

VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

MASTER’S STUDY PROGRAMME

MODELLING AND DATA ANALYSIS

ANALYSIS OF STATISTICAL AND MACHINE LEARNING

TECHNIQUES FOR PREDICTING INDIVIDUAL CREDIT RATING

BASED ON LITHUANIAN DATA

Master’s thesis

 Author: Airidas Neifaltas

 VU email address: airidas.neifaltas@mif.stud.vu.lt

 Supervisor: dr. Viktor Medvedev

Vilnius

2023

Table of Contents

LIST OF FIGURES --- I
LIST OF TABLES -- II
LIST OF ABBREVIATIONS --- III
ABSTRACT --- IV

1.INTRODUCTION --- 1

2.LITERATURE REVIEW -- 4

2.1.MULTICLASS CLASSIFICATION PROBLEM -- 5

2.2.BINARY CLASSIFICATION PROBLEM --- 8

2.3.LITERATURE REVIEW SUMMARY --- 11

3.DATA DESCRIPTION--- 13

3.1.DATA PREPROCESSING -- 14

3.2.RISK CLASSES --- 15

3.3.TEST AND TRAIN SPLITS --- 16

3.4.DATA BALANCING -- 16

3.5.SUMMARY STATISTICS -- 17

4.METHODOLOGY --- 18

4.1.STATISTICAL AND MACHINE LEARNING TECHNIQUES --------------------------------------- 19

4.1.1.LOGISTIC REGRESSION -- 19

4.1.2.MULTINOMIAL LOGISTIC REGRESSION --- 20

4.1.3.SUPPORT VECTOR MACHINE -- 20

4.1.4.RANDOM FOREST -- 21

4.1.5.XGBOOST --- 21

4.1.6.ARTIFICIAL NEURAL NETWORKS -- 22

4.2.PERFORMANCE EVALUATION METRICS --- 23

4.2.1.BINARY CLASSIFICATION METRICS --- 23

4.2.2.MULTICLASS CLASSIFICATION METRICS -- 24

4.2.3.FINAL PERFORMANCE EVALUATION FORMULA -- 25

5.RESULTS --- 27

5.1.EMPIRICAL SET-UP -- 27

5.2.1.ACCURACY RESULTS --- 28

5.2.2.AUC RESULTS -- 30

5.2.3.TRAINING TIME RESULTS --- 31

5.2.4.THE RISKIEST CLASS CLASSIFICATION RESULTS --- 32

5.2.5.RECALL RESULTS -- 34

5.2.6.PRECISION RESULTS -- 35

5.2.7.FALSE POSITIVE RATE RESULTS --- 35

5.2.8.FALSE NEGATIVE RATE RESULTS -- 37

5.2.9.FINAL SCORES --- 38

6.CONCLUSIONS AND RECOMMENDATIONS --- 42

REFERENCES--- 44

APPENDICES--- 47

List of Figures

Figure 1. Example of One-Hot Encoding procedure ... 14

Figure 2. Tables of approval rates for different groupings of target variable ... 16

Figure 3. The process of analysis .. 18

Figure 4. The example of score calculation for Accuracy, in binary classification and no resampling applied ... 25

List of Tables

Table 1. A list of the past studies in credit scoring field ... 4

Table 2. An overview of studies done for multiclass classification problem ... 5

Table 3. List of accuracy measures used in the past literature for multiclass classification algorithms 7

Table 4. An overview of studies done for Binary classification problem ... 8

Table 5. List of accuracy measures used in the past literature for Binary classification algorithms 11

Table 6. Summary Statistics of numerical features used in our analysis .. 17

Table 7. Example of binary classification confusion matrix ... 23

Table 8. Example of multiclass classification confusion matrix ... 24

Table 9. Searching space of hyper parameters .. 27

Table 10. Results of Accuracy measure .. 28

Table 11. Score table from Accuracy measure ... 29

Table 12. Results of AUC measure ... 30

Table 13. Score table from AUC metric ... 30

Table 14. Results of Training Time .. 31

Table 15. Score table from Training Time .. 32

Table 16. Results of the Riskiest class classification accuracy ... 32

Table 17. Score table from the riskiest class accuracy metric ... 33

Table 18. Results from the Recall metric .. 34

Table 19. Score table from Recall metric .. 34

Table 20. Results from Precision metric ... 35

Table 21. Scores table from Precision metric ... 35

Table 22. Results of false positive rate for the multiclass classification ... 36

Table 23. Scores table from the False Positive rate metric ... 36

Table 24. Results of False Negative rate ... 37

Table 25. Scores table of the False Negative rate metric .. 37

Table 26. Final Scores table .. 38

Table 27. Performance of RF and XGBoost across all the experiments ... 39

List of Abbreviations

Abbreviation Definition

MLR Multinomial Logistic Regression

DT Decision Tree

RF Random Forest

XGBoost Extreme Gradient Boosting

NN Neural Network

MLP Multilayer Perceptron

DBN Deep Belief Network

SVM Support Vector Machine

ML Machine Learning

ANN Artificial Neural Network

AUC Area under Receiver Operating Characteristic

ROC Receiver Operating Characteristic

LR Logistic Regression

LDA Linear Discriminant Analysis

NB Naïve Bayes

DNN Deep Neural Network

TDNN Time Delay Neural Network

RBFN Radial Basis Function Neural Network

CNN Convolutional Neural Network

K-S Statistic Kolmogorov-Smirnov Statistic

FN False Negative

FP False Positive

TP True Positive

TN True Negative

TPR True Positive Rate

FPR False Positive Rate

SMOTE Synthetic Minority Oversampling Technique

ROS Random Oversampling

Abstract

Credit risk assessment is one of the most crucial elements in the financial sector. The study is

based on one Lithuanian Loan-comparison platform’s applicants' data. Loan-comparison

platforms are innovative financial intermediaries that allow consumers to compare several loan

offers and choose the most self-favourable. This study presents a comprehensive analysis of

statistical and machine learning techniques for predicting individual credit scores using Lithuanian

data. Five algorithms, i.e., Logistic Regression, Support Vector Machine, Random Forest,

XGBoost and Artificial Neural Networks, are included in our analysis. To deal with the high class

imbalance problem the resampling techniques Random Oversampling and SMOTE are also

applied. In addition, the analysis is done using binary, 3-Class and 5-Class classification problems.

It is the first study in the credit scoring field, to the best of the author’s knowledge, that combines

the results from both binary and multiclass classification problems. The performance is assessed

considering different performance evaluation metrics (Accuracy, AUC, Training time, Precision

(Macro Precision), Recall (Macro Recall), False Positive rate and False Negative rate). The final

scoring method was proposed to combine the results of different classification experiments. The

Random Forest and XGBoost were the best performing algorithms in predicting individual credit

scores based on the final scoring method. Empirical results revealed that the best algorithms

perform comparatively better in 3-Class classification problem than in binary classification case.

Furthermore, the resampling techniques help to predict the minority (risky) class significantly

better, where the XGBoost algorithm with the Random Oversampling technique applied reaches

an impressive 0.804 Accuracy in predicting the Riskiest E class in the 3-Class classification

problem. Finally, this study provides recommendations for applying the credit scoring system in

the Lithuanian Loan-comparison platform. Implementing a credit scoring system could help

reduce the possibility of lending to a risky customer and avoid additional expenses for external

credit scoring agencies that may lack complete information about the customer.

Key words: Credit score prediction, Machine learning, Risk analysis, Resampling techniques,

Binary classification, Multiclass classification

1

1. Introduction

Credit scoring is one of the main determinants of sustainability in the financial world. Due to

its importance after the 2007-2008 Financial crisis, many researchers tried to maximize the

prediction rates to classify potential risks and defaults correctly. Even though traditional banks

have developed their individual credit risk assessment processes, technological innovations have

opened new opportunities for customers to access financial services. The scope of this research

will be based on one Lithuanian Loan-comparison platform's applicants' data. Loan-comparison

platforms are innovative financial intermediaries that allow consumers to compare several loan

offers and choose the most self-favourable. However, improper lending could cause enormous

losses for creditors. The individual credit scoring system could help the Loan-comparison

platform to better distinguish between risky and reliable customers by using privately obtained

data about each customer. That would allow company to avoid the possible bias from external

credit rating agencies that may lack complete information about the borrower and, in turn, to save

some financial resources.

The aim of this study is to analyse the potential of statistical and machine learning techniques

for predicting individual credit ratings using the newly introduced Lithuanian credit dataset and to

propose a methodology that allows combining the results of different classification methods based

on performance evaluation metrics. To achieve it, the following objectives must be solved:

• Extensive literature review;

• Classification in both binary and multiclass problems;

• Comparison of different resampling techniques;

• Evaluation of statistical and machine learning techniques for predicting individual

credit ratings performance using a variety of performance evaluation metrics;

• Suggest the methodology, that allows the results of different classification methods to

be combined based on the final score of the performance evaluation metrics.

Based on the extensive literature review, it was decided to use five statistical and machine

learning techniques in our work. Traditional classification techniques like Logistic Regression

(LR) and Support Vector Machine (SVM) are used, together with tree-based ensemble methods

Random Forest (RF) and eXtreme Gradient Boosting (XGBoost). Finally, we will implement

different Artificial Neural Network (ANN) architectures to study the potential of neural networks

on credit scoring problem.

The unique detail of our research is the implementation and comparison of statistical and

machine learning techniques in both binary and multiclass classification problems. The

majority of past authors used only binary classification to study the performance of statistical and

2

machine learning techniques in credit scoring. The multiclass type classification was not

extensively studied and was mostly used in corporate credit risk assessment problems.

Additionally, none of our analysed authors used both binary and multiclass classification problems

to compare the performance of classifiers. The nature of the Lithuanian credit dataset allows us to

distribute credit ratings into Two, Three and Five classes. Such different environments will allow

us to compare the potential of classifiers more precisely by analysing their performance in different

types of problems using the same dataset.

Usually, credit scoring datasets face serious class imbalance problem. Naturally, only a

minority of customers can be considered risky and probable to default. To deal with the class

imbalance problem, our analysis will use different resampling techniques like Random

Oversampling (ROS) and Synthetic Minority Oversampling Technique (SMOTE). The potential

of resampling techniques will be compared with the performance of non-resampled data.

The results of statistical and machine learning techniques will be obtained using the extensive

list of performance evaluation metrics. Simple accuracy may not be the primary goal in credit

risk assessment problem since the misclassification of the risky class customers causes the most

significant losses. On the other hand, by misclassifying a reliable customer, the cost of potential

borrower and revenue appears. Having different sources of potential losses, it is necessary to

compare accuracy in general and the performance of classifiers for each class of credit rating. This

is why we will use various performance evaluation metrics like Accuracy, AUC, Training time,

Precision (Macro Precision), Recall (Macro Recall), False Positive rate and False Negative rate in

our study.

The final scoring formula is also presented based on the author’s expert knowledge of the

market specifics. This score would allow us to rank the statistical and machine learning techniques

combining the results from different performance evaluation metrics through all the classification

problems using various resampling techniques. To the best of the author’s knowledge, none of the

previous studies created such a final scoring formula to combine the results from various

experiments, which adds additional novelty to our study.

 The experimental results show that ensemble classifiers (Random Forest and XGBoost)

performed impressively well compared with other statistical and machine learning techniques.

Algorithms performed better when resampling techniques (ROS and SMOTE) were applied. The

most visible improvements of resampling techniques were visible with respect to the False Positive

rate and the classification Accuracy of the Riskiest customers. This aspect is the most crucial part

of the credit scoring field, and even slight improvements allow us to avoid possible losses. Based

on these results, a unique methodology for the Lithuanian loan comparison platform can be

suggested. The use of both Random Forest and XGBoost algorithms, together with minority class

3

oversampling techniques, must be considered in implementing risk assessment systems in real-life

scenarios.

The paper is organized as follows. Section 2 reviews the related studies on credit rating

classification. Section 3 introduces the dataset used in our research and all the pre-processing steps.

Section 4 presents the methodology of statistical and machine learning techniques, together with

an extensive description of performance evaluation metrics. Section 5, presents empirical results

and findings. Finally, Section 6 draws the main conclusions, suggests possible implementations

and provides future work potential.

4

2. Literature review

The appropriate analysis of statistical and machine learning techniques requires an

understanding of what has already been done in this field. Extensive literature analysis of

techniques in predicting and classifying credit scores was one of the primary tasks of this work. It

would allow us to understand the most successful algorithms so far and what measures can be

employed to evaluate the performance of those techniques.

The majority of the recent studies have concentrated on binary classification problems (e.g.,

individual will default or not). However, such classification does not account for the situation in

the real world. Individuals are not only “Black and White”, the intermediate levels of riskiness are

also possible. Therefore, we will analyse three types of classification problems (binary, 3-class,

and 5-class). Below, in Table 1, the type of classification problems analysed in the previous studies

are presented.

 Table 1. A list of the past studies in credit scoring field

Research Binary Problem Multiclass

Ampountolas et al. (2021) Yes

Dastile and Celik (2021) Yes

Gunnarsson et al. (2021) Yes

Mahbobi et al. (2021) Yes

Moscato et al. (2021) Yes

Tripahi et al. (2021) Yes

Golbayani et al. (2020) Yes

Li and Chen (2020) Yes

Trivedi (2020) Yes

Munkhdalai et al. (2019) Yes

Sariannidis et al. (2019) Yes

Wallis et al. (2019) Yes

Cao et al. (2018) Yes

Hamori et al. (2018) Yes

Namvar et al. (2018) Yes

Zhu et al. (2018) Yes

Barboza et al. (2017) Yes

Luo et al. (2016) Yes

Lessmann et al. (2015) Yes

Wu et al. (2014) Yes

Brown and Mues (2012) Yes

Bellotti and Crook (2009) Yes

Lee (2007) Yes

Baesens et al. (2003) Yes

5

Table 1 confirms that most researchers concentrated on binary classification problems, and

none of the studies analysed both binary and multiclass problems simultaneously. The nature of

our dataset allows us to separate customers either in binary or multiclass problems (Details will be

presented in the next section).

