.458

−1.645 0.272 0.320 0.369 0.414 0.461 0.481

−1.282 0.278 0.320 0.369 0.410 0.445 0.478

500

−2.326 0.275 0.316 0.362 0.408 0.437 0.471

−2.054 0.277 0.312 0.360 0.401 0.441 0.472

−1.645 0.283 0.312 0.356 0.391 0.426 0.457

−1.282 0.291 0.315 0.356 0.393 0.422 0.451

1000

−2.326 0.276 0.311 0.357 0.394 0.425 0.464

−2.054 0.280 0.310 0.356 0.394 0.431 0.461

−1.645 0.286 0.309 0.352 0.388 0.418 0.448

−1.282 0.293 0.315 0.353 0.387 0.419 0.446

5000

−2.326 0.280 0.304 0.346 0.381 0.412 0.440

−2.054 0.283 0.305 0.344 0.379 0.409 0.439

−1.645 0.288 0.308 0.344 0.377 0.407 0.433

−1.282 0.295 0.315 0.347 0.379 0.408 0.434

Note: true value of α is 0.5.

49



# ########################################################################################
# MAIN
# ########################################################################################

# packages--------------------------------------------------------------------------------
packages <- c("tseries", "dplyr", "stargazer", "lubridate", "readxl", "ggplot2",

"reshape")

if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
install.packages(setdiff(packages, rownames(installed.packages())),

repos = "http://cran.us.r-project.org")
}

# Load the packages:
for(i in 1: length(packages)){

string_to_eval <- paste("library(", packages[i],")", sep="")
eval(parse(text= string_to_eval))

}
# ----------------------------------------------------------------------------------------

# directories and functions---------------------------------------------------------------
main_dir <- getwd()
setwd(main_dir)

source(paste(main_dir, "/functions/sourceDir.r", sep=""))
sourceDir(paste(main_dir, "/functions/", sep=""))
# ----------------------------------------------------------------------------------------

# seting parameters and creating objects for simulated data-------------------------------
# parameters for cyclical time series
DE_param <- list(lambda = .18685, rho = .72067 , rhoc = .33405 , alpha = .00852,

sigma_err =.00004864, sigma_level = .00003159, sigma_drift = .00000458)
LT_param <- list(lambda = .19113, rho = .82559 , rhoc = .56937 , alpha = .01107,

sigma_err =.0000404, sigma_level = .0000547, sigma_drift = .0000124)

# number of simulations
N <- 10000

# lists for macro data
macro_data_DE <- list()
macro_data_LT <- list()

# lists for cycles
cycle_data_DE <- list()
cycle_data_LT <- list()

# Number of rejected null hypothesis for Germany case
shapiro_wilk_reject_DE <- numeric(N)
jarque_bera_reject_DE <- numeric(N)
# Number of rejected null hypothesis for Lithuania case
shapiro_wilk_reject_LT <- numeric(N)
jarque_bera_reject_LT <- numeric(N)
# ----------------------------------------------------------------------------------------

8 Appendix B. R code
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# simulations-----------------------------------------------------------------------------
# generate cycles
for(i in 1:N){

# Germany
cyclical_ts_DE <- sim.cyclical.ts(lambda = DE_param$lambda, rho = DE_param$rho,

rhoc = DE_param$rhoc, alfa = DE_param$alpha,
eps_zeta_sd = DE_param$sigma_drift,
eps_eta_sd = DE_param$sigma_level,
eps_irr_sd = DE_param$sigma_err,
m0 = rep(0,4))

macro_data_DE[[i]] <- cyclical_ts_DE[, "series"]

cycle_DE <- cyclical_ts_DE[, "cycle"]*100

# Normality tests
shapiro_wilk_reject_DE[i] <- ifelse(shapiro.test(cycle_DE)[2] < 0.05, 1, 0)
jarque_bera_reject_DE[i] <- ifelse(jarque.bera.test(cycle_DE)[3] < 0.05, 1, 0)

cycle_data_DE[[i]] <- cycle_DE

# Lithuania
cyclical_ts_LT <- sim.cyclical.ts(lambda = LT_param$lambda, rho = LT_param$rho,

rhoc = LT_param$rhoc, alfa = LT_param$alpha,
eps_zeta_sd = LT_param$sigma_drift,
eps_eta_sd = LT_param$sigma_level,
eps_irr_sd = LT_param$sigma_err,
m0 = rep(0,4))

macro_data_LT[[i]] <- cyclical_ts_LT[, "series"]

cycle_LT <- cyclical_ts_LT[, "cycle"]*100

# tests
shapiro_wilk_reject_LT[i] <- ifelse(shapiro.test(cycle_LT)[2] < 0.05, 1, 0)
jarque_bera_reject_LT[i] <- ifelse(jarque.bera.test(cycle_LT)[3] < 0.05, 1, 0)

cycle_data_LT[[i]] <- cycle_LT
}
# ----------------------------------------------------------------------------------------

