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1 Abstract

The security of web application is an integral part of ensuring the safety of humans and
their data in today’s increasingly connected world. Web-based systems are often a target
to cyber attacks, thus vulnerability testing is a critical process in computer systems and
networks security. Automated scanners, two of which been chosen for the thesis, ZAP and
N-Stalker, have been an effective tool for identifying vulnerabilities in cost-less and timely
manner. This thesis presents a study of the use of automated scanners on 100 websites
within educational institutions. It can be challenging to determine which tool is best suited
for a particular testing scenario, therefore the comparison between the scanners was done
using clustering methods of DBSCAN, K-Means and Gaussian Mixture. Therewithal scal-
ing and dimensionality reduction of t-SNE and MDS were applied for better implications
and visualizations of the data. An observation occurred that DBSCAN provided highest
Silhouette Scores and Calinksi-Harabasz index, thus performing better than K-Means and
Gaussian Mixture algorithms. It was also concluded that from 56% to 92% of websites fell
into same clusters, across the three clustering algorithms, illustrating the similarities between
the scanner vulnerability detection.

Keywords: Vulnerability Testing, Automated Testing, ZAP, N-Stalker, DBSCAN, K-Means,
Gaussian Mixture, t-SNE, MDS.
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Glossary

Authentication - Validating of ones identity or the genuinity in documents. Page:12

DBMS - Database Management System credentials hold username and password for au-
thentication. Page:14

GUI-based environment stands for Graphical User Interface based environment that uses
graphical features such as windows, buttons, icons, dialog boxes etc. Page:12

Heuristics approach is an approach to a problem that is quick, efficient and effective to
reach short-term goals. Page:13

Metagoofil is a tool that extracts and gathers metadata information from the documents
that are stored in websites. Page:14

Metasploit is a penetration testing platform that is Ruby-based. Page:11

OAST testing - Out-of-band application security testing is a method of finding vulnera-
bilities using external servers. Page:15

PCI Data Security - Payment Card Industry Data Security focuses on reducing payment
card fraud. Page:11

port is an endpoint of service. More than one server can coexist on a computer with different
port numbers.. Page:14

SDLC - Secure Development Life Cycle is a framework that maps development process,
made of phases: planning and requirements, design, coding, testing and results and
release and maintenance.. Page:11

Smartcard and client digital certificates - Client digital certificates are stored in Smart
cards that are hardware devices. Digital certificates are used to prove authenticity.
Smart card authenticates using PIN, with two factor security. Page:13

TLS - Transport layer security is a security protocol that provides privacy and data security
over the computer networks. Page:12

Web socket - A protocol based on TCP that supports other protocols, which of those can
run on top of the Web Socket. Page:13
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2 Introduction

Websites need security systems in order to protect themselves from various threats that would
compromise the integrity and confidentiality of the websites and their underlying systems.
Hackers, malware and unauthorized users can be a source of those threats. Websites, without
adequate security measures, are at risk of being exploited by attackers who would potentially
gain access to sensitive data, disrupt the functionality of the websites and use the websites
as the stepping stone to access other systems on the network. Sensitive data, such as,
identification and personal details or financial information and more, must be protected to
comply with privacy regulations to also maintain the trust of users. Implementing security
measures, such as authentication and authorization controls, input validation, and secure
coding practices, can help to ensure the confidentiality and integrity of data and prevent
unauthorized access to the website.

Vulnerability testing of web applications is pivotal for securing web-based systems and
minimizing the likelihood of cyber threats. It involves identifying, analyzing and reporting
vulnerabilities present in systems or applications. Manual and automated testing are two of
the methods of evaluating the web application security. Manual testing consists of examining
the source code for potential vulnerabilities while automated testing has a specialized tool
doing that instead. Vulnerability testing occurs to be of great importance in a robust security
program.

In this research, automated testing was performed using automated scanners ZAP and N-
Stalker. They are a software tool that are designed to automatically scan a computer system,
networks and websites for vulnerabilities. A variation of techniques are used to identify these
vulnerabilities, such as, examining source code, testing input fields for common attack vectors
and analyzing network traffic for indications of security weaknesses. It is a great alternative
to manual testing where more skills and time would be essential. It is important to note
that automated scanners have limitations which include the potential for false positives and
false negatives.

The 100 websites within Lithuanian education institutions were scanned using two scan-
ners, Zap and N-Stalker and the data was collected. The min-max scaling was applied
and each data set was run thought a dimensional reduction with t-SNE and MDS meth-
ods. Clustering methods: DBSCAN, K-Means and Gaussian Mixture were performed due
to their different technologies, assumingly providing us with a range of results. The clusters
created within individual data sets were compared between the two scanners, providing a
percentage of difference. For visualization, scatter plots were created to evaluate the clusters
produced for different combination of parameters of different clustering algorithms. The said
parameters were also evaluated using Silhouette scores and Calinski-Harabasz index.

The expectation of this research is to have both scanners detect same type of vulnerabil-
ities for most if not all websites. Therefore, websites would be places into same clusters for
both ZAP and N-Stalker scanner datasets and result in small percentage difference between
them.

Our research is based on a combination of related work, security software tools, the
progress of collecting data, the methodology used to analyse the datasets, results and eval-
uation, conclusions and finally propositions of future work.
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2.1 Research Object

Lithuanian educational institution vulnerability detection and the analysis. Investigate and
compare different scanner provided results.

2.2 Research Aim and Objective

1. Perform literature review and further analysis to choose software tools.

2. Choose the web sites that would be analysed for this project. Using the chosen software
tools, scan the chosen websites.

3. Perform the analysis of scanners, by analysing the data collected and finally compare
using data science techniques.
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3 Related Work

Testing the security of the assets and devices is prevalent in this day of age and is at its
utmost importance. As the focus is on the websites, that also tend to have security holes
endlessly, many research papers have already covered the methods of testing the security
and checking for its vulnerabilities.

3.1 Vulnerability detection

Rina Elizabeth Lopez de Jimenez in an article [17] , discusses pentesting using ethical hack-
ing. The different types of pentesting that could be used, varying from black box to white
box to grey box penetrative testing,

Figure 1: CNN model architectures (source: [17])

that discover a range of vulnerabilities withing the sites, such as Cross-Site Scrapping on
web applications and SQL Injections through database attacks. XSS, shortened for Cross-
Site Scrapping, [9], is one of the most common vulnerabilities found where an attacker is
capable of injecting a code into a victim’s web application and compromising data and
more malicious intents. SQL Injection on the other hand has the attackers focus on gaining
access into the databases of the website to therefore corrupt it or steal sensitive information
[10]. The author also analyses the software tools and informs on their differences and their
applicability in finding certain vulnerabilities and performing different kinds of penetrative
tests.

The research paper ’State of the Art: Automated Black-Box Web Application Vulnera-
bility Testing’ [4], based their research on black box scanners specifically. The authors used
eight scanners from ’the most-established security companies in the industry’ on to three
web applications Drupal, phpBB, and Wordpress. The vulnerabilities were classified and
the scanner performance was compared, showing how different scanners had strengths in
certain vulnerabilities and no scanner was the best in every single of them. Those black box
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scanners with leading statistics in certain individual vulnerability classification detection and
low numbers in false positives, lacked strength in other categories. For instance, XSS and
SQL Injection are detected best by the same scanners that are at the bottom in detecting
Session Management vulnerabilities. Though, in general scanners have great performance
in detection of “reflected” cross-site scripting of rate over 60%. This implies to us that for
our research multiple scanners would have to be used for the best evaluate of the websites
security.

Prof. Sangeeta Nagpure and Sonal Kurkure in their reseach paper [22], have described
vulnerability assessment and penetration testing as two separate items. Vulnerability assess-
ment is done by a black-box scanner first, in this article Acunetix, OWASP and PortSwigger
vendors were used, and the use of penetrative testing afterwards. Penetration testing is ex-
plored by an ethical hacker utilizing their knowledge to exploit the loopholes of the websites
that were found by black box scanners first. The test cases are then formed. Vulnerability
assessment is evidently an automated process, conversely penetration testing is not. Later a
practical was done on two websites, an e-commerce and cloud application to further indicate
the necessity in manual penetration testing. The vulnerabilities that were detected were from
cross-site scripting(XSS), SQL Injection, Clickjacking to Cross site request forgery, of which
were described also in the paper[22]. The manual testing provided 100% of vulnerability de-
tection across these websites, however automated testing provided 0% in Cross site request
forgery and Authentication Bypass[22]. The results revealed the importance in penetrative
testing, whoch will be taken into consideration for this research paper.

3.2 Vulnerability detection within different regions

The vulnerabilities were measures across couple of international websites and incorporated
withing few research papers as ’Measuring Vulnerabilities of Bangladeshi Websites’ [21] and
’Security Evaluation of Saudi Arabia’s Websites Using Open Source Tools’ [2]. The former
paper used black box testing by using penetration methods and then white box testing by
source code analysis mechanisms, which is a manual process of analysing the whole code.
The author didn’t specify the website sample size however 34 web applications were covered
in detail. The black box testing was done on Kali Linux, an operative system with already
included many penetrative testing tools such as Nmap, Merasploit and more of black box
scanners. Conclusions were made on 64% of tested websites being subject to vulnerabilities,
specifically to SQL Injection, XXS and Transport Layer Security (TLS). More so, source
code analysis showed ’back-end technologies used in some government websites are more
than ten years old in syntax and versions’.

Nonetheless, the latter paper, focused on 100 government websites and 50 commercial
ones by applying open source tools, of which W3af and Skipfish were chosen, both also
black box scanners. 61% of the Saudi Arabian websites were found to be vulnerable to
Clickjacking. 17.5% vulnerable to SQL injection, compared to 56% of Bangladeshi web
applications. Though, the ratio between commercial and government sites was unexplained,
and could of lead to a misleading conclusions within comparison between them. Both papers
have show common denominator on government websites tending to more vulnerabilities and
higher security risks. Securing the websites would require server details/equipment to be up
to date with security patches. These papers also signified the magnitude of security issues
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and similarities amongst different countries.
A report for Sudanese government websites has also been formed [23]. Since Sudanese

government websites lack feasible frameworks ’for national standards or guidelines for the
development of national sites’ and do not operate based on international security standards,
this research thesis proposed methods for vulnerability discovery. The frameworks that were
used were ’whois’ ’matesploit’ and ’owasp’ for gathering information, testing websites and
penetration report generation respectively. The three websites that were used for the practi-
cal, the results were conclusive on the website security weaknesses containing 17 vulnerabili-
ties within the first website that was tested; 11 vulnerabilities within the second website and
9 vulnerabilities within the third. The vulnerability classifications ranging from SQL Injec-
tion, Local File inclusion, BSQLi [16], multiple XSS/CSRF, Frontend XSS–PHP SELF not
properly filtered vulnerability. This could motivate into analysis of security of Lithuanian
websites, since research has not yet been done on it.