2.1. Multiclass classification problem

Having such a background, Table 2 provides a detailed overview of the studies done in

multiclass classification field.

Table 2. An overview of studies done for multiclass classification problem

Multiclass

Data

Individuals/

Corporate credit

scores

Number

of classes
MLR Ensembles DT RF NN SVM

Ampountolas et
al. (2021)

Individuals 3 AdaBoost,

XGBoost
Yes Yes MLP

Golbayani et al.
(2020)

Corporate 19 Bagged Yes MLP Yes

Wallis et al.
(2019)

Corporate 6 Yes
Gradient
Boosted

Machines

 Yes Yes

Munkhdalai et al.

(2019)
Individuals 8 Yes XGBoost Yes MLP Yes

Luo et al. (2016) Corporate 3 Yes MLP and

DBN
Yes

Wu et al. (2014) Corporate 9 Bagging Yes MLP Yes

Lee (2007) Corporate 5 Yes

Total 3 4 3 4 5 6

In Table 2, only those machine learning techniques that were repeated more than twice through

all the studies are included. Machine learning techniques like Support Vector Machines and

Multilayer Perceptron were the most popular methods in classifying multiclass credit scores.

Random Forest and other Ensemble methods received more attention in recent studies. Traditional

statistical and machine learning techniques like Multinomial Logistic Regression and Decision

Tree were also popular in past studies.

Across all reviewed studies, only Ampountolas et al. (2021) and Munkhdalai et al. (2019) have

devoted their analysis to classifying individual (People) credit scores. All other authors have been

analysing the performance of statistical and machine learning techniques in the corporate

(companies’ riskiness) field. Even though the objective to classify the level of riskiness for

companies and individuals is the same, the features that describe individuals differ a lot and, in

turn, may affect the whole classification accuracy. A shortage of studies in Multiclass classification

for individuals implies a considerable novelty to our study and highlights its importance.

Furthermore, the previous studies have chosen a specific number of classes they used in their

analysis. For example, Wallis et al. (2019) have assigned Moody’s Ratings {Aaa, Aaa1, Aa2, Aa3}

6

to the “High Grade” category, {Baa1, Baa2, Baa3} to “Upper Medium Grade” and so on. Luo et

al. (2016) have also aggregated rating categories to A = {A, AA, AAA}, B = {B, BB, BBB} and

C = {C, CC, CCC}. Having such an aggregation of credit scores does not allow us to correctly

compare the results of these studies since, by nature, higher dimension (19 classes) problems are

more complex and are associated with poorer accuracy than smaller dimension (3 or 5 classes)

problems. Our study will face this problem and compare classifiers' performance via two different

multiclass problems (3-class and 5-class). It is presumed that by doing so, we will be able to obtain

more stable results of statistical and machine learning techniques’ performances.

Ampountolas et al. (2021) and Golbayani et al. (2020) found that tree-based methods classify

credit scores with the highest accuracy across all the techniques. Ampountolas et al. (2021)

highlight that machine learning algorithms (Random Forest, XGBoost and AdaBoost) can perform

well without full credit history information. These techniques achieved a very similar accuracy of

80%. Our study also lacks complete information about an individual’s financial history, but the

results of these three ensembles are very promising. Golbayani et al. (2020) also show that tree-

based methods can achieve at least 5% higher accuracy than MLP and SVM techniques.

Wallis et al. (2019) and Munkhdalai et al. (2019) approve the findings of the previous authors.

Wallis et al. (2019) summarize that non-parametric techniques like Random Forest or SVM

outperform parametrical techniques. Especially because financial data does not follow traditional

assumptions, which are needed for parametrical techniques. Munkhdalai et al. (2019) find the

superior performance of MLP and XGBoost techniques against traditional techniques like SVM

or Logistic Regression. The authors also highlight the fact that the Neural Network approach

(MLP) may be useless in the credit scoring field due to its “Black-Box” nature, which makes it

impossible to understand the relationship between the attributes and credit score itself.

Summarizing the studies done in the multiclass credit scores classification field, there is no

conclusive answer to which method is significantly superior. Statistical and machine learning

techniques should be compared individually on a given credit dataset to optimally decide which

method yields the highest accuracy. However, we do have the first signals that ensemble methods

and mostly Random Forest can be expected to be the best performing algorithm based on the most

recent studies.

Similar to Table 2, it is necessary to compare what performance evaluation metrics were the

most popular in the past studies. A single evaluation metric can be misleading or hide some

valuable information (e.g., False Negative cases in credit scoring problems are more dangerous

than False Positive cases. False Negative predictions lead to approving a loan to a risky person

who will probably default, and that causes financial loss for the lender). Table 3 presents evaluation

metrics used in past multiclass classification studies. It can be seen that every author used a

7

fundamental performance evaluation metric Accuracy rate, which will also be included in our

research. Additionally, we will use the AUC measure, which optimize the trade-off between

sensitivity and specificity by finding the optimal threshold. To be more precise, AUC is the

evaluation of a specific classifier as the threshold varies across all possible values.

Table 3. List of accuracy measures used in the past literature for multiclass classification algorithms

Binary Data Accuracy AUC

Measures obtained

from Confussion

matrix

Confussion

matrix

Prediction Distance

measures

Ampountolas et al.
(2021)

Yes Yes Precision and Recall Yes

Golbayani et al. (2020) Yes Notch Distance

Munkhdalai et al. (2019) Yes Yes TPR and FPR

Wallis et al. (2019) Yes

Luo et al. (2016) Yes Yes FN and FP Yes

Wu et al. (2014) Yes 1-Away accuracy

Lee (2007) Yes

Total 7 3 3 2 2

8

2.2. Binary classification problem

Similar to Table 1, an overview of studies that analysed binary credit scoring problems is

presented in Table 4.

Table 4. An overview of studies done for Binary classification problem

Differently than in the multiclass classification case, these authors analysed individuals’ credit

riskiness rather than companies. To be more specific, the majority of those studies considered

“default” status as the main dependent variable. Based on Table 4, we can confirm that most

statistical and machine learning techniques coincide with those analysed in the multiclass case.

Random Forest, Logistic Regression and Support Vector Machines are among the most popular

algorithms in classifying binary credit riskiness problems. Neural Networks and Decision tree

methods are also very popular, as they were in studies analysing multiclass problems. Linear

Binary Data

Domain of

interest
LR RF DT SVM LDA KNN NN Ensembles NB

Moscato et
al. (2021)

P2P

(individuals)
Yes Yes MLP

Mahbobi et
al. (2021)

individuals Yes Yes ANN; DNN

Tripathi et
al. (2021)

individuals Yes Yes Yes Yes Yes
MLP;TDNN;

RBFN

Gunnarsson
et al. (2021)

individuals Yes Yes Yes MLP; DBN XGboost

Dastile and
Celik (2021)

individuals CNN

Li and Chen
(2020)

individuals Yes Yes Yes Yes NN
AdaBoost,X

Gboost
Yes

Trivedi
(2020)

individuals Yes Yes Yes Yes

Sariannidis
et al. (2019)

individuals Yes Yes Yes Yes Yes

Cao et al.
(2018)

individuals Yes Yes Yes Yes Yes MLP XGboost

Namvar et
al. (2018)

P2P

(individuals)
Yes Yes Yes

Hamori et al.
(2018)

individuals Yes NN and DNN
Bagging,

Boosting

Zhu et al.
(2018)

individuals Yes Yes CNN

Barboza et.
al. (2017)

Companies Yes Yes Yes Yes ANN
Bagging,
Boosting

Lessmann et
al. (2015)

individuals Yes Yes Yes Yes Yes Yes Yes (various) Yes (various) Yes

Brown and
Mues (2012)

individuals Yes Yes Yes Yes Yes Yes MLP
Gradient

boosting

Bellotti and
Crook
(2009)

individuals Yes Yes Yes Yes

Baesens et
at. (2003)

individuals Yes Yes Yes Yes Yes MLP Yes

Total 12 13 9 10 8 7 13 7 5

9

Discriminant Analysis and Naïve Bayes are losing popularity in recent studies. At the same time,

Ensembles and K-Nearest Neighbours approaches often deal with binary credit riskiness problems.

Recent improvements and advantages of Deep Learning techniques, especially Convolutional

Neural Networks (CNN), have affected a lot of real-life classification tasks. However, only 2 of

our analysed authors employed Convolutional Neural Networks to classify binary problems, which

implies that these methods are needed to be researched further.

Baesens et al. (2003) is the oldest study included in our review. However, this is one of the

most famous studies in the whole credit classification field that compares the performance of

various algorithms. Authors found that SVM and NN methods yield great performance, but simple

classifiers like LR and LDA perform comparatively well. Having such a finding, it was

summarized that credit data is only weakly non-linear. Authors concluded that further research on

ensemble algorithms should be up-and-coming, comparing with traditional methods.

Bellotti and Crook (2009) approve the findings of Baesens et al. (2003) and confirm that SVM

is competitive with LR and LDA classifiers, while the KNN technique showed the poorest results.

 Naturally, credit datasets imply a high “class imbalance” problem due to a small proportion of

risky (defaulted) customers. Brown and Mues (2012) checked the performance of statistical and

machine learning techniques in the case of a high class imbalance environment. It was found that

Random Forest performs very well in such a scenario. Similar to the previous authors, it was found

that LR and LDA methods were relatively competitive, but Decision Tree and SVM were not

beneficial.

Lessmann et al. (2015) study could be called an update on a benchmarking study of

classification algorithms in the credit scoring field made by Baesens et al. (2003). The authors

found that some of the classifiers performed significantly better than LR. Especially, ensemble

methods were found to be outperforming the previous research-standard techniques. It was

concluded that RF could be recommended as a new benchmark algorithm.

A later study by Barboza et al. (2017) confirms that ensemble techniques boosting, bagging

and RF provide better classification accuracy. It is even highlighted that Random Forest may

produce 20% higher accuracy than LR or LDA.

In the last decade, deep learning algorithms have been increasingly popular in many real-world

applications. Credit scoring is not an exception. Hamori et al. (2018) compare the performance of

already successful ensemble techniques with various deep learning architectures. It was found that

boosting (ensemble) is still superior to other deep learning methods.

Later studies by Trivedi (2020), Li and Chen (2020), Moscato et al. (2021) and Gunnarsson et

al. (2021) also confirm that RF and other ensemble techniques could be called the best methods

for binary credit scoring classification.

10

Li and Chen (2020) also found that ensemble learning (especially RF and XGBoost)

outperforms individual classifiers. However, authors have also found that LR outperforms all other

counterparts in comparison to individual classifiers.

Moscato et al. (2021) devoted their study to analyzing the class imbalance problem and

comparing various resampling techniques. It was found that RF, together with the Random

Undersampling technique, yielded the best results. It can be seen that even in the studies analyzing

feature selection or class imbalance problems, Random Forest is dominating technique.

Gunnarson et al. (2021), similar to Hamori et al. (2018), compare ensembles with deep learning

methods (MLP and Deep Belief Network (DBN)). It was concluded that ensemble XGBoost is the

best-performing algorithm, and deep learning algorithms cannot outperform their counterparts

(with one layer) while being more computationally expensive. However, a few studies have

concluded with different outcomes. Tripathi et al. (2021) found that Time Delay Neural Network

(TDNN) outperformed the RF algorithm, while feature selection algorithms were also implied.

Furthermore, Mahbobi et al. (2021) found that SVM was the most successful technique (against

various Neural Networks and KNN) when resampling techniques were also considered.

Similar to the multiclass case, we need to compare the performance evaluation metrics used in

the binary credit riskiness classification field. Table 5 shows that accuracy and AUC metrics were

the most popular performance evaluation metrics in the past literature and almost every study used

these metrics. Sensitivity/Specificity, which was also very popular in past studies, helps to

understand more correctly what type of mistakes algorithms make and what enhances the

understanding of possible problems of our classifiers. Brier score, G-measure, F-measure and K-

S statistic were also used in the literature. However, their use was considerably rare.

11

Table 5. List of accuracy measures used in the past literature for Binary classification algorithms

Binary Data Accuracy AUC

Measures

obtained from

Confussion

matrix

G-measure
Brier

Score
F-Measure

K-S

statistic

Moscato et al.
(2021)

Yes Yes

Sensitivity,

Specificity and

FPR

Mahbobi et al.
(2021)

Yes Yes
Sensitivity and

Specificity
Yes Yes Yes

Tripathi et al.
(2021)

Yes Sensitivity and

Specificity
Yes

Gunnarsson et al.
(2021)

 Yes Yes

Dastile and Celik
(2021)

Yes Yes Yes

Li and Chen (2020) Yes Yes Yes Yes

Trivedi (2020) Yes FP and FN Yes

Sariannidis et al.
(2019)

Yes

Cao et al. (2018) Yes Yes

Namvar et al.
(2018)

Yes Yes

Sensitivity,

Specificity and
FPR

Yes

Hamori et al.
(2018)

Yes Yes Yes

Zhu et al. (2018) Yes Yes Yes

Barboza et al.
(2017)

Yes Yes
TP, TN, FP, FN,

Type I error, Type

II error

Lessmann et al.
(2015)

Yes Yes Yes Yes

Brown and Mues
(2012)

 Yes

Bellotti and Crook
(2009)

 Yes

Baesens et al.
(2003)

Yes Yes
Sensitivity and

Specificity

Total 14 14 7 3 5 3 3

2.3. Literature review summary

Many studies were already done in the field of credit scoring, which shows the topic's

relevance. Finding the best algorithm through all the studies was hard in the multiclass

classification problem. There are some signals that ensemble methods and mostly Random Forest

can be expected to be the best performing algorithm. On the other hand, in a binary classification

problem, most studies confirm that Random Forest and other ensemble techniques could be called

a benchmark in the credit scoring field.