# aggregated results of normality tests---------------------------------------------------
# percent of rejected hypothesis, i.e. non normally distributed Z
sum(shapiro_wilk_reject_DE)/N
sum(jarque_bera_reject_DE)/N

sum(shapiro_wilk_reject_LT)/N
sum(jarque_bera_reject_LT)/N

# Check if long time series is normally distributed
# DE
hist(unlist(cycle_data_DE), col = 'steelblue')
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jarque.bera.test(unlist(cycle_data_DE))

# LT
hist(unlist(cycle_data_LT), col = 'steelblue')
jarque.bera.test(unlist(cycle_data_LT))
# ----------------------------------------------------------------------------------------

# save generated data---------------------------------------------------------------------
saveRDS(matrix(unlist(cycle_data_DE), ncol = 100, byrow = T),

"../04 Generated Data/cycle_data_DE.RDS")

saveRDS(matrix(unlist(cycle_data_LT), ncol = 100, byrow = T),
"../04 Generated Data/cycle_data_LT.RDS")

saveRDS(matrix(unlist(macro_data_DE), ncol = 100, byrow = T),
"../04 Generated Data/macro_data_DE.RDS")

saveRDS(matrix(unlist(macro_data_LT), ncol = 100, byrow = T),
"../04 Generated Data/macro_data_LT.RDS")

# ----------------------------------------------------------------------------------------

# controled simulation experiment---------------------------------------------------------
# parameters
K_max <- 5000
K <- c(100, 500, 1000, 5000)
TTC_PD <- c(0.01, 0.02, 0.05, 0.1)
B_vid <- qnorm(TTC_PD)
rho <- c(0.02, seq(0.05, 0.25, 0.05))
alpha <- 0.5

# for the parameter estimation the function is written. it is used for all estimations
# just country and scenario changes. here one of cases is presented

results_DE_scn1 <- est.TTC_PD.params(country = "DE", scenario = 1,
use_hybrid_method = FALSE)

# save tex tables with mean and CI of estimates
# B, rho and alpha
make_tex_tables(estimates = results$rho_GMM, K, B_vid, rho, N, not_eval = TRUE,

file_name = "../05 Output/DE/Z_given_B_norm/rho_GMM")

make_tex_tables(estimates = results$B_GMM, K, B_vid, rho, N, not_eval = TRUE,
file_name = "../05 Output/DE/Z_given_B_norm/B_GMM")

make_tex_tables_alpha(estimates = results$alpha_GMM, K, B_vid, rho, alpha, N,
file_name = "../05 Output/DE/Z_given_B_norm/alpha_GMM")

make_tex_tables(estimates = results$rho_TSR, K, B_vid, rho, N,
file_name = "../05 Output/DE/Z_given_B_norm/rho_TSR")

make_tex_tables(estimates = results$B_TSR, K, B_vid, rho, N,
file_name = "../05 Output/DE/Z_given_B_norm/B_TSR")
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make_tex_tables_alpha(estimates = results$alpha_TSR, K, B_vid, rho, alpha, N,
file_name = "../05 Output/DE/Z_given_B_norm/alpha_TSR")

# ODF
make_tex_tables(estimates = results$ODF, K, B_vid, rho, N,

file_name = "../05 Output/DE/Z_given_B_norm/ODF")
# ----------------------------------------------------------------------------------------

# ########################################################################################
# FUNCTIONS
# ########################################################################################

# sourceDir-------------------------------------------------------------------------------
## If you want to source() a bunch of files, something like
## the following may be useful:
sourceDir <- function(path, trace = TRUE, ...) {

for (nm in list.files(path, pattern = "\\.[RrSsQq]$")) {
if(trace) cat(nm,":")
source(file.path(path, nm), ...)
if(trace) cat("\n")

}
}
# ----------------------------------------------------------------------------------------

