\;%UN'VE%,
S e | Faculty of
Mathematics
and Informatics

W,

‘\\\m = Vi,

&
PSiTas N

VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS
MASTER’S STUDY PROGRAM
MODELLING AND DATA ANALYSIS STUDY PROGRAM

Corrosion Detection on Steel Panels using
Semantic Segmentation Models

Korozijos aptikimas ant plieniniy ploks¢iy naudojant
semantinés segmentacijos modelius

Master’s Thesis

Author: Mantas Micikevicius
VU email address: mantas.micikevicius@mif.stud.vu.lt
Supervisor: Assist. Dr. Tomas Plankis

Vilnius
2023



Abstract

The effectiveness of several semantic segmentation networks, including U-Net, FPN,
PSPNet, and LinkNet, is examined in this study for the purpose of corrosion detec-
tion on various steel panels that have been affected by various chemicals that cause
corrosion to emerge. Since these types of images lack publically accessible ground
truth datasets, an image prepossessing algorithm was developed and is now employed
both fully automatically and semi-manually. Both approaches are compared in or-
der to determine the significance of image masking accuracy and human involvement
throughout the process. The aim is to examine the performance of neural networks
by comparing their performance metrics not only between the models used in this
study, but also with those from earlier studies that used fully automated corrosion
detection algorithms or various deep learning architectures. The findings indicate that
manually creating ground truth datasets has a significant impact on model accuracy
metrics, and that only models trained with these types of datasets may be employed
successfully in real-world applications. Additionally, compared to various corrosion
detection techniques used in other reviewed researches, all architectures tested in this
thesis worked well and demonstrated superior results in majority of the used indicators.

Keywords: Corrosion detection, Semantic Segmentation, Convolutional Neural Net-
works, Image prepossessing algorithm, Images masking

Santrauka

Siame tyrime yra nagrinéjamas keletos semantinio segmentavimo tinkly, jskaitant U-
Net, FPN, PSPNet ir LinkNet efektyvumas. Sie modeliai yra naudojami siekiant
aptikti korozija ant jvairiy plieno ploksé¢iy, kurios buvo paveiktos jvairiy cheminiy
medziagy, sukelianéiy korozija. Kadangi tokio tipo paveiksléliy duomeny su suzymétomis
kiekvieno pikselio klasémis vieSai prieinamy néra, taigi buvo sukurtas pikseliy klasi-
fikavimo algoritmas, kuris Siame darbe yra naudojamas tiek visiskai automatizuotai,
tiek pusiau rankiniu budu. Abu metodai yra palyginti, siekiant nustatyti paveiksléliy
pikseliy klasifikavimo tikslumo ir Zmogaus dalyvavimo visame procese reikSme. Tikslas
yra iStirti neuroniniy tinkly veikima, lyginant jy nasumo rodiklius ne tik tarp Siame
tyrime naudoty modeliy, bet ir su ankstesniy tyrimy modeliais, kuriuose buvo naudo-
jami pilnai automatizuoti korozijos aptikimo algoritmai arba jvairios gilaus mokymosi
architekturos. I$vados rodo, kad pusiau rankinis pikseliy klasifikavimas turi didele
itaka modelio tikslumo rodikliams. Taip pat, tik su tokio tipo duomenimis parengti
modeliai gali buti sékmingai naudojami realiame pasaulyje. Be to, modelius palyginus
su jvairiais korozijos aptikimo metodais, naudojamais kituose apzvelgtuose tyrimuose,
visos Siame darbe iSbandytos architekturos veiké gerai ir parodé geresnius rezultatus
pagal dauguma naudojamy rodikliy.

Raktiniai ZodZziai: Korozijos aptikimas, semantiné segmentacija, konvoliuciniai neu-
roniniai tinklai, paveiksléliy apdorojimo algoritmas, paveiksléliy maskavimas
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Introduction

Numerous industries face the costly and persistent issue of corrosion. The annual
cost of corrosion is commonly estimated to be between 3 and 4 percent of the
gross domestic product [1]. Additionally, between 15% and 35% of this sum
is believed to be preventable, with a sizeable chunk related to the expense of
inspection [2]. Cost reductions and risk reduction are the driving forces behind
research into automated corrosion detection.

The process of image processing has drawn a lot of attention as computer
technology and vision studies have advanced [3]. An autonomous image pro-
cessing algorithm, for instance, was developed by Bonnin Pascual and Ortiz
[9]. Utilizing convolutional neural networks (CNN) is yet another widely used
and successful strategy. The degree of automation in the CNN based method is
considerable, and features do not need to be manually extracted. To further in-
dustrial automation, the deep learning approach has also been gradually applied
to defect detection in recent years. In paper [4], it’s claiming that fully convo-
lutional network (FCN), U-Net, and Mask R-CNN architectures are the most
well-liked and effective image segmentation models for corrosion detection. In a
research which used all three models in semantic segmentation of rust detection
on a private dataset [11], U-Net performs slightly better in terms of precision
than the rest ones, while for Fl-score all deep models yield almost the same
performance. But by a slight margin the best performance was reported for the
Mask R-CNN model, with an average F1-Score of 0.71. While investigating the
time complexity between the same models, U-Net has the fastest approach as
well. However, U-Net wasn’t compared with models like Feature pyramid net-
work (FPN), Pyramid Scene Parsing Network (PSPNet) and LinkNet in rust
detection application, even when these models are showing great performance re-
garding accuracy and effectiveness metrics in other semantic segmentation tasks
[23][24][26]. In this paper, a U-Net, FPN, PSPNet and LinkNet architectures
will be used for pixel level corrosion detection on various steel panels.