To the best of the author’s knowledge, none of the previous authors had compared the

performance of algorithms in both binary and multiclass credit score classification problems. Our

12

analysis will contribute to the research field by combining the results from binary, 3-class and 5-

class classification tasks.

The extensive literature review helps to decide which algorithms need to be included in the

analysis of statistical and machine learning techniques in predicting individual credit scores. Based

on the popularity and performance of past studies, five algorithms are selected: Logistic

Regression (Multinomial Logistic Regression for multiclass case), Support Vector Machine with

Radial basis kernel function, Random Forest, XGBoost and Artificial Neural Networks.

Additionally, based on the literature review, it can be decided that more than one performance

evaluation metric is needed to be included for the comprehensive analysis of classifiers.

13

3. Data Description

This study uses unique and privately observed data from one Lithuanian loan-comparison

platform. The Lithuanian credit dataset is collected from January 2020 to September 2022. The

loan-comparison platform operates as follows. Each individual (applicant can fill out the

application form for a loan. There he needs to submit all the personal data (age, gender, marital

status and similar). Afterward, the customer must authenticate his identity and submit the required

documents. Later, some additional data, which further describes the potential borrower, is

downloaded from various legal institutions. A total number of 29 dependent variables are used in

this study and the complete list of variables with descriptions is presented in Appendix 1.

It can be seen from Appendix 1, that the dataset includes three sources of data.

1. Data from legal institutions and registers. Different financial characteristics of applicants

are obtained from various legal institutions. Official income from The State Social

Insurance Fund Board under the Ministry of Social Security and Labour (SODRA), active

or past debts and credits, employment duration and similar. (Sources cannot be fully

disclosed due to confidentiality). Some financial characteristics obtained from legal

institutions overlap with data filled in by customers. This allows us to analyze a novel

feature in credit scoring – a comparison of self-evaluation against official data. Maybe it is

the case that clients hope to get a better loan offer by lying about their financial situation.

Alternatively, maybe they even cannot correctly evaluate their financial burden. All these

aspects may be new significant features in estimating credit scores.

2. Data from the application form. In this category, all the answers from the application,

filled in by the individual, are included. We are obtaining some general demographic

characteristics like gender, age, city and similar. Additionally, clients submit their

evaluation of their financial situation: income, financial obligations and income source.

3. Applicant’s behavior data. Each individual fills out the application form differently,

which may be a significant factor considering the borrower's reliability. When desperately

searching for a loan, one may use the “Copy-Paste” method and quickly fill in the whole

application. Desperation is related to riskiness and having information about an individual’s

behavior while filling out the application form allows us to test whether it has significant

power in predicting the riskiness of the customer.

14

3.1. Data preprocessing

Before implementing statistical and machine learning techniques, it is necessary to prepare the

dataset for analysis correctly. Firstly, all the variables that do not have any predictive power were

removed from the dataset. Such variables are application_id and various timestamps, which were

used to calculate the duration of application filling and authentication. Later, observations that had

missing or erroneous values were also removed. Finally, we are left with data of 29289 individuals

and 30 features (including the target variable). Removing features with a higher than 0.6

correlation was decided to deal with a possible multicollinearity problem. The full correlation

matrix is presented in Appendix 2. Using the correlation results, it was decided to exclude

variables DSTI_official and Filled_income from further analysis. DSTI_official has an almost

perfect positive correlation with the active_credit_monthly_sum variable and it is obvious because

both represent the amount of monthly financial commitments. Filled_income variable was used in

the formula to calculate Income_fill_difference (as explained in Appendix 1).

The ranges of the features used in our study differ a lot. To appropriately use some statistical

and machine learning techniques, it is necessary to unify the ranges of variables. For that reason,

we normalized all numerical variables using the following formula:

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
.

Here 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖 is the normalized value of variable i, 𝑥𝑚𝑖𝑛 is the minimum value of 𝑥𝑖 and 𝑥𝑚𝑎𝑥

is the maximum value of 𝑥𝑖. Using this method, we rescale the range of all numerical features in

the interval between 0 and 1. Similarly, it is necessary to prepare all the categorical data before

using statistical and machine learning techniques. One-hot encoding method was used to convert

all the categorical or boolean variables into numerical expressions of 0 or 1. Below, the

representation of One-hot encoding for City_classifier is presented.

Figure 1. Example of One-Hot Encoding procedure

15

3.2. Risk Classes

As presented in the introduction section, the unique detail of our study is the implementation

and comparison of statistical and machine learning techniques in both binary and multiclass

classification problems. The credit score is obtained from one credit rating agency, which implies

additional expenses for the loan-comparison platform and a lack of complete information about

the borrower’s recent behavior. Ratings in 5 classes, namely {A, B, C, D, E} are obtained.

However, assigning them to different class groupings based on individual information and market

experience is possible. Our research and analysis of statistical and machine learning techniques

for predicting individual credit scores will be done using the following classification problems:

• Binary (2-class) classification problem

• Multiclass (3-class) classification problem

• Multiclass (5-class) classification problem

Multiclass (5-class) classification problem will be performed using all five obtained credit

scores separately. The possible target values for this problem will be {A; B; C; D; E}. Multiclass

(3-class) classification problem will use A-B credit scores as first-class, C-D scores as a second

class, and E as the third class. So, the possible target values for this problem will be {A-B; C-D;

E}. Furthermore, the binary classification problem will use A-B credit ratings as a “reliable”

customer and C-E ratings as “risky”. The reasoning for separating credit scores into different

classes can be explained by using the approval rate metric. This metric shows what percentage of

clients received at least one loan offer, and the formula is presented below.

𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 =
𝑂𝑓𝑓𝑒𝑟𝑠

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

Where Offers is the number of applications where at least one loan offer is generated,

and Applications is the number of total applications. Below, in Figure 3, you can see what approval

rates are associated with each type of grouping. It can be found that there exist significant

differences across these groups. Tables of approval rates show that in the credit market, a high

difference between reliable and risky customers exists and a proper risk assessment system based

on statistical and machine learning techniques may allow credit company to distinguish between

these customers more efficiently.

16

Figure 2. Tables of approval rates for different groupings of target variable

3.3. Test and Train splits

The filtered and preprocessed data was split into training and testing sets using the “80:20”

method. 80% of all data was used as a training set and 20% was left for testing. In the case of

Artificial Neural Networks, a validation set is necessary additionally. We kept our primary testing

set untouched to allow comparison of all methods using the same testing set. However, we split

our primary training set into 80% of the training set for Artificial Neural Networks and 20% for

validation.

3.4. Data Balancing

High-class imbalance is a typical problem for most credit scoring datasets, as only a minority

of customers belong to the riskiest segment (defaulters). There is no exception for the Lithuanian

credit dataset as the riskiest E-rating customers consist of only 5% of all the applicants. In

comparison, B-rating customers consist of 47% of the dataset. To deal with the class imbalance

problem, resampling techniques like Random Oversampling (ROS) (Moscato et al. (2021)) and

Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. (2011), Mahbobi et al.

(2021), Moscato et al. (2021)) are implemented for the training set and results are compared with

non-resampled (Normal) data. The idea of Random Undersampling technique was rejected

because removing the majority class observations leaves us with a tiny amount of data, which

makes the training set smaller than the testing set. Resampling techniques were not applied for the

17

testing set because the interest of our study is to analyse the performance of statistical and machine

learning techniques on a real-life dataset and applications flow.

3.5. Summary statistics

Table 6 presents the summary statistics of the numerical features used in our analysis. Most

financial variables face a mean higher than the median and a high standard deviation. The reason

behind these numbers is that majority of risky customers have very high amounts of debt or active

credits, which significantly affect the higher mean. Since there are considerably more reliable

customers, the median is affected downward, which makes it less than the mean. Table 6 also

supports the idea that ranges of numerical variables differ significantly and that data normalization

is highly recommended. For categorical variables, we present each category’s proportion in

Appendix 3.

Table 6. Summary Statistics of numerical features used in our analysis

 Mean Median
Standard
Deviation

1st
Quartile

3rd
Quartile

Official_income 1000.9 903.3 623.62 642.7 1248.4

Quer_by_90d 4.27 2 6.67 1 5

Open_debt_count 0.4032 0 0.286 0 0

Open_Debt_sum 25.08 0 381.53 0 0

Past_Debt_count 6.36 0 19.78 0 3

Past_Debt_sum 1389.4 0 7675.459 0 227.9

Employment_duration_months 55.56 31 63.6 12 75

Active_credit_sum 18945 2751 34565 0 20990

Active_credit_monthly_sum 178.7 85.7 3033.603 0 21.4

Req_amount 10960 10000 6680.348 5000 15000

Age 38.02 37 10.13 30 45

Children 0.8187 1 0.9144 0 1

Filled_obligations 137.4 60 207.44 0 220

application_filling_duration 197.1 121 440.1467 82 189

Income_fill_difference 240.87 31.29 857.31 −61.37 284.34

Auth_duration 56 68 130.42 37 85

Auth_Number 1 1 0.54 1 1

18

4. Methodology

The experimental procedure is shown in Figure 4. The complete analysis of statistical and

machine learning techniques to predict credit scores can be separated into six different phases.

Figure 3. The process of analysis

Firstly, the raw credit dataset must be properly preprocessed before analyzing statistical and

machine learning techniques, as presented in the 3.1 section. Later the preprocessed dataset is split

into training and testing samples based on the 80:20 rule (3.3 section). The credit dataset faces the

class imbalance problem. Therefore, it is necessary to conduct experiments using various sampling

techniques (3.4 section). The performance of six statistical and machine learning techniques is

analysed in our study. Each of the algorithms will be more explicitly presented in the 4.1 section.

19

In addition, three different classification problems are included in our research (binary, 3-class and

5-class classification, as presented in the 3.2 section). Finally, the results of six classifiers using

different sampling techniques and three distinct classification tasks are evaluated using various

performance evaluation metrics, which will be presented in the 4.2 section. The final scoring

function will be applied based on the performance evaluation metrics. Final scores will determine

which algorithms are the best performing statistical and machine learning technique in predicting

credit scores, taking into account class imbalance problem, a different dimensions of target

variable and various performance evaluation metrics. The final score methodology is presented in

the 4.2.3 section.

4.1. Statistical and Machine Learning Techniques

4.1.1. Logistic Regression

In recent decades, logistic regression has been considered a benchmark method for many

classification tasks. It encouraged us to include this statistical technique in our analysis to compare

whether machine learning techniques can overperform their benchmark. It is assumed that

independent variables are linearly related to the log odds (logit), which is the dependent variable

of logistic regression.

log(𝑜𝑑𝑑𝑠) = ln (
𝑃

1−𝑃
).

The linear relationship between independent variables and log odds can expand to:

ln (
𝑃

1 − 𝑃
) = 𝛽0 + 𝛽1𝑋.

Where P is the probability of specific event happening, 𝛽0 is the intercept, 𝛽1 is the coefficient

associated with the independent variable X. By taking logs out of both sides in the second equation,

we are left with:

(
𝑃

1 − 𝑃
) = 𝑒𝛽0 +𝛽1𝑋 .

By converting odds to a simple probability function, we are left with the following simple

probability function, that could be named a logistic function:

𝑃 =
𝑒𝛽0 +𝛽1𝑋

1 + 𝑒𝛽0 +𝛽1𝑋
.

Expanding the expression to include more dependent variables and coefficients associated with

this is possible. However, due to simplicity, it is shown the case with only one dependent variable.

The maximum likelihood estimation is usually used to estimate logistic regression coefficients.

The likelihood function can be expressed as follows:

20

𝑙(𝛽0, 𝛽1) = ∏ 𝑝(𝑥𝑖)
𝑦𝑖

𝑛

𝑖=1

(1 − 𝑝(𝑥𝑖))1−𝑦𝑖 .

Here 𝑥𝑖 is the value of dependent variable and 𝑦𝑖 is the binary outcome for observation i, n is

number of total observations, and the probability of dependent variable is p(x), if y = 1 and 1-p(x),

if y = 0. The estimates of 𝛽0 and 𝛽1 are chosen to maximize this likelihood function

4.1.2. Multinomial Logistic Regression

Multinomial logistic regression (MLR) is the extension of previously discussed logistic

regression for the analysis of multiclass classification problems rather than binary problem. MLR

produces probability for more than 2 classes for each input example. Let’s assume again that we

have a set of data with n observations {𝑥𝑖 , 𝑦𝑖} where 𝑥𝑖 ∈ 𝑅𝑀 and 𝑦𝑖 ∈ {1, … , C}, for i = 1,…,n.

Using the previous function for logistic regression, we can express the probability for i-th

observation belonging to the j-th class by:

𝑝𝑖𝑗 = 𝑃(𝑦𝑖 = 𝑗) =
𝑒𝛽𝑗∙𝑥𝑖

1 + ∑ 𝑒𝛽𝑐∙𝑥𝑖𝐶−1
𝑐=1

.

The coefficients are again estimated using the maximum likelihood estimation method as in

logistic regression case. Because the sum of probabilities of all classes must be equal to 1, the last

class probability is expressed as follows:

𝑝𝑖𝐶 = 1 − ∑ 𝑝𝑖𝑗

𝐶−1

𝑗=1

.