# sim.cyclical.ts-------------------------------------------------------------------------
sim.cyclical.ts <- function(n = 100,

lambda = 0.2,
rho = 0.8,
rhoc = 0.5,
alfa = 0.008,
a = 1,
eps_kappa_sd = 1,
eps_zeta_sd = 0.0001,
eps_eta_sd = 0.01,
eps_irr_sd = 0.01,
start_time = 1990,
freq = 4,
nc = 1,
m0 = rep(-3, 2 + 2*nc),
level = 4,
slope = 0.005,
breakpoint = NULL,
break_level = 0.5,
break_drift = FALSE){

# Generate irreducible error
error <- ts(rnorm(n, sd = eps_irr_sd), start = start_time, frequency = freq)

# Generate trend
eps_zeta <- rnorm(n, sd = eps_zeta_sd)
# Drift's state
beta <- c(slope, rep(0, n))
for (t in 2:(n + 1)) {
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beta[t] <- ifelse(!is.null(breakpoint)&&(t == breakpoint + 1),
break_levelˆbreak_drift, 1)*a*beta[t - 1] + eps_zeta[t-1]

# the errors are i.i.d. so t-1 is just for convenient mapping
}

# Level's state
eps_eta <- rnorm(n, sd = eps_eta_sd)

mu <- c(level, rep(0, n))
for (t in 2:(n + 1)) {

mu[t] <- ifelse(!is.null(breakpoint)&&(t == breakpoint + 1),
break_levelˆ!break_drift, 1)*
mu[t - 1] + beta[t - 1] + eps_eta[t - 1]

}

# Generate cycle
kappa <- rnorm(n, sd = eps_kappa_sd)
kappa_star <- rnorm(n, sd = eps_kappa_sd)

# low level cycles:
T_matrix <- rho*matrix(c(cos(lambda), sin(lambda),

-sin(lambda), cos(lambda)),
nrow = 2, byrow = TRUE)

lm <- cbind(rbind(matrix(0, 2, 2*(nc - 1)), diag(2*nc - 2)), matrix(0, 2*nc, 2))
GG <- kronecker(diag(nc), T_matrix) + lm

omegas <- cbind(m0[3:length(m0)], matrix(0, nrow = 2*nc, ncol = n))
kappas <- rbind(kappa, kappa_star, matrix(0, nrow = 2*(nc - 1), ncol = n))

for (t in 2:(n + 1)) {
omegas[, t] <- GG %*% omegas[, t - 1, drop = F] + kappas[, t - 1, drop = F]

}
omega <- omegas[(nc - 1)*2 + 1,]
omega_star <- omegas[(nc - 1)*2 + 2,]

# High level cycles
C1 <- c(m0[1], rep(0,n))
C2 <- c(m0[2], rep(0,n))

for (t in 2:(n + 1)) {
C1[t] <- omega[t - 1] + rhoc * C1[t - 1]
C2[t] <- omega_star[t - 1] + rhoc * C2[t - 1]

}

cycle <- ts(alfa * C1[-1], start = start_time, frequency = freq)
trend <- ts(mu[-1], start = start_time, frequency = freq)
series <- trend + cycle + error

# Return the data
data <- ts.union(series, trend, cycle, error)
options(warn = 0)
invisible(data)
return(data)
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}
# ----------------------------------------------------------------------------------------

# sim.B_i.gaussian.mixture----------------------------------------------------------------
sim.B_i.gaussian.mixture <- function(N, B_vid, B, plot = FALSE){

m <- 2
sigma_1 <- .7
sigma_2 <- 1.2

param <- list(c(-1.59, -3.06), c(-1.32, -2.79),
c(-0.93, -2.36), c(-0.54, -2.02))

mu_1 <- param[[which(B_vid == B)]][1]
mu_2 <- param[[which(B_vid == B)]][2]

Z <- sample(c(seq(1,m,1)), size = N, replace = T, prob = c(0.5, 0.5))
Y_1 <- rnorm(N, mu_1, sigma_1)
Y_2 <- rnorm(N, mu_2, sigma_2)
X <- ifelse(Z == 1, Y_1, Y_2)

if(plot){
data <- as.data.frame(cbind(Y_1,Y_2,X))
data <- tidyr::pivot_longer(data, cols = c("Y_1", "Y_2", "X"))

ggplot(data, mapping = aes(x = value, fill = name)) +
geom_density(alpha = .25) +
theme_minimal() +
scale_fill_discrete(name = "",

breaks = c("Y_1", "Y_2", "X"),
labels = c("Gaussian 1", "Gaussian 2", "Gaussian Mixture")) +

xlab("Value") +
ylab("Density")

}

return(X)
}
# ----------------------------------------------------------------------------------------

