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Abstract 

Credit risk assessment is one of the most crucial elements in the financial sector. The study is 

based on one Lithuanian Loan-comparison platform’s applicants' data. Loan-comparison 

platforms are innovative financial intermediaries that allow consumers to compare several loan 

offers and choose the most self-favourable. This study presents a comprehensive analysis of 

statistical and machine learning techniques for predicting individual credit scores using Lithuanian 

data. Five algorithms, i.e., Logistic Regression, Support Vector Machine, Random Forest, 

XGBoost and Artificial Neural Networks, are included in our analysis. To deal with the high class 

imbalance problem the resampling techniques Random Oversampling and SMOTE are also 

applied. In addition, the analysis is done using binary, 3-Class and 5-Class classification problems. 

It is the first study in the credit scoring field, to the best of the author’s knowledge, that combines 

the results from both binary and multiclass classification problems. The performance is assessed 

considering different performance evaluation metrics (Accuracy, AUC, Training time, Precision 

(Macro Precision), Recall (Macro Recall), False Positive rate and False Negative rate). The final 

scoring method was proposed to combine the results of different classification experiments. The 

Random Forest and XGBoost were the best performing algorithms in predicting individual credit 

scores based on the final scoring method. Empirical results revealed that the best algorithms 

perform comparatively better in 3-Class classification problem than in binary classification case. 

Furthermore, the resampling techniques help to predict the minority (risky) class significantly 

better, where the XGBoost algorithm with the Random Oversampling technique applied reaches 

an impressive 0.804 Accuracy in predicting the Riskiest E class in the 3-Class classification 

problem. Finally, this study provides recommendations for applying the credit scoring system in 

the Lithuanian Loan-comparison platform. Implementing a credit scoring system could help 

reduce the possibility of lending to a risky customer and avoid additional expenses for external 

credit scoring agencies that may lack complete information about the customer. 

 

Key words: Credit score prediction, Machine learning, Risk analysis, Resampling techniques, 

Binary classification, Multiclass classification
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1. Introduction 

Credit scoring is one of the main determinants of sustainability in the financial world. Due to 

its importance after the 2007-2008 Financial crisis, many researchers tried to maximize the 

prediction rates to classify potential risks and defaults correctly. Even though traditional banks 

have developed their individual credit risk assessment processes, technological innovations have 

opened new opportunities for customers to access financial services. The scope of this research 

will be based on one Lithuanian Loan-comparison platform's applicants' data. Loan-comparison 

platforms are innovative financial intermediaries that allow consumers to compare several loan 

offers and choose the most self-favourable. However, improper lending could cause enormous 

losses for creditors. The individual credit scoring system could help the Loan-comparison 

platform to better distinguish between risky and reliable customers by using privately obtained 

data about each customer. That would allow company to avoid the possible bias from external 

credit rating agencies that may lack complete information about the borrower and, in turn, to save 

some financial resources. 

The aim of this study is to analyse the potential of statistical and machine learning techniques 

for predicting individual credit ratings using the newly introduced Lithuanian credit dataset and to 

propose a methodology that allows combining the results of different classification methods based 

on performance evaluation metrics. To achieve it, the following objectives must be solved: 

• Extensive literature review; 

• Classification in both binary and multiclass problems; 

• Comparison of different resampling techniques; 

• Evaluation of statistical and machine learning techniques for predicting individual 

credit ratings performance using a variety of performance evaluation metrics; 

• Suggest the methodology, that allows the results of different classification methods to 

be combined based on the final score of the performance evaluation metrics. 

Based on the extensive literature review, it was decided to use five statistical and machine 

learning techniques in our work. Traditional classification techniques like Logistic Regression 

(LR) and Support Vector Machine (SVM) are used, together with tree-based ensemble methods 

Random Forest (RF) and eXtreme Gradient Boosting (XGBoost). Finally, we will implement 

different Artificial Neural Network (ANN) architectures to study the potential of neural networks 

on credit scoring problem. 

The unique detail of our research is the implementation and comparison of statistical and 

machine learning techniques in both binary and multiclass classification problems. The 

majority of past authors used only binary classification to study the performance of statistical and 
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machine learning techniques in credit scoring. The multiclass type classification was not 

extensively studied and was mostly used in corporate credit risk assessment problems. 

Additionally, none of our analysed authors used both binary and multiclass classification problems 

to compare the performance of classifiers. The nature of the Lithuanian credit dataset allows us to 

distribute credit ratings into Two, Three and Five classes. Such different environments will allow 

us to compare the potential of classifiers more precisely by analysing their performance in different 

types of problems using the same dataset. 

Usually, credit scoring datasets face serious class imbalance problem. Naturally, only a 

minority of customers can be considered risky and probable to default. To deal with the class 

imbalance problem, our analysis will use different resampling techniques like Random 

Oversampling (ROS) and Synthetic Minority Oversampling Technique (SMOTE). The potential 

of resampling techniques will be compared with the performance of non-resampled data. 

The results of statistical and machine learning techniques will be obtained using the extensive 

list of performance evaluation metrics. Simple accuracy may not be the primary goal in credit 

risk assessment problem since the misclassification of the risky class customers causes the most 

significant losses. On the other hand, by misclassifying a reliable customer, the cost of potential 

borrower and revenue appears. Having different sources of potential losses, it is necessary to 

compare accuracy in general and the performance of classifiers for each class of credit rating. This 

is why we will use various performance evaluation metrics like Accuracy, AUC, Training time, 

Precision (Macro Precision), Recall (Macro Recall), False Positive rate and False Negative rate in 

our study. 

The final scoring formula is also presented based on the author’s expert knowledge of the 

market specifics. This score would allow us to rank the statistical and machine learning techniques 

combining the results from different performance evaluation metrics through all the classification 

problems using various resampling techniques. To the best of the author’s knowledge, none of the 

previous studies created such a final scoring formula to combine the results from various 

experiments, which adds additional novelty to our study. 

 The experimental results show that ensemble classifiers (Random Forest and XGBoost) 

performed impressively well compared with other statistical and machine learning techniques. 

Algorithms performed better when resampling techniques (ROS and SMOTE) were applied. The 

most visible improvements of resampling techniques were visible with respect to the False Positive 

rate and the classification Accuracy of the Riskiest customers. This aspect is the most crucial part 

of the credit scoring field, and even slight improvements allow us to avoid possible losses. Based 

on these results, a unique methodology for the Lithuanian loan comparison platform can be 

suggested. The use of both Random Forest and XGBoost algorithms, together with minority class 
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oversampling techniques, must be considered in implementing risk assessment systems in real-life 

scenarios. 

The paper is organized as follows. Section 2 reviews the related studies on credit rating 

classification. Section 3 introduces the dataset used in our research and all the pre-processing steps. 

Section 4 presents the methodology of statistical and machine learning techniques, together with 

an extensive description of performance evaluation metrics. Section 5, presents empirical results 

and findings. Finally, Section 6 draws the main conclusions, suggests possible implementations 

and provides future work potential.  
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2. Literature review 

The appropriate analysis of statistical and machine learning techniques requires an 

understanding of what has already been done in this field. Extensive literature analysis of 

techniques in predicting and classifying credit scores was one of the primary tasks of this work. It 

would allow us to understand the most successful algorithms so far and what measures can be 

employed to evaluate the performance of those techniques. 

The majority of the recent studies have concentrated on binary classification problems (e.g., 

individual will default or not). However, such classification does not account for the situation in 

the real world. Individuals are not only “Black and White”, the intermediate levels of riskiness are 

also possible. Therefore, we will analyse three types of classification problems (binary, 3-class, 

and 5-class). Below, in Table 1, the type of classification problems analysed in the previous studies 

are presented. 

                                     Table 1. A list of the past studies in credit scoring field 

Research Binary Problem Multiclass 

 

Ampountolas et al. (2021)  Yes  

Dastile and Celik (2021) Yes   

Gunnarsson et al. (2021) Yes   

Mahbobi et al. (2021) Yes   

Moscato et al. (2021) Yes   

Tripahi et al. (2021) Yes   

Golbayani et al. (2020)  Yes  

Li and Chen (2020) Yes   

Trivedi (2020) Yes   

Munkhdalai et al. (2019)  Yes  

Sariannidis et al. (2019) Yes   

Wallis et al. (2019)  Yes  

Cao et al. (2018) Yes   

Hamori et al. (2018) Yes   

Namvar et al. (2018) Yes   

Zhu et al. (2018) Yes   

Barboza et al. (2017) Yes   

Luo et al. (2016)  Yes  

Lessmann et al. (2015) Yes   

Wu et al. (2014)  Yes  

Brown and Mues (2012) Yes   

Bellotti and Crook (2009) Yes   

Lee (2007)  Yes  

Baesens et al. (2003) Yes   
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Table 1 confirms that most researchers concentrated on binary classification problems, and 

none of the studies analysed both binary and multiclass problems simultaneously. The nature of 

our dataset allows us to separate customers either in binary or multiclass problems (Details will be 

presented in the next section). 

2.1. Multiclass classification problem 

Having such a background, Table 2 provides a detailed overview of the studies done in 

multiclass classification field. 

Table 2.  An overview of studies done for multiclass classification problem 

Multiclass 

Data 

Individuals/    

Corporate credit 

scores 

Number 

of classes 
MLR Ensembles DT RF NN SVM 

 

Ampountolas et 
al. (2021) 

Individuals 3  AdaBoost, 

XGBoost 
Yes Yes MLP  

Golbayani et al. 
(2020) 

Corporate 19   Bagged Yes MLP Yes 

Wallis et al. 
(2019) 

Corporate 6 Yes 
Gradient 
Boosted 

Machines 

 Yes  Yes 

Munkhdalai et al. 

(2019) 
Individuals 8 Yes XGBoost  Yes MLP Yes 

Luo et al. (2016) Corporate 3 Yes    MLP and 

DBN 
Yes 

Wu et al. (2014) Corporate 9  Bagging Yes  MLP Yes 

Lee (2007) Corporate 5      Yes 
 

Total   3 4 3 4 5 6 

 

In Table 2, only those machine learning techniques that were repeated more than twice through 

all the studies are included. Machine learning techniques like Support Vector Machines and 

Multilayer Perceptron were the most popular methods in classifying multiclass credit scores. 

Random Forest and other Ensemble methods received more attention in recent studies. Traditional 

statistical and machine learning techniques like Multinomial Logistic Regression and Decision 

Tree were also popular in past studies. 

Across all reviewed studies, only Ampountolas et al. (2021) and Munkhdalai et al. (2019) have 

devoted their analysis to classifying individual (People) credit scores. All other authors have been 

analysing the performance of statistical and machine learning techniques in the corporate 

(companies’ riskiness) field. Even though the objective to classify the level of riskiness for 

companies and individuals is the same, the features that describe individuals differ a lot and, in 

turn, may affect the whole classification accuracy. A shortage of studies in Multiclass classification 

for individuals implies a considerable novelty to our study and highlights its importance. 

Furthermore, the previous studies have chosen a specific number of classes they used in their 

analysis. For example, Wallis et al. (2019) have assigned Moody’s Ratings {Aaa, Aaa1, Aa2, Aa3} 
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to the “High Grade” category, {Baa1, Baa2, Baa3} to “Upper Medium Grade” and so on. Luo et 

al. (2016) have also aggregated rating categories to A = {A, AA, AAA}, B = {B, BB, BBB} and 

C = {C, CC, CCC}. Having such an aggregation of credit scores does not allow us to correctly 

compare the results of these studies since, by nature, higher dimension (19 classes) problems are 

more complex and are associated with poorer accuracy than smaller dimension (3 or 5 classes) 

problems. Our study will face this problem and compare classifiers' performance via two different 

multiclass problems (3-class and 5-class). It is presumed that by doing so, we will be able to obtain 

more stable results of statistical and machine learning techniques’ performances. 

Ampountolas et al. (2021) and Golbayani et al. (2020) found that tree-based methods classify 

credit scores with the highest accuracy across all the techniques. Ampountolas et al. (2021) 

highlight that machine learning algorithms (Random Forest, XGBoost and AdaBoost) can perform 

well without full credit history information. These techniques achieved a very similar accuracy of 

80%. Our study also lacks complete information about an individual’s financial history, but the 

results of these three ensembles are very promising. Golbayani et al. (2020) also show that tree-

based methods can achieve at least 5% higher accuracy than MLP and SVM techniques.  

Wallis et al. (2019) and Munkhdalai et al. (2019) approve the findings of the previous authors. 

Wallis et al. (2019) summarize that non-parametric techniques like Random Forest or SVM 

outperform parametrical techniques. Especially because financial data does not follow traditional 

assumptions, which are needed for parametrical techniques. Munkhdalai et al. (2019) find the 

superior performance of MLP and XGBoost techniques against traditional techniques like SVM 

or Logistic Regression. The authors also highlight the fact that the Neural Network approach 

(MLP) may be useless in the credit scoring field due to its “Black-Box” nature, which makes it 

impossible to understand the relationship between the attributes and credit score itself. 

Summarizing the studies done in the multiclass credit scores classification field, there is no 

conclusive answer to which method is significantly superior. Statistical and machine learning 

techniques should be compared individually on a given credit dataset to optimally decide which 

method yields the highest accuracy. However, we do have the first signals that ensemble methods 

and mostly Random Forest can be expected to be the best performing algorithm based on the most 

recent studies. 

Similar to Table 2, it is necessary to compare what performance evaluation metrics were the 

most popular in the past studies. A single evaluation metric can be misleading or hide some 

valuable information (e.g., False Negative cases in credit scoring problems are more dangerous 

than False Positive cases. False Negative predictions lead to approving a loan to a risky person 

who will probably default, and that causes financial loss for the lender). Table 3 presents evaluation 

metrics used in past multiclass classification studies. It can be seen that every author used a 
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fundamental performance evaluation metric Accuracy rate, which will also be included in our 

research. Additionally, we will use the AUC measure, which optimize the trade-off between 

sensitivity and specificity by finding the optimal threshold. To be more precise, AUC is the 

evaluation of a specific classifier as the threshold varies across all possible values. 

Table 3. List of accuracy measures used in the past literature for multiclass classification algorithms 

Binary Data Accuracy AUC 

Measures obtained 

from Confussion 

matrix 

Confussion 

matrix 

Prediction Distance 

measures 

 

Ampountolas et al. 
(2021) 

Yes Yes Precision and Recall Yes  

Golbayani et al. (2020) Yes    Notch Distance 

Munkhdalai et al. (2019) Yes Yes TPR and FPR   

Wallis et al. (2019) Yes     

Luo et al. (2016) Yes Yes FN and FP Yes  

Wu et al. (2014) Yes    1-Away accuracy 

Lee (2007) Yes     

 

Total 7 3 3 2 2 
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2.2. Binary classification problem 

Similar to Table 1, an overview of studies that analysed binary credit scoring problems is 

presented in Table 4. 