4.1.3. Support Vector Machine

Based on the Literature review presented in this study, Support Vector Machine (SVM) is

another popular technique used in credit ratings classification tasks. SVM creates hyperplanes that

can divide data into different classes. Those hyperplanes are chosen to maximize the distance

between the closest data points of different classes. Since financial data cannot often be linearly

separated, SVM analysis will include a radial basis kernel modification in this work. Based on Li

et al. (2013), the classifier function of SVM for binary classification can be expressed as:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏)

𝑀

𝑖=1

,

using training dataset 𝐷 = {𝑥𝑖, 𝑦𝑖}, where 𝑥𝑖 ∊ 𝑅𝑚 is the independent variable and 𝑦𝑖 ∊ {−1,1} is

the target class, 𝛼𝑖 is Lagrange multiplier, 𝐾(𝑥, 𝑥𝑖) is kernel function of the two vectors. In our

work, radial basis function will be used as a kernel function, which expression is 𝐾(𝑥, 𝑥𝑖) =

21

𝑒(−𝛾‖𝑥−𝑥𝑖‖2). The SVM algorithm is discussed in more detail in Boser et al. (1992), Cortes and

Vapnik (1995) and Li et al. (2013), while Boser et al. (1992) additionally presents the SVM

extension to multiclass classification tasks.

4.1.4. Random Forest

Random Forest (RF) is the first algorithm in our analysis based on the ensemble of

classification trees. In the Literature review section, it was noted that RF is among the most popular

and successful techniques used in binary and multiclass credit score classification problems. This

ensemble method was developed by Breiman (2001). Random Forest is an extension of another

ensemble method called bagging. As in bagging, Random Forest builds a number of decision trees

on bootstrapped training samples. Instead of using all available feature variables, the RF algorithm

randomly chooses a subset of m predictors from the full set of p predictors (𝑚 < 𝑝). In the case

of one powerful predictor in the dataset, the bagged decision trees could look very similar because

all of the trees will use this strongest predictor in the top split. Therefore, the predictions from

separate bagged trees would be highly correlated. Random Forest overcomes this issue by taking

only a subset of predictors, and this process is called decorrelation of the trees. After building

numerous uncorrelated decision trees in the forest, the algorithm uses majority voting to decide

which category a given observation belongs to.

4.1.5. XGBoost

XGBoost (extreme gradient boosting) is the second algorithm used in our study based on the

ensemble of classification trees. Firstly it was proposed by Chen and Guestrin (2016) and received

a lot of popularity and success in the credit scoring field in recent years (based on the Literature

review presented in this study). Both Random Forest and XGBoost build a model based on

multiple decision trees. However, the process of “building” is the main difference between those

algorithms. Random Forest uses bagging to build all decision trees at once. On the other hand,

XGBoost constructs an ensemble of decision trees using a gradient boosting algorithm to build

trees to minimize the loss sequentially. In addition to gradient boosted decision trees, Chen and

Guestrin (2016) suggested adding a regularization (penalty) term to the loss function to avoid

possible overfitting:

𝐿(𝑓) = ∑ Ψ(𝑦�̂�

𝑛

𝑖=1

, 𝑦𝑖) + ∑ Ω(𝛿𝑘)

𝐾

𝑘=1

.

22

Here 𝑦�̂� is the prediction of i-th observation at K-th boost (tree), Ψ(∗) is the lost function to measure

the difference between prediction and the reference label and Ω(𝛿𝑘) is the regularization term.

This regularization term can be expressed as:

Ω(𝛿) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2.

Here 𝛾 is complexity term, T is the of classification’s tree number of leaves, 𝜆 is penalty parameter

and ‖𝜔‖2 is the output of each leaf node. Additionally, XGBoost applies second-order Taylor

approximation in the loss function and this is another difference from gradient boosted decision

trees. More details about this algorithm can be found in Chen and Guestrin (2016).

4.1.6. Artificial Neural Networks

Artificial Neural Networks (ANN) are another class of models used in our study. Most of the

past studies in credit scoring field had used this technique, what highlights the importance of

Neural Network models. ANNs consist of three main layers: input, hidden and output layers. The

more hidden layers are used, the more complex relationships may be modelled. A feed-forward

neural network will be used in our analysis using two different architectures (with two and with

four hidden layers). In feed-forward network, the information is carried forward from input

variables through connected neurons in the middle (hidden) layers and finally to the specified

output layer. Each neuron processes its inputs and transfers its output value to the neurons in the

next layer. Initially, these neural connections are assigned with random weights, and then, during

the training process, the model adjusts the weights. The output value of hidden neuron i is

calculated by applying activation function 𝑓(1) (ReLU activation function is used in our study

based on Munkhdalai et al. (2019), Mahbobi et al. (2021)) to weighted inputs and bias term 𝑏𝑖
(1)

:

ℎ𝑖 = 𝑓(1) (𝑏𝑖
(1)

+ ∑ 𝑊𝑖𝑗𝑥𝑗

𝑛

𝑗=1

).

Here W is the weight matrix, 𝑊𝑖𝑗 denotes the weight connecting input j to hidden neuron i. In a

similar way, the output of the output layer is computed by:

𝑦 = 𝑓(2) (𝑏(2) + ∑ 𝑣𝑗ℎ𝑗

𝑛ℎ

𝑗=1

).

Here 𝑛ℎ is the number of hidden neurons and 𝑣 denotes the weight vector, where 𝑣𝑗 is the weight

that connects hidden neuron j to the output neuron. In the case of binary classification, 𝑓(2) is

sigmoid activation function, and for multiclass classification, softmax activation function was

used. More details about ANNs can be found in Bishop (1995).

23

4.2. Performance evaluation metrics

The choice of performance evaluation metrics was based on extensive literature review and

expert knowledge. Classifying a risky customer as reliable is the most hazardous error in the credit

scoring field. For that reason, some additional metrics are presented to cover that kind of error.

4.2.1. Binary Classification metrics

We use Accuracy, AUC, Training time, False Positive rate (FPR), Recall and Precision to

evaluate the performance of binary classification algorithms. For a better explanation of these

metrics, let us use Table 7, which presents the example of a binary classification confusion matrix.

Below all the formulas and explanations are presented for each evaluation metric.

 Table 7. Example of binary classification confusion matrix

Actual values

Good Risky

P
re

d
ic

te
d

va

lu
e

s Good TP FP

Risky FN TN

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 , it shows the proportion of all correctly classified examples.

Accuracy may not be the most correct classifiers evaluation metric because it assumes

equal misclassification costs for false negative and false positive cases. In the credit scoring

field, the false positive is more expensive and more attention must be paid to this possible

error.

• AUC is the measure of the model’s ability to distinguish between classes. AUC is equal to

probability that the classifier will rank randomly chosen good observation higher than that

of randomly chosen risky observation. AUC uses the true positive rate and false positive

rate of the model across all possible thresholds, what allows us to deeper understand the

predictive power of the classifier.

• Training time was included in this study for observing the duration of how long model

trains.

• 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
, it is the rate, which shows what percentage of risky customers was actually

predicted as good ones. In credit industry this is the rate that causes the most losses. The

goal of this analysis will attempt to minimize FPR as much as possible.

24

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , it shows the percentage of correct positive predictions made out of all

possible positive predictions that could have been made by the classifier.

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, it shows the quality of good predictions made by the model.

4.2.2. Multiclass classification metrics

Similar to the presentation of evaluation metrics for binary classification, the measures for

multiclass classification performance are presented below. Table 8 shows how the confusion

matrix for 3-class classification would look and all the performance evaluation metrics are

explained.

Table 8. Example of multiclass classification confusion matrix

Actual values

A-B C-D E

P
re

d
ic

te
d

 v
al

u
e

s A-B AA AC AE

C-D CA CC CE

E EA EC EE

• Accuracy =
𝐴𝐴+𝐶𝐶+𝐸𝐸

𝑆𝑢𝑚(𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥)
, similar to the binary classification case, it is the percentage of

correctly classified observations.

• AUC, differently than in binary classification, must be calculated considering all distinct

AUCs for each class. One-versus-rest approach is used to calculate each class AUC value

and then by averaging those values, it is possible to obtain the final AUC for the multiclass

classification model.

• Training time – similar to the binary classification task, training time for each model will

be observed to account for the rapidness of each classifier.

• The Riskiest class (E) recall =
𝐸𝐸

𝐴𝐸+𝐶𝐸+𝐸𝐸
. From the economic point of view, this metric is

equivalent to 1-FPR in binary classification case. Recall of E class shows how many E

class observations were predicted as E class. In the credit rating field, it is highly important

to account for that type of mistake. For that reason, it was highlighted.

• Macro Recall - Similar to AUC, this metric was calculated by averaging the Recall of each

class. Macro Recall was included in our research instead of Weighted Recall because the

Weighted average of metric includes individual sample sizes. Having a situation where the

majority of observations are assigned to the “good” class, it was decided not to weigh the

25

metric based on the majority class, but do the simple arithmetic mean and treat all the

classes equally.

• Macro Precision – Similarly to Macro Recall, it is average of Precision of each class.

• False Positive rate – This metric shows what percentage of all observations was predicted

higher credit score than it actually is. The formula for False Positive rate is presented

below:

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐴𝐶 + 𝐴𝐸 + 𝐶𝐸

𝑆𝑢𝑚(𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥)
.

• False Negative rate – Similar to the False Positive rate, this metric shows what percentage

of all observations was predicted lower credit score that it actually is. And the formula is:

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐶𝐴 + 𝐸𝐴 + 𝐸𝐸

𝑆𝑢𝑚(𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥)
.

Accuracy, False Positive and False Negative rates add up to 1. That was the reason why such

rates were included in our study, and this helps us to understand more deeply what type of errors

our model makes. The logic and formulas for the 5-class classification problem are the same and

can be extended from examples of the 3-class classification environment.

4.2.3. Final performance evaluation formula

A novel aspect of this research will be the final performance evaluation formula presented in

this section. The reason to use this formula is the need to unify the results of different classification

tasks (binary, 3-class, 5-class), performance evaluation metrics and resampling techniques. A final

performance evaluation metric would allow us to decide which statistical and machine learning

techniques perform best in predicting individual credit ratings. This formula will include the score

from each performance evaluation formula. The example for score calculation for accuracy metric

having a binary classification task and performing no resampling technique is presented in Figure

4.

Figure 4. The example of score calculation for Accuracy, in binary classification and no resampling applied

26

The scoring formula is based on “min-max” normalization technique:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆𝑐𝑜𝑟𝑒𝑖,𝑗,𝑧
=

𝑥𝑖,𝑗,𝑧 − 𝑥𝑚𝑖𝑛,𝑗,𝑧

𝑥𝑚𝑎𝑥,𝑗,𝑧 − 𝑥𝑚𝑖𝑛,𝑗,𝑧
.

Here i is the algorithm’s name, j stands for the type of classification problem

(𝑗 ∊ {𝑏𝑖𝑛𝑎𝑟𝑦, 3 − 𝑐𝑙𝑎𝑠𝑠, 5 − 𝑐𝑙𝑎𝑠𝑠}), z is the resampling technique (𝑧 ∊ {𝑛𝑜 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔,

𝑅𝑎𝑛𝑑𝑜𝑚 𝑂𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, 𝑆𝑀𝑂𝑇𝐸}). This scoring technique allows us to rank the classifiers in

a given environment while simultaneously capturing the size of the difference between the

performance. If the difference in Accuracy is tiny between the two best algorithms relative to the

poorer classifiers' Accuracy, then the difference in score will also be minimal. By summing scores

for Accuracy through all classification problems and all resampling techniques, we can obtain the

total accuracy score for each of the algorithms:

𝑇𝑜𝑡𝑎𝑙_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑆𝑐𝑜𝑟𝑒𝑖 = ∑ ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑆𝑐𝑜𝑟𝑒𝑖,𝑗,𝑧

𝑧

.

𝑗

Such scores will be calculated for other performance evaluation metrics: AUC, Training time, the

Riskiest class classification accuracy (1-FPR for the binary classification and E class Recall for

the multiclass classification), Recall (Macro Recall for multiclass classification), Precision (Macro

Precision for multiclass classification), False Negative rate (only for multiclass classification) and

False Positive rate (only for multiclass classification). Having many total scores of different

performance evaluation metrics, it is necessary to combine all of them for the final score of the

research. However, the final score must adjust each metric’s importance to the final evaluation of

the classifier. Training time cannot have the same impact on the ranking of classifiers as the False

Positive rate does. Additionally, the False Positive rate is more expensive than the False Negative

rate. Based on author’s expert knowledge of the field of analysis, it was decided to adjust the

weights (coefficients) of each performance evaluation metric’s total score to the final score

function as:

𝐹𝑖𝑛𝑎𝑙_𝑆𝑐𝑜𝑟𝑒𝑖 = 𝑇𝑜𝑡𝑎𝑙_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒𝑖 + 𝑇𝑜𝑡𝑎𝑙_𝐴𝑈𝐶_𝑠𝑐𝑜𝑟𝑒𝑖 + 0.1

∗ 𝑇𝑜𝑡𝑎𝑙_𝑇𝑟𝑎𝑖𝑛𝑇𝑖𝑚𝑒_𝑠𝑐𝑜𝑟𝑒𝑖 + 1.5 ∗ 𝑇𝑜𝑡𝑎𝑙_𝑅𝑖𝑠𝑘𝑖𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒𝑖

+ 𝑇𝑜𝑡𝑎𝑙_𝑅𝑒𝑐𝑎𝑙𝑙_𝑠𝑐𝑜𝑟𝑒𝑖 + 𝑇𝑜𝑡𝑎𝑙_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑖 + 1.5

∗ 𝑇𝑜𝑡𝑎𝑙_𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑠𝑐𝑜𝑟𝑒𝑖 + 𝑇𝑜𝑡𝑎𝑙_𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑐𝑜𝑟𝑒𝑖.

Based on that final score value, the ranking of the classifiers will be made. As it can be seen from

the formula, the final score formula adjusts by weighting Training time to be a less impactful

factor. Furthermore, all expensive errors (the Riskiest class classification accuracy and False

Positive rate) are weighted to be more important factors for the final decision and ranking of the

statistical and machine learning techniques.