Currently there are no publicly available ground truth (corrosion labelled
pixels) image datasets of rusted steel structures. Therefore, in this paper, image
processing algorithm will be used, consisting of 7 different functions by which
results it’s determined if a pixel represents rust or not. The process also requires
a human intervention. Each image of steel panels will have different manually
specified algorithms’ thresholds to create most accurate ground truth images
dataset. In addition, second ground truth dataset will be created with pre-
specified thresholds for all images to compare and analyse the importance of
manual part in masks creation.

Both masks creation methods are compared visually and by calculating mod-
els performance, while trained on both datasets. In all of the experiments, deep
learning networks trained on semi-manually generated masks were superior, tak-
ing into account all performance measures. Additionally, compared to alterna-
tive methods from previous reviewed studies [12][11], these networks produced
greater accuracy metrics. All developed python scripts can be found in here:
https://github.com/mmicikevicius/rust_detection_2022



The aim of the thesis

The thesis’ objective: analysis of multiple semantic segmentation models for
corrosion detection trained on semi-manually and automatically created ground
truth datasets of various images of steel with rust areas.

The goals to achieve this purpose are:

1. Exploration of relevant articles in the scientific literature
2. To gather various images of steel panels with corrosion affected areas

3. To create a ground truth datasets from steel panels’ images using image
processing algorithm

4. To train semantic segmentation models for corrosion detection on steel
objects and compare their performance



1 Related Work

Topics such as corrosion detection on steel items, object recognition and se-
mantic segmentation, image processing for pixel-level classification and deep
learning models in computer vision were used to choose scientific papers for the
literature review. The most important factors were recent publications, journal
popularity, and additional examination of the approaches presented.

1.1 Computer Vision

A type of input method using various imaging systems to replace the organ of
vision is computer vision, which is utilized to replace the brain to process and
explain. The ultimate goal of computer vision is to enable machines to per-
ceive and interpret the world similarly to humans and to possess the autonomy
necessary for environment adaptation. Utilizing computer vision technology,
corrosion defect information of coating material will be converted into digital
and quantitative information to enable analysis and application, as well as to
increase the level of uniformity and accuracy [5].

A fundamental issue in computer vision is color representation. The effec-
tiveness of many systems depends on a proper color representation. Despite
the fact that the majority of color images are captured in red, green and blue
(RGB) color space, computer vision applications rarely utilise this space. The
fundamental cause is that RGB does not distinguish between color and inten-
sity, resulting in channels that are highly linked [6]. Therefore, one of the most
frequently chosen color spaces for image segmentation tasks is hue, saturation,
value (HSV) [7]. In the study [8], HSV was tested for image segmentation tasks
and compared with other color spaces. With HSV, used methods showed the
best results and generally came to the conclusion that it’s especially effective
while dealing with segmentation of noisy color images.

1.1.1 Data Augmentation

On a variety of computer vision tasks, deep convolutional neural networks have
exhibited astounding performance. To prevent over-fitting, these networks, sig-
nificantly rely on big data. The validation error must drop along with the
training error in order to create useful Deep Learning models. This can be done
very well with data augmentation. Simple adjustments like horizontal flipping,
color space augmentations, rotations, image translations, and random cropping
are what make Data Augmentations effective. The distance between the train-
ing and validation sets, as well as any upcoming testing sets, will be minimized
as a result of these changes, which will represent data with a wider range of
potential data points [21].



1.2 Corrosion Detection

For structural steel members and components, corrosion is a common cause of
failure. According to Zoran C. Petrovié¢ [10], when it comes to the frequency of
failure mechanisms in engineering structures, corrosion, in all of its manifesta-
tions, leads with 42%.

1.2.1 Automated Image Processing

Visual inspection is the first step in preventing these problems or at the very
least, in maintaining structures. When inspected visually, corroded areas ap-
pear to be between red and brown in color and have a rougher surface than non
corroded ones. Therefore, the automatic image processing algorithm created
by Bonnin Pascual and Ortiz [9] for corrosion detection quantifies these two
visual features to locate the rust in a given image. Based on the same algo-
rithm automated image processing process was developed in paper [12]. Since
the classification technique was quite simple with predetermined thresholds for
various pixel features, so the results wasn’t perfect. This method doesn’t take
into account any different image conditions like lighting, background, etc., com-
pered to other deep learning approaches. In average it’s performance metrics
like precision and recall reached 59.5% and 77.3% respectively.

1.2.2 Deep Learning Approach

Semantic segmentation is one of the deep learning model types. It describes
the process of predicting the relevant class for each pixel of the image. Rust
detection is well suited task for this type of a model. In paper [11], semantic
segmentation approach was applied for corrosion detection using most popu-
lar semantic segmentation models like FCN, U-Net, and Mask R-CNN. This
method not only uses the exact pixel values, but also can take into account the
surroundings of it depending of models structure. Results of this research was
that the models were able to achieve between 71% and 81% of precision. Specif-
ically U-Net model performed slightly better in terms of precision than the rest
ones, while for Fl-score all deep models yield almost the same performance of
about 70%. But by a slight margin the best Fl-score with 72% was reported
for the Mask R-CNN model.



2 Methodology

We will discuss the relevant procedures and definitions associated with our re-
search in this section. The modeling technique involves pre-processing the data
and semi-manually creating a ground truth dataset using an image processing
algorithm which is combined with multiple deep learning networks. Therefore,
we begin with information about corrosion detection algorithms before moving
on to the fundamental ideas and properties of semantic segmentation models.

2.1 Corrosion Detection Algorithm

The first key step before moving to the algorithm is resizing huge, high-quality
images into smaller ones since a smaller image that still contains essential details
requires less computation time [12].