3.3 Vulnerability detection using dynamic analysis

Dynamic websites differ from static websites, by having the ability to be manipulated by the
viewer, whereas static websites don’t. Examples of dynamic websites are e-commerce sites,
calendars, blogs, Facebook etc., and static websites such as Wikipedia, and other read-only
sites. The research paper ’Detection of Security Threats to Modern Websites’ [13], has com-
pleted a dynamic analysis of the website security. Errors are looked while executing data in
real-time and thus evaluating the program, compared to looking at code offline. Tools that
implemented dynamic analysis of the asynchronous forms, appeared to have an inability in
detecting the vulnerabilities. For the dynamic analysis to have been effective, the program
must be executed with enough input vectors that would cover all possible outputs, how-
ever the research paper proposed the assumption that compiling a set of test inputs on the
websites that use HMLHttpRequest mechanism created that inability to detect the vulner-
abilities. D.V.Ivanova, D.A.Moskvina,and G.S.Kubrina have propositioned a method which
interprets JavaScript scrips, ’imitating the work of modern web browsers’. Multiple black
box scanners were used, of which Accunetix, WAScan, WVS and SaaS ervice Positive Tech-
nologies were not capable of detecting the vulnerable form with dynamic formation, yet w3af
and Saas service Detectify was to a certain extent. Finally YAVWS (QtWebEngineLoader),
a dynamic analysis tool, successfully detected the vulnerabilities in the websites before and
after JavaScript scrips obfuscation, something the previous two scanners had an issue with.

3.4 Vulnerability detection using design flaws

Authors of the research paper ’Analyzing Websites for User-Visible Security Design Flaws’
[7] have explored the security of 214 U.S financial websites rather in their user-visible designs.
Design flaws are a cause of mistakes that were made during the design phase of the websites,
which lead to security issues for the users. The paper focused on break in the chain of
trust, insecure pages containing secure login options, contact information on the websites,
inadequate policies for user ids and passwords and E-Mailing security sensitive information
insecurely, where high percentages of these vulnerabilities were presented in the paper, 74%
of sites had at least one flaw, 10% had all five flaws and 24% of these sites were free of the
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design flaws. The paper explored automatic detection of these flaws using automated tools,
after downloading the websites, using wget, for the ability and comfortability of static view.
The automated tools did not eliminate the false positives so the author did using manual
examination of the data. Each website analysed the HTML pages for certain patterns and
design flaws were identified. Automated tools showed, 17% of websites have not let the user
know of the potential security issue in use of third-party sites within the websites.

3.5 Vulnerability detection using machine learning

Another way of detecting vulnerabilities within websites is with the use of machine learning.
The research paper [12], has placed their focus in the medical field and the security of pa-
tients’ portals. Web crawlers are one of the biggest sources of cyber-attacks that attack users
by cracking passwords, gathering patients sensitive information and more. Navigational be-
haviour of crawlers and their attributes were analysed to separate known, malicious, unknown
ethical and unethical crawlers. New model was developed for detecting these malicious web
crawlers using machine learning and appropriate features for crawler detection that were
gathered during the investigation. The investigation included the analysis of log files of com-
promised websites. The conclusions were made based on the evaluation of the accuracy of
the models, showing how with the proper extraction of necessary features, the performance
of the models, such as Support Vector Machine, Bayesian networks and Decision tree has
increased.

Another research paper also using machine learning to aid with vulnerability detection [5]
have designed a tool, Mitch, for black box detection of Cross-Site Request Forgery (CSRF)
vulnerabilities based on the methology described in details in the paper [5]. The authors have
tested the effectivness of the tool on top 10k Alexa, 20 websites with single sign-on access
to make the security testing process with only 2 created accounts possible. 191 sensitive
requests and 47 CSRF potential vulnerabilities were found of which 35 with 7 false positives
were exploited to deduce vital security issues.
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4 Security Software Tools

15 scanners to be discussed, are on the market at a current date, some are older, some are
newer, some are free and others are not. Each scanner can differ in speed, costs, ability to
handle different amount of data, production dates, reliability and amounts of false positives.
Three scanners after the analysis have been chosen to proceed with the practical part of this
research. The scanners from one to three will also be compared and analysed using statistical
methods to confirm or disprove the effective of each.

Open source tools, were included in the current subsection and such are freely available
software tools that have no necessity in commercial license and are accessible to the public.
Open source tools are also free.

OWASP is an Open Web Application Security Project which is a non-profit organisation
that works on software security, that also counts for reliable source of information.

The OWASP Top 10 associates to the top security vulnerabilities that the organisation
has outlined to be critical. These include Broken Access Control, Cryptographic Failures, In-
jection, Insecure Design, Security Misconfiguration, Vulnerable and Outdated Components,
Identification and Authentication Failures, Software and Data Integrity Failures, Security
Logging and Monitoring Failures, Server-Side Request Forgery.

4.1 Acunetix

Acunetix is a web vulnerability scanner that analyses the website by thoroughly scanning
it and extracting all the necessary information on the web application. The ’Acunetix Acu’
sensor if enabled can withdraw the directories and files of the said website. Further then
vulnerabilities are presented and a report is created.

Acunetix offers a 14 day trial and free penetration testing manual tools, but are not part
of Acunetix product and need to be downloaded separately.

Acunetix Manual Tools contain the following modules: HTTP Editor, Subdomain Scan-
ner, Target Finder, Blind SQL Injector, HTTP Fuzzer, Authentication Tester, Web Services
Editor, and HTTP Sniffer; however are not part of an open-source project. The scanner
works on Microsoft Windows operating system and can be used alongside other tools like
Metasploit* exploitation framework, ZAP, w3af audit framework, etc. to broaden the infor-
mation on the vulnerabilities detected.

The 14 day trial scan offers a few options from XSS, SQL Injection, Weak Passwords,
high risk vulnerabilities or crawling only.

4.2 N-Stalker

N-Stalker offers an assessment of the 3rd party packages alongside web vulnerabilities. The
said vulnerabilities include but not limited to ”OWASP Top 10” and ”PCI Data Security”*
in addition to ensuring the SDLC*- Secure Development Life Cycle.
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N-Stalker Web Application Security Scanner X Free Edition has more than 20,000 sig-
nature filled database. A signature being a footprint of a malicious attack on a system or
computer network. A restricted amount of security checks are available in the free edition;
HTTP Fingerprinting and File Backup Extensions analysers are few of the vulnerability
checks of the scanner, as well as Cross-sire Scripting. Important to note than the free edi-
tion only scans up to 500 pages per each web application.

4.3 Grabber

Grabber is a web application scanner capable of detecting the following vulnerabilities: Cross-
Site Scripting, SQL Injection (Blind SQL Injection module), File Inclusion, backup files
check, AJAX check, Hybrid analysis/Crystal ball testing for PHP application using PHP-
SAT, JavaScript source code analyzer, generation of a file for a statistical analysis.

It is a simple and free tool developed on python, however it is not fast and could not
handle large web applications and only last updated in 2017. Python, BeautifulSoup and
PyXML packages would need to be used in order to complete the security scans. The devel-
oper of the Grabber has implemented the scanner to be specifically good for the Blind SQL
Injection, SQL Injection and File Inclusion and backup files tests.

4.4 Vega

Vega is a free open-source web vulnerability scanner. It is a program written on Java that
performs security tests that also includes a GUI-based environment*. Vega is available for
use on OS X, Windows and Linux. JavaScript was used for writing the detection modules,
thus Vega an API written in JavaScript could be used as well.

It can be used to find SQL injection, blind SQL injections, header injection, directory
listing, shell injection, cross-site scripting, remote file inclusion, String Format attacks and
others. Other than that, Vega demonstrates ways to improve the security of TLS* Servers.

Nonetheless, Vega does portray some false positive, however, taking into account its a
completely free tool and covers many vulnerability classifications, it is not far behind most
prominent web scanners in the industry.

4.5 Zed Attack Proxy

Zed Attack Proxy(ZAP) is a penetration testing scanner developed by OWASP(Open Web
Application Security Project). It is a tool that can be used on Linux, Windows and Mac
OS.

The vulnerabilities that this scanner detects includes SQL injection, broken authenti-
cation or access control, sensitive data exposure, XSS, security misconfiguration, missing
security headers, insecure deserialization. ZAP allows to either scan a whole website by
inputting a URL or specific pages can be tested. Luckily it is a tool that is easy to use not
only to scan the websites to detect possible threats but also offers Authentication* support,
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Web socket* support, Smartcard and client digital certificates* support and more.

4.6 Wapiti

Wapiti checks for website or web application security, and performs black-box testing which
crawls the websites looking at scripts where data could be injected, but doesn’t study the
source code. The scanner performs a technique called fuzzing, where invalid, random data
is provided into a computer program and monitors for crashes, memory leaks to see if there
is vulnerability within scripts.

Wapiti provides many features, from SQL Injections, reflected and permanent XSS,
file disclosure detection, command Execution detection, XXE (Xml eXternal Entity) in-
jection,CRLF Injection, search for potentially dangerous files on the server and many more.

Wapiti is a command line application, thus more on a difficult side for beginners but
could appear to be great help for professionals.

4.7 W3af

W3af is a python developed framework that secures web applications and also open-source.
Its main features are that its a flexible and customizable tool for developers and hackers; It
exploits main vulnerabilities like SQL injection and XSS and over 200 more using plugins,
that are python codes that send HTTP requests to forms. W3af GUI also allows to send a
custom version of these HTTP requests, craft them, cluster the HTTP requests and more.

4.8 WebScarab

WebScarab is a java based framework that focuses on HTTP based web applications. HTTP
protocol would be of use to know to write necessary codes, thus it is more suitable for experts.
The tools functionality can be extended by the plugins that it provides. One of the plugins
helps take control of request and response when there is an observation of the traffic between
a server and a browser by a proxy(intercepting proxy). It also contains a spider, it can fine
new URLs connected to the target website automatically. Moreover, WebScarab can extract
HTML and scripts of the page.

Regular vulnerabilities like SQL Injection, XSS, CRLF and many other can be detected
using fuzzer tool.

4.9 Skipfish

Skipfish is a penetration tool in Kali Linux written on C. Very good for HTTP handling and
using minimum CPU, where 2,000 requests are easily handles without addition of load on to
the CPU. A Heuristics approach* is used to crawl the websites and test them, where each
page can be checked for various vulnerabilities. Skipfish offers few false positives and a final
report.
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Skipfish is free, open source and available on GitHub. Includes 15 modules, such as
Metagoofil*. Also tracks enumeration.