27

5. Results

5.1. Empirical Set-Up

To avoid contingency in comparing the performance of statistical and machine learning

techniques, the experiments were repeated three times with different sampling into training and

testing sets, keeping the 80:20 ratio as presented in the 3.3 section. The full analysis was coded in

R studio (R version 4.1.3) using the R statistical software packages like randomForest, e1071,

xgboost, keras and nnet on the computer system with Windows 11 operating system, 16 GB RAM

and AMD Ryzen 5 processor (program code for binary classification is presented in Appendix 4).

The selection of hyperparameters may influence the performance of algorithms. Classifiers

SVM-Radial, RF, XGBoost and ANNs will have hyperparameters that need to be determined. Grid

search was used as a hyperparameters optimization method, and the search space is presented in

Table 9. Other, not introduced parameters are kept as default values as provided in R statistical

software packages documentation. It was decided to find optimal parameters for binary and

multiclass problems separately to optimize the performance of algorithms as much as possible.

Table 9. Searching space of hyper parameters

Model Hyperparameters Symbol Search Space
Optimal

parameter
Binary

Optimal
parameter
Multiclass

SVM-
Radial
Basis

Gamma 𝛾 0.001, 0.01, 0.05, 0.1 0.05 0.01

Cost C 1, 2, 5, 10 2 1

Random
Forest

Number of Tree ntree 100, 200, 500 200 200

Number of features mtry [1;15] 5 5

XGBoost

Maximum tree depth max_depth 2, 4, 5, 6, 8 6 5

Learning rate eta 0.01, 0.1, 0.2, 0.5 0.01 0.01

Column subsample ratio colsample_bytree [0;1] 0.5 0.5

Number of Boost nrounds 100,200,500,1000 1000 1000

Minimum Child Weight min_child_weight 1, 2, 3, 4 2 2

The Radial basis kernel function was selected for the Support Vector Machine and two

hyperparameters (Gamma and Cost) needed to be optimally selected. These hyperparameters

control the trade-off between the accuracy on the training data and the risk of possible overfitting.

For binary classification, it was found that Gamma = 0.05 and Cost = 2 were the values of the most

optimal parameters, while for the multiclass, Gamma = 0.01 and Cost = 1 yielded the highest

accuracy.

As presented in the Random Forest description (see section 4.1.4), the number of trees and the

number of randomly sampled predictors used to build a tree are needed to be set. It was found that

28

200 trees and five randomly selected features for each tree were the most optimal parameters to

build the Random Forest algorithm.

For the XGBoost algorithm, maximum tree depth was optimized at 6 for binary classification

and 5 for multiclass classification problems. The learning rate used to prevent overfitting was

optimal at 0.01, and the column subsample ratio used in our analysis is set to 0.5 in both binary

and multiclass classification problems. The number of boosts is set to be equal to 1000, and

minimum child weight was found to be optimal at value 2.

In section 4.1.6, it was mentioned that two ANN architectures will be used in our study. ANN

with two and ANN with four hidden layers are implemented to compare how the network’s

complexity may affect the performance in predicting credit scores. The number of neurons in

hidden layers was decided by the grid search, where possible values were 5, 10, 15, 20, and 25.

For the Binary classification case, the optimal number of neurons in each hidden layer was found

to be 20; for the multiclass case, this number was higher and set to 25. Using a trial and error

process, the ReLU was decided over sigmoid as an activation function in hidden layers. Softmax

activation function was used in the last (output) layer for multiclass classification, and sigmoid

was used in the binary classification case. Adam was used as an optimization algorithm with a

learning rate of 0.0001. To prevent overfitting, the network's training procedure used a dropout of

value 0.1. The number of epochs was set to 300, and batches with 32 instances at each iteration

were used. The results and analysis of the experiments are discussed in the following section.

5.2.1. Accuracy Results

The results of the analysis of statistical and machine learning techniques in predicting

individual credit scores start from comparing the performance of the classifiers based on the

proportion of correctly classified observations. Table 10 summarizes the results of our

experiments, which were repeated three times with respect to the Accuracy metric. The technique

achieving the highest Accuracy in a given environment is underlined and bolded.

Table 10. Results of Accuracy measure

Accuracy

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE

LR/MLR 0.754 0.735 0.733 0.735 0.660 0.653 0.571 0.495 0.496

SVM 0.748 0.730 0.741 0.734 0.674 0.662 0.570 0.502 0.496

RF 0.769 0.767 0.747 0.750 0.749 0.695 0.601 0.598 0.542

XGBoost 0.768 0.750 0.761 0.748 0.685 0.690 0.592 0.512 0.534

ANN-2L 0.759 0.757 0.753 0.737 0.686 0.652 0.577 0.498 0.482

ANN-4L 0.756 0.756 0.751 0.737 0.683 0.674 0.572 0.499 0.471

29

It can be clearly seen that methods based on ensembles of classification trees (RF and

XGBoost) dominate with respect to Accuracy in all types of classification problems and through

all the resampling techniques. RF performs as the best algorithm in eight out of nine classification

experiments. The highest Accuracy of 76.9% is achieved in binary classification problem and

using a not-resampled dataset for model training. Alternatively, in the case of a 5-class

classification problem and using SMOTE resampling technique for the training dataset, the best

performing classifier reaches only 54.2% of Accuracy. It is necessary to highlight that our testing

set faces a class imbalance problem to test the performance of the algorithms in a real-life scenario.

Therefore, the Accuracy measure may not be the most correct way of measuring the model’s

performance since some classifiers may naively predict the majority class and provide high

Accuracy. Comparing two resample techniques, namely Random Oversampling (ROS) against

SMOTE technique, it can be included that the ROS technique helps classifiers to reach higher

Accuracy than using SMOTE. Additionally, by increasing the dimension of the classification

problem (dimension of the target variable), the Accuracy decreases, meaning that binary

classification is the easiest for the algorithms, while 5-class classification is the most difficult.

Table 10 provides the scoring table (based on the score function described in the 4.2.3 section)

to evaluate and rank statistical and machine learning techniques.

Table 11. Score table from Accuracy measure

Score from Accuracy

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE
Total
Score

Rank

LR/MLR 0.26 0.13 0.00 0.08 0.00 0.02 0.06 0.00 0.35 0.89 6

SVM 0.00 0.00 0.30 0.00 0.15 0.23 0.00 0.07 0.35 1.10 5

RF 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 8.50 1

XGBoost 0.98 0.55 1.00 0.85 0.27 0.89 0.72 0.17 0.89 6.33 2

ANN-2L 0.51 0.74 0.73 0.16 0.29 0.00 0.25 0.03 0.16 2.87 3

ANN-4L 0.39 0.71 0.64 0.16 0.26 0.51 0.07 0.04 0.00 2.79 4

It can be found that the Total Accuracy Score formula approves the findings from Table 9, that

RF and XGBoost are the best and the second-best algorithms with respect to Accuracy. ANNs

techniques perform slightly worse (both architectures), which could have been expected based on

the extensive literature review. LR/MLR and SVM are associated with the poorest performance of

all the algorithms used in this study. The main idea of our scoring function was the ability to

capture the gaps between the algorithms. Based on Table 10, the gap between ensemble techniques

and all other algorithms is significant. The highest gaps can be spotted in multiclass classification

cases, where MLR, SVM and ANNs received a score from accuracy higher than 0.5 only once.

The result shows that ensemble techniques outperform all other algorithms (especially in

30

multiclass classification problems) in terms of Accuracy. However, an extensive comparison

between many performance evaluation metrics is necessary for the more robust evaluation and

ranking of statistical and machine learning techniques in predicting individual credit scores.

5.2.2. AUC Results

Similar to Table 10, Table 12 presents the experimental results using the AUC performance

evaluation metric.

Table 12. Results of AUC measure

AUC

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE

LR/MLR 0.812 0.812 0.807 0.839 0.866 0.862 0.831 0.845 0.843

SVM 0.797 0.797 0.794 0.764 0.818 0.810 0.775 0.830 0.822

RF 0.829 0.826 0.825 0.861 0.872 0.878 0.858 0.865 0.865

XGBoost 0.828 0.827 0.826 0.859 0.881 0.873 0.854 0.867 0.862

ANN-2L 0.812 0.812 0.800 0.846 0.867 0.865 0.842 0.849 0.852

ANN-4L 0.811 0.810 0.796 0.845 0.856 0.860 0.833 0.838 0.844

Based on AUC results, RF and XGBoost outperform their competitor algorithms and

strengthen the position of ensembles of classification trees. Differently than in the Accuracy

results, it can be seen that AUC in the multiclass classification case is not smaller than the AUC

in binary classification results. Additionally, XGBoost dominates when the Random Oversampling

technique is applied, and RF dominates in the case of the Normal training dataset. In every

multiclass classification experiment, the resampling techniques (ROS and SMOTE) are associated

with higher AUC than in the case of the Normal training dataset. However, in the binary

classification case, we cannot observe such differences, and the results of AUC are considerably

similar through all the resampling scenarios. Table 13 presents the scores obtained from the AUC

measure to compare the difference across classification techniques better.

Table 13. Score table from AUC metric

Score from AUC

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE
Total
Score

Rank

LR/MLR 0.46 0.49 0.41 0.77 0.76 0.75 0.67 0.41 0.47 5.20 4

SVM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6

RF 1.00 0.97 0.98 1.00 0.86 1.00 1.00 0.95 1.00 8.75 1

XGBoost 0.96 1.00 1.00 0.97 1.00 0.92 0.95 1.00 0.92 8.73 2

ANN-2L 0.48 0.50 0.19 0.85 0.76 0.81 0.80 0.51 0.69 5.61 3

ANN-4L 0.45 0.43 0.05 0.83 0.60 0.72 0.70 0.22 0.50 4.52 5

31

The results from Table 13 show that RF and XGBoost dominate through all the experiments

with respect to the AUC measure. Nevertheless, the difference between the two ensembles is

minimal. LR and both ANNs architectures performed similarly, as seen in the “Total Score” value.

Interestingly, SVM is the poorest classification algorithm in all the experiments based on the AUC

performance evaluation metric. In the case of Accuracy, we obtained the results where ensemble

methods dominated even more in the case of multiclass classification. With respect to the AUC

measure, such dominance cannot be found.

5.2.3. Training Time Results

Training time is another dimension that needs to be evaluated and compared in analyzing

statistical and machine learning techniques in predicting individual credit scores. The rapid

algorithm should have an advantage over another, slower classifier if the prediction rates are

similar. Table 14 presents the Training time in minutes of the algorithms used in our study.

Table 14. Results of Training Time

Training time (in minutes)

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE

LR/MLR 0.016 0.026 0.012 0.044 0.083 0.064 0.099 0.278 0.152

SVM 9.570 10.483 7.508 2.142 8.130 1.750 3.414 14.360 3.983

RF 3.080 2.588 1.972 0.289 0.600 0.243 0.285 0.778 0.339

XGboost 1.310 0.619 0.690 0.432 0.578 0.405 0.689 1.099 0.770

ANN-2L 6.696 8.263 8.014 7.500 15.610 6.412 8.445 17.570 10.913

ANN-4L 7.133 10.638 9.097 8.346 16.573 7.054 9.087 18.533 11.267

LR is the fastest algorithm in our study that runs in seconds. On the other hand, the more

sophisticated classifiers like SVM and ANNs train significantly longer, which is an important

aspect when comparing those classifiers. It is also noted that the most computationally expensive

experiments were ANNs in the multiclass classification case and using resampling techniques. The

duration of training time reached 18 minutes, while faster algorithms like LR, RF, and XGBoost

trained within one minute. Such a result gives us a dimension of the algorithm’s rapidness in

analyzing statistical and machine learning techniques. The scores to classifiers from Training time

are presented in Table 15.

32

Table 15. Score table from Training Time

 Score from Training Time

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE
Total
Score

Rank

LR/MLR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 9.00 1

SVM 0.00 0.01 0.17 0.75 0.51 0.76 0.63 0.23 0.66 3.72 4

RF 0.68 0.76 0.78 0.97 0.97 0.97 0.98 0.97 0.98 8.07 3

XGboost 0.86 0.94 0.93 0.95 0.97 0.95 0.93 0.96 0.94 8.44 2

ANN-2L 0.30 0.22 0.12 0.10 0.06 0.09 0.07 0.05 0.03 1.05 5

ANN-4L 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 6

Logistic regression earns maximum points of Total Score from the Training time because it is

the fastest algorithm used in our study. Interestingly, ensembles of classification trees are also

comparatively fast, which shows that RF and XGBoost in predicting credit scores are impressive,

combined with the previous results of Accuracy and AUC. ANNs are the most computationally

expensive techniques in our analysis, especially with four hidden layers executing exceptionally

slowly. However, the Training time cannot be equally important as the predictive power of the

classifier. For that reason, the weights for each measure of predictive performance are adjusted

based on author's expert knowledge as presented in section 4.2.3.

5.2.4. The Riskiest Class Classification Results

The Riskiest class classification is arguably the most crucial aspect of credit scoring.

Misclassifying the riskiest segment of people as reliable may lead to substantial losses for the

lender. For that reason, the Riskiest class classification accuracy is excluded as a separate

performance evaluation metric. For the binary classification case, it is simply 1-False Positive rate

(1-FPR), and for the multiclass classification case, it is equivalent to the Recall of the Riskiest (E)

class. Table 16 presents the classification results based on the accuracy of the Riskiest class

segment.