Table 4. An overview of studies done for Binary classification problem 

 

Differently than in the multiclass classification case, these authors analysed individuals’ credit 

riskiness rather than companies. To be more specific, the majority of those studies considered 

“default” status as the main dependent variable. Based on Table 4, we can confirm that most 

statistical and machine learning techniques coincide with those analysed in the multiclass case. 

Random Forest, Logistic Regression and Support Vector Machines are among the most popular 

algorithms in classifying binary credit riskiness problems. Neural Networks and Decision tree 

methods are also very popular, as they were in studies analysing multiclass problems. Linear 

Binary Data 

Domain of 

interest 
LR RF DT SVM LDA KNN NN Ensembles NB 

Moscato et 
al. (2021) 

P2P 

(individuals) 
Yes Yes     MLP   

Mahbobi et 
al. (2021) 

individuals    Yes  Yes ANN; DNN   

Tripathi et 
al. (2021) 

individuals  Yes Yes Yes Yes Yes 
MLP;TDNN;

RBFN 
  

Gunnarsson 
et al. (2021) 

individuals Yes Yes Yes    MLP; DBN XGboost  

Dastile and 
Celik (2021) 

individuals       CNN   

Li and Chen 
(2020) 

individuals Yes Yes Yes Yes   NN 
AdaBoost,X

Gboost 
Yes 

Trivedi 
(2020) 

individuals  Yes Yes Yes     Yes 

Sariannidis 
et al. (2019) 

individuals Yes Yes Yes   Yes   Yes 

Cao et al. 
(2018) 

individuals Yes Yes Yes Yes Yes  MLP XGboost  

Namvar et 
al. (2018) 

P2P 

(individuals) 
Yes Yes   Yes     

Hamori et al. 
(2018) 

individuals  Yes     NN and DNN 
Bagging, 

Boosting 
 

Zhu et al. 
(2018) 

individuals Yes Yes     CNN   

Barboza et. 
al. (2017) 

Companies Yes Yes  Yes Yes  ANN 
Bagging, 
Boosting 

 

Lessmann et 
al. (2015) 

individuals Yes Yes Yes Yes Yes Yes Yes (various) Yes (various) Yes 

Brown and 
Mues (2012) 

individuals Yes Yes Yes Yes Yes Yes MLP 
Gradient 

boosting 
 

Bellotti and 
Crook 
(2009) 

individuals Yes   Yes Yes Yes    

Baesens et 
at. (2003) 

individuals Yes  Yes Yes Yes Yes MLP  Yes 

Total  12 13 9 10 8 7 13 7 5 
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Discriminant Analysis and Naïve Bayes are losing popularity in recent studies. At the same time, 

Ensembles and K-Nearest Neighbours approaches often deal with binary credit riskiness problems. 

Recent improvements and advantages of Deep Learning techniques, especially Convolutional 

Neural Networks (CNN), have affected a lot of real-life classification tasks. However, only 2 of 

our analysed authors employed Convolutional Neural Networks to classify binary problems, which 

implies that these methods are needed to be researched further.  

Baesens et al. (2003) is the oldest study included in our review. However, this is one of the 

most famous studies in the whole credit classification field that compares the performance of 

various algorithms. Authors found that SVM and NN methods yield great performance, but simple 

classifiers like LR and LDA perform comparatively well. Having such a finding, it was 

summarized that credit data is only weakly non-linear. Authors concluded that further research on 

ensemble algorithms should be up-and-coming, comparing with traditional methods.  

Bellotti and Crook (2009) approve the findings of Baesens et al. (2003) and confirm that SVM 

is competitive with LR and LDA classifiers, while the KNN technique showed the poorest results. 

 Naturally, credit datasets imply a high “class imbalance” problem due to a small proportion of 

risky (defaulted) customers. Brown and Mues (2012) checked the performance of statistical and 

machine learning techniques in the case of a high class imbalance environment. It was found that 

Random Forest performs very well in such a scenario. Similar to the previous authors, it was found 

that LR and LDA methods were relatively competitive, but Decision Tree and SVM were not 

beneficial. 

Lessmann et al. (2015) study could be called an update on a benchmarking study of 

classification algorithms in the credit scoring field made by Baesens et al. (2003). The authors 

found that some of the classifiers performed significantly better than LR. Especially, ensemble 

methods were found to be outperforming the previous research-standard techniques. It was 

concluded that RF could be recommended as a new benchmark algorithm.  

A later study by Barboza et al. (2017) confirms that ensemble techniques boosting, bagging 

and RF provide better classification accuracy. It is even highlighted that Random Forest may 

produce 20% higher accuracy than LR or LDA. 

In the last decade, deep learning algorithms have been increasingly popular in many real-world 

applications. Credit scoring is not an exception. Hamori et al. (2018) compare the performance of 

already successful ensemble techniques with various deep learning architectures. It was found that 

boosting (ensemble) is still superior to other deep learning methods.  

Later studies by Trivedi (2020), Li and Chen (2020), Moscato et al. (2021) and Gunnarsson et 

al. (2021) also confirm that RF and other ensemble techniques could be called the best methods 

for binary credit scoring classification. 
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Li and Chen (2020) also found that ensemble learning (especially RF and XGBoost) 

outperforms individual classifiers. However, authors have also found that LR outperforms all other 

counterparts in comparison to individual classifiers.  

Moscato et al. (2021) devoted their study to analyzing the class imbalance problem and 

comparing various resampling techniques. It was found that RF, together with the Random 

Undersampling technique, yielded the best results. It can be seen that even in the studies analyzing 

feature selection or class imbalance problems, Random Forest is dominating technique. 

Gunnarson et al. (2021), similar to Hamori et al. (2018), compare ensembles with deep learning 

methods (MLP and Deep Belief Network (DBN)). It was concluded that ensemble XGBoost is the 

best-performing algorithm, and deep learning algorithms cannot outperform their counterparts 

(with one layer) while being more computationally expensive. However, a few studies have 

concluded with different outcomes. Tripathi et al. (2021) found that Time Delay Neural Network 

(TDNN) outperformed the RF algorithm, while feature selection algorithms were also implied. 

Furthermore, Mahbobi et al. (2021) found that SVM was the most successful technique (against 

various Neural Networks and KNN) when resampling techniques were also considered. 

Similar to the multiclass case, we need to compare the performance evaluation metrics used in 

the binary credit riskiness classification field. Table 5 shows that accuracy and AUC metrics were 

the most popular performance evaluation metrics in the past literature and almost every study used 

these metrics. Sensitivity/Specificity, which was also very popular in past studies, helps to 

understand more correctly what type of mistakes algorithms make and what enhances the 

understanding of possible problems of our classifiers. Brier score, G-measure, F-measure and K-

S statistic were also used in the literature. However, their use was considerably rare. 
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Table 5. List of accuracy measures used in the past literature for Binary classification algorithms 

Binary Data Accuracy AUC 

Measures 

obtained from 

Confussion 

matrix 

G-measure 
Brier 

Score 
F-Measure 

K-S 

statistic 

 

Moscato et al. 
(2021) 

Yes Yes 

Sensitivity, 

Specificity and 

FPR 

    

Mahbobi et al. 
(2021) 

Yes Yes 
Sensitivity and 

Specificity 
Yes Yes Yes  

Tripathi et al. 
(2021) 

Yes  Sensitivity and 

Specificity 
Yes    

Gunnarsson et al. 
(2021) 

 Yes   Yes   

Dastile and Celik 
(2021) 

Yes Yes   Yes   

Li and Chen (2020) Yes Yes   Yes  Yes 

Trivedi (2020) Yes  FP and FN   Yes  

Sariannidis et al. 
(2019) 

Yes       

Cao et al. (2018) Yes Yes      

Namvar et al. 
(2018) 

Yes Yes 

Sensitivity, 

Specificity and 
FPR 

Yes    

Hamori et al. 
(2018) 

Yes Yes    Yes  

Zhu et al. (2018) Yes Yes     Yes 

Barboza et al. 
(2017) 

Yes Yes 
TP, TN, FP, FN, 

Type I error, Type 

II error 

    

Lessmann et al. 
(2015) 

Yes Yes   Yes  Yes 

Brown and Mues 
(2012) 

 Yes      

Bellotti and Crook 
(2009) 

 Yes      

Baesens et al. 
(2003) 

Yes Yes 
Sensitivity and 

Specificity 
    

 

Total 14 14 7 3 5 3 3 

 

2.3. Literature review summary 

Many studies were already done in the field of credit scoring, which shows the topic's 

relevance. Finding the best algorithm through all the studies was hard in the multiclass 

classification problem. There are some signals that ensemble methods and mostly Random Forest 

can be expected to be the best performing algorithm. On the other hand, in a binary classification 

problem, most studies confirm that Random Forest and other ensemble techniques could be called 

a benchmark in the credit scoring field. 

To the best of the author’s knowledge, none of the previous authors had compared the 

performance of algorithms in both binary and multiclass credit score classification problems. Our 
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analysis will contribute to the research field by combining the results from binary, 3-class and 5-

class classification tasks. 

The extensive literature review helps to decide which algorithms need to be included in the 

analysis of statistical and machine learning techniques in predicting individual credit scores. Based 

on the popularity and performance of past studies, five algorithms are selected: Logistic 

Regression (Multinomial Logistic Regression for multiclass case), Support Vector Machine with 

Radial basis kernel function, Random Forest, XGBoost and Artificial Neural Networks. 

Additionally, based on the literature review, it can be decided that more than one performance 

evaluation metric is needed to be included for the comprehensive analysis of classifiers.  
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3. Data Description 

This study uses unique and privately observed data from one Lithuanian loan-comparison 

platform. The Lithuanian credit dataset is collected from January 2020 to September 2022. The 

loan-comparison platform operates as follows. Each individual (applicant can fill out the 

application form for a loan. There he needs to submit all the personal data (age, gender, marital 

status and similar). Afterward, the customer must authenticate his identity and submit the required 

documents. Later, some additional data, which further describes the potential borrower, is 

downloaded from various legal institutions. A total number of 29 dependent variables are used in 

this study and the complete list of variables with descriptions is presented in Appendix 1. 

It can be seen from Appendix 1, that the dataset includes three sources of data. 

1. Data from legal institutions and registers. Different financial characteristics of applicants 

are obtained from various legal institutions. Official income from The State Social 

Insurance Fund Board under the Ministry of Social Security and Labour (SODRA), active 

or past debts and credits, employment duration and similar. (Sources cannot be fully 

disclosed due to confidentiality). Some financial characteristics obtained from legal 

institutions overlap with data filled in by customers. This allows us to analyze a novel 

feature in credit scoring – a comparison of self-evaluation against official data. Maybe it is 

the case that clients hope to get a better loan offer by lying about their financial situation. 

Alternatively, maybe they even cannot correctly evaluate their financial burden. All these 

aspects may be new significant features in estimating credit scores. 

2. Data from the application form. In this category, all the answers from the application, 

filled in by the individual, are included. We are obtaining some general demographic 

characteristics like gender, age, city and similar. Additionally, clients submit their 

evaluation of their financial situation: income, financial obligations and income source. 

3. Applicant’s behavior data. Each individual fills out the application form differently, 

which may be a significant factor considering the borrower's reliability. When desperately 

searching for a loan, one may use the “Copy-Paste” method and quickly fill in the whole 

application. Desperation is related to riskiness and having information about an individual’s 

behavior while filling out the application form allows us to test whether it has significant 

power in predicting the riskiness of the customer.  
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3.1.   Data preprocessing 

Before implementing statistical and machine learning techniques, it is necessary to prepare the 

dataset for analysis correctly. Firstly, all the variables that do not have any predictive power were 

removed from the dataset. Such variables are application_id and various timestamps, which were 

used to calculate the duration of application filling and authentication. Later, observations that had 

missing or erroneous values were also removed. Finally, we are left with data of 29289 individuals 

and 30 features (including the target variable). Removing features with a higher than 0.6 

correlation was decided to deal with a possible multicollinearity problem. The full correlation 

matrix is presented in Appendix 2. Using the correlation results, it was decided to exclude 

variables DSTI_official and Filled_income from further analysis. DSTI_official has an almost 

perfect positive correlation with the active_credit_monthly_sum variable and it is obvious because 

both represent the amount of monthly financial commitments. Filled_income variable was used in 

the formula to calculate Income_fill_difference (as explained in Appendix 1). 

The ranges of the features used in our study differ a lot. To appropriately use some statistical 

and machine learning techniques, it is necessary to unify the ranges of variables. For that reason, 

we normalized all numerical variables using the following formula: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
. 

Here 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖 is the normalized value of variable i, 𝑥𝑚𝑖𝑛 is the minimum value of 𝑥𝑖 and 𝑥𝑚𝑎𝑥 

is the maximum value of 𝑥𝑖. Using this method, we rescale the range of all numerical features in 

the interval between 0 and 1. Similarly, it is necessary to prepare all the categorical data before 

using statistical and machine learning techniques. One-hot encoding method was used to convert 

all the categorical or boolean variables into numerical expressions of 0 or 1. Below, the 

representation of One-hot encoding for City_classifier is presented. 

 

 

Figure 1. Example of One-Hot Encoding procedure 
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3.2.   Risk Classes 

As presented in the introduction section, the unique detail of our study is the implementation 

and comparison of statistical and machine learning techniques in both binary and multiclass 

classification problems. The credit score is obtained from one credit rating agency, which implies 

additional expenses for the loan-comparison platform and a lack of complete information about 

the borrower’s recent behavior. Ratings in 5 classes, namely {A, B, C, D, E} are obtained. 

However, assigning them to different class groupings based on individual information and market 

experience is possible. Our research and analysis of statistical and machine learning techniques 

for predicting individual credit scores will be done using the following classification problems: 

• Binary (2-class) classification problem 

• Multiclass (3-class) classification problem 

• Multiclass (5-class) classification problem 

Multiclass (5-class) classification problem will be performed using all five obtained credit 

scores separately. The possible target values for this problem will be {A; B; C; D; E}. Multiclass 

(3-class) classification problem will use A-B credit scores as first-class, C-D scores as a second 

class, and E as the third class. So, the possible target values for this problem will be {A-B; C-D; 

E}. Furthermore, the binary classification problem will use A-B credit ratings as a “reliable” 

customer and C-E ratings as “risky”. The reasoning for separating credit scores into different 

classes can be explained by using the approval rate metric. This metric shows what percentage of 

clients received at least one loan offer, and the formula is presented below. 

𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 =  
𝑂𝑓𝑓𝑒𝑟𝑠

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

Where Offers is the number of applications where at least one loan offer is generated, 

and Applications is the number of total applications. Below, in Figure 3, you can see what approval 

rates are associated with each type of grouping. It can be found that there exist significant 

differences across these groups. Tables of approval rates show that in the credit market, a high 

difference between reliable and risky customers exists and a proper risk assessment system based 

on statistical and machine learning techniques may allow credit company to distinguish between 

these customers more efficiently. 
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Figure 2. Tables of approval rates for different groupings of target variable 

3.3.  Test and Train splits 

The filtered and preprocessed data was split into training and testing sets using the “80:20” 

method. 80% of all data was used as a training set and 20% was left for testing. In the case of 

Artificial Neural Networks, a validation set is necessary additionally. We kept our primary testing 

set untouched to allow comparison of all methods using the same testing set. However, we split 

our primary training set into 80% of the training set for Artificial Neural Networks and 20% for 

validation. 

3.4.   Data Balancing 

High-class imbalance is a typical problem for most credit scoring datasets, as only a minority 

of customers belong to the riskiest segment (defaulters). There is no exception for the Lithuanian 

credit dataset as the riskiest E-rating customers consist of only 5% of all the applicants. In 

comparison, B-rating customers consist of 47% of the dataset. To deal with the class imbalance 

problem, resampling techniques like Random Oversampling (ROS) (Moscato et al. (2021)) and 

Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. (2011), Mahbobi et al. 

(2021), Moscato et al. (2021)) are implemented for the training set and results are compared with 

non-resampled (Normal) data. The idea of Random Undersampling technique was rejected 

because removing the majority class observations leaves us with a tiny amount of data, which 

makes the training set smaller than the testing set. Resampling techniques were not applied for the 
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testing set because the interest of our study is to analyse the performance of statistical and machine 

learning techniques on a real-life dataset and applications flow. 

3.5.   Summary statistics 

Table 6 presents the summary statistics of the numerical features used in our analysis. Most 

financial variables face a mean higher than the median and a high standard deviation. The reason 

behind these numbers is that majority of risky customers have very high amounts of debt or active 

credits, which significantly affect the higher mean. Since there are considerably more reliable 

customers, the median is affected downward, which makes it less than the mean. Table 6 also 

supports the idea that ranges of numerical variables differ significantly and that data normalization 

is highly recommended. For categorical variables, we present each category’s proportion in 

Appendix 3. 

Table 6. Summary Statistics of numerical features used in our analysis 

  Mean Median 
Standard 
Deviation 

1st 
Quartile 

3rd 
Quartile 

Official_income 1000.9 903.3 623.62 642.7 1248.4 

Quer_by_90d 4.27 2 6.67 1 5 

Open_debt_count 0.4032 0 0.286 0 0 

Open_Debt_sum 25.08 0 381.53 0 0 

Past_Debt_count 6.36 0 19.78 0 3 

Past_Debt_sum 1389.4 0 7675.459 0 227.9 

Employment_duration_months 55.56 31 63.6 12 75 

Active_credit_sum 18945 2751 34565 0 20990 

Active_credit_monthly_sum 178.7 85.7 3033.603 0 21.4 

Req_amount 10960 10000 6680.348 5000 15000 

Age 38.02 37 10.13 30 45 

Children 0.8187 1 0.9144 0 1 

Filled_obligations 137.4 60 207.44 0 220 

application_filling_duration 197.1 121 440.1467 82 189 

Income_fill_difference 240.87 31.29 857.31 −61.37 284.34 

Auth_duration 56 68 130.42 37 85 

Auth_Number 1 1 0.54 1 1 
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4. Methodology  

The experimental procedure is shown in Figure 4. The complete analysis of statistical and 

machine learning techniques to predict credit scores can be separated into six different phases. 

 

 

Figure 3. The process of analysis 

Firstly, the raw credit dataset must be properly preprocessed before analyzing statistical and 

machine learning techniques, as presented in the 3.1 section. Later the preprocessed dataset is split 

into training and testing samples based on the 80:20 rule (3.3 section). The credit dataset faces the 

class imbalance problem. Therefore, it is necessary to conduct experiments using various sampling 

techniques (3.4 section). The performance of six statistical and machine learning techniques is 

analysed in our study. Each of the algorithms will be more explicitly presented in the 4.1 section. 



 

19 

In addition, three different classification problems are included in our research (binary, 3-class and 

5-class classification, as presented in the 3.2 section). Finally, the results of six classifiers using 

different sampling techniques and three distinct classification tasks are evaluated using various 

performance evaluation metrics, which will be presented in the 4.2 section. The final scoring 

function will be applied based on the performance evaluation metrics. Final scores will determine 

which algorithms are the best performing statistical and machine learning technique in predicting 

credit scores, taking into account class imbalance problem, a different dimensions of target 

variable and various performance evaluation metrics. The final score methodology is presented in 

the 4.2.3 section. 

4.1.  Statistical and Machine Learning Techniques 

4.1.1. Logistic Regression 

In recent decades, logistic regression has been considered a benchmark method for many 

classification tasks. It encouraged us to include this statistical technique in our analysis to compare 

whether machine learning techniques can overperform their benchmark. It is assumed that 

independent variables are linearly related to the log odds (logit), which is the dependent variable 

of logistic regression.  

log(𝑜𝑑𝑑𝑠) = ln (
𝑃

1−𝑃
 ). 

The linear relationship between independent variables and log odds can expand to: 

ln (
𝑃

1 − 𝑃
) = 𝛽0  + 𝛽1𝑋. 

Where P is the probability of specific event happening,  𝛽0 is the intercept, 𝛽1 is the coefficient 

associated with the independent variable X. By taking logs out of both sides in the second equation, 

we are left with: 

(
𝑃

1 − 𝑃
) = 𝑒𝛽0 +𝛽1𝑋 . 

By converting odds to a simple probability function, we are left with the following simple 

probability function, that could be named a logistic function: 

𝑃 =
𝑒𝛽0 +𝛽1𝑋

1 + 𝑒𝛽0 +𝛽1𝑋
. 

Expanding the expression to include more dependent variables and coefficients associated with 

this is possible. However, due to simplicity, it is shown the case with only one dependent variable. 

The maximum likelihood estimation is usually used to estimate logistic regression coefficients. 

The likelihood function can be expressed as follows: 
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𝑙(𝛽0, 𝛽1) = ∏ 𝑝(𝑥𝑖)
𝑦𝑖

𝑛

𝑖=1

(1 − 𝑝(𝑥𝑖))1−𝑦𝑖 . 

Here 𝑥𝑖 is the value of dependent variable and 𝑦𝑖 is the binary outcome for observation i, n is 

number of total observations, and the probability of dependent variable is p(x), if  y = 1 and 1-p(x), 

if y = 0. The estimates of 𝛽0 and 𝛽1 are chosen to maximize this likelihood function 

4.1.2. Multinomial Logistic Regression 

Multinomial logistic regression (MLR) is the extension of previously discussed logistic 

regression for the analysis of multiclass classification problems rather than binary problem. MLR 

produces probability for more than 2 classes for each input example. Let’s assume again that we 

have a set of data with n observations {𝑥𝑖 ,  𝑦𝑖} where 𝑥𝑖  ∈ 𝑅𝑀 and  𝑦𝑖 ∈ {1, … , C}, for i = 1,…,n. 

Using the previous function for logistic regression, we can express the probability for i-th 

observation belonging to the j-th class by: 

𝑝𝑖𝑗 = 𝑃(𝑦𝑖 = 𝑗) =
𝑒𝛽𝑗∙𝑥𝑖

1 + ∑ 𝑒𝛽𝑐∙𝑥𝑖𝐶−1
𝑐=1

. 

The coefficients are again estimated using the maximum likelihood estimation method as in 

logistic regression case. Because the sum of probabilities of all classes must be equal to 1, the last 

class probability is expressed as follows: 

𝑝𝑖𝐶 = 1 − ∑ 𝑝𝑖𝑗

𝐶−1

𝑗=1

. 

4.1.3. Support Vector Machine 

Based on the Literature review presented in this study, Support Vector Machine (SVM) is 

another popular technique used in credit ratings classification tasks. SVM creates hyperplanes that 

can divide data into different classes. Those hyperplanes are chosen to maximize the distance 

between the closest data points of different classes. Since financial data cannot often be linearly 

separated, SVM analysis will include a radial basis kernel modification in this work. Based on Li 

et al. (2013), the classifier function of SVM for binary classification can be expressed as: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏)

𝑀

𝑖=1

, 

using training dataset 𝐷 = {𝑥𝑖, 𝑦𝑖}, where 𝑥𝑖 ∊ 𝑅𝑚 is the independent variable and 𝑦𝑖 ∊ {−1,1} is 

the target class, 𝛼𝑖 is Lagrange multiplier, 𝐾(𝑥, 𝑥𝑖) is kernel function of the two vectors. In our 

work, radial basis function will be used as a kernel function, which expression is 𝐾(𝑥, 𝑥𝑖) =
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𝑒(−𝛾‖𝑥−𝑥𝑖‖2).  The SVM algorithm is discussed in more detail in Boser et al. (1992), Cortes and 

Vapnik (1995) and Li et al. (2013), while Boser et al. (1992) additionally presents the SVM 

extension to multiclass classification tasks. 

4.1.4. Random Forest 

Random Forest (RF) is the first algorithm in our analysis based on the ensemble of 

classification trees. In the Literature review section, it was noted that RF is among the most popular 

and successful techniques used in binary and multiclass credit score classification problems. This 

ensemble method was developed by Breiman (2001). Random Forest is an extension of another 

ensemble method called bagging. As in bagging, Random Forest builds a number of decision trees 

on bootstrapped training samples. Instead of using all available feature variables, the RF algorithm 

randomly chooses a subset of m predictors from the full set of p predictors (𝑚 <  𝑝). In the case 

of one powerful predictor in the dataset, the bagged decision trees could look very similar because 

all of the trees will use this strongest predictor in the top split. Therefore, the predictions from 

separate bagged trees would be highly correlated. Random Forest overcomes this issue by taking 

only a subset of predictors, and this process is called decorrelation of the trees. After building 

numerous uncorrelated decision trees in the forest, the algorithm uses majority voting to decide 

which category a given observation belongs to. 

4.1.5. XGBoost 

XGBoost (extreme gradient boosting) is the second algorithm used in our study based on the 

ensemble of classification trees. Firstly it was proposed by Chen and Guestrin (2016) and received 

a lot of popularity and success in the credit scoring field in recent years (based on the Literature 

review presented in this study). Both Random Forest and XGBoost build a model based on 

multiple decision trees. However, the process of “building” is the main difference between those 

algorithms. Random Forest uses bagging to build all decision trees at once. On the other hand, 

XGBoost constructs an ensemble of decision trees using a gradient boosting algorithm to build 

trees to minimize the loss sequentially. In addition to gradient boosted decision trees, Chen and 

Guestrin (2016) suggested adding a regularization (penalty) term to the loss function to avoid 

possible overfitting: 

𝐿(𝑓) =  ∑ Ψ(𝑦�̂� 

𝑛

𝑖=1

, 𝑦𝑖) + ∑ Ω(𝛿𝑘)

𝐾

𝑘=1

. 
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Here 𝑦�̂� is the prediction of i-th observation at K-th boost (tree), Ψ(∗) is the lost function to measure 

the difference between prediction and the reference label and  Ω(𝛿𝑘) is the regularization term. 

This regularization term can be expressed as: 

Ω(𝛿) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2. 

Here 𝛾 is complexity term, T is the of classification’s tree number of leaves,  𝜆 is penalty parameter 

and ‖𝜔‖2 is the output of each leaf node. Additionally, XGBoost applies second-order Taylor 

approximation in the loss function and this is another difference from gradient boosted decision 

trees. More details about this algorithm can be found in Chen and Guestrin (2016). 

4.1.6. Artificial Neural Networks 

Artificial Neural Networks (ANN) are another class of models used in our study. Most of the 

past studies in credit scoring field had used this technique, what highlights the importance of 

Neural Network models. ANNs consist of three main layers: input, hidden and output layers. The 

more hidden layers are used, the more complex relationships may be modelled. A feed-forward 

neural network will be used in our analysis using two different architectures (with two and with 

four hidden layers). In feed-forward network, the information is carried forward from input 

variables through connected neurons in the middle (hidden) layers and finally to the specified 

output layer. Each neuron processes its inputs and transfers its output value to the neurons in the 

next layer. Initially, these neural connections are assigned with random weights, and then, during 

the training process, the model adjusts the weights. The output value of hidden neuron i is 

calculated by applying activation function 𝑓(1) (ReLU activation function is used in our study 

based on Munkhdalai et al. (2019), Mahbobi et al. (2021)) to weighted inputs and bias term 𝑏𝑖
(1)

: 

ℎ𝑖 = 𝑓(1) (𝑏𝑖
(1)

+ ∑ 𝑊𝑖𝑗𝑥𝑗

𝑛

𝑗=1

). 

Here W is the weight matrix, 𝑊𝑖𝑗 denotes the weight connecting input j to hidden neuron i. In a 

similar way, the output of the output layer is computed by: 

𝑦 = 𝑓(2) (𝑏(2) + ∑ 𝑣𝑗ℎ𝑗

𝑛ℎ

𝑗=1

). 

Here 𝑛ℎ is the number of hidden neurons and 𝑣 denotes the weight vector, where 𝑣𝑗  is the weight 

that connects hidden neuron j to the output neuron. In the case of binary classification, 𝑓(2) is 

sigmoid activation function, and for multiclass classification, softmax activation function was 

used. More details about ANNs can be found in Bishop (1995). 
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4.2.   Performance evaluation metrics 

The choice of performance evaluation metrics was based on extensive literature review and 

expert knowledge. Classifying a risky customer as reliable is the most hazardous error in the credit 

scoring field. For that reason, some additional metrics are presented to cover that kind of error. 

4.2.1. Binary Classification metrics 

We use Accuracy, AUC, Training time, False Positive rate (FPR), Recall and Precision to 

evaluate the performance of binary classification algorithms. For a better explanation of these 

metrics, let us use Table 7, which presents the example of a binary classification confusion matrix. 

Below all the formulas and explanations are presented for each evaluation metric. 

  Table 7. Example of binary classification confusion matrix 

 

Actual values 

Good Risky 

P
re

d
ic

te
d

 
va

lu
e

s Good TP FP 

Risky FN TN 

 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 , it shows the proportion of all correctly classified examples. 

Accuracy may not be the most correct classifiers evaluation metric because it assumes 

equal misclassification costs for false negative and false positive cases. In the credit scoring 

field, the false positive is more expensive and more attention must be paid to this possible 

error. 