4.10 SQLMap

SQLMap is another open-source security testing tool. It focuses on SQL injection vulnera-
bilities 6 different techniques: time-based blind, Boolean-based blind, error-based, UNION
query, stacked queries and out-of-band.

MySQL, Oracle, Apache Derby, PostgreSQL, Microsoft SQL Server, Microsoft Access,
Amazon Redshift, Vertica, IBM DB2, SQLite, MimerSQL, Firebird, Sybase and SAP MaxDB
is only a small sample of all database servers that are supported by SQLMap. It can connect
to these databases directly with necessary information like IP address, database name, port*
and DBMS* credentials. Many more features are provided by SQLMap.

4.11 Wfuzz

Wfuzz is a bruteforcer that performs security assessments onto web applications. It is free,
open source and available on GitHub. Web fuzzer does not have GUI interface so command
line would have to be used.

Brute force in cyber attacks is a method of guessing passwords, login credentials, much
more of sensitive information, gaining access to unauthorised data through trial and error.
Brute forcing has no strategy behind it and the attack is primarily executed via GET and
POST requests for measuring security of various vulnerabilities like SQL, XSS, LDAP etc.
Many more other features are supported by Wfuzz.

Figure below is a light description of what GET and POST requests are and their differ-
ences.

Figure 2: GET vs POST requests (source: )
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4.12 Nessus

Nessus is a web scanner developed by Tenable that offers paid and free versions, however the
paid version is from 2 to 8 thousands dollars worth and the free version only allows scans up
to 16 IP addresses per scanner.

This scanner can run on Windows, Mac, Amazon Linux, Ubuntu, Fedora, RHEL, FreeBSD
Unix, Debian and SUSE. Nessus states to provides the lowest false positive rate in the indus-
try and broadest vulnerability coverage and but is reviewed to be pretty slow in comparison
to the competitors.

The paid version web scanner continuously scans for known vulnerabilities, as well as
for signs of unusual behaviour. It offers customizable reporting, risk-based vulnerability pri-
oritization, machine learning automation, complete visibility of the network infrastructure.
Nessus is an intuitive application, made customers easy to learn UI.

4.13 Burp suit

Burp Suite offers community version, professional and enterprise levels for security testing.
Community version is free compared to the other two however, it is extremely limited to the
features it provides including the plugins it provides. For example, only enterprise version
offers automated dynamic scanning and only manual control is proposed for web vulnerability
scanning.

Community version provides essential tools such as, Repeater, Decoder, Sequencer, and
Comparer and HTTP(s) / WebSockets proxy and history. Professional version will be able to
provide an addition of Auto and manual OAST testing*, Automatically crawl and discover
content to test, ability to save files. Pricing starting from under $500 also has strong user
community which would aid customers if needed.

4.14 Nmap

Nmap is a free and open source tool that is over 25 years old, started its journey as a Linux
utility and has thus stayed most popular between Linux users to this day. Mac OS x, HP-Ux,
Amiga Microsoft Windows and more are now supported by Nmap.

It is a network discovery and security auditing tool, also used for things as monitoring host
or service uptime, scanning networks for ports, devices, service. Nmap uses raw IP packets
to establish the available hosts on the network, the services, operating systems, firewalls are
of the hosts and more. Huge networks could be scanned at a high speed but also works with
single hosts. Most importantly Nmap offers a vulnerability scanning characteristic, even
though it isn’t the primary use of this scanner.

Although Nmap is has won several awards and has been a feature in magazines, books
or movies, it is reviewed to lack quality in UI and user support system.
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4.15 Final chosen Scanners

Few characteristics had an impact on which scanners were chosen. One of them being the
pricing, ranging from free to the mid range of 4 figures and thus the free and/or open source
scanners were chosen.

It was at most importance to make sure that the chosen scanners used a GET method
to find the vulnerabilities, instead of the POST method. As previously shown the difference
between the two, the former chooses to only gather information on the source code, where
as the latter injects the codes into the body of the website. The POST method can be
dangerous, as it injects malicious codes that could disrupt the targeted website. Thought
such method is highly useful for detecting vulnerabilities such as SQL injection, which focuses
on databases, it requires the permission of the websites owner to proceed with such method
in order for it to be ethical and legal. Conclusions were made to focus on GET method scans
only.

Another factor that has impacted the choice of the scanner was the vulnerabilities that
the free editions of the expensive scanners or the open source tool have checked. The scanners
that were chosen are Zap, N-Stalker and VEGA. Zap scanner being an open source tool while
N-Stalker, the Free Edition X was chosen.

Zap scanner had many options for automated scanning, one of which being ’spider’ option.
It scanned many vulnerabilities that were classified into OWASP Top 10 groups in the GUI.
The ’spider’ scans also only used GET method requests into the websites.

N-Stalker offers a few policies to scan, ’OWASP Policy’ being one of them, among manual
tests. As it was noted before, only 500 pages per URL can be scanned, but it is enough to
make conclusions with false positives being taken care of by the scanner. The OWASP feature
also portrays its vulnerabilities with classifying into OWASP groups. The Zap scanner and
N-Stalker both having in common the OWASP feature, the comparison between them could
be made.

5 Collecting Data

This research paper has chosen 100 Lithuanian websites to test their security issues. The
websites are based on educational institutions due to them being vital in modern educa-
tion system. They provide a platform for students, teachers, and administrators to access
and share information, resources, and tools. It is crucial to conduct vulnerability testing
on educational sector websites as addressing the security weaknesses will ensure the users
sensitive information, any online assessments and exams stay protected. Most importantly,
Lithuanian websites, especially of educational institutions have not yet been researched in
vulnerability testing.

The 100 websites were to be scanned with 2 scanners, thus Virtual Machine has been in-
corporated into the practical work along side of couple of devices for this study. The virtual
machine that was chosen was VirtualBox, and up to three virtual machines were created
with CPUs of 2 each on a Ubundu operative system. The devices with Microsoft and Mac
OS operative systems were also used.
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5.1 ZAP

ZAP was run on up to three virtual machines on top of 2 devices, for a quicker automatic
scan completion. Once the URL of the website was inputted into automatic scan section, the
spider scan option was checked and thus scanned. The following vulnerabilities were found
through out all of the 100 scans with respective vulnerability classifications of OWASP Top
10:

A01:2021 Broken Access Control

• Absence of Anti-CSRF Tokens
• Cookie without SameSite Attribute

A01:2021 Broken Access Control
A03:2017 Sensitive Data Exposure

• Information Disclosure - Debug Error Messages
• Private IP Disclosure
• Server Leaks Information via ”X-Powered-By” HTTP Response Header Field(s)
• Timestamp Disclosure - Unix

A02:2021 Cryptographic Failures
A05:2021 Security Misconfiguration

• HTTP to HTTPS Insecure Transition in Form Post

A03:2021 Injection

• SQL Injection - SQLite
• User Controllable HTML Element Attribute (Potential XSS)

A04:2021 Insecure Design
A03:2017 Sensitive Data Exposure

• Hash Disclosure - Mac OSX salted SHA-1
• PII Disclosure
• Big Redirect Detected (Potential Sensitive Information Leak)

A05:2021 Security Misconfiguration

• CSP: Wildcard Directive
• CSP: script-src unsafe-inline
• CSP: style-src unsafe-inline
• Content Security Policy (CSP) Header Not Set
• Hidden File Found
• Missing Anti-clickjacking Header
• Cookie No HttpOnly Flag
• Cookie Without Secure Flag
• Secure Pages Include Mixed Content
• Server Leaks Information via ”Server” HTTP Response Header Field(s)
• Strict-Transport-Security Header Not Set
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• Strict-Transport-Security Multiple Header Entries (Non-compliant with Spec)
• X-Content-Type-Options Header Missing

A06:2021 Vulnerable and Outdated Components
A09:2017 Using Components with Known Vulnerabilities

• Vulnerable JS Library

A08:2021 Software and Data Integrity Failures

• Cross-Domain JavaScript Source File Inclusion

The years represent which year the OWASP Top 10 has been formed. The ZAP applica-
tion has also provided characteristics for each scan as, the total number of URLs found, the
quantity of nodes used, as well as the quantity of high, medium and low risks are across the
whole web application. Most importantly list of vulnerabilities. Each vulnerability has por-
trayed its own level of risk, its quantities within the web application and specific URLs that
were vulnerable to it, respectively to the method that was used for the request individually.
A short descriptions and solutions have also been formed.

An example of a scan is shown below:

The Request code that was automatically inputted for a specific website path:

GET http://www.***/***/***

Host: www.***.**

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:105.0) Gecko/20100101

Firefox/105.0

Pragma: no-cache

Cache-Control: no-cache

Referer: http://www.aviliukas.com

Cookie: is_mobile=0; language=en

As each website has reported a list of information mentioned previously, it has been
collected into a concise excel data set.

5.2 N-Stalker

Upon downloading N-Stalkers, the front page had a user input a base URL and choose a
policy to scan, which for this research, OWASP policy was chosen. The optimization of
the scan was also a chosen option that enabled false positive for multiple extensions and
enabled them for 404 pages; 30 Urls were used per nodes and only one host to be configured,
none additionally added. Since the N-Stalker is a paid tool, however the free version X was
used, there were limitations to it with 500 Urls to be Spider scanned per each website base.
Nonetheless, it was enough to draw conclusions for this research. Lastly, other 13 modules
were run. The Scan Modules that were run:

• N-Stalker Spider Module
• Clickjacking Inspection Module
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• Cookie Inspection Module
• Flash/Silverlight Cross-domain inspection Module
• Cross-Site request forgery Assessment
• WebDAV Detection Module
• HTTP Method Finder
• File Extensions Finder
• 3rd-Party Package Scanner
• HTTP Parameter Pollution Assessment
• Information Leakage Assessment
• Cross-Site Scripting Assessment
• WebServer Infrastucture Assessment
• Sensitive File Search Assessment

Following Vulnerability classes were detected and reported:

OWASP (None) — CWE (None)

• Web Server Infrastructure attack
• HTTP TRACE
• PHP Info Found
• Packages names’

OWASP (Top 10 A1) - Broken Access Control — CWE (235)

• HPP

OWASP (Top 10 A3) - Injection— CWE (79)

• Cross-Site Scripting

OWASP (Top 10 A5) - Security Misconfiguration

• Wordpress — CWE (22)
• Web Server Infrastructure attack — CWE (310)
• httponly cookie — CWE (614)
• non-secure cookie — CWE (614)
• ClickJack — CWE (693)

OWASP (Top 10 A6) - Vulnerable and Outdated Components

• Information Leakage — CWE (209)
• Source Code Exposure — CWE (540)

OWASP (Top 10 A8) - Software and Data Integrity Failures— CWE (352)

• CSRF

The GUI of N-Stalker was somewhat similar to ZAP. It produced information on which
vulnerability belongs to which OWASP group, the vulnerability class and limited information
on each of the vulnerabilities due to its edition. The severity level, high, medium or low was
also portrayed for each of the cases. The data was collected into an excel spreadsheet for
the further analysis of this research.
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5.3 Collected Data Conclusions

With the same 100 websites, N-Stalker and ZAP scanned a total of 1,140,521 Urls. According
to the table below, N-Stalker detected the highest count of medium level vulnerabilities and
ZAP, the low level.