Table 16. Results of the Riskiest class classification accuracy

(1-FPR) for Binary case and the riskiest class (E) RECALL for Multiclass case

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE

LR/MLR 0.513 0.705 0.694 0.420 0.822 0.804 0.466 0.695 0.678

SVM 0.441 0.683 0.622 0.372 0.789 0.757 0.429 0.682 0.678

RF 0.559 0.574 0.709 0.460 0.529 0.661 0.538 0.582 0.675

XGBoost 0.566 0.702 0.644 0.472 0.804 0.658 0.519 0.742 0.683

ANN-2L 0.550 0.569 0.614 0.465 0.660 0.779 0.513 0.335 0.716

ANN-4L 0.543 0.526 0.596 0.465 0.575 0.871 0.521 0.328 0.704

33

The results of this performance evaluation metric differ almost in every experiment performed

in our analysis. Additionally, it is hard to compare the results between binary classification and

multiclass classification, since the riskiest class differs in both of these environments.

In binary classification case, the RF algorithm using SMOTE resampling techniques achieves

the highest value of 1-FPR at 0.709. It can be clearly seen that both ROS and SMOTE resampling

techniques significantly improve the 1-FPR rate, except for ANNs case. ANNs perform

impressively when no resampling techniques are applied, however after the resampling, other

classifiers improved by more.

In multiclass classification case, the similar trends are also observed. The ANN with four

hidden layers provides the highest Recall of E class using 3-Class classification problem and

applying SMOTE resampling technique at the value of 0.871. In the case of 5-Class classification

problem, the XGBoost algorithm with ROS resampling technique achieves 0.742 of Recall of E

class. The results of the Riskiest class classification accuracy shows that evaluation and

comparison of a performance evaluation metric through all the experiments of our study could be

hardly interpretable. For that reason, the scores formula allows us to compare the performance of

all statistical and machine learning techniques more easily, by taking into account all different

classification problems and different resampling techniques.

Table 17. Score table from the riskiest class accuracy metric

Score from the Riskiest class accuracy

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE
Total
Score

Rank

LR/MLR 0.58 1.00 0.86 0.48 1.00 0.69 0.34 0.89 0.07 5.90 2

SVM 0.00 0.88 0.23 0.00 0.89 0.47 0.00 0.85 0.07 3.38 6

RF 0.94 0.27 1.00 0.88 0.00 0.01 1.00 0.61 0.00 4.71 4

XGBoost 1.00 0.98 0.43 1.00 0.94 0.00 0.82 1.00 0.20 6.37 1

ANN-2L 0.87 0.24 0.17 0.93 0.45 0.57 0.77 0.02 1.00 5.01 3

ANN-4L 0.81 0.00 0.00 0.93 0.15 1.00 0.85 0.00 0.70 4.45 5

Table 17 allows us to compare and rank the classifiers with respect to the Riskiest class

accuracy. Based on the Total Score value, differences across the algorithms are not very high.

However, the XGBoost algorithm is the best performing algorithm on average through all the

experiments performed. Interestingly, XGBoost with the SMOTE resampling technique performs

relatively poorly in all the classification problems. In addition, RF is also not impressive in

multiclass classification problems using SMOTE. Based on such results, ensembles of

classification trees perform poorly with respect to E-class Recall using SMOTE. On the other hand,

ANNs perform comparatively much better when SMOTE is applied in the multiclass classification

case.

34

5.2.5. Recall Results

In this section results from Recall (for binary classification) and Macro Recall (for multiclass

classification) are compared.

Table 18. Results from the Recall metric

Recall for binary case and Macro Recall for multiclass case

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE

LR/MLR 0.886 0.751 0.755 0.587 0.690 0.682 0.448 0.547 0.542

SVM 0.918 0.757 0.805 0.562 0.694 0.680 0.423 0.559 0.551

RF 0.885 0.873 0.768 0.615 0.650 0.684 0.498 0.542 0.582

XGBoost 0.880 0.777 0.825 0.618 0.710 0.678 0.488 0.586 0.567

ANN-2L 0.874 0.861 0.830 0.605 0.675 0.683 0.468 0.535 0.564

ANN-4L 0.874 0.883 0.836 0.602 0.653 0.720 0.456 0.526 0.553

Based on Table 18, SVM is the best performing algorithm in the case of binary classification

when no resampling technique was applied. However, that result must be considered with caution.

SVM in that experiment provided the poorest 1-FPR results, which informs us that it was highly

biased towards the majority class, which showed up in a high Recall of 0.918. In all other

experiments, Neural network architectures and ensemble methods provide the best results. ANN

with four hidden layers combined with ROS method reaches 0.883 of Recall in binary

classification, and with SMOTE method in 3-Class classification case reaches Recall equal to

0.720. In 5-Class classification, ensemble methods dominate the other techniques, with XGBoost

reaching 0.586 Recall when ROS was applied. Table 19 presents the scores obtained using Recall

as the performance evaluation metric.

Table 19. Score table from Recall metric

Score from Recall

Binary Classification 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE
Total
Score

Rank

LR/MLR 0.28 0.00 0.00 0.44 0.67 0.09 0.33 0.35 0.00 2.17 6

SVM 1.00 0.04 0.62 0.00 0.73 0.06 0.00 0.55 0.22 3.21 5

RF 0.25 0.92 0.16 0.93 0.00 0.15 1.00 0.28 1.00 4.68 2

XGBoost 0.15 0.19 0.86 1.00 1.00 0.00 0.86 1.00 0.61 5.67 1

ANN-2L 0.00 0.83 0.92 0.76 0.42 0.11 0.59 0.15 0.56 4.35 4

ANN-4L 0.01 1.00 1.00 0.71 0.05 1.00 0.43 0.00 0.27 4.47 3

Based on the results from the previous table, one more time, XGBoost reaches the highest total

score from the Recall metric. Additionally, the Random Forest and both ANNs architectures

provide very similar results, while LR/MLR and SVM performed not impressively. These results

approve the idea of the scoring formula. The difference between RF and ANNs architecture is

35

minimal. Thus, the results from the Recall metric will contribute to the final ranking with a similar

scores regarding RF and ANNs.

5.2.6. Precision Results

This section presents the last performance evaluation metric, where binary classification case

was included. Table 20 illustrates the Precision (for binary classification) and Macro Precision (for

multiclass classification) results.

Table 20. Results from Precision metric

Precision for binary case and Macro Precision for multiclass case

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE

LR/MLR 0.767 0.822 0.817 0.740 0.540 0.535 0.594 0.428 0.428

SVM 0.748 0.812 0.799 0.755 0.556 0.549 0.643 0.444 0.437

RF 0.784 0.788 0.827 0.782 0.752 0.620 0.656 0.627 0.502

XGBoost 0.786 0.825 0.807 0.758 0.572 0.617 0.633 0.462 0.494

ANN-2L 0.778 0.783 0.796 0.740 0.600 0.543 0.601 0.557 0.430

ANN-4L 0.776 0.771 0.789 0.733 0.625 0.610 0.597 0.568 0.420

Similar to the cases of Accuracy and AUC, we can see a dominance of the ensemble methods.

RF performed with the highest rate of Precision in all the multiclass classification experiments and

binary classification when SMOTE was applied. In Table 21, it can be seen how dominant the RF

was compared with other statistical and machine learning techniques. None of the LR/MLR, SVM

and ANNs obtained a total score of at least 3. That shows that RF was performing significantly

better than the competitor algorithms with respect to Precision and Macro Precision.

Table 21. Scores table from Precision metric

Score from Precision

Binary Results 3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE Normal ROS SMOTE
Total
Score

Rank

LR/MLR 0.51 0.93 0.73 0.14 0.00 0.00 0.00 0.00 0.10 2.42 6

SVM 0.00 0.75 0.26 0.46 0.07 0.17 0.80 0.08 0.20 2.79 3

RF 0.95 0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.25 1

XGboost 1.00 1.00 0.49 0.51 0.15 0.96 0.63 0.17 0.91 5.82 2

ANN-2L 0.81 0.22 0.17 0.15 0.28 0.09 0.11 0.65 0.13 2.61 5

ANN-4L 0.73 0.00 0.00 0.00 0.40 0.88 0.06 0.70 0.00 2.77 4

5.2.7. False Positive Rate Results

A False Positive rate is one of the most crucial performance evaluation metrics for the

multiclass classification problem. The importance of this measure can be compared only with the

36

E class Recall metric. The False Positive rate for the multiclass type of problem shows what

proportion of all the observations was classified as more reliable than they actually are. Table 22

presents the results obtained by using this performance evaluation metric only for the multiclass

classification experiments because FPR for binary classification was already used in the

comparison of the Riskiest class accuracy.

Table 22. Results of false positive rate for the multiclass classification

False Positive Rate only for the multiclass case

3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE

MLR 0.197 0.095 0.095 0.275 0.233 0.238

SVM 0.217 0.097 0.095 0.290 0.255 0.254

RF 0.183 0.151 0.091 0.250 0.249 0.246

XGBoost 0.178 0.090 0.095 0.262 0.255 0.254

ANN-2L 0.189 0.096 0.087 0.267 0.285 0.252

ANN-4L 0.193 0.097 0.089 0.267 0.291 0.248

In the 3-Class classification case, resampling techniques ROS and SMOTE significantly

improve the results of classifiers with respect to the False Positive rate. However, in the 5-Class

classification case, the False Positive rate is not changing much when resampling techniques are

applied. ANN with two hidden layers reaches the best False Positive rate of 0.087 in the 3-Class

classification case when SMOTE was applied. In the 5-Class classification case, applying the MLR

with ROS technique shows the best results, where the False Positive rate reaches 0.233.

Nevertheless, the constantly best-performing algorithm cannot be seen in Table 22. For that reason,

it is necessary to check what are the scores from the False Positive rate, shown in Table 23.

Table 23. Scores table from the False Positive rate metric

Score from the False Positive Rate

3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE
Total
Score

Rank

MLR 0.53 0.92 0.03 0.37 1.00 1.00 3.85 1

SVM 0.00 0.89 0.02 0.00 0.62 0.04 1.57 6

RF 0.88 0.00 0.45 1.00 0.72 0.49 3.54 2

XGBoost 1.00 1.00 0.00 0.72 0.63 0.00 3.35 4

ANN-2L 0.73 0.91 1.00 0.57 0.10 0.14 3.45 3

ANN-4L 0.61 0.90 0.76 0.57 0.00 0.37 3.21 5

The results from Table 23 suggest that only SVM is not competitive with respect to the False

Positive rate in the multiclass classification case. However, all other techniques are associated with

quite a similar total scores of False Positive rate across all the experiments. MLR is ranked first,

but the total sum of scores for the fifth place is only lower by 0.64. Meaning that none of these

37

algorithms would get an advantage over the other in the final score calculation based on the False

Positive results.

5.2.8. False Negative Rate Results

Unlike in the previous section, the False Negative rate shows what percentage of all

observations were predicted as riskier than they actually are. The full results of the False Negative

rate are presented in Table 24.

Table 24. Results of False Negative rate

False Negative rate only for multiclass case

3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE

MLR 0.068 0.244 0.253 0.153 0.272 0.266

SVM 0.049 0.229 0.243 0.140 0.243 0.250

RF 0.067 0.100 0.214 0.149 0.153 0.212

XGBoost 0.074 0.225 0.214 0.146 0.233 0.212

ANN-2L 0.074 0.218 0.261 0.155 0.217 0.266

ANN-4L 0.070 0.220 0.238 0.161 0.210 0.281

The SVM algorithm is associated with the lowest False Negative rate in multiclass

classification problems when no resampling technique was applied. Having applied ROS and

SMOTE techniques, RF dominates over other algorithms in each experiment. Interestingly, the

differences in False Negative rates across the 5-Class and 3-Class classification results are

minimal. In the case of Accuracy and False Positive rate, we faced a situation when the increasing

dimension of the target variable was associated with the decreased performance of classifiers.

However, a constant False Negative rate in both multiclass classification problems shows that

worse performance in the 5-class classification case was mainly driven by the increasing False

Positive rate. Such a situation is hazardous in the credit scoring field and may imply high losses

for the credit company. Table 25 presents the scores obtained from the False Negative rate.

Table 25. Scores table of the False Negative rate metric

Score from the False Negative Rate

3-Class Results 5-Class Results

Normal ROS SMOTE Normal ROS SMOTE
Total
Score

Rank

MLR 0.25 0.00 0.19 0.36 0.00 0.21 1.01 6

SVM 1.00 0.10 0.38 1.00 0.25 0.44 3.17 3

RF 0.29 1.00 1.00 0.60 1.00 1.00 4.88 1

XGBoost 0.03 0.13 0.98 0.71 0.32 1.00 3.17 2

ANN-2L 0.00 0.18 0.00 0.28 0.46 0.21 1.13 5

ANN-4L 0.18 0.17 0.50 0.00 0.52 0.00 1.36 4

38

Ensembles of classification trees are performing quite impressive in multiclass classification

cases with respect to the False Negative rate. However, the SVM received an equal amount of

score as the XGBoost algorithm from all the experiments. But the main dominance of the SVM

algorithm was observed only in the case when no resampling techniques were applied.

5.2.9. Final Scores

Having analysed all the results from distinct performance evaluation metrics, it is necessary to

combine these results and see what final conclusions can be drawn. The final score formula

summarizes all the distinct (total) scores obtained from different classification evaluation metrics.

As already presented, some scores must be weighted based on the author's expert knowledge.

Training time is weighted with a coefficient of 0.1 since it is not the most critical aspect of credit

scoring. In contrast, the Riskiest class classification accuracy (1-FPR for the binary case and the

E class Recall for the multiclass case) and False Positive rate are weighted with a coefficient of

1.5 because these rates are the most crucial in the credit scoring field. The final scores and ranking

are presented in Table 26. Each column represents the total scores obtained from that performance

evaluation metric across all the experiments. The last two columns show the final score of the

classifier and the final rank.

Table 26. Final Scores table

Total Scores

Accuracy AUC
Training
time (0.1

coef.)

Accuracy
of the

riskiest
class (1.5

coef.)