The algorithms’ primary section then begins with a roughness analysis. The
discovered rough area is moved to the second stage, or the color step, for ad-
ditional research as a prospective corroded zone. The candidate areas’ color is
compared to a set of corrosion colors in the color stage. The final result of this
method is a map that displays the sites of corrosion that has been found. The
structure of the algorithm can be seen in Figure 1.
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Figure 1: The corrosion detection algorithm [12]




2.1.1 Roughness Analysis

A corroded surface has a non-uniform distribution of corrosion colors, whereas
a non-corroded surface has a fairly consistent color distribution. Measuring the
uniformity of a patch, often known as a portion of an image, is one technique
to quantify the color distribution of that area [13]. The value of uniformity
ranges from 0 to 1. A value of 0 indicates that the patch has a non-uniform
distribution of colors, which could suggest the existence of corrosion, while a
value of 1 indicates that the inspected patch has a uniform color distribution
that is interpreted as a non-corroded patch [12]. Equation (1) shows uniformity:

uniformity = Zp(i,j)2 (1)
]
where p is the Gray Level Co-occurrence Matrix (GLCM) which is described
below.

In computer vision related applications, the method of examining the spatial
distribution of images using grayscale pixels is frequently utilized [14]. The white
and black in a color image should be changed to white and black, respectively,
and the remaining colors should be transformed to various shades of gray, in
order to create a grayscale image for this purpose. The GLCM is built after a
color image is converted to a grayscale image with fixed gray levels. Element
p(i,7) quantifies how often the gray level of ¢ is in the neighborhood of the gray
level of j. Two factors, namely direction and distance, should be taken into
account while establishing the neighborhood. In the roughness step, each patch
uniformity is determined and then compared to a threshold. The patch under

investigation is regarded as corroded if the computed uniformity falls below the
threshold [12].

2.1.2 Color Analysis

Atmospheric circumstances cause steel to corrode in shades of red, yellow, and
red-brown. So one may create a classifier for corrosion detection by quantifying
corrosion colors and contrasting them with a reference color.

The right color space must be chosen as the initial step in the quantification
process. Based on [12], it appears that HSV color space is the best choice for
representing colors associated with corrosion. The color spectrum in the RGB
brings some complication in the sense that applying thresholds on it would
include a lot more colors than the wanted rust color spectrum. Although the
placement of the spectrum in the HSV color space does make it possible to apply
thresholds for hue, saturation, and value more effectively.

Value (V) can be used to prevent the well-known instabilities in the compu-
tation of hue and saturation when a color is close to white or black. The pixel is
then categorized as not having corrosion [9]. Regarding H and S, we can apply
histogram method which makes use of a normalized histogram of H and S values
of corrosion colors and then applies a two-dimensional Gaussian filter (2).
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Applying a threshold allows you to eliminate the low-probability H and S
combinations that indicate the corrosion color because this histogram is nor-
malized. o here is a parameter that can be used to calculate the probability of
each H-S combination.

2.2 Convolutional Neural Network (CNN)

Over the past couple of decades, Convolutional Neural Networks (CNN) have
produced ground breaking findings in a range of pattern recognition related do-
mains, including image processing. The reduction of Artificial Neural Networks
(ANN) parameter count is CNNs’ most advantageous feature. The most crucial
presumption regarding problems that CNN solves is that there shouldn’t be any
spatially dependent features [15].

LeNet, AlexNet, VggNet, GoogleNet, ResNet, and DenseNet are examples of
advancements in CNN based image classification. Semantic segmentation, also
known as pixel-level classification, is one of the available objectives for CNNs.
This task entails prediction of the relevant category for each pixel in a digital
image and production of a pixelwise mask for each object in the image [17].

Recently, with the advancement of CNN architectures, variations of CNN
models using RGB data are used for automated visual evaluation of metal
structures for structural health monitoring. Since ground truth data are used
throughout the learning process, these techniques have the main advantage of
increasing detection and classification accuracy when compared to color distri-
bution modeling. This results in CNN structures that are better at identifying
defective regions [18].

As was already mentioned, CNN places a strong emphasis on the use of
images in their input. This concentrates the architectures’ setup to best meet
the requirements for handling that particular type of data. CNNs are comprised
of three types of layers. These are convolutional layers, pooling layers and fully
connected layers.



convolution
w/ReLu  pooling fully-connected

o

O @%{f

\_’_) 9
input
iy output

fully-connected
w/ ReLu

Figure 2: A straightforward CNN structure with only five layers [16]

There are four main areas where from the given Figure 2 of CNNs funda-
mental functionality can be divided [16].

1. The input layer will store the images’ pixel values, as with other ANN
variants.

2. The convolutional layer will calculate the scalar product between the
weights of the input volume-connected region and the neurons whose out-
put is related to particular regions of the input. The goal of the rectified
linear unit (ReLu) function is to trigger activation function such as sigmoid
to the output of the activation produced by the previous layer.

3. To further reduce the amount of parameters in that activation, the pooling
layer will then simply downsample along the spatial dimensionality of the
input.

4. The fully-connected layers will next carry out the identical tasks as in
traditional ANNs and make an attempt to derive class scores from the
activations, which can then be applied to classification. Additionally, it is
proposed that ReLu be applied in between these layers to enhance perfor-
mance.

2.2.1 Convolutional Layer

The convolutional layer is crucial to how CNNs work, as its name suggests. The
layers parameters focus around the use of usually small in spatial dimensionality
learnable kernels. Each filter is convolved across the spatial dimensions of the
input by the convolutional layer as the data reaches it, creating a 2D activation
map.

The scalar product is calculated for each value in that kernel as we move
through the input. The model will learn from this how to create kernels that
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activates when they spot a certain feature at a particular spatial position in the
input.

Convolutional layer neurons are not entirely linked, in contrast to standard
ANNSs. Instead, it makes use of a small input region that is connected to each
neuron. The receptive field size of the neuron is a common name for this region
dimensionality. The depth of the input is almost always equal to the magnitude
of the connectivity through the depth.