Number of Websites Total Url Count
Level of Vulnerability
High Medium Low

N-Stalker 100 38038 1049 1899 276
ZAP 100 1102483 120 424 623
Total 100 1140521 1169 2323 899

6 Methodology

For this research paper, the comparison between the scanners was chosen to be done to
evaluate how well or similarly do scanners detect websites vulnerabilities. As well as there
is no real data reported on Lithuanian websites vulnerabilities, nor the data on scanners
performance on real websites, to compare to. The collected data has no ground truth,
therefore unsupervised learning methods should be considered. Common trends and features,
if found, can inform further analysis or research.

One way to compare the data sets collected is by using clustering. Clustering algorithm
is a method that aims to group together the data points that are similar to one another and
those that are dissimilar, to be separated. With the help of clustering, the clusters of the
data could be visualised and also compared, analysing the data points within each cluster.

Before the subsection of clustering, the data sets should be preprocessed, transformed
through dimensionality reduction for better visualization. After all of which, different clus-
tering algorithms would be applied to later also be analysed and evaluated. Finally, the
cluster intersection between the two data sets will be examined to find whether the data
points, websites, fall into the same clusters from different data sets.

6.1 Scaling

Scaling is a significant part when working with data sets, to make sure that all features
are of the same scale, thus brings forth an analysis of similar importance. When features
are of difference range, scaling the data makes an approach to comparison much easier, and
furthermore to perform other types of analysis like clustering. Clustering algorithms are
sensitive to scale of the data, such as k-means [28], if the features are not on the same
scale, then some features may dominate the distance measure, making it harder to compare
observations based on the other features.

Scaling data causes the features to be equally weighted in the distance measure, making
the comparison between the datas based on all the features and easier procedure, conse-
quently improving the result interpretability.
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6.1.1 Min-Max Normalization

Min-max normalization helps to address an issue in data sets with different range and scale
by scaling the features in a certain range of [0,1] [28].

This method of scaling performs a linear transformation on the original data.[3].

Xnew =
X −min(X)

max(X) −min(X)

Xnew=The new value after normalization has been applied
X=Old value
Max(X)=Maximum value in the data set within the feature, in this research it being a
vulnerability.
Min(X)=Minimum value in the data set [11]

Research papers [11], [25], [3], though with the use in different algorithms, have supported
the idea of min-max normalization being the best fit for scaling data for the best results.
This research too will focus on normalizing the two data sets with min-max normalization.

6.2 Dimensionality Reduction

The collected data set from the performed scans are high dimensional datasets, however to
visualize the data would be very difficult, yet possible by reducing it to lower dimensional
space with the help of dimensionality reduction [14]. Visualizing data in two or three dimen-
sions, would be much easier to see patterns, interpret the data and identify clusters in the
data. Dimensionality reduction produces latent space representation preserving properties
and information of the original data [14].

6.2.1 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is nonlinear dimensionality reduction technique that has an algorithm of the appli-
cation of SNE (Stochastic Neighbor Embedding) to the data points, that passes a method
of conversion between high-dimensional Euclidean distances between data points into con-
ditional probabilities constituting similarities. So when the data points are mapped ontp a
lower dimensional space, the relationship between the points is preserved as probabilities.
t-distribution with a single degree of freedom is applied to avoid overcrowding. t-SNE also
retains structure of the global and local data[18] with larger perplexity emphasising global
structure and smaller perplexity defining local structure. t-SNE appears to be sensitive to its
parameters, “perplexity” evidently being one of them. Tt is a representation of the smooth
version of the number of the nearest neighbours in the t-SNE algorithm. The research paper
[14] has stated with references ”the best visualization technique for the past decade has been
t-SNE”, thereafter it will be used for the collected data.

For both Zap and N-Stalker datasets, the t-SNE parameters were the same. The n components =
2, representing 2 dimensions. Perplexity equating to 40 because the clusters printed in scat-
ter plots were most defined and separate using this value.
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6.2.2 Multidimensional Scaling (MDS)

Multidimensional scaling is used on the dataset due to it being a linear dimensionality reduc-
tion technique, potentially producing a different set of results from t-SNE, and accordingly
could be then compared.

MDS is a method where relationships between the data points, the distances can be
preserved in the low-dimensional space, using dissimilarity matrix[15], [19]. The spatial
structure of the data points is found using the dissimilarity information[8]. Due to MDS
representing the distances of interpoint, it makes it useful for identifying and visualising
clusters.[15].

Two of the data sets were reduced to 2 dimensions using MDS, with ncomponents value
being 2. eps=1e-3 because eps is a parameter that determines the minimum distance between
the points in the low-dimensional space and smaller eps value will result in points that are
closer together. metric = True is a metric MDS and metric = False is a non-metric
MDS. The later is distanced-based, as distances between the data points is meaningful and
proportional. The former, is similarity-based, where data is treated as original data.

6.3 Clustering Methods

Three clustering algorithms were chosen: DBSCAN, K-Means and Gaussian Mixture due to
their difference in use of technology.

The clusters were evaluated using Silhouette Score and Calinski-Harabasz index. The
silhouette index is an unsupervised method that does not require any training and can be
applied on evaluating clustering results [27]. It evaluates the effectiveness of clustering by
measuring the difference between two values. One being the average distance within a cluster,
and two being the minimum distance between clusters [29]. The silhouette index is in the
range of [-1.0, 1.0], where 1.0 is the best, 0.0 implies overlapping and -1.0 is the worst value.
These values intepret on how similar or dissimilar is the object from its own clusters. 1.0
representing similarity and -1.0, the opposite [18]. The higher the silhouette score is for the
corresponding cluster count, the more optimal the cluster count is [26].

The Calinski-Harabasz index is a measure of the quality of a clustering. An evaluation
index based on the degree of dispersion between clusters[29], in other words, based on the
variance between clusters, with a high Calinski-Harabasz index suggesting that the clusters
in the data are distinct and well-defined, which is a desirable characteristic of good clustering
[1].

6.3.1 DBSCAN

Density-based spatial clustering of applications with noise, shortened to DBSCAN is an al-
gorithm for clustering data. Minsample and eps being the two parameters, representing the
minimum cluster size and the maximum distance within the clusters data points respectively.

The DBSCAN algorithm works by identifying point in the dataset, that have many other
points close to them, in other words neighbouring points within the maximum distance
between them. It then expands the clusters from the main points by adding points that are
close to the main points and satisfying the minimum sample size requirement and maximum
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distance. Points that do not belong to any cluster because there are considered ”noise” and
are not included in the clusters.

Clusters are identified using density of the data points in the feature space. Clusters
being density-based causes them to be of different sizes and shapes. DBSCAN experiences
smaller effect of outliers due to the separation of the ’noise’ cluster if there is a too of an
apparent difference between the data points and is not forced into a cluster. [6]

The eps was considered through creating a plot which portrayed how many cluster were
created per eps ∗ 100. The eps value that created the most clusters was taken into account.
However, for ZAP scanner dataset, according to Figure (a) below, the eps value was in the
range of multiple x-axis values, where they subsequently were inputted into the DBSCAN
function, eps parameter, and evaluated by Silhouette scores and Calinski-Harabasz index
to make conclusions on which from the range eps value is the best. The minsample value
was chosen to be 3, as the choice between the two values of 3 and 4 made no difference to
the Silhouette scores and Calinski-Harabasz index. Taking into consideration the eps and
minsample values, the DBSCAN clustering was performed and visualized using a scatter
plot. The scatter plot used the dimensionaly reduced data with labels of min-max scaled
data.

(a) Cluster count per eps, ZAP (b) Cluster count per eps, N-Stalker

The Figures (a) and (b) show the eps values that produces most clusters of the ZAP
dataset is [0.1,0.67] and for N-Stalker, 6 clusters were created at eps = 1.0.

6.3.2 K-means

K-Means is a centroid-based clustering, with a parameter nclusters, representing a cluster
count. K-Means selects n initial locations of a centroid randomly, or the first n objects in a
sequence. Upon choosing the number of cluster, K-Means forces its data points into clusters
making it sensitive to outliers. This clustering algorithm will produce inaccurate results if
some features are of large size, therefore data would have to be preprocessed. The distance
between the data point and the centroid is determined and thereafter the data points are
assigned to the clusters corresponding to the nearest centroid. The centroids converge at
which point the algorithm stops. [6] [20]
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(a) K-Means of N-Stalker (b) K-Means of ZAP

The count of clusters was taken into consideration through performing an elbow method.
The k value was chosen based on where is a ’bend’ in the plot. For N-Stalker scanner,

the k value was not precise and for ZAP scanner, k=4. The clusters using these k values
were also evaluated using silhouette scores and calinksi-harabasz index and compared with
results using other k values to validate the initial choice.

6.3.3 Gaussian Mixture

Gaussian Mixture is a probabilistic clustering method generating density based clusters.
Clustering data points into clusters is done by fitting separate Gaussian distributions to each
cluster. The model computes the probability of each data point of the dataset belonging to
each cluster, based on the fitted Gaussian distributions. The data point is then assigned to
the cluster with the highest probability. Gaussian Mixture model use mean and covariance
as opposed to only means like in K-Means, to provide better results. [24]

Initially AIC and BIC methods were used to find out which cluster value should be used
for Gaussian Mixture clustering, unfortunately the results were not interpretable for further
use. Therefore, a range of cluster counts were inputted and evaluated using the same cluster
evaluation methods.

6.4 Cluster Intersection

Finally, the clusters created within each datasets were due to be compared. It was checked
how similarly did same data points from different data sets were found in the same cluster
across all three clustering algorithms. For this, the percentage of rows that have different
cluster predictions were calculated for all three clustering methods on top of a small range
of different parameters.
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7 Results

7.1 DBSCAN

Different values of the parameter ’eps’ were used to find the Silhouette Score and Calinski-
Harabasz index. Prior to that. the outliers have been removed using the DBSCAN function,
with a ’min samples’ value of 3. The score and the index were calculated using the resulted
clean data (the data without outliers). The results are in the following table:

DBSCAN

ZAP
eps 0.1 0.13 0.25 0.5 0.6 0.7
Silhouette score 0.57 0.88 0.80 0.67 0.56 0.52
Calinski-Harabasz index 26.73 378.31 165.27 70.55 35.31 29.27

N-Stalker
eps 0.13 0.5 0.7 0.9 1 1.6
Silhouette score 0.97 0.78 0.72 0.52 0.39 0.36
Calinski-Harabasz index 11086.29 152.81 64.45 64.45 18.16 13.83

The table above shows eps = 0.13 providing the highest Silhouette scores and the
Calinski-Harabasz index for the dataset using ZAP scanner, and same for N-Stalker scanner
data set. Previously it was noted, that range of eps that has most clusters was [0.1, 0.76]
and 0.13 falls into this range. However, the N-Stalker eps value does not. The value for
eps = 1.0 shows quiet poor results.