# make.tex.tables-------------------------------------------------------------------------
make.tex.tables <- function(estimates, K, B_vid, rho, N, file_name, not_eval = FALSE){

x <- matrix(estimates, byrow = TRUE, ncol = length(K)*length(B_vid)*length(rho))
x_mean <- apply(x, 2, mean, na.rm = TRUE)
x_sd <- apply(x, 2, sd, na.rm = TRUE)

mean_tbl <- matrix(round(x_mean,3), ncol = length(rho), byrow = TRUE)

margin <- qt(0.975,df=N-1)*x_sd/sqrt(N)
CI_lower<- x_mean - margin
CI_upper <- x_mean + margin
CI <- paste("(", round(CI_lower,3), ";", round(CI_upper,3), ")", sep = "")

CI_tbl <- matrix(CI, ncol = length(rho), byrow = TRUE)
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if(not_eval){
not_evaluated <- apply(x, 2, function(x){sum(is.na(x))/length(x)})
not_evaluated_tbl <- matrix(not_evaluated, ncol = length(rho), byrow = TRUE)
stargazer(not_evaluated_tbl, out=paste0(file_name, "_not_evaluated_proc.tex"))

}

stargazer(mean_tbl, out=paste0(file_name, "_mean.tex"))
stargazer(CI_tbl, out=paste0(file_name, "_CI.tex"))

}
# ----------------------------------------------------------------------------------------

# make.tex.tables.alpha-------------------------------------------------------------------
make_tex_tables_alpha <- function(estimates, K, B_vid, rho, alpha, N,

file_name, not_eval = FALSE){
x <- matrix(unlist(estimates), byrow = TRUE,

ncol = length(K)*length(B_vid)*length(rho)*length(alpha))
x_mean <- apply(x, 2, mean, na.rm = TRUE)
x_sd <- apply(x, 2, sd, na.rm = TRUE)

mean_tbl <- matrix(round(x_mean,3), ncol = length(rho)*length(alpha), byrow = TRUE)

margin <- qt(0.975,df=N-1)*x_sd/sqrt(N)
CI_lower<- x_mean - margin
CI_upper <- x_mean + margin
CI <- paste("(", round(CI_lower,3), ";", round(CI_upper,3), ")", sep = "")

CI_tbl <- matrix(CI, ncol = length(rho)*length(alpha), byrow = TRUE)

if(not_eval){
not_evaluated <- apply(x, 2, function(x){sum(is.na(x))/length(x)})
not_evaluated_tbl <- matrix(not_evaluated, byrow = TRUE,

ncol = length(rho)*length(alpha))
stargazer(not_evaluated_tbl, out=paste0(file_name, "_not_evaluated_proc.tex"))

}

stargazer(mean_tbl, out=paste0(file_name, "_mean.tex"))
stargazer(CI_tbl, out=paste0(file_name, "_CI.tex"))

}
# ----------------------------------------------------------------------------------------

# est.TTC_PD.params-----------------------------------------------------------------------
est.TTC_PD.params <- function(country = "DE", scenario = 1, use_hybrid_method = FALSE){

# read the generated data
Z_generated <- readRDS(paste0("../04 Generated data/cycle_data_", country, ".RDS"))
Z_generated <- Z_generated[1:5,]

# parameters
N <- nrow(Z_generated)
K_max <- 5000
K <- c(100, 500, 1000, 5000)
TTC_PD <- c(0.01, 0.02, 0.05, 0.1)
B_vid <- qnorm(TTC_PD)
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rho <- c(0.02, seq(0.05, 0.25, 0.05))
alpha <- 0.5

# matrixes for parameters estimates
rho_MM <- numeric()
B_MM <- numeric()
alpha_MM <- numeric()
rho_reg <- numeric()
B_reg <- numeric()
alpha_reg <- numeric()
ODF_avg <- numeric()
rho_avg_est <- numeric()
B_avg_est <- numeric()
alpha_avg_est <- numeric()
eps_matrix <- matrix(nrow = K_max, ncol = 100)

# ##################
for(j in 1:N){

# common component
Z <- Z_generated[j, ]

# idiosyncratic component
for(k in 1:K_max){

eps_matrix[k, ] <- rnorm(n=100)
}

for(k in 1:length(K)){

# select the needed number of obligors
if(K[k] != K_max){

selected_indexes <- sample(c(1:K_max), K[k], replace = FALSE)
eps_sub <- eps_matrix[selected_indexes, ]