Through the optimization of their output, convolutional layers are also able
to considerably lower the model’s complexity. The three hyperparameters of
depth, stride, and setting zero-padding are used to optimize these.

By manually adjusting the number of neurons in convolutional layers with
respect to the same region of the input, the depth of the output volume will be
set.

The stride is a measurement that positions the receptive field by determining
the depth around the spatial dimensions of the input.

Zero-padding, which is the straightforward process of padding the inputs
boundary, is an efficient way to provide further control over the dimensionality
of the output volumes [16].

2.2.2 Pooling Layer

In order to decrease the number of parameters and the computational com-
plexity for further layers, pooling layers peforms downsampling. It might be
compared to lowering the resolution when it comes to image processing. Pool-
ing has no impact on the quantity of filters. One of the most popular kinds of
pooling techniques is max-pooling. It divides the image into rectangular sub-
regions and only returns the highest value found inside each. 2x2 is one of the
most typical max-pooling sizes. It should be noted that downsampling does not
maintain the informations location. Therefore, it should only be used when the
availability of information is crucial [15].

2.2.3 Fully-connected Layer

Neurons in the fully connected layer have direct connections to the neurons in
the two adjacent layers, but they are not connected to any neurons within them.
This is comparable to how neurons are placed in standard ANN models [16].

A fully connected layer main disadvantage is that it has many parameters
that require expensive computation in training sets. As a result, we attempt to
reduce the quantity of nodes and connections [15].

2.3 U-Net: Convolutional Network

Convolutional networks are frequently implemented for classification tasks in
where the output to an image is a single class label. The desired output, or
the assignment of a class label to each pixel, should incorporate localization in
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many visual tasks, particularly in rust detection image processing. Thousands
of training images are typically out of reach for rust detection jobs as well [19].

Another fundamental drawbacks of all typical deep learning techniques are
that they adhere to a framework for local data processing. As a result, their per-
formance suffers, particularly when the corroded and uncorroded parts exhibit
identical color or texture characteristics at the local processing level. Recently,
a U-Net model for rust defect identification that conducts global-local data pro-
cessing has been used to address these issues [18].
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Figure 3: U-Net architecture [19]

Hence, in this paper [19] was build so-called U-Net Convolutional Network
in a sliding-window setup to predict the class label of each pixel by providing a
local region (patch) around that pixel as input. First, this network can localize.
Secondly, the training data in terms of patches is much larger than the number
of training images. Model is built as the fully convolutional network (FCN).
This modified architecture of FCN works with small number of images and pro-
duces more accurate segmentations. The layers in Figure 3 enhance the output
resolution. In order to localize, high resolution features from the contracting
path are combined with the upsampled output. A successive convolution layer
can then learn to assemble a more precise output based on this information.

Figure 3 shows the network architecture in detail. It consists of a contracting
path on the left side and an expanding path on the right side. The contract-
ing path adheres to the standard convolutional network architecture. Two 3x3
convolutions (unpadded convolutions) are applied repeatedly, and after each
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one, a rectified linear unit (ReLU) function and a 2x2 max pooling operation
with stride 2 are applied for downsampling. The number of feature channels
are doubled with each downsampling step. Every step in the expanding path
consists of an upsampling of the feature map followed by a 2x2 convolution that
halves the number of feature channels, a concatenation with the correspondingly
cropped feature map from the contracting path, and two 3x3 convolutions, each
followed by a ReLU function. Due to the loss of border pixels in each convolu-
tion, cropping is required. Then each 64 component feature vector is mapped
to the desired number of classes by a final 1x1 convolution layer. The U-Net
architecture includes 23 convolutional layers in total [19].

In paper [20] U-Net Convolutional Network was used to detected corroded
areas in images of electric poles. The model was also compared to Efficient
Neural Network (E-Net) and regural FCN model. The models training was
conducted with augmented data. After that, models were evaluated on test
sets according to pixel calculation formulas such as pixel accuracy, intersection,
union, IoU accuracy, and average IoU tests. Results showed that U-Net has
higher values in three metrics of semantic segmentation accuracy on the rust
and mean factors.

2.4 Feature Pyramid Network (FPN)

The Fully Convolutional Networks (FCN) are now known as U-Net and Feature
Pyramid (FPN) neural networks after being significantly enhanced. FPN builds
feature pyramids with a negligible additional cost using a pyramidal structure of
deep convolutional networks. It includes top-down and bottom-up paths. Build-
ing high-level semantic feature maps at all scales requires the development of a
top-down, lateral-connected pathway. When used as a generic feature extrac-
tor in a variety of applications, including object detection and instance object
segmentation, this architecture outperforms FCN significantly [22].

These pyramids are scale-invariant in a way that a change in an object scale
is compensated by a change in the object level inside the pyramid. This feature,
by scanning the model over both positions and pyramid levels, enables a model
to detect objects across a wide variety of scales. This technique produces pro-
portionally scaled feature maps at several levels in a fully convolutional manner
from a single-scale image of any size as the input. The underlying convolutional
designs have no bearing on this procedure [23].

13
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Figure 4: Feature Pyramid Network demonstrating the top-down pathway and
lateral connections [23]

The feed-forward computation, which computes a feature hierarchy made up
of feature maps at various scales with a scaling step of two, is the bottom-up
method. For this model, each step has a single pyramid level. The final layer of
each stage output is selected as a reference set of feature maps, which are then
enhanced to form the pyramid. This decision makes sense because each stage
deepest layer need to have the strongest features [23].

By upsampling geographically coarser but semantically stronger feature map-
pings from higher pyramid levels, the top-down pathway creates the illusion of
greater resolution features. Through lateral connections, these features are then
improved with features from the bottom-up pathway. Each lateral connection
combines feature maps from the top-down and bottom-up pathways that are
the same size [23].