• AUC is the measure of the model’s ability to distinguish between classes. AUC is equal to 

probability that the classifier will rank randomly chosen good observation higher than that 

of randomly chosen risky observation. AUC uses the true positive rate and false positive 

rate of the model across all possible thresholds, what allows us to deeper understand the 

predictive power of the classifier. 

• Training time was included in this study for observing the duration of how long model 

trains. 

• 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
, it is the rate, which shows what percentage of risky customers was actually 

predicted as good ones. In credit industry this is the rate that causes the most losses. The 

goal of this analysis will attempt to minimize FPR as much as possible. 
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• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , it shows the percentage of correct positive predictions made out of all 

possible positive predictions that could have been made by the classifier. 

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, it shows the quality of good predictions made by the model. 

4.2.2. Multiclass classification metrics 

Similar to the presentation of evaluation metrics for binary classification, the measures for 

multiclass classification performance are presented below. Table 8 shows how the confusion 

matrix for 3-class classification would look and all the performance evaluation metrics are 

explained. 

Table 8. Example of multiclass classification confusion matrix 

 

Actual values 

A-B C-D E 

P
re

d
ic

te
d

 v
al

u
e

s A-B AA AC AE 

C-D CA CC CE 

E EA EC EE 

 

• Accuracy =
𝐴𝐴+𝐶𝐶+𝐸𝐸

𝑆𝑢𝑚(𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥)
, similar to the binary classification case, it is the percentage of 

correctly classified observations. 

• AUC, differently than in binary classification, must be calculated considering all distinct 

AUCs for each class. One-versus-rest approach is used to calculate each class AUC value 

and then by averaging those values, it is possible to obtain the final AUC for the multiclass 

classification model.  

• Training time – similar to the binary classification task, training time for each model will 

be observed to account for the rapidness of each classifier.  

• The Riskiest class (E) recall = 
𝐸𝐸

𝐴𝐸+𝐶𝐸+𝐸𝐸
. From the economic point of view, this metric is 

equivalent to 1-FPR in binary classification case. Recall of E class shows how many E 

class observations were predicted as E class. In the credit rating field, it is highly important 

to account for that type of mistake. For that reason, it was highlighted. 

• Macro Recall - Similar to AUC, this metric was calculated by averaging the Recall of each 

class. Macro Recall was included in our research instead of Weighted Recall because the 

Weighted average of metric includes individual sample sizes. Having a situation where the 

majority of observations are assigned to the “good” class, it was decided not to weigh the 
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metric based on the majority class, but do the simple arithmetic mean and treat all the 

classes equally. 

• Macro Precision – Similarly to Macro Recall, it is average of Precision of each class. 

• False Positive rate – This metric shows what percentage of all observations was predicted 

higher credit score than it actually is. The formula for False Positive rate is presented 

below: 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐴𝐶 + 𝐴𝐸 + 𝐶𝐸

𝑆𝑢𝑚(𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥)
. 

• False Negative rate – Similar to the False Positive rate, this metric shows what percentage 

of all observations was predicted lower credit score that it actually is. And the formula is: 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐶𝐴 + 𝐸𝐴 + 𝐸𝐸

𝑆𝑢𝑚(𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥)
. 

Accuracy, False Positive and False Negative rates add up to 1. That was the reason why such 

rates were included in our study, and this helps us to understand more deeply what type of errors 

our model makes. The logic and formulas for the 5-class classification problem are the same and 

can be extended from examples of the 3-class classification environment.  

4.2.3. Final performance evaluation formula 

A novel aspect of this research will be the final performance evaluation formula presented in 

this section. The reason to use this formula is the need to unify the results of different classification 

tasks (binary, 3-class, 5-class), performance evaluation metrics and resampling techniques. A final 

performance evaluation metric would allow us to decide which statistical and machine learning 

techniques perform best in predicting individual credit ratings. This formula will include the score 

from each performance evaluation formula. The example for score calculation for accuracy metric 

having a binary classification task and performing no resampling technique is presented in Figure 

4. 

 

Figure 4. The example of score calculation for Accuracy, in binary classification and no resampling applied 
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The scoring formula is based on “min-max” normalization technique: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆𝑐𝑜𝑟𝑒𝑖,𝑗,𝑧
=

𝑥𝑖,𝑗,𝑧 − 𝑥𝑚𝑖𝑛,𝑗,𝑧

𝑥𝑚𝑎𝑥,𝑗,𝑧 − 𝑥𝑚𝑖𝑛,𝑗,𝑧
. 

Here i is the algorithm’s name, j stands for the type of classification problem                                                 

(𝑗 ∊ {𝑏𝑖𝑛𝑎𝑟𝑦,   3 − 𝑐𝑙𝑎𝑠𝑠, 5 − 𝑐𝑙𝑎𝑠𝑠}), z is the resampling technique (𝑧 ∊ {𝑛𝑜 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔,

𝑅𝑎𝑛𝑑𝑜𝑚 𝑂𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, 𝑆𝑀𝑂𝑇𝐸}  ). This scoring technique allows us to rank the classifiers in 

a given environment while simultaneously capturing the size of the difference between the 

performance. If the difference in Accuracy is tiny between the two best algorithms relative to the 

poorer classifiers' Accuracy, then the difference in score will also be minimal. By summing scores 

for Accuracy through all classification problems and all resampling techniques, we can obtain the 

total accuracy score for each of the algorithms: 

𝑇𝑜𝑡𝑎𝑙_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑆𝑐𝑜𝑟𝑒𝑖 = ∑ ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑆𝑐𝑜𝑟𝑒𝑖,𝑗,𝑧

𝑧

.

𝑗

 

Such scores will be calculated for other performance evaluation metrics: AUC, Training time, the 

Riskiest class classification accuracy (1-FPR for the binary classification and E class Recall for 

the multiclass classification), Recall (Macro Recall for multiclass classification), Precision (Macro 

Precision for multiclass classification), False Negative rate (only for multiclass classification) and 

False Positive rate (only for multiclass classification). Having many total scores of different 

performance evaluation metrics, it is necessary to combine all of them for the final score of the 

research. However, the final score must adjust each metric’s importance to the final evaluation of 

the classifier. Training time cannot have the same impact on the ranking of classifiers as the False 

Positive rate does. Additionally, the False Positive rate is more expensive than the False Negative 

rate. Based on author’s expert knowledge of the field of analysis, it was decided to adjust the 

weights (coefficients) of each performance evaluation metric’s total score to the final score 

function as: 

𝐹𝑖𝑛𝑎𝑙_𝑆𝑐𝑜𝑟𝑒𝑖 = 𝑇𝑜𝑡𝑎𝑙_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒𝑖 + 𝑇𝑜𝑡𝑎𝑙_𝐴𝑈𝐶_𝑠𝑐𝑜𝑟𝑒𝑖 + 0.1

∗ 𝑇𝑜𝑡𝑎𝑙_𝑇𝑟𝑎𝑖𝑛𝑇𝑖𝑚𝑒_𝑠𝑐𝑜𝑟𝑒𝑖  + 1.5 ∗ 𝑇𝑜𝑡𝑎𝑙_𝑅𝑖𝑠𝑘𝑖𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒𝑖

+ 𝑇𝑜𝑡𝑎𝑙_𝑅𝑒𝑐𝑎𝑙𝑙_𝑠𝑐𝑜𝑟𝑒𝑖 + 𝑇𝑜𝑡𝑎𝑙_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑖  + 1.5

∗ 𝑇𝑜𝑡𝑎𝑙_𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑠𝑐𝑜𝑟𝑒𝑖 + 𝑇𝑜𝑡𝑎𝑙_𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑐𝑜𝑟𝑒𝑖. 

Based on that final score value, the ranking of the classifiers will be made. As it can be seen from 

the formula, the final score formula adjusts by weighting Training time to be a less impactful 

factor. Furthermore, all expensive errors (the Riskiest class classification accuracy and False 

Positive rate) are weighted to be more important factors for the final decision and ranking of the 

statistical and machine learning techniques.   
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5. Results  

5.1.   Empirical Set-Up 

To avoid contingency in comparing the performance of statistical and machine learning 

techniques, the experiments were repeated three times with different sampling into training and 

testing sets, keeping the 80:20 ratio as presented in the 3.3 section. The full analysis was coded in 

R studio (R version 4.1.3) using the R statistical software packages like randomForest, e1071, 

xgboost, keras and nnet on the computer system with Windows 11 operating system, 16 GB RAM 

and AMD Ryzen 5 processor (program code for binary classification is presented in Appendix 4). 

The selection of hyperparameters may influence the performance of algorithms. Classifiers 

SVM-Radial, RF, XGBoost and ANNs will have hyperparameters that need to be determined. Grid 

search was used as a hyperparameters optimization method, and the search space is presented in 

Table 9. Other, not introduced parameters are kept as default values as provided in R statistical 

software packages documentation. It was decided to find optimal parameters for binary and 

multiclass problems separately to optimize the performance of algorithms as much as possible. 

Table 9. Searching space of hyper parameters 

Model Hyperparameters Symbol Search Space 
Optimal 

parameter 
Binary 

Optimal 
parameter 
Multiclass 

SVM-
Radial 
Basis 

Gamma 𝛾 0.001, 0.01, 0.05, 0.1 0.05 0.01 

Cost C 1, 2, 5, 10 2 1 

Random 
Forest 

Number of Tree ntree 100, 200, 500 200 200 

Number of features mtry [1;15] 5 5 

XGBoost 

Maximum tree depth max_depth 2, 4, 5, 6, 8 6 5 

Learning rate eta 0.01, 0.1, 0.2, 0.5  0.01 0.01 

Column subsample ratio colsample_bytree [0;1] 0.5 0.5 

Number of Boost nrounds 100,200,500,1000 1000 1000 

Minimum Child Weight min_child_weight 1, 2, 3, 4 2 2 

 

The Radial basis kernel function was selected for the Support Vector Machine and two 

hyperparameters (Gamma and Cost) needed to be optimally selected. These hyperparameters 

control the trade-off between the accuracy on the training data and the risk of possible overfitting. 

For binary classification, it was found that Gamma = 0.05 and Cost = 2 were the values of the most 

optimal parameters, while for the multiclass, Gamma = 0.01 and Cost = 1 yielded the highest 

accuracy. 

As presented in the Random Forest description (see section 4.1.4), the number of trees and the 

number of randomly sampled predictors used to build a tree are needed to be set. It was found that 
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200 trees and five randomly selected features for each tree were the most optimal parameters to 

build the Random Forest algorithm.  

For the XGBoost algorithm, maximum tree depth was optimized at 6 for binary classification 

and 5 for multiclass classification problems. The learning rate used to prevent overfitting was 

optimal at 0.01, and the column subsample ratio used in our analysis is set to 0.5 in both binary 

and multiclass classification problems. The number of boosts is set to be equal to 1000, and 

minimum child weight was found to be optimal at value 2. 

In section 4.1.6, it was mentioned that two ANN architectures will be used in our study. ANN 

with two and ANN with four hidden layers are implemented to compare how the network’s 

complexity may affect the performance in predicting credit scores. The number of neurons in 

hidden layers was decided by the grid search, where possible values were 5, 10, 15, 20, and 25. 

For the Binary classification case, the optimal number of neurons in each hidden layer was found 

to be 20; for the multiclass case, this number was higher and set to 25. Using a trial and error 

process, the ReLU was decided over sigmoid as an activation function in hidden layers. Softmax 

activation function was used in the last (output) layer for multiclass classification, and sigmoid 

was used in the binary classification case. Adam was used as an optimization algorithm with a 

learning rate of 0.0001. To prevent overfitting, the network's training procedure used a dropout of 

value 0.1. The number of epochs was set to 300, and batches with 32 instances at each iteration 

were used. The results and analysis of the experiments are discussed in the following section.   

5.2.1. Accuracy Results 

The results of the analysis of statistical and machine learning techniques in predicting 

individual credit scores start from comparing the performance of the classifiers based on the 

proportion of correctly classified observations. Table 10 summarizes the results of our 

experiments, which were repeated three times with respect to the Accuracy metric. The technique 

achieving the highest Accuracy in a given environment is underlined and bolded. 

Table 10. Results of Accuracy measure 

 

Accuracy 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 

LR/MLR 0.754 0.735 0.733 0.735 0.660 0.653 0.571 0.495 0.496 

SVM 0.748 0.730 0.741 0.734 0.674 0.662 0.570 0.502 0.496 

RF 0.769 0.767 0.747 0.750 0.749 0.695 0.601 0.598 0.542 

XGBoost 0.768 0.750 0.761 0.748 0.685 0.690 0.592 0.512 0.534 

ANN-2L 0.759 0.757 0.753 0.737 0.686 0.652 0.577 0.498 0.482 

ANN-4L 0.756 0.756 0.751 0.737 0.683 0.674 0.572 0.499 0.471 
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It can be clearly seen that methods based on ensembles of classification trees (RF and 

XGBoost) dominate with respect to Accuracy in all types of classification problems and through 

all the resampling techniques. RF performs as the best algorithm in eight out of nine classification 

experiments. The highest Accuracy of 76.9% is achieved in binary classification problem and 

using a not-resampled dataset for model training. Alternatively, in the case of a 5-class 

classification problem and using SMOTE resampling technique for the training dataset, the best 

performing classifier reaches only 54.2% of Accuracy. It is necessary to highlight that our testing 

set faces a class imbalance problem to test the performance of the algorithms in a real-life scenario. 

Therefore, the Accuracy measure may not be the most correct way of measuring the model’s 

performance since some classifiers may naively predict the majority class and provide high 

Accuracy. Comparing two resample techniques, namely Random Oversampling (ROS) against 

SMOTE technique, it can be included that the ROS technique helps classifiers to reach higher 

Accuracy than using SMOTE. Additionally, by increasing the dimension of the classification 

problem (dimension of the target variable), the Accuracy decreases, meaning that binary 

classification is the easiest for the algorithms, while 5-class classification is the most difficult.  

Table 10 provides the scoring table (based on the score function described in the 4.2.3 section) 

to evaluate and rank statistical and machine learning techniques.  