} else eps_sub <- eps_matrix

for(b in 1:length(B_vid)){

if(scenario == 1){
B_i <- rnorm(K[k], mean = B_vid[b], sd = 1)

}

if(scenario == 2){
# B_i as mixture of densities
B_i <- sim.B_i.gaussian.mixture(N = K[k], B_vid = B_vid, B = B_vid[b])

}

for(r in 1:length(rho)){

defaults_matrix <- matrix(nrow = K[k], ncol = 100)
p_i_hybrid <- matrix(nrow = K[k], ncol = 100)

for(i in 1:K[k]){
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p_i_hybrid[i, ] <- pnorm((B_i[i] - sqrt(rho[r])*alpha*Z)/
sqrt(1-rho[r]*alphaˆ2))

defaults <- ifelse(sqrt(rho[r])*Z + sqrt(1-rho[r])*eps_matrix[i, ] < B_i[i],
1, 0)

defaults_matrix[i, ] <- defaults
}

ODF_t <- apply(defaults_matrix, 2, sum)/K[k]
ODF_t_inv <- qnorm(ODF_t)

# save ODF
ODF_avg <- c(ODF_avg, mean(ODF_t))

# estimation of the parameters rho and B
if((-Inf %in% ODF_t_inv | Inf %in% ODF_t_inv) == FALSE){

# GMM
m <- mean(ODF_t_inv)
sigma <- sd(ODF_t_inv)

B_vid_hat_mm <- m/sqrt(1+sigmaˆ2)
rho_hat_mm <- (sigmaˆ2)/(1+sigmaˆ2)

# TSR
mdl <- lm(ODF_t_inv ~ 1 + Z)
B_vid_hat_reg <- mdl$coefficients[[1]]*sqrt(1-rho[r])
rho_hat_reg <- mdl$coefficients[[2]]ˆ2/(1+mdl$coefficients[[2]]ˆ2)

} else {
B_vid_hat_mm <- NA
rho_hat_mm <- NA

B_vid_hat_reg <- NA
rho_hat_reg <- NA

}

# save parameter estimates
rho_MM <- c(rho_MM, rho_hat_mm)
rho_reg <- c(rho_reg, rho_hat_reg)

B_MM <- c(B_MM, B_vid_hat_mm)
B_reg <- c(B_reg, B_vid_hat_reg)

# estimation of the parameter alpha
# GMM
p_i_hybrid_inv <- qnorm(p_i_hybrid)
prob_diff <- diff(apply(p_i_hybrid_inv, 2, mean))
Z_diff <- diff(as.vector(Z))

alpha_hat_mm <- mean(sqrt((prob_diffˆ2)/(rho_hat_mm*(Z_diffˆ2 + prob_diffˆ2))))

# TSR

58



hybrid_PD_t <- pnorm((B_vid[b] - sqrt(rho[r])*alpha*Z)/sqrt(1-rho[r]*alphaˆ2))
hybrid_PD_t_inv <- qnorm(hybrid_PD_t)

mdl_2 <- lm(hybrid_PD_t_inv ~ Z)
gamma <- mdl_2$coefficients[[2]]
alpha_hat_reg <- sqrt(gammaˆ2/((1+gammaˆ2)*rho_hat_reg))

# save the parameters
alpha_MM <- c(alpha_MM, alpha_hat_mm)
alpha_reg <- c(alpha_reg, alpha_hat_reg)

# hybrid method
if(use_hybrid_method){

rho_avg <- mean(c(rho_hat_mm, rho_hat_reg))
B_avg <- mean(c(B_vid_hat_mm, B_vid_hat_reg))

# TSR
alpha_hat_reg <- sqrt(gammaˆ2/((1+gammaˆ2)*rho_avg))

# GMM
alpha_hat_mm <- mean(sqrt((prob_diffˆ2)/(rho_avg*(Z_diffˆ2 + prob_diffˆ2))))

alpha_avg <- mean(c(alpha_hat_mm, alpha_hat_reg))
}

}

}

}

print(paste("number of iteration:", j, " time:", lubridate::now()))
}

estimates <- list(rho_GMM = rho_MM,
B_GMM = B_MM,
alpha_GMM = alpha_MM,
rho_TSR = rho_reg,
B_TSR = B_reg,
alpha_TSR = alpha_reg,
ODF = ODF_avg,
rho_hybrid = rho_avg_est,
B_hybrid = B_avg_est,
alpha_hybrid = alpha_avg_est)

return(estimates)
}
# ----------------------------------------------------------------------------------------
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