2.5 LinkNet Architecture

Encoder-decoder pairs serve as the foundation of the network architecture for
the majority of the semantic segmentation approaches now in use. Information
is encoded into feature space by the encoder, and segmentation is performed
out by the decoder by mapping this information into spatial categorization [24].
As a result, spatial information may be lost at the encoder and impossible to
recover at the decoder. Additionally, despite the fact that semantic segmenta-
tion focuses on applications that need to operate in real-time, the majority of
current deep networks have excessively long processing times. LinkNet directly
propagates spatial information from the encoder to the decoder at a correspond-
ing level to overcome the issues. As a result, processing times are significantly
reduced due to the time and operations needed to relearn lost features [25].

14
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Figure 5: LinkNet Architecture [24]

Figure 5 presents the LinkNet architecture. Here the decoder is on the right
side of the network and the encoder is on the left. Each convolutional layer is
separated by batch normalization, which is followed by ReLU non-linearity. The
initial block of the encoder performs convolution and spatial max-pooling on the
input image. The decoder can utilize fewer parameters since it uses information
that the encoder has learned at every layer. When compared to alternative
segmentation networks, this leads to an overall more efficient network [24].

2.6 Pyramid Scene Parsing Network (PSPNet)

PSPNet is a neural network for semantic image segmentation that is fully convo-
lutional. It carries over the pixel-level feature to the specifically created global
pyramid pooling feature. The final prediction is more accurate when local and
global clues are combined [26].
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In Figure 6 is shown PSPNet network architecture that combines convolu-
tional layer and pyramidal pooling modules to create multiscale scenes. The
gradual abstraction from the low-level features to the high-level features is re-
alized by the convolutional layer. Then second, the multiscale pooling and
convolution of the last layer of abstract features in the convolutional layer mod-
ule were carried out by the pyramid pooling module. The multiscale pooled
and convolved features were then upsampled in order to preserve the scale of
the final convolutional layer, which was used to combine and convolve the two.
Finally the attribution of each image element type was established, by repeating
the deconvolution process until the scale matched the input image [27].
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3 Practical Part

In this section data preparation, actual models training, experiments and model
results will be described. As a result, we begin with information about data
preparation which involves introduction of selected dataset, it’s preprocessing
for masks creation and models training.

3.1 Introduction of Corrosion Affected Panels Dataset

For this thesis unique dataset of images was selected from Yin, Biao and et
al. research [28]. There where total of 600 images collected of material panels
used for standardized corrosion tests for the use of discovering new materials.
As shown in Figure 7, each image of material panels has one or two lines of
corrosion affected areas with multiple different backgrounds. Material panels
have been affected with different hazardous chemicals, so corroded areas are
different in color and has different level of noisy areas around actual corrosion.

For corrosion tests, there were two experimental approaches applied. The
first experiment is ASTM B117, a static salt-fog corrosion test that involves
continuously atomizing 5% salt-fog (NaCl) into the test chamber that contains
the panel at 35C. The second laboratory experiment, called cyclic corrosion, is
a continuation of the static salt-fog experiment and is thought to be a more
accurate representation of environmental conditions seen outside. Each trial
cycle consists of a dwell period at ambient temperature, a high humidity event
at the higher temperature, and a dry cycle event at the higher temperature. A
solution of NaCl, NaHCO3, and CaCl2 (which is similar to seawater) is sprayed
across the surface of the panels four times during the ambient phase of the test
[28].
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Figure 7: Sample images of material panels after corrosion tests

3.2 Data Selection

In this research, two image datasets were created. For the first one, all 600
images of steel panels are used. This dataset will be used with fully automated
image processing algorithm for masks creation. For the second dataset only
150 images were selected for this thesis from whole dataset because a lot of
images were removed due to lack of rust areas in them and repetitiveness, since
there was a lot almost identical corroded areas with the same background. In
addition, for the second dataset, masks creation for each image was done with
a process which needs quite a lot manual input to create most accurate ground
truth masks. Due to that it’s heavily time consuming process and it’s been
decided that most diverse dataset of 150 images with most accurate ground
truth masks is enough to train the models for corrosion detection.

3.3 Data Preprocessing

Each image from selected datasets has a resolution of 512x512 pixels. Images
for model training and validation will be converted into digital format, having
3 layers: blue, green and red (BGR color space). Each layer represents model
feature having number between 1 and 256. All three values represents a color
of a pixel, so in total 256 * 256 x 256 ~ 16.7 million possible colors.
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A strong method to improve the quantity of data you have and avoid model
overfitting is data augmentation. Since in this case our dataset is quite small,
strong data augmentation part is necessary. A large number of different aug-
mentations will be used:

e Horizontal flip with a probability of 50% that the transform will flip the
image horizontally, and with a probability of 50% that the transform won’t
modify the input image

e Affine transformations like scaling, rotating or shifting the image
e Perspective transformation

e One of the brightness, contrast or colors manipulations are performed for
each image

e Either image bluring or sharpening are applied for each image.
e Gaussian noise with a probability of 20%

e Random crops will take an input image, extract a random patch with size
256 by 256 pixels from it

All these transformations are performed using Albumentations - fast aug-
mentation library in python. Every image from training set was augmented
once, so the total number of images used in the training process did not change.
The examples of images after the augmentations are applied as shown in Figure

8.