Using DBSCAN, the clusters were visualized using scatter plots using both dimensionality
reductions, t-SNE and MDS. Plots used eps = 0.13 for both ZAP and N-Stalker databases,
due to the table produced previously. The parameters for t-SNE were perplexity = 40
because it gave the most distinct clusters and n components = 2 as the focus was on 2
dimensions. Learning rate and n iter were 70 and 360 respectively as it was the upper
bound of what resulted in better clusters, known through experimenting with different values.

(a) t-SNE, perplexity=40 for ZAP scanner (b) t-SNE, perplexity=40 for N-Stalker scanner

Figure 5: DBSCAN
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(a) MDS, metric=True, ZAP (b) MDS, metric=False, ZAP

Figure 6: DBSCAN

(a) MDS, metric=True, N-Stalker (b) MDS, metric=False, N-Stalker

Figure 7: DBSCAN
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(a) eps=0.6, metric=True, ZAP (b) eps=0.6, metric=False, ZAP

(c) eps=1.6, metric=True, N-Stalker (d) eps=1.6, metric=False, N-Stalker

Figure 8: DBSCAN with new parameters (MDS)
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For visualisation using MDS dimensionality reduction, both metrics ′True′ and ′False′

were used, purely to visualise and compare. The scatter plots for both metrics and both
datasets were very inadequate. So, to experiment, few other values for eps were used, where
eps = 0.6 and eps = 1.6 shows most distinct clusters for ZAP and N-Stalker datasets
respectively, using ′True′ metric. Changing values of other parameters for MDS function,
like eps or n init did not create noticeable changes to the plots.

The DBSCAN eps value that showed best results in Figure 8(a),(c), contradicted the
Silhouette score and Calinski-Haarabasz index, in terms of which eps value provides the best
results. However, same could not be said about the use of t-SNE dimensionality reduction
method. While experimenting with different eps values, the scatter plots with eps = 0.13
had the most distinct cluster. It is important to take note that the scores and index’s were
calculated without the outliers, but the plots were portrayed with original data. It could be
implied that Figure 5(a), the darker data points are the said outliers, thus removing them
will create better scores overall.

7.2 K-Means

K-Means cluster evaluation was done by using 2, 3, 4 and 5 clusters. Previously elbow method
showed k=4 for ZAP dataset and not a precise cluster for N-Stalker dataset, therefore couple
of cluster counts were applied.

K-Means

ZAP
n clusters 2 3 4 5
Silhouette Score 0.627 0.398 0.421 0.367
Calinski-Harabasz index 14.794 16.268 17.349 17.147

N-Stalker
Silhouette Score 0.596 0.344 0.379 0.195
Calinski-Harabasz index 30.398 26.759 27.379 26.644

According to the table above, it is pretty clear how 2 clusters were shown to have best
Silhouette scores. However, the Calinksi-Harabasz index does not support the score for ZAP
scanner dataset, but supports the elbow method plot, with best number of clusters being of
4.

Afterwards, the scatter plots for both datasets with 2, 3 and 4 clusters were plotted,
using both t-SNE and MDS Dimensionality Reductions.
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(a) k=2, ZAP (b) k=2, N-Stalker

(c) k=3, ZAP (d) k=3, N-Stalker

(e) k=4, ZAP (f) k=4, N-Stalker

Figure 9: K-Means (t-SNE, perplexity=40)
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(a) k=2, metric =′ True′ (b) k=2, metric =′ False′

(c) k=3, metric =′ True′ (d) k=3, metric =′ False′

(e) k=4, metric =′ True′ (f) k=4, metric =′ False′

Figure 10: K-Means (MDS) for ZAP
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(a) k=2, metric =′ True′ (b) k=2, metric =′ False′

(c) k=3, metric =′ True′ (d) k=3, metric =′ False′

(e) k=4, metric =′ True′ (f) k=4, metric =′ False′

Figure 11: K-Means (MDS) for N-Stalker
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The parameters for t-SNE and MDS were kept the same as for DBSCAN clustering for
the same reasons as well. For clustering using K-Means algorithm, according to Figure 9,
ZAP scanner provides best scatter plots with 3 clusters (Figure 9(c)), likewise for N-Stalker
too (Figure 9(d)). For the use of MDS dimensionality reduction, ZAP portrays most clear
clusters using metric =′ True′, yet none of the cluster count provides satisfactory plots, but
for dataset of N-Stalker, Figure 11(c) have better clusters of count 3.

7.3 Gaussian Mixture

Gaussian Mixture algorithm used the parameter ′n components′, and the range of [2,8] was
chosen, resulting in such table for evaluating the cluster count:

Gaussian Mixture
n components 2 3 4 5 6 7 8

ZAP
Silhouette Score 0.677 0.531 0.375 0.407 0.331 0.377 0.361
Calinski-Harabasz index 13.5 13.91 11.92 11.8 10.69 14.44 13.03

N-Stalker
Silhouette Score 0.424 0.147 0.168 0.179 0.155 0.157 0.147
Calinski-Harabasz index 12.14 23.22 21.88 25.26 22.8 19.59 18.84

This table is to show, 2 cluster provided best Silhouette scores, yet Calinski-Harabasz
index did not support and showed gm = 7 and gm = 5 were better for ZAP and N-Stalker
respectively.

Consequently, Gaussian Mixture went through the same procedure as K-Means and DB-
SCAN algorithms to be visualized in terms of the dimensionality reduction t-SNE and MDS
choice of parameters. The gm = 2 is used to for visualisation.

(a) gm=2, ZAP (b) gm=2, N-Stalker

Figure 12: Gaussian Mixture (t-SNE, perplexity = 40)
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(a) gm=2, metric =′ True′ (b) gm=2, metric =′ False′

Figure 13: Gaussian Mixture (MDS) for ZAP

(a) gm=2, metric =′ True′ (b) gm=2, metric =′ False′

Figure 14: Gaussian Mixture (MDS) for N-Stalker

The Gaussian Mixture portrays similar clusters for ZAP and N-Stalker dataset using 2
clusters - Figure 12 with t-SNE dimensionality reduction. However using MDS, Figure 13(a)
and Figure 14(b), clusters are more clear.

7.4 Cluster Intersection

The cluster intersection was calculated of DBSCAN, K-Means and Gaussian Mixture clus-
tering algorithms, using the parameters mentioned in the table. The parameters for t-SNE
and MDS were kept exactly same as for all the other calculations.

The table shows a range of results, from 8% to 44% difference of cluster predictions of
rows. It should be noted that DBSCAN is the only algorithm to keep its results constant
through out many initiations, which is due to the nature of DBSCAN, compared to K-
Means and Gaussian Mixture as mentioned in previous section. Unfortunately, throughout
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The percentage of rows to have different cluster prediction

DBSCAN
eps=0.13 & eps=0.9 eps=0.6 & eps=1.6

44.00% 39.00%

K Means
n clusters=2 n clusters=3 n clusters=4

18.00% 26.00% 33.00%

Gaussian Mixture
n components=2 n components=3 n components=4

8.00% 32.00% 40.00%

many initializations the percentage difference for K-Means and Gaussian Mixture clustering
differed from the ones noted in the table even up to the 90%. However with the right
initialization the results are to show the cluster prediction for the rows of the two datasets
are fairly similar.

7.5 Result Conclusions

In the table down below, the best results, in terms of Silhouette score, for DBSCAN, K-Means
and Gaussian Mixture clustering were chosen to their corresponding parameters.

DBSCAN K-Means Gaussian Mixture

ZAP
Silhouette Score 0.88 0.627 0.677

Calinski-Harabasz Index 378.31 14.794 13.5

N-Stalker
Silhouette Score 0.97 0.596 0.424

Calinski-Harabasz Index 22086.29 30.398 12.14

It is portrayed that DBSCAN produces significantly best Silhouette scores and Calinski-
Harabasz Index for both ZAP and N-Stalker scanners. The reason for this could be the effect
outliers have on both K-Means and Gaussian Mixture clustering methods.

8 General Conclusions

100 websites of educational institution were tested for vulnerabilities using automated soft-
ware tools. Zed Attack Proxy(ZAP), a free open source tool created by OWASP, and N-
Stalker X Free Edition with over 20,000 databases, were used for this research.

1. After thorough investigation of many research papers and further study of many more
software tools, the scanners that were most suitable for the research object, were: Zed
Attack Proxy(ZAP), a free open source tool created by OWASP, and N-Stalker. that
is a paid tool, however the X Free Edition was chosen.

2. The 100 websites were chosen within educational institutions, varying from universities,
colleges, schools and nurseries. For the reasons of, the educational sector being a vital
part of every persons life, thus its security is at its most importance. 200 scans and
plus were performed, each taking from 30mins to multiple of hours. 1,140,521 of total
Urls were scanned, identifying three levels of severity, high, medium and low, with
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there being a total of 1169, 2323 and 899 total vulnerabilities detected respectively.
Within N-Stalker 104 vulnerabilities were detected, and 34 with ZAP scanner.

3. The analysis was performed through clustering methods: DBSCAN, K-Means and
Gaussian Mixture and comparison was done between these methods. DBSCAN per-
formed the best representing highest Silhouette and Calinski-Harabasz indexes for both
ZAP and N-Stalker scanners. ZAP and N-Stalker scanner encountered silhouette scores
of 0.88, 0.97 and 378.31 and 22086.29 Calinski-Harabasz index respectively. These re-
sults were notably higher than of other clustering algorithms.

It was determined that, from 8% to 44% of the websites fell into different clusters
using ZAP and N-Stalker scanners. 8% belonging to Gaussian Mixture with 2 clusters.
Through multiple internalisation’s, it was found Gaussian Mixture was able to cluster
the websites into the near same clusters across both datasets. That is to say that same
websites were found to have the similar type of the vulnerabilities within ZAP and
N-Stalker datasets.

Cluster intersections show that we can assume that two type of scanners detect same
type of vulnerabilities.

Arriving at an interpretation that scanner performance is satisfactory, yet not exceptional
and could be better with smaller percentage in differences of cluster intersections. Few
attributes that could of effected this and may of been different is the nature of the scanners,
one being, the path they chose for each Url base. Moreover, the software tools to be free,
could imply its lesser quality, as less was invested into them than those that are paid. The
control over false positives was also not taken by ZAP scanner, whereas it was by N-Stalker,
leading to less accurate results.