Recall Precision

False
positive
rate (1.5

coef.)

False
Negative

rate

FINAL
SCORE

of
Classifier

RANK of
Classifier

LR/MLR 0.89 5.20 9.00 5.90 2.17 2.42 3.85 1.01 27.21 5

SVM 1.10 0.00 3.72 3.38 3.21 2.79 1.57 3.17 18.07 6

RF 8.50 8.75 8.07 4.71 4.68 8.25 3.54 4.88 48.27 1

XGBoost 6.33 8.73 8.44 6.37 5.67 5.82 3.35 3.17 45.15 2

ANN-2L 2.87 5.61 1.05 5.01 4.35 2.61 3.45 1.13 29.37 3

ANN-4L 2.79 4.52 0.26 4.45 4.47 2.77 3.21 1.36 27.43 4

As seen in the analysis of different performance evaluation metrics, the ensembles of

classification trees dominate in predicting individual credit ratings across all the algorithms in our

study. RF collected just a few points more than XGBoost, showing that both ensembles are highly

capable of predicting the riskiness of customers using a Lithuanian credit dataset. In addition, the

ANN with two layers stays at the third position, showing that the neural network of simpler

architecture performs relatively better than the more sophisticated neural network with four hidden

layers. LR/MLR performs similarly to ANN with four layers, which approves the idea of Baesens

et al. (2003) that credit scoring datasets are only weakly non-linear. Lastly, SVM with the Radial

basis function produced the poorest results across all the statistical and machine learning

39

techniques used in our study and all the experiments. Having found that RF and XGBoost

algorithms performed as the best classifiers, we can take a deeper look into the performance of

only these algorithms. To make an easier comparison of these two algorithms, only four

performance evaluation metrics are used in Table 27. Based on the author's expert knowledge, the

four most representative metrics are Accuracy, AUC, the Riskiest class classification accuracy and

the False Positive rate (for multiclass classification only).

Additionally, the average values ("avg." in Table 27) are included in columns and rows for

each classification problem and each performance evaluation metric. In the column, the average

shows how the given algorithm performed across all the resampling techniques. Rows present the

average performance of both algorithms for a given resampling technique. Based on Table 27, we

can compare how the two best performing algorithms in our study perform with respect to four of

the most crucial performance evaluation metrics. Additionally, it could be evaluated how the

performance differs when resampling techniques are applied and when different classification

problems are of interest. The best value with respect to a given performance evaluation metric

across all classification problems and resampling techniques is bolded and underlined.

Table 27. Performance of RF and XGBoost across all the experiments

 Binary Classification 3-Class classification 5-Class Classification

 Normal ROS SMOTE avg. Normal ROS SMOTE avg. Normal ROS SMOTE avg.

Accuracy

RF 0.769 0.767 0.747 0.761 0.750 0.749 0.695 0.731 0.601 0.598 0.542 0.580

XGboost 0.768 0.750 0.761 0.760 0.748 0.685 0.690 0.708 0.592 0.512 0.534 0.546

avg. 0.769 0.758 0.754 0.749 0.717 0.693 0.597 0.555 0.538

AUC

RF 0.829 0.826 0.825 0.827 0.861 0.872 0.878 0.871 0.858 0.865 0.865 0.863

XGboost 0.828 0.827 0.826 0.827 0.859 0.881 0.873 0.871 0.854 0.867 0.862 0.861

avg. 0.828 0.827 0.826 0.860 0.877 0.876 0.856 0.866 0.863

The riskiest class classification accuracy

RF 0.559 0.574 0.709 0.614 0.460 0.529 0.661 0.550 0.538 0.582 0.675 0.598

XGboost 0.566 0.702 0.644 0.637 0.472 0.804 0.658 0.645 0.519 0.742 0.683 0.648

avg. 0.562 0.638 0.677 0.466 0.667 0.660 0.528 0.662 0.679

False Positive rate

RF - - - 0.183 0.151 0.091 0.142 0.250 0.249 0.246 0.249

XGboost - - - 0.178 0.090 0.095 0.121 0.262 0.255 0.254 0.257

avg. 0.181 0.121 0.093 0.256 0.252 0.250

Having such a broad spectrum of results, allows us to compare the advantages of each of the

algorithms in terms of various types of classification problems and across different resampling

techniques.

Regarding Accuracy, we can see a constant trend across all classification problems, where RF

with no resampling technique reaches the highest Accuracy. In binary classification, Accuracy

40

reached 0.769, in 3-Class classification – 0.750 and in 5-Class classification – 0.601. Using ROS

resampling technique, the Accuracy rate decreases just by hundredths, suggesting that ROS may

also be competitive to the case when no resampling techniques were applied. The Accuracy may

decrease when the target variable's dimension increases and the classification problem becomes

more difficult. Nevertheless, the decrease in Accuracy is minimal in the case of 3-class

classification, comparing it with the binary classification case. On the other hand, the Accuracy

decreased drastically when 5-class classification results were compared with the 3-class

classification case results. Such findings suggest that the 5-class classification problem is much

harder for the RF and XGBoost, and there is no clear distinction between the five classes. Using

the 3-Class classification, the customers can be classified into three risk categories with an

Accuracy similar to the binary classification case and 15% higher Accuracy than in the 5-class

classification.

Next, Table 27 presents the classification results with respect to the AUC value. AUC uses the

True Positive and False Positive rates across different thresholds, what should be of interest when

classification algorithms are evaluated, besides the Accuracy rate. The RF and XGBoost

algorithms perform similarly across all the experiments with respect to the AUC measure. In binary

classification, the RF with no resampling technique reaches the highest AUC of 0.829. However,

in the multiclass classification case, the best performances can be obtained when applying the ROS

technique. The XGBoost combined with the ROS achieves the highest AUC of 0.881 in the 3-class

classification problem and 0.866 in the 5-class classification case. Having such results, 3-class

classification problem stands out as the most promising classification problem using the newly

obtained Lithuanian credit dataset.

 It is highly important to test the algorithm’s performance in classifying the Riskiest class. For

binary classification, 1-FPR is used as a measure, while the riskiest class (E) Recall is used to

evaluate the model’s performance in the multiclass classification case. In the binary classification

case, the RF achieves a 0.709 rate of Accuracy of the Riskiest class classification (1-FPR) with

SMOTE technique applied. Nevertheless, the XGBoost algorithm achieves an impressive 0.804

Accuracy of the Riskiest class classification (the Recall of the riskiest E class) in a 3-class

classification problem when ROS resampling technique was used. Similarly, in the 5-class

classification case, the XGBoost with ROS technique reaches 0.742 Accuracy in predicting the

riskiest class. These results one more time show that 3-class classification problem, combined with

the ROS technique, allows our two best algorithms to reach the best possible results.

Lastly, the False Positive rate for only multiclass classification problems is included in our

comparison. Here, drastically different results across the classification problems are obtained,

where in the 3-class classification case, XGBoost with ROS technique applied minimizes the False

41

Positive rate to only 0.09. In contrast, the best performing algorithm in the 5-class classification

problem Random Forest with SMOTE is associated with a False Positive rate of 0.246. Such results

additionally shows that 5-Class classification problem is much more difficult to the algorithms and

no clear distinction between all five classes cannot be found.

42

6. Conclusions and Recommendations

A proper credit risk management system could help lenders to make more informed decisions

in lending processes and avoid the risk of default. This study comprehensively analyzed statistical

and machine learning techniques in predicting individual credit scores. To carefully evaluate the

performance of the algorithms, the analysis was done using three different classification problems:

binary, 3-class and 5-class. Additionally, it was crucial to check whether the classifiers were not

biased towards a specific group of predictions (due to the class imbalance problem). To avoid that,

resampling techniques ROS and SMOTE were used across the experiments, together with a wide

variety of performance evaluation techniques. The analysis was done using the newly introduced

Lithuanian credit dataset obtained from one Lithuanian Loan-comparison platform.

The general conclusions of the research carried out are presented below.

• Based on the results obtained in this work, the final scoring method was proposed to

combine the results of different classification problems, resampling techniques and various

performance evaluation metrics. The proposed scoring technique allows to rank the

classifiers, while simultaneously capturing the size of the difference between the

performance. If the difference in predictive performance between the two best algorithms

is relatively small, then the difference in the final score will also be minimal.

• The Random Forest and XGBoost were found to be the best performing techniques

in predicting individual credit scores based on the proposed final scoring method. The

difference between the predictive performance of ensembles of classification trees and

other algorithms was significant. Random Forest outperforms its counterpart when the

Accuracy measure is of interest to compare the classifiers. However, the XGBoost shows

predictive superiority with respect to the Recall of the Riskiest E class. The Recall of the

Riskiest class can be considered as the classification Accuracy of the Riskiest class, which

is one of the most crucial elements in the credit scoring field.

• Empirical results show that the best algorithms perform comparatively better in 3-

Class classification problem than in binary classification case. The Accuracy in binary

classification using Random Forest and no resampling technique was 0.769, compared to

the same algorithm’s performance in the 3-class classification problem, where Accuracy

was 0.750. The difference of Accuracy between these experiments is minimal. However,

XGBoost with ROS technique applied in 3-Class classification case reaches impressive

classification Accuracy of the Riskiest class equal to 0.804. In contrast, the same algorithm

in binary classification problem with the ROS technique applied classifies the Riskiest

class with an Accuracy of only 0.702. In such a situation, where the Accuracy differs only

43

by the hundredths, but the classification Accuracy of the Riskiest class is higher by 0.102,

it is concluded that the 3-class classification problem is more effective. Figure 2 in section

3.2 shows that the Approval rate for the E-class customers is only 25%. Combining the

results of Approval rate and the classification Accuracy for the Riskiest class, it can be

concluded that 3-Class classification helps to distinguish the riskiest customers, who rarely

receive a loan offer, impressively well.

• It was also concluded that resampling techniques help to predict the minority (risky)

class better. In the case of the 3-class classification problem, the XGBoost algorithm

predicts the Riskiest E class with an Accuracy of 0.804 when ROS technique was applied.

In comparison, when no resampling techniques were applied, the same algorithm reached

only 0.472 Accuracy of the Riskiest class classification rate. This result demonstrates how

severe the class imbalance problem is in the credit scoring field and that Random

Oversampling technique helps to significantly improve the performance in classifying the

Riskiest segment.

The study used the newly introduced credit dataset from one Lithuanian Loan-comparison

platform. Having analysed the performance of statistical and machine learning techniques in

predicting individual credit scores, the recommendations for applying the credit scoring system in

the Loan-comparison platform can be presented. Firstly, it was found that Random Forest and

XGBoost techniques should both be considered in the implementation. When the predictions from

these algorithms contradict each other, an expert evaluation must be done. Additionally, 3-class

classification with the Random Oversampling technique is highly recommended. The

implementation of an individual credit scoring system would allow the Lithuanian Loan-

comparison platform to reduce the possibility of lending to a risky customer, improve the

efficiency of credit granting processes and avoid additional expenses for external credit scoring

agency.

Future research in that field must pay more attention to the development of Neural Network

architectures. It is possible to convert the tabular data into the picture format and perform

Convolutional Neural Network analysis, which is popular in various research fields. Additionally,

it would be recommended to perform analysis using more resampling techniques since the

improvements in predictive performance by using Random Oversampling are clear. Nevertheless,

extra feature variables would allow us to investigate additional aspects of the customer that could

hide some valuable information about his riskiness. Last but not least, the implementation of the

results from this study will be performed in a Lithuanian Loan-comparison platform, which would

allow the author to investigate how successfully these algorithms can contribute to the performance

of that company in real-life scenarios.

44

References

1. A. Ampountolas, T.J. Nde, P. Date, C. Constantinescu. A Machine Learning Approach for

Micro-Credit Scoring, Risks 9:50, 2021, p.p. 1-20.

2. B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, and J. Vanthienen.

Benchmarking state-of-the-art classification algorithms for credit scoring, Journal of the

Operational Research Society, 2003, p.p. 627-635.

3. F. Barboza, H. Kimura, E. Altman. Machine Learning Models and Bankruptcy Prediction,

Expert Systems with Applications, 2017, Volume (83), p.p. 405-417.

4. T. Bellotti, J. Crook. Support vector machines for credit scoring and discovery of

significant features, Expert Systems with Applications, 2009, Volume (36), p.p. 3302-3308.

5. C.M. Bishop. Neural Networks for Pattern Recognition, Oxford, Clarendon Press, 1995,

498 p.

6. B.E. Boser, I.M. Guyon, V.N. Vapnik. A Training Algorithm for Optimal Margin

Classifiers, Proceedings of the 5th Annual Workshop on Computational Learning Theory,

1992, p.p. 144-152.

7. L. Breiman. Random Forests, Machine Learning, 2001, Volume (45), p.p. 5-32.

8. I. Brown, C. Mues. An experimental comparison of classification algorithms for

imbalanced credit scoring data sets, Expert Systems with Applications, 2012, Volume (39), p.p.

3446-3453.

9. A. Cao, H. He, Z. Chen, W. Zhang. Performance Evaluation of Machine Learning

Approaches for Credit Scoring, International Journal of Economics, Finance and Management

Sciences, 2018, 6(6), p.p. 255-260.

10. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer. SMOTE: Synthetic Minority

Over-sampling Technique, Journal of Artificial Intelligence Research, 2002, Volume (16), p.p.

321-357.

11. T. Chen, C. Guestrin. XGBoost: A Scalable Tree Boosting System, KDD’16:Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2016, p.p. 785-794.

12. C. Cortes, V. Vapnik. Support-Vector Networks, Machine Learning, 1995, Volume (20),

p.p. 273-297.

13. X. Dastile, T. Celik. Making Deep Learning-Based Predictions for Credit Scoring

Explainable, IEEE Access, 2021, Volume (9), p.p. 50426-50440.