Figure 8: Sample images of training dataset before and after the augmentations

3.4 Ground Truth Dataset Creation

Semantic segmentation models are classifying each pixel of an image. Because
of that each image used for training and validation has to have masks. Images’
masks are the label data for models. Since at the current moment there are
no publicly available ground truth image datasets of rusted steel structures,
it is essential part of this work to create one. There are already quite some
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research papers which tried to automate this process by creating algorithms with
specified thresholds of color values and other features of an image to identify if
a pixel should be labeled as corrosion or not. Similar strategy is also used in
this study for the bigger image dataset. However, every image has a different
corrosion occurrence reasons, different materials getting damaged of it and even
different shooting conditions of an image like lighting, shadows, etc. Because of
that corroded area pixels can have a very dissimilar feature values. Therefore in
advance specified and applied to every image the same threshold values wouldn’t
give an accurate results.

Creation of a ground truth datasets in this paper is done by algorithm con-
sisting of 7 different functions. Every function takes different features in consid-
eration to determine if a pixel represents rust or not. Then by the majority of
outputs algorithm determines actual label value. Before calculations all images
are converted to hue, saturation, value (HSV) color space, since based on paper
[12] research, this color space appears to be the most suitable one for defining
corrosion-related colors. In addition Laplace smoothness value is also calculated
to use as a feature of a pixel. It’s used to recognise patterns of interests in an
image and ignore noisy areas. It’s calculated by using python package OpenCV
functions GaussianBlur and Laplacian.

The Gaussian blurring technique basically scans every pixel in the image
and recalculates its value based on the pixels around it. The kernel is the region
that is scanned around each pixel. The number of pixels surrounding the center
pixel is scanned by a larger kernel. Equation (2) shows calculations behind the
function. In this case the input is an image in HSV color space, kernel in size of
7 and o = 0. Since standard deviation is 0, it will be determined automatically
using the kernel size:

0c=03x((ksize—1)x0.5—1)+0.8 (3)

The results of Gaussian blur functions then are passed to Laplacian Operator
in order to receive Laplacian derivatives. The detection of image edges makes
extensive use of image derivatives. Image derivatives identify the regions of
an image where the pixel intensity shifts noticeably. This aids in mapping
any image edges. In most circumstances where the edges are detected, the
estimated value of the second derivative of an image turns out to be zero. This
is the idea underlying Laplacian derivatives. It’s crucial to remember that zeros
wouldn’t only show up on the edges. Because of that Gaussian blur is applied
before passing image to Laplacian Operator. It reduces zero occurrences in
other meaningless locations of an image. The Laplacian operator is defined by:

o?f  0*f
= — R 4
02 + Oy? (4)
where f is the input, x and y are the standard Cartesian coordinates. Equation

4 result is Laplace smoothness value which is used as one of the input for image
preprocessing algorithm.

Laplace(f)
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All the same functions were used to determine pixel label for complete
dataset (600 images) and for the filtered one (150 images). Here are the de-
scriptions of functions with pre-defined thresholds for complete dataset mask
creation:

e Labeling function 1 marks pixel as rust if:
H > 175 and 205 > S > 30 and 135 > V > 30

e Labeling function 2 marks pixel as rust if:
15> H >4 and 205 >S5 > 30 and 135 >V > 30

e Labeling function 3 marks pixel as rust if:

Laplace Smoothness < 10 and 15 > H > 4 or H > 175 and 205 > S > 30
and 135 >V > 30

e Labeling function 4 clears pixels with high smoothness rate:
Laplace Smoothness > 4000

e Labeling function 5 marks near black color pixels as not rust:
V <30

e Labeling function 6 marks near white color pixels as not rust:
V > 230 and S > 35

e Labeling function 7 marks pixel as rust if:
256 > H > 230 and S > 230

where H is hue, S is saturation and V is value of a pixel in HSV color space.
Thresholds were chosen based on [12] and after the observation of corroded
image areas pixel value patterns.

But as mentioned above, masks still wouldn’t be highly accurate with these
pre-determined values. Therefore, the thresholds were modified for each of the
150 images individually in the smaller dataset by visually analysing the results.
It’s a highly time consuming process, but it makes ground truth dataset much
more accurate visually and moreover semantic segmentation models has a much
better training material. Figure 9 confirms that, because even both masks
approaches visually represents rust areas quite accurately, but still the first row
of ground truth images labels the corrosion a bit denser and is not that much
impacted by the leaks of corrosion.
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Figure 9: Example images and ground truths from the filtered dataset and
complete dataset. Images (first row), with their corresponding ground truth
label maps from filtered dataset (second row) and from complete dataset (third
row), white = corrosion, black = background.

3.5 Semantic Segmentation Models

Our aim is to train a semantic segmentation models for corrosion detection of
various images of steel with rust areas. Both images datasets were divided into
training, validation and testing datasets. From the filtered set 100 images were
used for training, 20 images for validating each epoch of a model and 30 images
for testing model metrics. The same proportions were used for the complete
dataset, 400 images used for training, 80 images for validation and 120 images
for testing. In total 4 different models were trained for rust detection. For
each model distinct backbones were chosen depending on other researches of
experimenting with these models and the testing done in this study:

e FPN with ResNet18 backbone

e U-Net with VGG16 backbone

e LinkNet with Inception-v3 backbone

o PSPNet with EfficientNetB3 backbone

Two components make up the broad semantic segmentation network: an
encoder and a decoder. Encoder is a pre-trained convolutional neural network,
including ResNet, VGG-Net, MobileNet, etc. To produce the intensive classifi-
cation, the decoder projects the distinguishable attributes into the pixel space
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[29]. In this case each backbone model weights trained on 2012 ILSVRC Ima-
geNet dataset. It helps to build faster and better convergence having models.
Using the Python packages Keras, TensorFlow, and Segmentation Models, all
deep learning networks were created.