Ultimately, many vulnerabilities were found across the websites within the Lithuanian
educational institutions, which poorly reflects on the seriousness taken of the security of the
websites that are browsed through. The automated scans is one of the options that a creator
of the website could use to track the vulnerabilities present and take necessary actions to
make browsing within the website a safer experience for the intended users.

9 Future Work

For future work, more scanners and more websites would also improve the credibility of
conclusions working with automated testing. Nevertheless, penetrative testing could be
considered. Manually looking through the source code for the vulnerabilities would eliminate
any false positives that automated scanners don’t take into account.
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11 Appendix A

Generolo Jono Žemaičio Lietuvos karo akademija www.lka.lt
ISM Vadybos ir ekonomikos universitetas www.ism.lt
Kazimiero Simonavičiaus universitetas https://ksu.lt
Klaipėdos universitetas www.ku.lt
LCC tarptautinis universitetas https://lcc.lt
Lietuvos sporto universitetas www.lsu.lt
Lietuvos sveikatos mokslu universitetas www.lsmuni.lt
Mykolo Romerio universitetas www.mruni.eu
Teľsiu Vyskupo Vincento Borisevičiaus kunigu seminarija www.tks.lt
Vilniaus dailės akademija www.vda.lt
Vilniaus Gedimino technikos universitetas https://vilniustech.lt
Vilniaus Šv. Juozapo kunigu seminarija www.seminarija.lt
Vilniaus universitetas www.vu.lt
Vilniaus universiteto Verslo mokykla www.vm.vu.lt/
Vytauto Didžiojo universitetas www.vdu.lt
Alytaus kolegija https://alytauskolegija.lt/en/
Kauno kolegija www.kaunokolegija.lt
Kauno mǐsku ir aplinkos inžinerijos kolegija www.kmaik.lt
Kauno technikos kolegija www.ktk.lt
Klaipėdos valstybinė kolegija www.kvk.lt
Kolpingo kolegija https://www.kolpingokolegija.lt/
Lietuvos aukštoji jūreivystės mokykla www.lajm.lt
Lietuvos verslo kolegija https://www.ltvk.lt/
Marijampolės kolegija https://marko.lt
Panevėžio kolegija https://panko.lt
Socialiniu mokslu kolegija www.smk.lt
Dievenǐskiu technologiju ir verslo mokykla www.dieveniskiutvm.lt
Amatu mokykla Sodžiaus meistrai“ https://sodziausmeistrai.lt
Aukštadvario žemės ūkio mokykla www.gimnazija.aukstadvaris.lm.lt
Elektrėnu profesinio mokymo centras www.epmc.lt
Mokykla Art of Beauty“ www.mokyklaaob.lt
Balbierǐskis Jonavos politechnikos mokykla www.jpm.lt
Kaǐsiadoriu technologiju ir verslo mokykla www.zum.kaisiadorys.lm.lt
Karaliaus Mindaugo Profesinio Mokymo Centras www.kaupa.lt
Kauno Dainavos darbo rinkos mokymo centras www.kaunodrmc.lt
Kauno maisto pramonės mokykla https://mpcentras.lt
Alytaus profesinio rengimo centras www.aprc.lt
Šakiu Varpo mokykla https://www.varpas.lt/
Plungės Ryto pagrindinė mokykla https://ryto.plunge.lm.lt/
Šakiu Varpo mokykla www.varpas.lt/
Plungės Ryto pagrindinė mokykla www.ryto.plunge.lm.lt
Biržu Aušros” pagrindinė mokykla https://birzuausra.lt
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Ukmergės Dukstynos pagrindinė mokykla www.dukstyna.lt/naujienos.htm
Vilniaus Žygimanto Augusto progimnazija www.zaugusto.lt
Druskininku Atgimimo“ mokykla www.atgimimomokykla.lt
Gargždu Kranto“ progimnazija www.krantopm.lt
Jonǐskio Saulės” pagrindinė mokykla https://saule.joniskis.lm.lt
Panevėžio Mykolo Karkos pagrindinė mokykla www.karkosm.lt
Ignalinos r. Didžiasalio Ryto“ gimnazijos Dūkšto skyrius www.dukstomokykla.lt
Biržu r. Vabalninko Balio Sruogos gimnazija www.vabalninkomokykla.lt
Biržu ,,Atžalyno” pagrindinės mokykla www.atzalynas.birzai.lm.lt
Šiauliu universitetinė gimnazija www.sugimnazija.lt
Skaistgirio gimnazija www.skaistgiris.joniskis.lm.lt
Vytauto Didžiojo universiteto Atžalyno“ progimnazija https://vduprogimnazija.lt
KTU inžinerijos licėjus www.inzinerijoslicejus.ktu.edu
Kauno Vyturio“ gimnazija https://vyturys.kaunas.lm.lt
Kauno Juozo Grušo meno gimnazija https://grusas.kaunas.lm.lt
Kauno Juozo Urbšio progimnazija https://urbsys.kaunas.lm.lt
Jurgio Dobkevičiaus progimnazija www.dobkevicius.kaunas.lm.lt
Kauno Kovo 11-osios gimnazija https://kovo11gimnazija.lt
Kauno Palemono gimnazija www.palemonas.kaunas.lm.lt
Šaukėnu Vlado Pūtvio-Putvinskio gimnazija www.saukenugimnazija.lt
Vaivorykštės tako gimnazija http://vaivorykstestakas.lt
Klaipėdos Vydūno gimnazija www.vyduno.lt
Mažeikiu Sodu pagrindinė mokykla https://sodu.mazeikiai.lm.lt
Neringos gimnazija http://neringosgimnazija.lt
Lygumu pagrindinė mokykla www.lygumai.pakruojis.lm.lt
Lygumu pagrindinė mokykla https://vaskai.pasvalys.lt
Kuliu gimnazija http://www.kuliai.lt
Vilniaus Simono Stanevičiaus progimnazija https://staneviciaus.lt/
Vilniaus Sofijos Kovalevskajos gimnazija http://www.sofijoskovalevskajosmokykla.lt/
Antazavės Juozo Gruodžio pagrindinė mokykla http://antazavesmokykla.lt/
Ugdymo ir Laisvalaikio Centras AVILIUKAS” http://www.aviliukas.com/
Mamos delne Vaiku Darželis https://mamosdelne.lt/
Vaiku darželis Pasaku namukas“ https://www.pasakunamukas.lt/
PĖDUTĖS” Vaiku Lopšelis – Darželis https://www.pedutes.lt/
Krikščionǐskas vaiku darželis https://krikscioniskasdarzelis.lt/
MŪSU PĖDUTĖS https://www.musupedutes.lt/
Ademilis“ https://www.ademilis.lt/
Parko jonvabaliai“ — privatus darželis Pilaitėje https://parkojonvabaliai.lt/
MINI DARŽELIAI https://www.minidarzeliai.lt/
Šilutės lopšelis - darželis Raudonkepuraitė“ https://www.raudonkepuraite.lt/
Vilniaus nevalstybinis vaiku lopšelis – darželis Rudnosiukas”. https://rudnosiukas.eu/
Kauno lopšelis-darželis Rokutis“ https://www.ldrokutis.lt/
Lopšelis-darželis Žiogelis“ https://darzelis.lt/
Vilniaus lopšelis-darželis Nykštukas“ http://www.nykstukasld.lt/
Kauno menu darželis ETIUDAS https://etiudas.kaunas.lm.lt/

40



Kauno lopšelis-darželis ”Klevelis” https://www.klevelis.lt/
Kauno Montesori mokykla-darželis ,,Žiburėlis” https://mokyklaziburelis.lt/
Vilniaus lopšelis darželis ”Žemyna” http://www.zemyna.vilnius.lm.lt/
Lopšelis – darželis ”Žara” https://www.zara.kaunas.lm.lt/
Kauno lopšelis-darželis Tukas“ https://www.darzelistukas.lt/
Kauno mokykla-darželis Šviesa “https://www.mokyklasviesa.lt/
Spindulys – Darželis https://www.spindulys.kaunas.lm.lt/en/
Darželis-mokykla ”Saulutė” https://www.saulute.vilnius.lm.lt/
Kauno mokykla-darželis ”RŪTELĖ” https://www.mokyklarutele.lt/
Kauno lopšelis-darželis Giliukas” https://www.kaunogiliukas.lt/
Alytaus lopšelis-darželis ”Du gaideliai” https://www.alytausdugaideliai.lt/
Alytaus lopšelis-darželis ,,Girinukas” https://www.ldgirinukas.lt/
Alytaus lopšelis-darželis LINELIS https://alytauslinelis.lt/
Birštono vaiku lopšelis-darželis ,,Vyturėlis“ http://www.vyturelis.com/
Biržu lopšelis-darželis ”DRUGELIS” https://www.lddrugelis.lt/
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12 Appendix B