Table 11. Score table from Accuracy measure 

 

Score from Accuracy 
 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 
Total 
Score 

Rank 

LR/MLR 0.26 0.13 0.00 0.08 0.00 0.02 0.06 0.00 0.35 0.89 6 

SVM 0.00 0.00 0.30 0.00 0.15 0.23 0.00 0.07 0.35 1.10 5 

RF 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 8.50 1 

XGBoost 0.98 0.55 1.00 0.85 0.27 0.89 0.72 0.17 0.89 6.33 2 

ANN-2L 0.51 0.74 0.73 0.16 0.29 0.00 0.25 0.03 0.16 2.87 3 

ANN-4L 0.39 0.71 0.64 0.16 0.26 0.51 0.07 0.04 0.00 2.79 4 

 

It can be found that the Total Accuracy Score formula approves the findings from Table 9, that 

RF and XGBoost are the best and the second-best algorithms with respect to Accuracy. ANNs 

techniques perform slightly worse (both architectures), which could have been expected based on 

the extensive literature review. LR/MLR and SVM are associated with the poorest performance of 

all the algorithms used in this study. The main idea of our scoring function was the ability to 

capture the gaps between the algorithms. Based on Table 10, the gap between ensemble techniques 

and all other algorithms is significant. The highest gaps can be spotted in multiclass classification 

cases, where MLR, SVM and ANNs received a score from accuracy higher than 0.5 only once. 

The result shows that ensemble techniques outperform all other algorithms (especially in 
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multiclass classification problems) in terms of Accuracy. However, an extensive comparison 

between many performance evaluation metrics is necessary for the more robust evaluation and 

ranking of statistical and machine learning techniques in predicting individual credit scores.  

5.2.2. AUC Results 

Similar to Table 10, Table 12 presents the experimental results using the AUC performance 

evaluation metric. 

Table 12. Results of AUC measure 

 

AUC 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 

LR/MLR 0.812 0.812 0.807 0.839 0.866 0.862 0.831 0.845 0.843 

SVM 0.797 0.797 0.794 0.764 0.818 0.810 0.775 0.830 0.822 

RF 0.829 0.826 0.825 0.861 0.872 0.878 0.858 0.865 0.865 

XGBoost 0.828 0.827 0.826 0.859 0.881 0.873 0.854 0.867 0.862 

ANN-2L 0.812 0.812 0.800 0.846 0.867 0.865 0.842 0.849 0.852 

ANN-4L 0.811 0.810 0.796 0.845 0.856 0.860 0.833 0.838 0.844 

 

Based on AUC results, RF and XGBoost outperform their competitor algorithms and 

strengthen the position of ensembles of classification trees. Differently than in the Accuracy 

results, it can be seen that AUC in the multiclass classification case is not smaller than the AUC 

in binary classification results. Additionally, XGBoost dominates when the Random Oversampling 

technique is applied, and RF dominates in the case of the Normal training dataset. In every 

multiclass classification experiment, the resampling techniques (ROS and SMOTE) are associated 

with higher AUC than in the case of the Normal training dataset. However, in the binary 

classification case, we cannot observe such differences, and the results of AUC are considerably 

similar through all the resampling scenarios. Table 13 presents the scores obtained from the AUC 

measure to compare the difference across classification techniques better. 

Table 13. Score table from AUC metric 

 

Score from AUC 
 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 
Total 
Score 

Rank 

LR/MLR 0.46 0.49 0.41 0.77 0.76 0.75 0.67 0.41 0.47 5.20 4 

SVM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6 

RF 1.00 0.97 0.98 1.00 0.86 1.00 1.00 0.95 1.00 8.75 1 

XGBoost 0.96 1.00 1.00 0.97 1.00 0.92 0.95 1.00 0.92 8.73 2 

ANN-2L 0.48 0.50 0.19 0.85 0.76 0.81 0.80 0.51 0.69 5.61 3 

ANN-4L 0.45 0.43 0.05 0.83 0.60 0.72 0.70 0.22 0.50 4.52 5 
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The results from Table 13 show that RF and XGBoost dominate through all the experiments 

with respect to the AUC measure. Nevertheless, the difference between the two ensembles is 

minimal. LR and both ANNs architectures performed similarly, as seen in the “Total Score” value. 

Interestingly, SVM is the poorest classification algorithm in all the experiments based on the AUC 

performance evaluation metric. In the case of Accuracy, we obtained the results where ensemble 

methods dominated even more in the case of multiclass classification. With respect to the AUC 

measure, such dominance cannot be found. 

5.2.3. Training Time Results 

Training time is another dimension that needs to be evaluated and compared in analyzing 

statistical and machine learning techniques in predicting individual credit scores. The rapid 

algorithm should have an advantage over another, slower classifier if the prediction rates are 

similar. Table 14 presents the Training time in minutes of the algorithms used in our study.  

Table 14. Results of Training Time 

 

Training time (in minutes) 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 

LR/MLR 0.016 0.026 0.012 0.044 0.083 0.064 0.099 0.278 0.152 

SVM 9.570 10.483 7.508 2.142 8.130 1.750 3.414 14.360 3.983 

RF 3.080 2.588 1.972 0.289 0.600 0.243 0.285 0.778 0.339 

XGboost 1.310 0.619 0.690 0.432 0.578 0.405 0.689 1.099 0.770 

ANN-2L 6.696 8.263 8.014 7.500 15.610 6.412 8.445 17.570 10.913 

ANN-4L 7.133 10.638 9.097 8.346 16.573 7.054 9.087 18.533 11.267 

 

LR is the fastest algorithm in our study that runs in seconds. On the other hand, the more 

sophisticated classifiers like SVM and ANNs train significantly longer, which is an important 

aspect when comparing those classifiers. It is also noted that the most computationally expensive 

experiments were ANNs in the multiclass classification case and using resampling techniques. The 

duration of training time reached 18 minutes, while faster algorithms like LR, RF, and XGBoost 

trained within one minute. Such a result gives us a dimension of the algorithm’s rapidness in 

analyzing statistical and machine learning techniques. The scores to classifiers from Training time 

are presented in Table 15. 
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Table 15. Score table from Training Time 

 

 Score from Training Time 
 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 
Total 
Score 

Rank 

LR/MLR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 9.00 1 

SVM 0.00 0.01 0.17 0.75 0.51 0.76 0.63 0.23 0.66 3.72 4 

RF 0.68 0.76 0.78 0.97 0.97 0.97 0.98 0.97 0.98 8.07 3 

XGboost 0.86 0.94 0.93 0.95 0.97 0.95 0.93 0.96 0.94 8.44 2 

ANN-2L 0.30 0.22 0.12 0.10 0.06 0.09 0.07 0.05 0.03 1.05 5 

ANN-4L 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 6 

 

Logistic regression earns maximum points of Total Score from the Training time because it is 

the fastest algorithm used in our study. Interestingly, ensembles of classification trees are also 

comparatively fast, which shows that RF and XGBoost in predicting credit scores are impressive, 

combined with the previous results of Accuracy and AUC. ANNs are the most computationally 

expensive techniques in our analysis, especially with four hidden layers executing exceptionally 

slowly. However, the Training time cannot be equally important as the predictive power of the 

classifier. For that reason, the weights for each measure of predictive performance are adjusted 

based on author's expert knowledge as presented in section 4.2.3. 

5.2.4. The Riskiest Class Classification Results 

The Riskiest class classification is arguably the most crucial aspect of credit scoring. 

Misclassifying the riskiest segment of people as reliable may lead to substantial losses for the 

lender. For that reason, the Riskiest class classification accuracy is excluded as a separate 

performance evaluation metric. For the binary classification case, it is simply 1-False Positive rate 

(1-FPR), and for the multiclass classification case, it is equivalent to the Recall of the Riskiest (E) 

class. Table 16 presents the classification results based on the accuracy of the Riskiest class 

segment. 

Table 16. Results of the Riskiest class classification accuracy 

 

(1-FPR) for Binary case and the riskiest class (E) RECALL for Multiclass case 

Binary Results 3-Class Results  5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 

LR/MLR 0.513 0.705 0.694 0.420 0.822 0.804 0.466 0.695 0.678 

SVM 0.441 0.683 0.622 0.372 0.789 0.757 0.429 0.682 0.678 

RF 0.559 0.574 0.709 0.460 0.529 0.661 0.538 0.582 0.675 

XGBoost 0.566 0.702 0.644 0.472 0.804 0.658 0.519 0.742 0.683 

ANN-2L 0.550 0.569 0.614 0.465 0.660 0.779 0.513 0.335 0.716 

ANN-4L 0.543 0.526 0.596 0.465 0.575 0.871 0.521 0.328 0.704 
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The results of this performance evaluation metric differ almost in every experiment performed 

in our analysis. Additionally, it is hard to compare the results between binary classification and 

multiclass classification, since the riskiest class differs in both of these environments. 

In binary classification case, the RF algorithm using SMOTE resampling techniques achieves 

the highest value of 1-FPR at 0.709. It can be clearly seen that both ROS and SMOTE resampling 

techniques significantly improve the 1-FPR rate, except for ANNs case. ANNs perform 

impressively when no resampling techniques are applied, however after the resampling, other 

classifiers improved by more. 

In multiclass classification case, the similar trends are also observed. The ANN with four 

hidden layers provides the highest Recall of E class using 3-Class classification problem and 

applying SMOTE resampling technique at the value of 0.871. In the case of 5-Class classification 

problem, the XGBoost algorithm with ROS resampling technique achieves 0.742 of Recall of E 

class. The results of the Riskiest class classification accuracy shows that evaluation and 

comparison of a performance evaluation metric through all the experiments of our study could be 

hardly interpretable. For that reason, the scores formula allows us to compare the performance of 

all statistical and machine learning techniques more easily, by taking into account all different 

classification problems and different resampling techniques. 

Table 17. Score table from the riskiest class accuracy metric 

 

Score from the Riskiest class accuracy 
 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 
Total 
Score 

Rank 

LR/MLR 0.58 1.00 0.86 0.48 1.00 0.69 0.34 0.89 0.07 5.90 2 

SVM 0.00 0.88 0.23 0.00 0.89 0.47 0.00 0.85 0.07 3.38 6 

RF 0.94 0.27 1.00 0.88 0.00 0.01 1.00 0.61 0.00 4.71 4 

XGBoost 1.00 0.98 0.43 1.00 0.94 0.00 0.82 1.00 0.20 6.37 1 

ANN-2L 0.87 0.24 0.17 0.93 0.45 0.57 0.77 0.02 1.00 5.01 3 

ANN-4L 0.81 0.00 0.00 0.93 0.15 1.00 0.85 0.00 0.70 4.45 5 

 

Table 17 allows us to compare and rank the classifiers with respect to the Riskiest class 

accuracy. Based on the Total Score value, differences across the algorithms are not very high. 

However, the XGBoost algorithm is the best performing algorithm on average through all the 

experiments performed. Interestingly, XGBoost with the SMOTE resampling technique performs 

relatively poorly in all the classification problems. In addition, RF is also not impressive in 

multiclass classification problems using SMOTE. Based on such results, ensembles of 

classification trees perform poorly with respect to E-class Recall using SMOTE. On the other hand, 

ANNs perform comparatively much better when SMOTE is applied in the multiclass classification 

case. 
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5.2.5. Recall Results 

In this section results from Recall (for binary classification) and Macro Recall (for multiclass 

classification) are compared. 

Table 18. Results from the Recall metric 

 

Recall for binary case and Macro Recall for multiclass case 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 

LR/MLR 0.886 0.751 0.755 0.587 0.690 0.682 0.448 0.547 0.542 

SVM 0.918 0.757 0.805 0.562 0.694 0.680 0.423 0.559 0.551 

RF 0.885 0.873 0.768 0.615 0.650 0.684 0.498 0.542 0.582 

XGBoost 0.880 0.777 0.825 0.618 0.710 0.678 0.488 0.586 0.567 

ANN-2L 0.874 0.861 0.830 0.605 0.675 0.683 0.468 0.535 0.564 

ANN-4L 0.874 0.883 0.836 0.602 0.653 0.720 0.456 0.526 0.553 

 

Based on Table 18, SVM is the best performing algorithm in the case of binary classification 

when no resampling technique was applied. However, that result must be considered with caution. 

SVM in that experiment provided the poorest 1-FPR results, which informs us that it was highly 

biased towards the majority class, which showed up in a high Recall of 0.918. In all other 

experiments, Neural network architectures and ensemble methods provide the best results. ANN 

with four hidden layers combined with ROS method reaches 0.883 of Recall in binary 

classification, and with SMOTE method in 3-Class classification case reaches Recall equal to 

0.720. In 5-Class classification, ensemble methods dominate the other techniques, with XGBoost 

reaching 0.586 Recall when ROS was applied. Table 19 presents the scores obtained using Recall 

as the performance evaluation metric.  

Table 19. Score table from Recall metric 

 

Score from Recall 
 

Binary Classification 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 
Total 
Score 

Rank 

LR/MLR 0.28 0.00 0.00 0.44 0.67 0.09 0.33 0.35 0.00 2.17 6 

SVM 1.00 0.04 0.62 0.00 0.73 0.06 0.00 0.55 0.22 3.21 5 

RF 0.25 0.92 0.16 0.93 0.00 0.15 1.00 0.28 1.00 4.68 2 

XGBoost 0.15 0.19 0.86 1.00 1.00 0.00 0.86 1.00 0.61 5.67 1 

ANN-2L 0.00 0.83 0.92 0.76 0.42 0.11 0.59 0.15 0.56 4.35 4 

ANN-4L 0.01 1.00 1.00 0.71 0.05 1.00 0.43 0.00 0.27 4.47 3 

 

Based on the results from the previous table, one more time, XGBoost reaches the highest total 

score from the Recall metric. Additionally, the Random Forest and both ANNs architectures 

provide very similar results, while LR/MLR and SVM performed not impressively. These results 

approve the idea of the scoring formula. The difference between RF and ANNs architecture is 
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minimal. Thus, the results from the Recall metric will contribute to the final ranking with a similar 

scores regarding RF and ANNs.  

5.2.6. Precision Results 

This section presents the last performance evaluation metric, where binary classification case 

was included. Table 20 illustrates the Precision (for binary classification) and Macro Precision (for 

multiclass classification) results. 

Table 20. Results from Precision metric 

 

Precision for binary case and Macro Precision for multiclass case 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 

LR/MLR 0.767 0.822 0.817 0.740 0.540 0.535 0.594 0.428 0.428 

SVM 0.748 0.812 0.799 0.755 0.556 0.549 0.643 0.444 0.437 

RF 0.784 0.788 0.827 0.782 0.752 0.620 0.656 0.627 0.502 

XGBoost 0.786 0.825 0.807 0.758 0.572 0.617 0.633 0.462 0.494 

ANN-2L 0.778 0.783 0.796 0.740 0.600 0.543 0.601 0.557 0.430 

ANN-4L 0.776 0.771 0.789 0.733 0.625 0.610 0.597 0.568 0.420 

 

Similar to the cases of Accuracy and AUC, we can see a dominance of the ensemble methods. 