Models with a smaller dataset were trained utilizing augmented data over the
course of 60 total epochs for each deep learning network, with Adam optimizer
as optimization setting with le — 5 learning rate. Same optimization settings
were also used for the models trained with complete dataset, but only 20 epochs
were specified, due to significant training set size change. Sigmoid function is
used for every model as the activation function in the output layer:

1

S(LC) = HTIM (5)

On the validation dataset, the loss was estimated using binary cross entropy
after each epoch which is defined as:

N
Loss = = > yilog(p(y:)) + (1 - o) og(1 — p(y)) ()
i=1
where p(y;) is probability produced by the model that class is equal to y;, while
y; is the actual pixel label and N is the output size.

Only weights with the lowest loss value were saved to be used later. All
four model architectures are also described in Table 1. Based on paper [30],
in most circumstances, neural networks perform better as the number of pa-
rameters increases. In Table 1 is shown that all models total parameters count
differs significantly, especially LinkNet model which has more than 26 millions
parameters. But that doesn’t mean that in all cases this model will be superior.

Table 1: The properties of each model

Models FPN U-Net LinkNet PSPNet

Total params 13,815,370 23,752,273 26,268,401 1,985,343

Trainable params 13,805,124 23,748,241 26,227,953 1,973,679
Non-trainable params 10,246 4,032 40,448 11,664

As shown in computational time comparison Table 2, PSPNet and LinkNet
networks computational costs are significantly lower compared to the rest ones.
LinkNet model is the most computationally efficient with an average cost of only
0.11s + 18ms. While U-Net and FPN networks shows to be heavier architectures
with an average computational costs of 0.36s + 21ms and 0.37s £ 25ms per
sample respectively.
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Table 2: Comparison of average computational time of semantic segmentation
models on one sample and the full test dataset

Time (s) FPN U-Net LinkNet PSPNet

One image 0.37 0.36 0.11 0.16
All images  11.1 10.8 3.26 4.85

3.6 Experiments and Results

Every trained model were tested on the same test sets containing 30 images or
120 images and their labelled masks depending on the used dataset. To compare
models performance this variety of evaluation indicators were selected:

e Accuracy, which is defined as:

TP+TN (7)
TN+ FN+TP+ FP

Accuracy =

e Precision, which measures the number of corrosion class forecasts that
really fall within the corrosion class and is defined as:

Precisi TP (8)

recision = —————

ecisio TP+ FP

e Recall, which quantifies the proportion of actual rust pixels that were
accurately classified and is defined as:

TP
Recall = ——— 9
T TPYEN ©)
e Fl-score, which measures weighted mean of recall and precision metrics.
Hence, both false positives and false negatives are considered while calcu-
lating this indicator.

2 % Precision * Recall
F1- = 10
seore Precision + Recall (10)

o Intersection over Union (IoU), which is one of the the most often used
evaluation measure for semantic segmentation and object detection appli-
cations. It calculates the ratio of the area of union between the predicted
segmentation and the ground truth and the region where the prediction
matches the ground truth pixels. IoU is defined as:

|AN B|

IoU =
YT lAuB|

(11)

where A is the ground truth, B is predicted segmentation, TP defines that the
predicted pixel is rust and the real label is also rust. TN denotes that the model
predicted not rust and the actual label is also not rust. F'P indicates that the
predicted is corrosion, however the real label not corroded pixel. F'N means
that prediction was that pixel is rust free, but the real label is corrosion.
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3.6.1 Models Performance

Table 3 compares the performance of the FPN, U-Net, LinkNet, and PSPNet
deep learning models based on the aforementioned metrics. It details the eval-
uation of models trained and tested with filtered dataset and semi-manually
created ground truth images. Very similar accuracy across models is typical for
semantic segmentation tasks, but U-Net clearly outperforms the others with a
96.3% accuracy rate. Likewise, similar patterns can be observed with respect to
F1-score, Recall, and most importantly, IoU. However, LinkNet has the biggest
precision percentage. FPN architecture also shows quite good results, even if it
is behind U-Net in almost all metrics except precision, but it is really near in
every other metrics to it. The lowest performance in all metrics except recall
has PSPNet model with only 56.1% IoU score, but this score is still considered
as a tolerable performance.

Table 3: Comparative performance metrics for the different semantic segmen-
tation models trained and tested with semi-manual created masks
Models  Accurracy F1 score Precision Recall IoU

FPN 96.2 75.9 78.8 73.2 611
U-Net 96.3 7.5 7.1 77.8  63.2
LinkNet 96 73.6 80.3 67.8  58.2
PSPNet 95 71.8 72.7 71 96.1

An illustration of a visual comparison of neural networks utilised for corro-
sion detection against ground truth and genuine images can be seen in Figure
10. The findings correspond to the percentages presented in Table 3, and aes-
thetically, FPN, LinkNet, and U-Net appear to be the most accurate of the
three. Nevertheless, there are some circumstances in which the segmentations
predicted by PSPNet can appear to be more accurate. This is especially the case
with the second image from the top. Although it had the worst performance
across almost all of the indicators, the network was able to accurately forecast
the greatest amount of actual corrosion spots, whereas other models failed to
capture a significant number of pixels that are indicative of rust.
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Original Image - PSPNet

Figure 10: Qualitative comparison between FPN, U-Net, LinkNet and PSPNet
showing segmentation results for corrosion detection datasets.

It also appears, according to the Figure referenced as 10 that all of the deep
learning models have a tendency to combine all of the nearby existing pixels into
the same class, which causes it to lose its precision. This is especially true for
the PSPNet architecture, in which the area of projected corrosion in the images
has a tendency to always be a little bit more spread out.