N-Stalker
Website link URLs High Medium Low
http://antazavesmokykla.lt/ 258 103 20 0
http://neringosgimnazija.lt 500 23 32 0
http://vaivorykstestakas.lt 58 2 4 0
http://www.aviliukas.com/ 20 0 2 1
http://www.epmc.lt 500 49 65 1
http://www.kuliai.lt 500 6 178 0
http://www.nykstukasld.lt/ 123 0 7 1
http://www.sofijoskovalevskajosmokykla.lt/ 184 6 5 0
http://www.vyturelis.com/ 75 0 2 0
http://www.zemyna.vilnius.lm.lt/ 240 3 6 0
https://alytauskolegija.lt/lt/ 3 1 3 0
https://alytauslinelis.lt/ 500 5 5 0
https://birzuausra.lt 500 0 4 1
https://darzelis.lt/ 500 4 168 1
https://etiudas.kaunas.lm.lt/ 500 0 7 1
https://grusas.kaunas.lm.lt 500 1 5 0
https://kovo11gimnazija.lt 500 12 26 2
https://krikscioniskasdarzelis.lt 180 1 5 1
https://ksu.lt 500 1 3 1
https://lcc.lt 500 1 5 2
https://lsmu.lt 500 114 101 5
https://ltvk.lt 291 0 0 0
https://mamosdelne.lt/ 124 0 3 0
https://marko.lt 500 0 5 2
https://mokyklaziburelis.lt/ 502 1 6 49
https://mpcentras.lt 500 2 8 0
https://panko.lt 500 2 4 1
https://parkojonvabaliai.lt/ 99 2 6 1
https://rudnosiukas.eu/ 158 0 3 0
https://ryto.plunge.lm.lt 2 0 1 0
https://saule.joniskis.lm.lt 105 0 5 0
https://sodu.mazeikiai.lm.lt 500 0 3 0
https://sodziausmeistrai.lt 500 1 1 0
https://staneviciaus.lt/ 500 1 9 11
https://urbsys.kaunas.lm.lt 500 0 8 1
https://vaskai.pasvalys.lt 500 1 5 0
https://vduprogimnazija.lt 500 1 8 1
https://vilniustech.lt 500 1 3 2
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https://vyturys.kaunas.lm.lt 500 4 7 1
https://www.ademilis.lt/ 88 1 5 0
https://www.alytausdugaideliai.lt/ 500 8 6 1
https://www.aprc.lt 281 0 8 2
https://www.darzelistukas.lt/ 502 13 20 1
https://www.dieveniskiutvm.lt/index.php/lt/ 266 2 8 2
https://www.dukstyna.lt/naujienos.htm 500 0 2 0
https://www.gimnazija.aukstadvaris.lm.lt 500 2 5 0
https://www.ism.lt 500 6 3 1
https://www.jpm.lt 219 244 69 3
https://www.kaunodrmc.lt/ 117 0 2 1
https://www.kaunogiliukas.lt/ 399 5 5 0
https://www.kaunokolegija.lt 500 2 11 1
https://www.kaupa.lt 500 2 5 1
https://www.klevelis.lt/ 108 2 5 0
https://www.kmaik.lt 500 0 4 1
https://www.kolpingokolegija.lt/ 500 4 7 0
https://www.ktk.lt 500 0 2 1
https://www.ku.lt 500 2 2 0
https://www.kvk.lt 500 0 2 1
https://www.lajm.lt 500 4 8 17
https://www.lddrugelis.lt/ 500 5 6 0
https://www.ldgirinukas.lt/ 397 15 20 1
https://www.ldrokutis.lt/ 500 5 5 1
https://www.lka.lt 500 0 4 1
https://www.lsu.lt 500 3 8 0
https://www.minidarzeliai.lt/ 155 2 7 1
https://www.mokyklaaob.lt 500 29 39 2
https://www.mokyklarutele.lt/ 500 1 4 51
https://www.mokyklasviesa.lt/ 500 4 4 0
https://www.mruni.eu 500 21 28 2
https://www.musupedutes.lt/ 57 0 3 0
https://www.pasakunamukas.lt/ 63 4 3 1
https://www.pedutes.lt/ 32 0 0 0
https://www.raudonkepuraite.lt/ 367 0 5 1
https://www.seminarija.lt 500 0 3 1
https://www.spindulys.kaunas.lm.lt/lt/ 249 1 4 0
https://www.tks.lt 252 227 39 0
https://www.varpas.lt 500 8 14 0
https://www.vda.lt 500 0 4 2
https://www.vdu.lt/lt/ 500 1 4 1
https://www.vm.vu.lt 500 22 35 1
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https://www.vu.lt 500 0 0 0
https://www.zara.kaunas.lm.lt/ 338 14 18 0
https://www.atgimimomokykla.lt 500 1 6 0
https://www.atzalynas.birzai.lm.lt 500 23 272 73
https://www.dobkevicius.kaunas.lm.lt 422 1 8 1
https://www.dukstomokykla.lt 500 2 10 6
https://www.inzinerijoslicejus.ktu.edu 500 0 353 2
https://www.karkosm.lt 500 1 6 0
https://www.krantopm.lt 399 3 4 0
https://www.lygumai.pakruojis.lm.lt 500 0 5 0
https://www.palemonas.kaunas.lm.lt 500 0 9 0
https://www.saukenugimnazija.lt 500 3 7 1
https://www.saulute.vilnius.lm.lt/?page id=277&lang=lt 43 3 4 0
https://www.skaistgiris.joniskis.lm.lt 210 0 6 2
https://www.smk.lt 500 0 6 1
https://www.sugimnazija.lt 500 1 4 1
https://www.vabalninkomokykla.lt 77 0 6 0
https://www.vyduno.lt 500 3 6 0
https://www.zaugusto.lt 500 1 11 3
https://www.zum.kaisiadorys.lm.lt 75 0 2 1
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ZAP
Website link URLs High Medium Low
http://antazavesmokykla.lt/ 11467 1 4 8
http://neringosgimnazija.lt 2501 2 4 5
http://vaivorykstestakas.lt 5275 1 4 3
http://www.aviliukas.com/ 358 0 4 5
http://www.epmc.lt 11268 0 4 9
http://www.kuliai.lt 10483 1 4 1
http://www.nykstukasld.lt/ 334 1 4 4
http://www.sofijoskovalevskajosmokykla.lt/ 10993 1 5 8
http://www.vyturelis.com/ 1116 0 2 1
http://www.zemyna.vilnius.lm.lt/ 818 0 4 3
https://alytauskolegija.lt/en/ 19262 0 4 5
https://alytauslinelis.lt/ 4442 2 4 4
https://birzuausra.lt 13961 2 4 6
https://darzelis.lt/ 2330 2 4 8
https://etiudas.kaunas.lm.lt/ 4095 1 4 6
https://grusas.kaunas.lm.lt// 23558 1 4 4
https://kovo11gimnazija.lt 2401 1 4 11
https://krikscioniskasdarzelis.lt/ 2072 1 5 8
https://ksu.lt 3376 1 4 4
https://lcc.lt 2365 0 3 10
https://lsmu.lt 203905 1 7 11
https://ltvk.lt 29203 1 3 9
https://mamosdelne.lt/ 541 0 3 4
https://marko.lt 20256 2 4 8
https://mokyklaziburelis.lt/ 2659 1 4 12
https://mpcentras.lt 2146 1 5 8
https://panko.lt 4816 0 4 7
https://parkojonvabaliai.lt/ 315 0 4 7
https://rudnosiukas.eu/ 461 1 2 4
https://ryto.plunge.lm.lt 6574 1 6 5
https://saule.joniskis.lm.lt 20439 2 4 3
https://sodu.mazeikiai.lm.lt 4051 1 4 4
https://sodziausmeistrai.lt 5489 2 3 6
https://staneviciaus.lt/ 5447 2 4 14
https://urbsys.kaunas.lm.lt 32596 2 3 4
https://vaskai.pasvalys.lt 7929 2 3 3
https://vduprogimnazija.lt 3024 2 4 10
https://vilniustech.lt 30421 2 4 8
https://vyturys.kaunas.lm.lt 25840 1 4 5
https://www.ademilis.lt/ 297 0 4 4
https://www.alytausdugaideliai.lt/ 1659 2 5 6
https://www.aprc.lt 4402 1 6 6
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https://www.darzelistukas.lt/ 9349 2 4 8
https://www.dieveniskiutvm.lt/index.php/lt/ 722 0 7 6
https://www.dukstyna.lt/naujienos.htm 2147 2 4 2
https://www.gimnazija.aukstadvaris.lm.lt 5131 2 5 1
https://www.ism.lt 13586 1 4 7
https://www.jpm.lt 2084 2 8 6
https://www.kaunodrmc.lt/ 281 0 6 6
https://www.kaunogiliukas.lt/ 5016 0 4 4
https://www.kaunokolegija.lt 42637 2 5 11
https://www.kaupa.lt 14128 2 5 8
https://www.klevelis.lt/ 1415 2 4 7
https://www.kmaik.lt 4122 1 6 9
https://www.kolpingokolegija.lt/ 16763 2 6 9
https://www.ktk.lt 5757 2 2 5
https://www.ku.lt 9295 1 3 7
https://www.kvk.lt 18845 2 7 11
https://www.lajm.lt 5201 0 3 9
https://www.lddrugelis.lt/ 6930 1 4 5
https://www.ldgirinukas.lt/ 1574 1 6 5
https://www.ldrokutis.lt/ 4572 2 4 6
https://www.lka.lt 15293 2 6 9
https://www.lsu.lt 12863 2 4 7
https://www.minidarzeliai.lt/ 431 0 4 7
https://www.mokyklaaob.lt 2104 2 4 9
https://www.mokyklarutele.lt/ 3442 2 4 13
https://www.mokyklasviesa.lt/ 6173 1 4 3
https://www.mruni.eu 94336 2 6 10
https://www.musupedutes.lt/ 1888 0 2 2
https://www.pasakunamukas.lt/ 227 0 3 6
https://www.pedutes.lt/ 677 0 3 4
https://www.raudonkepuraite.lt/ 3407 1 4 8
https://www.seminarija.lt 2567 2 2 6
https://www.spindulys.kaunas.lm.lt/lt/ 3113 2 4 4
https://www.tks.lt 602 0 4 5
https://www.varpas.lt 3077 1 5 3
https://www.vda.lt 59090 2 4 10
https://www.vdu.lt/lt/ 14725 1 5 6
https://www.vm.vu.lt 1820 1 4 9
https://www.vu.lt 22352 2 6 8
https://www.zara.kaunas.lm.lt/ 1951 2 4 2
https://www.atgimimomokykla.lt daug 1 3 4
https://www.atzalynas.birzai.lm.lt 16005 1 4 6
https://www.dobkevicius.kaunas.lm.lt 1763 1 3 5
https://www.dukstomokykla.lt 22528 2 4 7
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https://www.inzinerijoslicejus.ktu.edu 6519 0 4 10
https://www.karkosm.lt 20249 1 4 4
https://www.krantopm.lt 2151 2 6 5
https://www.lygumai.pakruojis.lm.lt 5366 2 3 3
https://www.palemonas.kaunas.lm.lt 9381 2 4 4
https://www.saukenugimnazija.lt 5471 2 4 6
https://www.saulute.vilnius.lm.lt/?page id=277&lang=lt 6481 0 4 3
https://www.skaistgiris.joniskis.lm.lt 4358 1 4 5
https://www.smk.lt 6133 2 6 10
https://www.sugimnazija.lt 2244 1 4 6
https://www.vabalninkomokykla.lt 1470 1 4 3
https://www.vyduno.lt 22425 2 4 4
https://www.zaugusto.lt 1696 1 5 11
https://www.zum.kaisiadorys.lm.lt 915 1 6 3
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13 Appendix C

import pandas as pd

from matplotlib import pyplot as plt

from sklearn import mixture

from sklearn.manifold import TSNE, MDS

from sklearn.metrics import silhouette_score, calinski_harabasz_score

from sklearn.mixture import GaussianMixture

from sklearn.preprocessing import MinMaxScaler

from sklearn.cluster import DBSCAN, KMeans

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Load the Data

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

df1 = pd.read_excel(r'C:\Users\***\***\ZAP-Final.xlsx')
df2 = pd.read_excel(r'C:\Users\***\***\N-Stalker-Final.xlsx')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Apply min-max scaling:

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

X1 = df1.columns[0:34]