RF performed with the highest rate of Precision in all the multiclass classification experiments and 

binary classification when SMOTE was applied. In Table 21, it can be seen how dominant the RF 

was compared with other statistical and machine learning techniques. None of the LR/MLR, SVM 

and ANNs obtained a total score of at least 3. That shows that RF was performing significantly 

better than the competitor algorithms with respect to Precision and Macro Precision.  

Table 21. Scores table from Precision metric 

 

Score from Precision 
 

Binary Results 3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE 
Total 
Score 

Rank 

LR/MLR 0.51 0.93 0.73 0.14 0.00 0.00 0.00 0.00 0.10 2.42 6 

SVM 0.00 0.75 0.26 0.46 0.07 0.17 0.80 0.08 0.20 2.79 3 

RF 0.95 0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.25 1 

XGboost 1.00 1.00 0.49 0.51 0.15 0.96 0.63 0.17 0.91 5.82 2 

ANN-2L 0.81 0.22 0.17 0.15 0.28 0.09 0.11 0.65 0.13 2.61 5 

ANN-4L 0.73 0.00 0.00 0.00 0.40 0.88 0.06 0.70 0.00 2.77 4 

 

5.2.7. False Positive Rate Results 

A False Positive rate is one of the most crucial performance evaluation metrics for the 

multiclass classification problem. The importance of this measure can be compared only with the 
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E class Recall metric. The False Positive rate for the multiclass type of problem shows what 

proportion of all the observations was classified as more reliable than they actually are. Table 22 

presents the results obtained by using this performance evaluation metric only for the multiclass 

classification experiments because FPR for binary classification was already used in the 

comparison of the Riskiest class accuracy. 

Table 22. Results of false positive rate for the multiclass classification 

 

False Positive Rate only for the multiclass case 

3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE 

MLR 0.197 0.095 0.095 0.275 0.233 0.238 

SVM 0.217 0.097 0.095 0.290 0.255 0.254 

RF 0.183 0.151 0.091 0.250 0.249 0.246 

XGBoost 0.178 0.090 0.095 0.262 0.255 0.254 

ANN-2L 0.189 0.096 0.087 0.267 0.285 0.252 

ANN-4L 0.193 0.097 0.089 0.267 0.291 0.248 

 

In the 3-Class classification case, resampling techniques ROS and SMOTE significantly 

improve the results of classifiers with respect to the False Positive rate. However, in the 5-Class 

classification case, the False Positive rate is not changing much when resampling techniques are 

applied. ANN with two hidden layers reaches the best False Positive rate of 0.087 in the 3-Class 

classification case when SMOTE was applied. In the 5-Class classification case, applying the MLR 

with ROS technique shows the best results, where the False Positive rate reaches 0.233. 

Nevertheless, the constantly best-performing algorithm cannot be seen in Table 22. For that reason, 

it is necessary to check what are the scores from the False Positive rate, shown in Table 23. 

Table 23. Scores table from the False Positive rate metric 

 

Score from the False Positive Rate 
 

3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE 
Total 
Score 

Rank 

MLR 0.53 0.92 0.03 0.37 1.00 1.00 3.85 1 

SVM 0.00 0.89 0.02 0.00 0.62 0.04 1.57 6 

RF 0.88 0.00 0.45 1.00 0.72 0.49 3.54 2 

XGBoost 1.00 1.00 0.00 0.72 0.63 0.00 3.35 4 

ANN-2L 0.73 0.91 1.00 0.57 0.10 0.14 3.45 3 

ANN-4L 0.61 0.90 0.76 0.57 0.00 0.37 3.21 5 

 

The results from Table 23 suggest that only SVM is not competitive with respect to the False 

Positive rate in the multiclass classification case. However, all other techniques are associated with 

quite a similar total scores of False Positive rate across all the experiments. MLR is ranked first, 

but the total sum of scores for the fifth place is only lower by 0.64. Meaning that none of these 
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algorithms would get an advantage over the other in the final score calculation based on the False 

Positive results. 

5.2.8. False Negative Rate Results 

Unlike in the previous section, the False Negative rate shows what percentage of all 

observations were predicted as riskier than they actually are. The full results of the False Negative 

rate are presented in Table 24.   

Table 24. Results of False Negative rate 

 

False Negative rate only for multiclass case 

3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE 

MLR 0.068 0.244 0.253 0.153 0.272 0.266 

SVM 0.049 0.229 0.243 0.140 0.243 0.250 

RF 0.067 0.100 0.214 0.149 0.153 0.212 

XGBoost 0.074 0.225 0.214 0.146 0.233 0.212 

ANN-2L 0.074 0.218 0.261 0.155 0.217 0.266 

ANN-4L 0.070 0.220 0.238 0.161 0.210 0.281 

 

The SVM algorithm is associated with the lowest False Negative rate in multiclass 

classification problems when no resampling technique was applied. Having applied ROS and 

SMOTE techniques, RF dominates over other algorithms in each experiment. Interestingly, the 

differences in False Negative rates across the 5-Class and 3-Class classification results are 

minimal. In the case of Accuracy and False Positive rate, we faced a situation when the increasing 

dimension of the target variable was associated with the decreased performance of classifiers. 

However, a constant False Negative rate in both multiclass classification problems shows that 

worse performance in the 5-class classification case was mainly driven by the increasing False 

Positive rate. Such a situation is hazardous in the credit scoring field and may imply high losses 

for the credit company. Table 25 presents the scores obtained from the False Negative rate. 

Table 25. Scores table of the False Negative rate metric 

 

Score from the False Negative Rate 
 

3-Class Results 5-Class Results 

Normal ROS SMOTE Normal ROS SMOTE 
Total 
Score 

Rank 

MLR 0.25 0.00 0.19 0.36 0.00 0.21 1.01 6 

SVM 1.00 0.10 0.38 1.00 0.25 0.44 3.17 3 

RF 0.29 1.00 1.00 0.60 1.00 1.00 4.88 1 

XGBoost 0.03 0.13 0.98 0.71 0.32 1.00 3.17 2 

ANN-2L 0.00 0.18 0.00 0.28 0.46 0.21 1.13 5 

ANN-4L 0.18 0.17 0.50 0.00 0.52 0.00 1.36 4 
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Ensembles of classification trees are performing quite impressive in multiclass classification 

cases with respect to the False Negative rate. However, the SVM received an equal amount of 

score as the XGBoost algorithm from all the experiments. But the main dominance of the SVM 

algorithm was observed only in the case when no resampling techniques were applied.  

5.2.9. Final Scores 

Having analysed all the results from distinct performance evaluation metrics, it is necessary to 

combine these results and see what final conclusions can be drawn. The final score formula 

summarizes all the distinct (total) scores obtained from different classification evaluation metrics. 

As already presented, some scores must be weighted based on the author's expert knowledge. 

Training time is weighted with a coefficient of 0.1 since it is not the most critical aspect of credit 

scoring. In contrast, the Riskiest class classification accuracy (1-FPR for the binary case and the 

E class Recall for the multiclass case) and False Positive rate are weighted with a coefficient of 

1.5 because these rates are the most crucial in the credit scoring field. The final scores and ranking 

are presented in Table 26. Each column represents the total scores obtained from that performance 

evaluation metric across all the experiments. The last two columns show the final score of the 

classifier and the final rank. 

Table 26. Final Scores table 

 

Total Scores 

Accuracy AUC 
Training 
time (0.1 

coef.) 

Accuracy 
of the 

riskiest 
class (1.5 

coef.) 

Recall  Precision 

False 
positive 
rate (1.5 

coef.) 

False 
Negative 

rate 

FINAL 
SCORE 

of 
Classifier 

RANK of 
Classifier 

LR/MLR 0.89 5.20 9.00 5.90 2.17 2.42 3.85 1.01 27.21 5 

SVM 1.10 0.00 3.72 3.38 3.21 2.79 1.57 3.17 18.07 6 

RF 8.50 8.75 8.07 4.71 4.68 8.25 3.54 4.88 48.27 1 

XGBoost 6.33 8.73 8.44 6.37 5.67 5.82 3.35 3.17 45.15 2 

ANN-2L 2.87 5.61 1.05 5.01 4.35 2.61 3.45 1.13 29.37 3 

ANN-4L 2.79 4.52 0.26 4.45 4.47 2.77 3.21 1.36 27.43 4 

 

As seen in the analysis of different performance evaluation metrics, the ensembles of 

classification trees dominate in predicting individual credit ratings across all the algorithms in our 

study. RF collected just a few points more than XGBoost, showing that both ensembles are highly 

capable of predicting the riskiness of customers using a Lithuanian credit dataset. In addition, the 

ANN with two layers stays at the third position, showing that the neural network of simpler 

architecture performs relatively better than the more sophisticated neural network with four hidden 

layers. LR/MLR performs similarly to ANN with four layers, which approves the idea of Baesens 

et al. (2003) that credit scoring datasets are only weakly non-linear. Lastly, SVM with the Radial 

basis function produced the poorest results across all the statistical and machine learning 
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techniques used in our study and all the experiments. Having found that RF and XGBoost 

algorithms performed as the best classifiers, we can take a deeper look into the performance of 

only these algorithms. To make an easier comparison of these two algorithms, only four 

performance evaluation metrics are used in Table 27. Based on the author's expert knowledge, the 

four most representative metrics are Accuracy, AUC, the Riskiest class classification accuracy and 

the False Positive rate (for multiclass classification only). 

Additionally, the average values ("avg." in Table 27) are included in columns and rows for 

each classification problem and each performance evaluation metric. In the column, the average 

shows how the given algorithm performed across all the resampling techniques. Rows present the 

average performance of both algorithms for a given resampling technique. Based on Table 27, we 

can compare how the two best performing algorithms in our study perform with respect to four of 

the most crucial performance evaluation metrics. Additionally, it could be evaluated how the 

performance differs when resampling techniques are applied and when different classification 

problems are of interest. The best value with respect to a given performance evaluation metric 

across all classification problems and resampling techniques is bolded and underlined. 

Table 27. Performance of RF and XGBoost across all the experiments 

 Binary Classification 3-Class classification 5-Class Classification 

 Normal ROS SMOTE avg. Normal ROS SMOTE avg. Normal ROS SMOTE avg. 

Accuracy 

RF 0.769 0.767 0.747 0.761 0.750 0.749 0.695 0.731 0.601 0.598 0.542 0.580 

XGboost 0.768 0.750 0.761 0.760 0.748 0.685 0.690 0.708 0.592 0.512 0.534 0.546 

avg. 0.769 0.758 0.754  0.749 0.717 0.693  0.597 0.555 0.538  

AUC 

RF 0.829 0.826 0.825 0.827 0.861 0.872 0.878 0.871 0.858 0.865 0.865 0.863 

XGboost 0.828 0.827 0.826 0.827 0.859 0.881 0.873 0.871 0.854 0.867 0.862 0.861 

avg. 0.828 0.827 0.826  0.860 0.877 0.876  0.856 0.866 0.863  

The riskiest class classification accuracy 

RF 0.559 0.574 0.709 0.614 0.460 0.529 0.661 0.550 0.538 0.582 0.675 0.598 

XGboost 0.566 0.702 0.644 0.637 0.472 0.804 0.658 0.645 0.519 0.742 0.683 0.648 

avg. 0.562 0.638 0.677  0.466 0.667 0.660  0.528 0.662 0.679  

False Positive rate 

RF - - -  0.183 0.151 0.091 0.142 0.250 0.249 0.246 0.249 

XGboost - - -  0.178 0.090 0.095 0.121 0.262 0.255 0.254 0.257 

avg.     0.181 0.121 0.093  0.256 0.252 0.250  

 

Having such a broad spectrum of results, allows us to compare the advantages of each of the 

algorithms in terms of various types of classification problems and across different resampling 

techniques.  

Regarding Accuracy, we can see a constant trend across all classification problems, where RF 

with no resampling technique reaches the highest Accuracy. In binary classification, Accuracy 



 

40 

reached 0.769, in 3-Class classification – 0.750 and in 5-Class classification – 0.601. Using ROS 

resampling technique, the Accuracy rate decreases just by hundredths, suggesting that ROS may 

also be competitive to the case when no resampling techniques were applied. The Accuracy may 

decrease when the target variable's dimension increases and the classification problem becomes 

more difficult. Nevertheless, the decrease in Accuracy is minimal in the case of 3-class 

classification, comparing it with the binary classification case. On the other hand, the Accuracy 

decreased drastically when 5-class classification results were compared with the 3-class 

classification case results. Such findings suggest that the 5-class classification problem is much 

harder for the RF and XGBoost, and there is no clear distinction between the five classes. Using 

the 3-Class classification, the customers can be classified into three risk categories with an 

Accuracy similar to the binary classification case and 15% higher Accuracy than in the 5-class 

classification.  

Next, Table 27 presents the classification results with respect to the AUC value. AUC uses the 

True Positive and False Positive rates across different thresholds, what should be of interest when 

classification algorithms are evaluated, besides the Accuracy rate. The RF and XGBoost 

algorithms perform similarly across all the experiments with respect to the AUC measure. In binary 

classification, the RF with no resampling technique reaches the highest AUC of 0.829. However, 

in the multiclass classification case, the best performances can be obtained when applying the ROS 

technique. The XGBoost combined with the ROS achieves the highest AUC of 0.881 in the 3-class 

classification problem and 0.866 in the 5-class classification case. Having such results, 3-class 

classification problem stands out as the most promising classification problem using the newly 

obtained Lithuanian credit dataset. 

 It is highly important to test the algorithm’s performance in classifying the Riskiest class. For 

binary classification, 1-FPR is used as a measure, while the riskiest class (E) Recall is used to 

evaluate the model’s performance in the multiclass classification case. In the binary classification 

case, the RF achieves a 0.709 rate of Accuracy of the Riskiest class classification (1-FPR) with 

SMOTE technique applied. Nevertheless, the XGBoost algorithm achieves an impressive 0.804 

Accuracy of the Riskiest class classification (the Recall of the riskiest E class) in a 3-class 

classification problem when ROS resampling technique was used. Similarly, in the 5-class 

classification case, the XGBoost with ROS technique reaches 0.742 Accuracy in predicting the 

riskiest class. These results one more time show that 3-class classification problem, combined with 

the ROS technique, allows our two best algorithms to reach the best possible results. 