3.6.2 Ground Truths Creation Methods Comparison

Models trained and tested with fully automated mask creation process metrics
are shown in Table 4. The accuracy scores for all models are fairly good, with
LinkNet having the highest percentage of 98.2 percent. In comparison to other
models, it possesses the greatest F1 score as well as the highest precision and
IoU scores by a significant margin. Except for LinkNet, all of the models that
were trained and tested with automated image processing algorithms had low
IoU scores. IoU is widely regarded as the most important semantic segmentation
accuracy indicator.
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Table 4: Comparative performance metrics for the different semantic segmen-
tation models trained and tested with complete dataset

Models  Accurracy F1 score Precision Recall IoU

FPN 97 66 62.7 69.6  49.2
U-Net 97.8 67.7 84.8 56.4  51.2
LinkNet 98.2 76.3 85 69.2 61.6
PSPNet 97.2 64.2 70.1 59.3 473

Due to the fact that semi-manual image processing algorithms produce sig-
nificantly more accurate masks, a set of 30 ground truths images that were
made semi-manually was used in the comparison of the significance of masks
creation method. Both models that were trained with the complete dataset and
ones that were trained with a filtered dataset were evaluated using the same
30 labelled visuals. Table 5 displays the findings obtained from deep learning
architectures trained with 400 autonomously generated masks. It appears from
the accuracy percentages that the models have fairly similar performance, and
it is not dependent on the procedure of mask development. This was discovered
while comparing these findings with the scores from Table 3.

However, when other factors are considered it becomes abundantly clear that
a totally automated masks creation process is not well suited for the training of
accurate models. In particular, it is observed from recall and IoU scores, which
indicate that the models are not able to reliably categorise rust pixels. These
measurements and the outcomes they produce for models that have been trained
using the entire dataset are regarded as having low performance. However, the
average precision percentages are significantly greater, which demonstrates that
these models were able to categorise the background with a better degree of
accuracy, particularly the U-Net model with 86.7% accuracy when compared to
models trained with a smaller dataset. Even though it lags behind in almost
all performance metrics, the FPN model trained with automatically formed
masks is the only one that can compete with models trained with semi-manually
created masks. This is due to the fact that the margins of error in the FPN
model are not nearly as large as compared with other used architectures.

Table 5: Comparative performance metrics for the different semantic segmenta-
tion models trained with complete dataset and tested with semi-manual created
masks

Models  Accurracy F1 score Precision Recall IoU

FPN 95.6 70.4 77.6 64.3  54.3
U-Net 95.2 62.2 86.7 48.5  45.1
LinkNet 95.4 65.9 82.3 94.9  49.1
PSPNet 94.5 62.6 78.7 92 45.6
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3.6.3 Performance Comparison Against Alternative Methods

When compared to a single completely automated technique proposed in [12],
the performance of the proposed semi-automatic image processing algorithm
and training semantic segmentation models for corrosion detection appears to
be much superior. Performance metrics of this method can be found in section
1.2.1. Even the PSPNet model which had the worst performance in almost all
metrics from Table 3 | still had a notably higher precision score. Moreover,
U-Net network was able to get better recall percentage compared to automated
algorithm.

Models used in this study also performs well while compared to other deep
learning approaches for corrosion detection. PSPNet, FPN, LinkNet and U-
Net architectures during the testing showed better precision output compared
to FCN and Mask R-CNN models in paper [11]. Performance metrics of these
networks can be found in section 1.2.2. However, only U-Net network trained
in this thesis was able to reach similar result compared to the observed U-Net
architecture within the same performance metric. When compared F1-scores,
bigger differences are visible. All deep learning networks from this study got
higher scores compared to the models from [11].
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4 Conclusions

In order to accurately create ground truth datasets for corrosion detection,
this research proposed a semi-manual image processing approach. In addition
semantic segmentation models like U-Net, FPN, LinkNet and PSPNet were
presented for automatic corrosion recognition and comparison of these mod-
els effectiveness were studied. All deep learning methods were trained using
100 images pre-processed with several random data augmentation approaches,
validated with additional 20 images and tested with a new set of 30 images.
In addition, ground truth creation method was compared to fully automated
masks creation algorithm in which all 600 images were pre-processed and re-
sulted in creating training, validation and testing sets with 400, 80, and 120
images respectively. Networks performance also was compared with other re-
searches which used fully automated image processing algorithm and different
deep learning networks. The following conclusions were obtained:

1. Image processing algorithm was created containing 7 separate functions
and by majority of it label for each image is determined. Since human
intervention was included into the process, the masks are significantly
more accurate.

2. Fully automated image processing algorithm for masks creation showed
inferior results compared with semi-manual approach. That can be stated
after the both, visual and performance analysis. All networks trained with
automatically labelled images performed lesser within almost all indica-
tors. Only U-Net and LinkNet networks trained in that way were able
to get better precision scores compared to models trained with more time
consuming method. It confirms the idea that human intervention still has
a huge positive effect for creating usable models in real life scenarios.

3. In the comparison of models used in this study, all networks were generally
accurate, but U-Net has the highest accuracy. The same is with F1-score,
Recall and most importantly IoU. U-Net is designed to learn from a fewer
training samples and since the main training set used in this study has
only 150 images, this feature of a model could have been crucial in the
results. Best precision score had LinkNet model while U-Net and FPN
were still very near.

4. Most of the networks used in this study performed well regarding the
performance metrics compared to other researches [12][11]. Based on it,
deep learning techniques are more well suited for these type of tasks than
image processing algorithms. And not only U-Net, but also LinkNet and
FPN models had a better results in most of the comparisons. In previous
researches these models weren’t mentioned for corrosion detection.

5. Performance and visual evaluation demonstrates that the used techniques
are promising instruments for automated rust detection. However, neither
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the performance metrics, neither the visual analysis shows a state of art
results.

4.1 Remarks

Even if the used methods wouldn’t deliver a performance of 100% on neither of
the chosen metrics, but when considering the wider picture, such as corrosion
inspection of vast industrial assets, the goal is to quickly screen structures and
highlight deteriorated areas rather than accurately classifying every pixel.
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