X2 = df2.columns[0:103]

scaler =MinMaxScaler()

scaled_data1 =scaler.fit_transform(df1[X1])

scaled_data2 =scaler.fit_transform(df2[X2])

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# t-SNE

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

tsne1 =TSNE(n_components=2, perplexity=40, learning_rate=70, n_iter=360)

tsne2 =TSNE(n_components=2, perplexity=40, learning_rate=70, n_iter=360)

X_tsne1 =tsne1.fit_transform(scaled_data1)

X_tsne2 =tsne2.fit_transform(scaled_data2)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# MDS

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

mds1 =MDS(n_components=2, metric=False, eps=1e-3, n_init=1)

mds2 =MDS(n_components=2, metric=False, eps=1e-3, n_init=1)

X_MDS1 =mds1.fit_transform(scaled_data1)

X_MDS2 =mds2.fit_transform(scaled_data2)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# DBSCAN clustering method

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

dbscan1 =DBSCAN(eps=0.6, min_samples=3)

dbscan2 =DBSCAN(eps=1.6, min_samples=3)

dbscan1.fit(scaled_data1)

dbscan2.fit(scaled_data2)

labelsD1 =dbscan1.labels_

labelsD2 =dbscan2.labels_

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# DBSCAN number of clusters per eps for ZAP

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

score =[]

for n in range(10, 300):

dbscan1 =DBSCAN(eps=n/100, min_samples=3)
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dbscan1.fit(scaled_data1)

score.append(max(dbscan1.labels_))

print(n, max(dbscan1.labels_))

plt.plot(range(10, 300), score)

plt.xticks(range(10, 300))

plt.xlabel("Epsilon * 100")

plt.ylabel("Cluster Count")

plt.show()

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# DBSCAN number of clusters per eps for N-Stalker

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

score =[]

for n in range(10, 300):

dbscan2 =DBSCAN(eps=n/100, min_samples=3)

dbscan2.fit(scaled_data2)

score.append(max(dbscan2.labels_))

print(n, max(dbscan2.labels_))

plt.plot(range(10, 300), score)

plt.xticks(range(10, 300))

plt.xlabel("Epsilon * 100")

plt.ylabel("Cluster Count")

plt.show()

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Removing the outliers for Silhouette Score and C-H Index for DBSCAN

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

outlier_detection =DBSCAN(

eps=0.17,

metric="euclidean",

min_samples=3,

n_jobs=-1)

outliers1 =outlier_detection.fit_predict(scaled_data1)

outliers2 =outlier_detection.fit_predict(scaled_data2)

df_clean1 =scaled_data1[outliers1 !=-1]

df_clean2 =scaled_data2[outliers2 !=-1]

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Silhouette score without the outliers for DBSCAN

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

scoreD1 =silhouette_score(df_clean1, outliers1[outliers1 !=-1])

scoreD2 =silhouette_score(df_clean2, outliers2[outliers2 !=-1])

print(f"Silhouette score: {scoreD1:.3f}")

print(f"Silhouette score: {scoreD2:.3f}")

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Calinski-Harabasz index without the outliers for DBSCAN

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

scoreD1 =calinski_harabasz_score(df_clean1, outliers1[outliers1 !=-1])

scoreD2 =calinski_harabasz_score(df_clean2, outliers2[outliers2 !=-1])

print(f"Calinski-Harabasz index: {scoreD1:.3f}")

print(f"Calinski-Harabasz index: {scoreD2:.3f}")

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Scatter plot of DBSCAN clusters

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

plt.scatter(X_tsne1[:, 0], X_tsne1[:, 1], c=labelsD1)

plt.xlabel("DBSCAN with t-SNE of ZAP scanner")

plt.show()
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plt.scatter(X_tsne2[:, 0], X_tsne2[:, 1], c=labelsD2)

plt.xlabel("DBSCAN with t-SNE of N-Stalker scanner")

plt.show()

plt.scatter(X_MDS1[:, 0], X_MDS1[:, 1], c=labelsD1)

plt.xlabel("DBSCAN with MDS of ZAP scanner")

plt.show()

plt.scatter(X_MDS2[:, 0], X_MDS2[:, 1], c=labelsD2)

plt.xlabel("DBSCAN with MDS of N-Stalker scanner")

plt.show()

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# K-Means

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

kmeans1 =KMeans(n_clusters=4)

kmeans2 =KMeans(n_clusters=4)

kmeans1.fit(scaled_data1)

kmeans2.fit(scaled_data2)

labelsK1 =kmeans1.labels_

labelsK2 =kmeans2.labels_

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Elbow Method

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

kmeans_kwargs ={

"init": "random",

"n_init": 10,

"random_state": 1,

}

sse = []

for k in range(1, 11):

kmeans =KMeans(n_clusters=k, **kmeans_kwargs)

kmeans.fit(scaled_data1)

sse.append(kmeans.inertia_)

plt.plot(range(1, 11), sse)

plt.xticks(range(1, 11))

plt.xlabel("Number of Clusters for ZAP")

plt.ylabel("SSE")

plt.show()

sse = []

for k in range(1, 11):

kmeans =KMeans(n_clusters=k, **kmeans_kwargs)

kmeans.fit(scaled_data2)

sse.append(kmeans.inertia_)

plt.plot(range(1, 11), sse)

plt.xticks(range(1, 11))

plt.xlabel("Number of Clusters for ZAP")

plt.ylabel("SSE")

plt.show()

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Silhouette score for K-Means

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

scoreK1 =silhouette_score(scaled_data1, labelsK1)

scoreK2 =silhouette_score(scaled_data2, labelsK2)

print(f"Silhouette score: {scoreK1:.3f}")

print(f"Silhouette score: {scoreK2:.3f}")
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# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Calinski-Harabasz index for K-Means

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

scoreK1 =calinski_harabasz_score(scaled_data1, labelsK1)

scoreK2 =calinski_harabasz_score(scaled_data2, labelsK2)

print(f"Calinski-Harabasz index: {scoreK1:.3f}")

print(f"Calinski-Harabasz index: {scoreK2:.3f}")

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Scatter plot of K-Means clusters

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

plt.scatter(X_tsne1[:, 0], X_tsne1[:, 1], c=labelsK1)

plt.xlabel("K-Means with t-SNE of ZAP scanner")

plt.show()

plt.scatter(X_tsne2[:, 0], X_tsne2[:, 1], c=labelsK2)

plt.xlabel("K-Means with t-SNE of N-Stalker scanner")

plt.show()

plt.scatter(X_MDS1[:, 0], X_MDS1[:, 1], c=labelsK1)

plt.xlabel("K-Means with MDS of ZAP scanner")

plt.show()

plt.scatter(X_MDS2[:, 0], X_MDS2[:, 1], c=labelsK2)

plt.xlabel("K-Means with MDS of N-Stalker scanner")

plt.show()

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Gaussian Mixture

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

gm1 = GaussianMixture(n_components=2)

gm2 = GaussianMixture(n_components=2)

gm1.fit(scaled_data1)

gm2.fit(scaled_data2)

labelsG1 =gm1.predict(scaled_data1)

labelsG2 =gm2.predict(scaled_data2)

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# BIC & NIC

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

bic = []

for n in range(1, 10):

gmm = mixture.GaussianMixture(n_components=n)

gmm.fit(scaled_data1)

bic.append(gmm.bic(scaled_data1))

aic = []

for n in range(1, 10):

gmm = mixture.GaussianMixture(n_components=n)

gmm.fit(scaled_data1)

aic.append(gmm.aic(scaled_data1))

plt.plot(bic, label='BIC')
plt.plot(aic, label='AIC')
plt.legend()

plt.xlabel("n_components")

plt.show()

bic = []

for n in range(1, 10):

gmm = mixture.GaussianMixture(n_components=n)

gmm.fit(scaled_data2)
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bic.append(gmm.bic(scaled_data2))

aic = []

for n in range(1, 10):

gmm = mixture.GaussianMixture(n_components=n)

gmm.fit(scaled_data2)

aic.append(gmm.aic(scaled_data2))

plt.plot(bic, label='BIC')
plt.plot(aic, label='AIC')
plt.legend()

plt.xlabel("n_components")

plt.show()

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Silhouette score for Gaussian Mixture

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

scoreG1 =silhouette_score(scaled_data1, labelsG1)

scoreG2 =silhouette_score(scaled_data2, labelsG2)

print(f"Silhouette score: {scoreG1:.3f}")

print(f"Silhouette score: {scoreG2:.3f}")

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Calinski-Harabasz index for Gaussian Mixture

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

scoreG1 =calinski_harabasz_score(scaled_data1, labelsG1)

scoreG2 =calinski_harabasz_score(scaled_data2, labelsG2)

print(f"Calinski-Harabasz index: {scoreG1:.2f}")

print(f"Calinski-Harabasz index: {scoreG2:.2f}")

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Scatter plot of Gaussian Mixture clusters

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

plt.scatter(X_tsne1[:, 0], X_tsne1[:, 1], c=labelsG1)

plt.xlabel("Gaussian Mixture with t-SNE of ZAP scanner")

plt.show()

plt.scatter(X_tsne2[:, 0], X_tsne2[:, 1], c=labelsG2)

plt.xlabel("Gaussian Mixture with t-SNE of N-Stalker scanner")

plt.show()

plt.scatter(X_MDS1[:, 0], X_MDS1[:, 1], c=labelsG1)

plt.xlabel("Gaussian Mixture with MDS of ZAP scanner")

plt.show()

plt.scatter(X_MDS2[:, 0], X_MDS2[:, 1], c=labelsG2)

plt.xlabel("Gaussian Mixture with MDS of N-Stalker scanner")

plt.show()

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Create a new column in each dataframe to store the cluster predictions & Compare the

cluster predictions for each row in the two

dataframes

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

df1['cluster'] =labelsD1

df2['cluster'] =labelsD2

differences =0

for i in range(len(df1)):

if df1.iloc[i]['cluster'] !=df2.iloc[i]['cluster']:
differences +=1

percent_different =differences /len(df1) *100

print(f"{percent_different:.2f}% of the rows have different cluster predictions with

DBSCAN clustering.")
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# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

df1['cluster'] =labelsK1

df2['cluster'] =labelsK2

differences =0

for i in range(len(df1)):

if df1.iloc[i]['cluster'] !=df2.iloc[i]['cluster']:
differences +=1

percent_different =differences /len(df1) *100

print(f"{percent_different:.2f}% of the rows have different cluster predictions with

K-Means clustering.")

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

df1['cluster'] =labelsG1

df2['cluster'] =labelsG2

differences =0

for i in range(len(df1)):

if df1.iloc[i]['cluster'] !=df2.iloc[i]['cluster']:
differences +=1

percent_different =differences /len(df1) *100

print(f"{percent_different:.2f}% of the rows have different cluster predictions with

Gaussian Mixture clustering.")
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