Lastly, the False Positive rate for only multiclass classification problems is included in our 

comparison. Here, drastically different results across the classification problems are obtained, 

where in the 3-class classification case, XGBoost with ROS technique applied minimizes the False 
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Positive rate to only 0.09. In contrast, the best performing algorithm in the 5-class classification 

problem Random Forest with SMOTE is associated with a False Positive rate of 0.246. Such results 

additionally shows that 5-Class classification problem is much more difficult to the algorithms and 

no clear distinction between all five classes cannot be found. 
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6. Conclusions and Recommendations 

A proper credit risk management system could help lenders to make more informed decisions 

in lending processes and avoid the risk of default. This study comprehensively analyzed statistical 

and machine learning techniques in predicting individual credit scores. To carefully evaluate the 

performance of the algorithms, the analysis was done using three different classification problems: 

binary, 3-class and 5-class. Additionally, it was crucial to check whether the classifiers were not 

biased towards a specific group of predictions (due to the class imbalance problem). To avoid that, 

resampling techniques ROS and SMOTE were used across the experiments, together with a wide 

variety of performance evaluation techniques. The analysis was done using the newly introduced 

Lithuanian credit dataset obtained from one Lithuanian Loan-comparison platform. 

The general conclusions of the research carried out are presented below. 

• Based on the results obtained in this work, the final scoring method was proposed to 

combine the results of different classification problems, resampling techniques and various 

performance evaluation metrics. The proposed scoring technique allows to rank the 

classifiers, while simultaneously capturing the size of the difference between the 

performance. If the difference in predictive performance between the two best algorithms 

is relatively small, then the difference in the final score will also be minimal. 

• The Random Forest and XGBoost were found to be the best performing techniques 

in predicting individual credit scores based on the proposed final scoring method. The 

difference between the predictive performance of ensembles of classification trees and 

other algorithms was significant. Random Forest outperforms its counterpart when the 

Accuracy measure is of interest to compare the classifiers. However, the XGBoost shows 

predictive superiority with respect to the Recall of the Riskiest E class. The Recall of the 

Riskiest class can be considered as the classification Accuracy of the Riskiest class, which 

is one of the most crucial elements in the credit scoring field.  

• Empirical results show that the best algorithms perform comparatively better in 3-

Class classification problem than in binary classification case. The Accuracy in binary 

classification using Random Forest and no resampling technique was 0.769, compared to 

the same algorithm’s performance in the 3-class classification problem, where Accuracy 

was 0.750. The difference of Accuracy between these experiments is minimal. However, 

XGBoost with ROS technique applied in 3-Class classification case reaches impressive 

classification Accuracy of the Riskiest class equal to 0.804. In contrast, the same algorithm 

in binary classification problem with the ROS technique applied classifies the Riskiest 

class with an Accuracy of only 0.702. In such a situation, where the Accuracy differs only 
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by the hundredths, but the classification Accuracy of the Riskiest class is higher by 0.102, 

it is concluded that the 3-class classification problem is more effective. Figure 2 in section 

3.2 shows that the Approval rate for the E-class customers is only 25%. Combining the 

results of Approval rate and the classification Accuracy for the Riskiest class, it can be 

concluded that 3-Class classification helps to distinguish the riskiest customers, who rarely 

receive a loan offer, impressively well. 

• It was also concluded that resampling techniques help to predict the minority (risky) 

class better. In the case of the 3-class classification problem, the XGBoost algorithm 

predicts the Riskiest E class with an Accuracy of 0.804 when ROS technique was applied. 

In comparison, when no resampling techniques were applied, the same algorithm reached 

only 0.472 Accuracy of the Riskiest class classification rate. This result demonstrates how 

severe the class imbalance problem is in the credit scoring field and that Random 

Oversampling technique helps to significantly improve the performance in classifying the 

Riskiest segment. 

The study used the newly introduced credit dataset from one Lithuanian Loan-comparison 

platform. Having analysed the performance of statistical and machine learning techniques in 

predicting individual credit scores, the recommendations for applying the credit scoring system in 

the Loan-comparison platform can be presented. Firstly, it was found that Random Forest and 

XGBoost techniques should both be considered in the implementation. When the predictions from 

these algorithms contradict each other, an expert evaluation must be done. Additionally, 3-class 

classification with the Random Oversampling technique is highly recommended. The 

implementation of an individual credit scoring system would allow the Lithuanian Loan-

comparison platform to reduce the possibility of lending to a risky customer, improve the 

efficiency of credit granting processes and avoid additional expenses for external credit scoring 

agency.   

Future research in that field must pay more attention to the development of Neural Network 

architectures. It is possible to convert the tabular data into the picture format and perform 

Convolutional Neural Network analysis, which is popular in various research fields. Additionally, 

it would be recommended to perform analysis using more resampling techniques since the 

improvements in predictive performance by using Random Oversampling are clear. Nevertheless, 

extra feature variables would allow us to investigate additional aspects of the customer that could 

hide some valuable information about his riskiness. Last but not least, the implementation of the 

results from this study will be performed in a Lithuanian Loan-comparison platform, which would 

allow the author to investigate how successfully these algorithms can contribute to the performance 

of that company in real-life scenarios. 
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Appendices 

Appendix 1 – The list of variables included in the study 

Variable Description Category Format 

Application_rating5 5 classes of applicant's credit score (A. B. C. D. E)  Legal institutions Dependent 

Application_rating3 3 classes of applicant's credit score (A-B. C-D. E)  Legal institutions Dependent 

Application_rating2 
2 classes of applicant's credit score (Reliable (A-B) and 

Risky (C-E)  Legal institutions 
Dependent 

Official_income 
Income obtained from The State Social Insurance Fund 
Board under the Ministry of Social Security and Labour 

(SODRA) Legal institutions 
Numerical 

Quer_by_inst_90d 
How many querries (requests) were made for financial 

institutions via 90 days for this applicant Legal institutions 
Numerical 

Has_real_est Has applicant real estate? Legal institutions Boolean 

Has_open_debt Has applicant open debt? Legal institutions Boolean 

Open_debt_count The amount of debts (in units). a certain indiviual has now Legal institutions Numerical 

Open_Debt_sum The amount of debts (in EUR). a certain indiviual has now Legal institutions Numerical 

Has_debt_Past Had applicant any debts in the past? Legal institutions Boolean 

Past_Debt_count 
The amount of debts (in units). a certain indiviual had in 

the past Legal institutions 
Numerical 

Past_Debt_sum 
The amount of debts (in EUR). a certain indiviual had in 

the past Legal institutions 
Numerical 

Employment_duration_months Employment duration at current workplace in months Legal institutions Numerical 

Has_activ_credit Has applicant current credit? Legal institutions Boolean 

Active_credit_sum The amount of credit (in EUR). a certain indiviual has now Legal institutions Numerical 

Active_credit_monthly_sum Monthly amount of payments for credit Legal institutions Numerical 

DSTI_official Official Debt-to-Income ratio Legal instututions Numerical 

Req_amount Requested loan amount 
Filled by 
applicant 

Numerical 

Marital_status Marital status (Married/single) 
Filled by 
applicant 

Class 

Age Age 
Filled by 
applicant 

Numerical 

Gender Gender (Male/Female) 
Filled by 
applicant 

Class 

City_classifier 
Classifier of cities by its population (Big city>100k citizens; 
30k<Medium city<100k; and Small city<30k). Data taken 

from worldpopulationreview.com 

Filled by 
applicant 

Class 

Filled_income Income amount filled by individual 
Filled by 
applicant 

Numerical 

Income_Source 
Income source filled by individual (Labour in Lithuania. 

individual activity. state officer and so on.) 
Filled by 
applicant 

Class 

Children Number of children 
Filled by 
applicant 

Numerical 

Filled_obligations_monthly 
Amount of current monthly financial commitments. filled by 

customer in EUR 
Filled by 
applicant 

Numerical 

Application_filling_duration How long customer fills the application form in seconds 
Filled by 
applicant 

Numerical 

Returning_30_days Has customer already filled application during the last 30d 
Filled by 
applicant 

Boolean 

Income_fill_difference 
It is calculated by such formula: filled income - official 

income.  
Behavioral Numerical 

Doc_Type 
What type of document was used to confirm identity 

(passport. identity card. etc.) 
Behavioral Class 

Auth_duration 
What was duration of identity authentication process in 

seconds 
Behavioral Numerical 

Auth_Number 
How many times. customer tried to authenticate his 

identity 
Behavioral Numerical 

 

http://worldpopulationreview.com/
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Appendix 2 – Correlation matrix of numerical variables 
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Appendix 3 – Categorical variables distribution 
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Appendix 4 – The program code for binary classification.  

 

#Code for binary classification 

#-------------------------------------------------------------------------- 

#Libraries 

Sys.setenv(LANG="EN") 

library(readxl) 

#-------------------------------------------------------------------------- 

#uploading and cleaning dataset 

Final_dataset <- read_excel("Final_dataset.xlsx") 

Final_dataset=as.data.frame(Final_dataset) 

Final_dataset$Application_rating15=as.factor(Final_dataset$Application_rating

15) 

Final_dataset$Application_rating5class=as.factor(Final_dataset$Application_ra

ting5class) 

Final_dataset$Application_rating3class=as.factor(Final_dataset$Application_ra

ting3class) 

Final_dataset$Application_rating2class=as.factor(Final_dataset$Application_ra

ting2class) 

Final_dataset$Returning_30_days_cat=as.factor(Final_dataset$Returning_30_days

_cat) 

Final_dataset$Doc_Type=as.factor(Final_dataset$Doc_Type) 

Final_dataset$Marital_status=as.factor(Final_dataset$Marital_status) 

Final_dataset$Gender=as.factor(Final_dataset$Gender) 

Final_dataset$City_classifier=as.factor(Final_dataset$City_classifier) 

Final_dataset$Income_Source=as.factor(Final_dataset$Income_Source) 

Final_dataset$Has_real_est=as.factor(Final_dataset$Has_real_est) 

Final_dataset$Has_open_debt=as.factor(Final_dataset$Has_open_debt) 

Final_dataset$Has_debt_Past=as.factor(Final_dataset$Has_debt_Past) 

Final_dataset$Employment_duration_months=as.numeric(Final_dataset$Employment_

duration_months) 

Final_dataset$Has_activ_credit=as.factor(Final_dataset$Has_activ_credit) 

Final_dataset$Email=as.factor(Final_dataset$Email) 

Final_dataset$Auth_Meth=as.factor(Final_dataset$Auth_Meth) 

 

str(Final_dataset) 

colnames(Final_dataset) 

#checking NA 

apply(Final_dataset,2, function(x) any(is.na(x))) 

 

#========================================================================== 

#Normalizing Variables 

min_max_norm <- function(x) { 

  (x - min(x)) / (max(x) - min(x)) 

} 

 

dataset_normalized=as.data.frame(lapply(Final_dataset[c("Application_filling_

duration","Req_amount","Age","Filled_income",                                           

"Official_income","Income_fill_difference",                                                   

"Children","Filled_obligations_monthly",                                                     

"Filled_DSTI","Quer_by_inst_90d","Open_debt_count",                                                    

"Past_Debt_count","Open_Debt_sum","Past_Debt_sum",                                                    

"Employment_duration_months","Active_credit_sum",                                                      

"Active_credit_monthly_sum","Auth_duration","Auth_Number")],  

                                        min_max_norm)) 

dataset_normalized$Application_rating2class=Final_dataset$Application_rating2

class 

dataset_normalized$Application_rating2_numerical=Final_dataset$Application_ra

ting2_numerical 

dataset_normalized$Returning_30_days_num=Final_dataset$Returning_30_days_num 

dataset_normalized$ID_Card=Final_dataset$ID_Card 

dataset_normalized$Passport=Final_dataset$Passport 
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dataset_normalized$Married=Final_dataset$Married 

dataset_normalized$Male=Final_dataset$Male 

dataset_normalized$Big_City=Final_dataset$Big_City 

dataset_normalized$Med_city=Final_dataset$Med_city 

dataset_normalized$Labour_LT=Final_dataset$Labour_LT 

dataset_normalized$Labour_Abroad=Final_dataset$Labour_Abroad 

dataset_normalized$Individual_work=Final_dataset$Individual_work 

dataset_normalized$State_officer=Final_dataset$State_officer 

dataset_normalized$Has_real_est_num=Final_dataset$Has_real_est_num 

dataset_normalized$Has_open_debt_num=Final_dataset$Has_open_debt_num 

dataset_normalized$Has_debt_Past_num=Final_dataset$Has_debt_Past_num 

dataset_normalized$Has_activ_credit_num=Final_dataset$Has_activ_credit_num 

 

#========================================================================== 

#Exploratory analysis 

#1. Means 

str(Final_dataset) 

colnames(dataset_normalized) 

numerical_dataset=Final_dataset[,c("Application_rating2class","Application_fi

lling_duration", 

                                   

"Req_amount","Age","Filled_income","Official_income","Income_fill_difference"

, "Children","Filled_obligations_monthly","Filled_DSTI",                                   

"Quer_by_inst_90d","Open_debt_count","Past_Debt_count",                                   

"Open_Debt_sum","Past_Debt_sum","Employment_duration_months",                                   

"Active_credit_sum","Active_credit_monthly_sum","Auth_duration", 

                                   "Auth_Number","DSTI_official")] 

summary(numerical_dataset) 

#-------------------------------------------------------------------------- 

#Checking means: 

aggregate(numerical_dataset[,2:21], 

list(numerical_dataset$Application_rating2class), mean) 

 

########################################################################### 

#Correlation and interdependence 

########################################################################### 

 

myvars<-c("Application_filling_duration", 

          

"Req_amount","Age","Filled_income","Official_income","Income_fill_difference"

, 

          "Children","Filled_obligations_monthly", 

          "Quer_by_inst_90d","Open_debt_count","Past_Debt_count", 

          "Open_Debt_sum","Past_Debt_sum","Employment_duration_months", 

          "Active_credit_sum","Active_credit_monthly_sum","Auth_duration", 

          "Auth_Number","DSTI_official") 

 

d=Final_dataset[myvars] 

#Generate correlation matrix 

cor(d, use="pairwise.complete.obs") 

#Visualising correlation 

library(corrplot) 

M <- cor(d, use="pairwise.complete.obs") 

corrplot(M, method = "number") 

(order.AOE <- corrMatOrder(M, order="AOE")) 

(order.FPC <- corrMatOrder(M, order="FPC")) 

(order.hc <- corrMatOrder(M, order="hclust")) 

(order.hc2 <- corrMatOrder(M, order="hclust", hclust.method="ward")) 

corrplot(M, method="number", col = "Black", 

         cl.cex = 1, number.cex = 0.8, tl.col="Black") 

help("corrplot") 

M.AOE <- M[order.AOE,order.AOE ] 

M.FPC <- M[order.FPC,order.FPC ] 

M.hc <- M[order.hc, order.hc ] 
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M.hc2 <- M[order.hc2,order.hc2] 

par(ask=FALSE) 

png(height=1200, width=1500, pointsize=10, file="overlap.png") 

corrplot(M.FPC, tl.cex=2, tl.col='black', method='number', 

         addCoef.col = "grey") # Original order 

dev.off() 

corrplot(M.FPC, tl.cex=1, tl.col='black') # The first principal component order 

 

#-------------------------------------------------------------------------- 

#spliting cleaned data 

library(ROCR) 

library(sjPlot) 

#library(caret) 

set.seed(65450) 

#set.seed(65451) - for second split 

#set.seed(65452) - for third split 

split <- sample(c(TRUE, FALSE), nrow(dataset_normalized), replace=TRUE, 

prob=c(0.8,0.2)) 

training=dataset_normalized[split,] 

testing=dataset_normalized[!split,] 

summary(testing) 

colnames(testing) 

#------------------------------------- 

# Sampling Training data 

library(ROSE) 

library(randomForest) 

library(caret) 

library(e1071) 

library(performanceEstimation) 

summary(training$Application_rating2class) 

#Random Oversampling 

oversampled_training <- ovun.sample(Application_rating2class~., data = 

training, method = "over", N = 29836, seed = 12345)$data 

summary(oversampled_training$Application_rating2class) 

#SMOTE 

Smote_training <- smote(Application_rating2class~.,data = training, perc.over 

= 0.5, k=10, perc.under = 3) 

summary(Smote_training$Application_rating2class) 

#-------------------------------------------------------------------------- 

set.seed(123) 

 

#========================================================================== 

# Logistic Regression 

#========================================================================== 

#prediction 

library(pROC) 

library(caret) 

library(InformationValue) 

library(ISLR) 

start_time_Logistic <- Sys.time() 

set.seed(1123) 

 

 

regression=glm(Application_rating2class~Application_filling_duration+Req_amou

nt+Age+Official_income+ 

                 Income_fill_difference+Children+Filled_obligations_monthly+ 

                 Quer_by_inst_90d+Open_debt_count+Past_Debt_count+ 

                 

Open_Debt_sum+Past_Debt_sum+Employment_duration_months+Active_credit_sum+ 

                 Active_credit_monthly_sum+Auth_duration+Auth_Number+ 

                 Returning_30_days_num+ID_Card+Married+ 

                 Male+Big_City+Med_city+Labour_LT+ 

                Labour_Abroad+Individual_work+State_officer+Has_real_est_num+ 

                 Has_open_debt_num+Has_debt_Past_num+Has_activ_credit_num, 
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               data = training, family=binomial(link="logit")) 

end_time_Logistic<-Sys.time() 

Logistic_duration=end_time_Logistic-start_time_Logistic 

Logistic_duration 

 

summary(regression) 

# Evaluation of regression 

library(car) 

vif(regression) 

# AUC 

probabilities = predict(regression,testing,type="response") 

roc_object <- roc( testing$Application_rating2class,probabilities) 

plot(roc_object, main="ROC Curve [Logistic Regression]",print.auc=TRUE, 

print.auc.x = 0.5, print.auc.y = 0.3, add=FALSE) 

auc(roc_object) 

 

#Confusion matrix 

confusionMatrix(testing$Application_rating2class, probabilities) 

 

#============================================================================ 

# RANDOM FOREST 

#============================================================================ 

  

#Random Forest 

library(randomForest) 

colnames(training) 

 

?randomForest 

#Short Data 

start_time_RF <- Sys.time() 

start_time_RF 

rf=randomForest(Application_rating2_numerical~Application_filling_duration+Re

q_amount+Age+Official_income+ 

                  Income_fill_difference+Children+Filled_obligations_monthly+ 

                  Quer_by_inst_90d+Open_debt_count+Past_Debt_count+ 

    Open_Debt_sum+Past_Debt_sum+Employment_duration_months+Active_credit_sum+ 

                  Active_credit_monthly_sum+Auth_duration+Auth_Number+ 

                  Returning_30_days_num+ID_Card+Married+ 

                  Male+Big_City+Med_city+Labour_LT+ 

                Labour_Abroad+Individual_work+State_officer+Has_real_est_num+ 

                  Has_open_debt_num+Has_debt_Past_num+Has_activ_credit_num, 

                      ntree=200,mtry=5,  

                data = oversampled_training 

                ) 

end_time_RF<-Sys.time() 

RF_duration=end_time_RF-start_time_RF 

RF_duration 

 

# Confusion 

RF2_predictions <- predict(rf, testing, type = "class") 

confusionMatrix(testing$Application_rating2class,RF2_predictions) 

 

#ROC 

test.predictions_RF <- predict(rf, newdata=testing) 

roc.RFtest <- roc(testing$Application_rating2class, 

as.numeric(test.predictions_RF)) 

plot(roc.RFtest, add = FALSE,col = "Blue", print.auc=TRUE, print.auc.x = 0.5, 

print.auc.y = 0.3) 

 

print(rf) 

rf 

# Plotting model 

plot(rf) 
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# Importance plot 

importance(rf) 

# Variable importance plot 

varImpPlot(rf) 

 

#============================================================================ 

# SVM  

#============================================================================ 

library(e1071) 

 

Start_time_SVM<-Sys.time() 

set.seed(123) 

svm_fit=svm(Application_rating2_numerical~Application_filling_duration+Req_am

ount+Age+Official_income+ 

              Income_fill_difference+Children+Filled_obligations_monthly+ 

              Quer_by_inst_90d+Open_debt_count+Past_Debt_count+ 

    Open_Debt_sum+Past_Debt_sum+Employment_duration_months+Active_credit_sum+ 

              Active_credit_monthly_sum+Auth_duration+Auth_Number+ 

              Returning_30_days_num+ID_Card+Married+ 

              Male+Big_City+Med_city+Labour_LT+ 

              Labour_Abroad+Individual_work+State_officer+Has_real_est_num+ 

              Has_open_debt_num+Has_debt_Past_num+Has_activ_credit_num, 

            data = Smote_training, kernel="radial",gamma=0.05, 

        cost=2) 

end_time_SVM<-Sys.time() 

SVM_duration=end_time_SVM-Start_time_SVM 

SVM_duration 

 

print(svm_fit) 

summary(svm_fit) 

svm_fit 

 

# Predict the testing set with the trained model 

SVM_predictions <- predict(svm_fit, testing, type = "class") 

 

# Accuracy and other metrics 

confusionMatrix(testing$Application_rating2class, SVM_predictions) 

 

svmPrediction=predict(svm_fit,testing) 

 

roc_svm_test <- roc(response = testing$Application_rating2class, predictor 

=as.numeric(svmPrediction)) 

plot(roc_svm_test, add = FALSE,col = "green", print.auc=TRUE, print.auc.x = 

0.5, print.auc.y = 0.3) 

 

#============================================================================ 

# XGBoost 

library(xgboost) 

?xgboost 

library(pacman) 

 

#prepare training data 

colnames(training_short) 

trainm=data.matrix(oversampled_training[,c("Application_filling_duration","Re

q_amount","Age","Official_income",                           

"Income_fill_difference","Children","Filled_obligations_monthly",                             

"Quer_by_inst_90d","Open_debt_count","Past_Debt_count",                              

"Open_Debt_sum","Past_Debt_sum","Employment_duration_months","Active_credit_s

um",                                

"Active_credit_monthly_sum","Auth_duration","Auth_Number",                            

"Returning_30_days_num","ID_Card","Married","Male","Big_City","Med_city","Lab

our_LT", 
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"Labour_Abroad","Individual_work","State_officer","Has_real_est_num",                           

"Has_open_debt_num","Has_debt_Past_num","Has_activ_credit_num")]) 

 

train_label = oversampled_training[,"Application_rating2_numerical"] 

 

train_matrix = xgb.DMatrix(data = as.matrix(trainm), label = train_label) 

 

#prepare validation data 

testm=data.matrix(testing[,c("Application_filling_duration","Req_amount","Age

","Official_income",                                  

"Income_fill_difference","Children","Filled_obligations_monthly", 

                      "Quer_by_inst_90d","Open_debt_count","Past_Debt_count",                       

"Open_Debt_sum","Past_Debt_sum","Employment_duration_months","Active_credit_s

um",                        

"Active_credit_monthly_sum","Auth_duration","Auth_Number",                                    

"Returning_30_days_num","ID_Card","Married",                                     

"Male","Big_City","Med_city","Labour_LT",                               

"Labour_Abroad","Individual_work","State_officer","Has_real_est_num",                                       

"Has_open_debt_num","Has_debt_Past_num","Has_activ_credit_num")]) 

 

test_label = testing[,"Application_rating2_numerical"] 

 

test_matrix = xgb.DMatrix(data = as.matrix(testm), label = test_label) 

 

?xgb.train 

#parameters 

xgb_params = list(objective   = "binary:logistic", 

                  eval_metric = "error", 

                  max_depth   = 6, 

                  eta         = 0.01, 

                  gammma      = 1, 

                  colsample_bytree = 0.5, 

                  min_child_weight = 2) 

 

#model 

 

set.seed(123) 

start_time_XGboost<-Sys.time() 

XGBoost_model = xgb.train(params = xgb_params, data = train_matrix, 

                          nrounds = 500) 

 

end_time_XGboost<-Sys.time() 

XGboost_duration=end_time_XGboost-start_time_XGboost 

XGboost_duration 

 

#feature importance 

imp = xgb.importance(colnames(train_matrix), model = XGBoost_model) 

xgb.plot.importance(imp) 

 

 

# Confusion matrix 

XGB2_predictions <- predict(XGBoost_model, newdata = test_matrix, type = 

"class") 

confusionMatrix(testing$Application_rating2class, XGB2_predictions) 

 

#NORMAL AUC 

p_full = predict(XGBoost_model, newdata = test_matrix) 

plot.roc(test_label, p_full, col="Orange", print.auc=T, print.auc.y=0.5, 

add=FALSE) 
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#---------------------- 

#Keras ANN 

#---------------------- 

 

library(keras) 

library(lime) 

library(rsample) 

library(recipes) 

 

?keras_model_sequential 

model_keras22 <- keras_model_sequential() 

 

model_keras22 %>%  

   

  # First hidden layer 

  layer_dense( 

    units              = 20,  

    kernel_initializer = "uniform",  

    activation         = "relu",  

    input_shape        = ncol(trainm)) %>%  

   

  # Dropout to prevent overfitting 

  layer_dropout(rate = 0.1) %>% 

   

  # Second hidden layer 

  layer_dense( 

    units              = 20,  

    kernel_initializer = "uniform",  

    activation         = "relu") %>%  

   

  # Dropout to prevent overfitting 

  layer_dropout(rate = 0.1) %>% 

   

   

  # Output layer 

  layer_dense( 

    units              = 1,  

    kernel_initializer = "uniform",  

    activation         = "sigmoid") %>%  

   

  # Compile ANN 

  compile( 

    optimizer = optimizer_adam(learning_rate = 0.0001), 

    loss      = 'binary_crossentropy', 

    metrics   = c('accuracy')) 

model_keras22  

 

 

start_time_ANN2L<-Sys.time() 

history <- fit( 

  object           = model_keras22,  

  x                = as.matrix(trainm),  

  y                = train_label, 

  batch_size       = 32,  

  epochs           = 300, 

  validation_split = 0.20 

) 

End_time_ANN2L<-Sys.time() 

Duration_ANN2_L=End_time_ANN2L-start_time_ANN2L 

Duration_ANN2_L 

 

print(history) 

 

plot(history) 
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#---------------------------------- 

# 2 Layers results 

#---------------------------------- 

# Confusion matrix 

x = as.matrix(testm) 

predictions_keras=model_keras22 %>% predict(x, batch_size=32)  

y_pred=round(predictions_keras) 

predictions_keras=as.numeric(predictions_keras[,1]) 

confusion_matrix=table(test_label,y_pred) 

confusion_matrix 

#Auc 

roc_object_Keras <- roc(testing$Application_rating2class, predictions_keras) 

plot(roc_object_Keras, main="ROC Curve [Keras Neural Network]",print.auc=TRUE, 

print.auc.x = 0.5, print.auc.y = 0.3, add=FALSE) 

auc(roc_object_Keras) 

 

#------------------------- 

# 4 layers 

model_keras4 <- keras_model_sequential() 

 

model_keras4 %>%  

   

  # First hidden layer 

  layer_dense( 

    units              = 20,  

    kernel_initializer = "uniform",  

    activation         = "relu",  

    input_shape        = ncol(trainm)) %>%  

   

  # Dropout to prevent overfitting 

  layer_dropout(rate = 0.1) %>% 

   

  # Second hidden layer 

  layer_dense( 

    units              = 20,  

    kernel_initializer = "uniform",  

    activation         = "relu") %>%  

   

  # Dropout to prevent overfitting 

  layer_dropout(rate = 0.1) %>% 

   

  # Third hidden layer 

  layer_dense( 

    units              = 20,  

    kernel_initializer = "uniform",  

    activation         = "relu") %>%  

   

  # Dropout to prevent overfitting 

  layer_dropout(rate = 0.1) %>%   

   

  # Fourth hidden layer 

  layer_dense( 

    units              = 20,  

    kernel_initializer = "uniform",  

    activation         = "relu") %>%  

   

  # Dropout to prevent overfitting 

  layer_dropout(rate = 0.1) %>%  

   

  # Output layer 

  layer_dense( 

    units              = 1,  

    kernel_initializer = "uniform",  
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    activation         = "sigmoid") %>%  

   

  # Compile ANN 

  compile( 

    optimizer = optimizer_adam(learning_rate = 0.0001), 

    loss      = 'binary_crossentropy', 

    metrics   = c('accuracy')) 

model_keras4  

 

 

start_time_ANN4L<-Sys.time() 

history <- fit( 

  object           = model_keras4,  

  x                = as.matrix(trainm),  

  y                = train_label, 

  batch_size       = 32,  

  epochs           = 300, 

  validation_split = 0.20 

) 

 

End_time_ANN4L<-Sys.time() 

Duration_ANN4_L=End_time_ANN4L-start_time_ANN4L 

Duration_ANN4_L 

 

print(history) 

 

plot(history) 

 

#---------------------------------- 

# 4 Layers results 

#---------------------------------- 

# Confusion matrix 

x = as.matrix(testm) 

predictions_keras=model_keras4 %>% predict(x, batch_size=32)  

y_pred=round(predictions_keras) 

predictions_keras=as.numeric(predictions_keras[,1]) 

confusion_matrix=table(test_label,y_pred) 

confusion_matrix 

#Auc 

roc_object_Keras <- roc(testing$Application_rating2class, predictions_keras) 

plot(roc_object_Keras, main="ROC Curve [Keras Neural Network]",print.auc=TRUE, 

print.auc.x = 0.5, print.auc.y = 0.3, add=FALSE) 

auc(roc_object_Keras) 