14. P. Golbayani, I. Florescu, R. Chatterjee. A Comparative study of forecasting corporate

credit ratings using neural networks, support vector machines and decision trees, North

American Journal of Economics and Finance, 2020, Volume (54), p.p. 1-16.

45

15. B.J. Gunnarsson, S. vanden Broucke, B. Baesens, M. Oskarsdottir, W. Lemahieu. Deep

learning for credit scoring: Do or don’t, European Journal of Operational Research, 2021,

Volume (295), p.p. 292-305.

16. S. Hamori, M. Kawai, T. Kume, Y. Murakami, C. Watanabe. Ensemble Learning or Deep

Learning? Application to Default Risk Analysis, Journal of Risk and Financial Management,

2018, 11(1):12, p.p. 1-14.

17. Y.C. Lee. Application of support vector machines to corporate credit rating prediction,

Expert Systems with Applications, 2007, Volume (33), p.p. 67-74.

18. S. Lessmann, B. Baesens, H.V. Seow, L.C. Thomas. Benchmarking state-of-the-art

classification algorithms for credit scoring: An update of research, European Journal of

Operational Research, 2015, Volume (247), p.p. 124-136.

19. Y. Li, W. Chen. A Comparative Performance Assessment of Ensemble Learning for Credit

Scoring, Mathematics, 2020, Volume (8), p.p. 1-19.

20. S. Li, M. Wang, J. He. Prediction of Banking Systemic Risk Based on Support Vector

Machine, Mathematical Problems in Engineering, 2013, p.p. 1-5.

21. C. Luo, D. Wu, D. Wu. A deep learning approach for credit scoring using credit default

swaps, Engineering Applications of Artificial Intelligence, 2016, Volume (65), p.p. 465-470.

22. M. Mahbobi, S. Kimiagari, M. Vasudevan. Credit risk classification: an integrated

predictive accuracy algorithm using artificial and deep neural network, Annals of Operations

Research, 2021, p.p. 1-29.

23. V. Moscato, A. Picariello, G. Sperli. A benchmark of machine learning approaches for

credit score prediction, Expert Systems With Applications, 2021, Volume (165), p.p. 1-8.

24. L. Munkhdalai, T. Munkhdalai, O.E. Namsrai, J.Y. Lee, K.H. Ryu. An Empirical

Comparison of Machine-Learning Methods on Bank Client Credit Assesments, Sustainability,

2019, 11(3), p.p. 1-23.

25. N. Sariannidis, S. Papadakis, A. Garefalakis, C. Lemonakis, T. Kyriaki-Argyro. Default

avoidance on credit card portfolios using accounting, demographical and exploratory factors:

decision making based on machine learning (ML) techniques, Annals of Operations Research,

2019, Volume (294), p.p. 715-739.

26. D. Tripathi, D.R. Edla, A. Bablani, A.K. Shukla, B.R. Reddy. Experimental analysis of

machine learning methods for credit score classification, Progress in Artificial Intellifence,

2021, Volume (10), p.p. 217-243.

27. S.K. Trivedi. A study on credit scoring modelling with different feature selection and

machine learning approaches, Technology in Society, 2020, Volume (63), p.p. 1-9.

46

28. M. Wallis, K. Kumar, A. Gepp. Credit Rating Forecasting Using Machine Learning

Techniques, Intelligent Big Data Analytics: A Managerial Perspective, 2019, p.p. 180-199.

29. H.C. Wu, Y.H. Hu, Y.H. Huang. Two-stage credit rating prediction using machine learning

techniques, Kybernetes, 2014, Volume (43), p.p. 1098-1113.

47

Appendices

Appendix 1 – The list of variables included in the study

Variable Description Category Format

Application_rating5 5 classes of applicant's credit score (A. B. C. D. E) Legal institutions Dependent

Application_rating3 3 classes of applicant's credit score (A-B. C-D. E) Legal institutions Dependent

Application_rating2
2 classes of applicant's credit score (Reliable (A-B) and

Risky (C-E) Legal institutions
Dependent

Official_income
Income obtained from The State Social Insurance Fund
Board under the Ministry of Social Security and Labour

(SODRA) Legal institutions
Numerical

Quer_by_inst_90d
How many querries (requests) were made for financial

institutions via 90 days for this applicant Legal institutions
Numerical

Has_real_est Has applicant real estate? Legal institutions Boolean

Has_open_debt Has applicant open debt? Legal institutions Boolean

Open_debt_count The amount of debts (in units). a certain indiviual has now Legal institutions Numerical

Open_Debt_sum The amount of debts (in EUR). a certain indiviual has now Legal institutions Numerical

Has_debt_Past Had applicant any debts in the past? Legal institutions Boolean

Past_Debt_count
The amount of debts (in units). a certain indiviual had in

the past Legal institutions
Numerical

Past_Debt_sum
The amount of debts (in EUR). a certain indiviual had in

the past Legal institutions
Numerical

Employment_duration_months Employment duration at current workplace in months Legal institutions Numerical

Has_activ_credit Has applicant current credit? Legal institutions Boolean

Active_credit_sum The amount of credit (in EUR). a certain indiviual has now Legal institutions Numerical

Active_credit_monthly_sum Monthly amount of payments for credit Legal institutions Numerical

DSTI_official Official Debt-to-Income ratio Legal instututions Numerical

Req_amount Requested loan amount
Filled by
applicant

Numerical

Marital_status Marital status (Married/single)
Filled by
applicant

Class

Age Age
Filled by
applicant

Numerical

Gender Gender (Male/Female)
Filled by
applicant

Class

City_classifier
Classifier of cities by its population (Big city>100k citizens;
30k<Medium city<100k; and Small city<30k). Data taken

from worldpopulationreview.com

Filled by
applicant

Class

Filled_income Income amount filled by individual
Filled by
applicant

Numerical

Income_Source
Income source filled by individual (Labour in Lithuania.

individual activity. state officer and so on.)
Filled by
applicant

Class

Children Number of children
Filled by
applicant

Numerical

Filled_obligations_monthly
Amount of current monthly financial commitments. filled by

customer in EUR
Filled by
applicant

Numerical

Application_filling_duration How long customer fills the application form in seconds
Filled by
applicant

Numerical

Returning_30_days Has customer already filled application during the last 30d
Filled by
applicant

Boolean

Income_fill_difference
It is calculated by such formula: filled income - official

income.
Behavioral Numerical

Doc_Type
What type of document was used to confirm identity

(passport. identity card. etc.)
Behavioral Class

Auth_duration
What was duration of identity authentication process in

seconds
Behavioral Numerical

Auth_Number
How many times. customer tried to authenticate his

identity
Behavioral Numerical

http://worldpopulationreview.com/

48

Appendix 2 – Correlation matrix of numerical variables

49

Appendix 3 – Categorical variables distribution

50

Appendix 4 – The program code for binary classification.

#Code for binary classification

#--

#Libraries

Sys.setenv(LANG="EN")

library(readxl)

#--

#uploading and cleaning dataset

Final_dataset <- read_excel("Final_dataset.xlsx")

Final_dataset=as.data.frame(Final_dataset)

Final_dataset$Application_rating15=as.factor(Final_dataset$Application_rating

15)

Final_dataset$Application_rating5class=as.factor(Final_dataset$Application_ra

ting5class)

Final_dataset$Application_rating3class=as.factor(Final_dataset$Application_ra

ting3class)

Final_dataset$Application_rating2class=as.factor(Final_dataset$Application_ra

ting2class)

Final_dataset$Returning_30_days_cat=as.factor(Final_dataset$Returning_30_days

_cat)

Final_dataset$Doc_Type=as.factor(Final_dataset$Doc_Type)

Final_dataset$Marital_status=as.factor(Final_dataset$Marital_status)

Final_dataset$Gender=as.factor(Final_dataset$Gender)

Final_dataset$City_classifier=as.factor(Final_dataset$City_classifier)

Final_dataset$Income_Source=as.factor(Final_dataset$Income_Source)

Final_dataset$Has_real_est=as.factor(Final_dataset$Has_real_est)

Final_dataset$Has_open_debt=as.factor(Final_dataset$Has_open_debt)

Final_dataset$Has_debt_Past=as.factor(Final_dataset$Has_debt_Past)

Final_dataset$Employment_duration_months=as.numeric(Final_dataset$Employment_

duration_months)

Final_dataset$Has_activ_credit=as.factor(Final_dataset$Has_activ_credit)

Final_dataset$Email=as.factor(Final_dataset$Email)

Final_dataset$Auth_Meth=as.factor(Final_dataset$Auth_Meth)

str(Final_dataset)

colnames(Final_dataset)

#checking NA

apply(Final_dataset,2, function(x) any(is.na(x)))

#==

#Normalizing Variables

min_max_norm <- function(x) {

 (x - min(x)) / (max(x) - min(x))

}

dataset_normalized=as.data.frame(lapply(Final_dataset[c("Application_filling_

duration","Req_amount","Age","Filled_income",

"Official_income","Income_fill_difference",

"Children","Filled_obligations_monthly",

"Filled_DSTI","Quer_by_inst_90d","Open_debt_count",

"Past_Debt_count","Open_Debt_sum","Past_Debt_sum",

"Employment_duration_months","Active_credit_sum",

"Active_credit_monthly_sum","Auth_duration","Auth_Number")],

 min_max_norm))

dataset_normalized$Application_rating2class=Final_dataset$Application_rating2

class

dataset_normalized$Application_rating2_numerical=Final_dataset$Application_ra

ting2_numerical

dataset_normalized$Returning_30_days_num=Final_dataset$Returning_30_days_num

dataset_normalized$ID_Card=Final_dataset$ID_Card

dataset_normalized$Passport=Final_dataset$Passport

51

dataset_normalized$Married=Final_dataset$Married

dataset_normalized$Male=Final_dataset$Male

dataset_normalized$Big_City=Final_dataset$Big_City

dataset_normalized$Med_city=Final_dataset$Med_city

dataset_normalized$Labour_LT=Final_dataset$Labour_LT

dataset_normalized$Labour_Abroad=Final_dataset$Labour_Abroad

dataset_normalized$Individual_work=Final_dataset$Individual_work

dataset_normalized$State_officer=Final_dataset$State_officer

dataset_normalized$Has_real_est_num=Final_dataset$Has_real_est_num

dataset_normalized$Has_open_debt_num=Final_dataset$Has_open_debt_num

dataset_normalized$Has_debt_Past_num=Final_dataset$Has_debt_Past_num

dataset_normalized$Has_activ_credit_num=Final_dataset$Has_activ_credit_num

#==

#Exploratory analysis

#1. Means

str(Final_dataset)

colnames(dataset_normalized)

numerical_dataset=Final_dataset[,c("Application_rating2class","Application_fi

lling_duration",

"Req_amount","Age","Filled_income","Official_income","Income_fill_difference"

, "Children","Filled_obligations_monthly","Filled_DSTI",

"Quer_by_inst_90d","Open_debt_count","Past_Debt_count",

"Open_Debt_sum","Past_Debt_sum","Employment_duration_months",

"Active_credit_sum","Active_credit_monthly_sum","Auth_duration",

 "Auth_Number","DSTI_official")]

summary(numerical_dataset)

#--

#Checking means:

aggregate(numerical_dataset[,2:21],

list(numerical_dataset$Application_rating2class), mean)

#Correlation and interdependence

myvars<-c("Application_filling_duration",

"Req_amount","Age","Filled_income","Official_income","Income_fill_difference"

,

 "Children","Filled_obligations_monthly",

 "Quer_by_inst_90d","Open_debt_count","Past_Debt_count",

 "Open_Debt_sum","Past_Debt_sum","Employment_duration_months",

 "Active_credit_sum","Active_credit_monthly_sum","Auth_duration",

 "Auth_Number","DSTI_official")

d=Final_dataset[myvars]

#Generate correlation matrix

cor(d, use="pairwise.complete.obs")

#Visualising correlation

library(corrplot)

M <- cor(d, use="pairwise.complete.obs")

corrplot(M, method = "number")

(order.AOE <- corrMatOrder(M, order="AOE"))

(order.FPC <- corrMatOrder(M, order="FPC"))

(order.hc <- corrMatOrder(M, order="hclust"))

(order.hc2 <- corrMatOrder(M, order="hclust", hclust.method="ward"))

corrplot(M, method="number", col = "Black",

 cl.cex = 1, number.cex = 0.8, tl.col="Black")

help("corrplot")

M.AOE <- M[order.AOE,order.AOE]

M.FPC <- M[order.FPC,order.FPC]

M.hc <- M[order.hc, order.hc]

52

M.hc2 <- M[order.hc2,order.hc2]

par(ask=FALSE)

png(height=1200, width=1500, pointsize=10, file="overlap.png")

corrplot(M.FPC, tl.cex=2, tl.col='black', method='number',

 addCoef.col = "grey") # Original order

dev.off()

corrplot(M.FPC, tl.cex=1, tl.col='black') # The first principal component order

#--

#spliting cleaned data

library(ROCR)

library(sjPlot)

#library(caret)

set.seed(65450)

#set.seed(65451) - for second split

#set.seed(65452) - for third split

split <- sample(c(TRUE, FALSE), nrow(dataset_normalized), replace=TRUE,

prob=c(0.8,0.2))

training=dataset_normalized[split,]

testing=dataset_normalized[!split,]

summary(testing)

colnames(testing)

#-------------------------------------

Sampling Training data

library(ROSE)

library(randomForest)

library(caret)

library(e1071)

library(performanceEstimation)

summary(training$Application_rating2class)

#Random Oversampling

oversampled_training <- ovun.sample(Application_rating2class~., data =

training, method = "over", N = 29836, seed = 12345)$data

summary(oversampled_training$Application_rating2class)

#SMOTE

Smote_training <- smote(Application_rating2class~.,data = training, perc.over

= 0.5, k=10, perc.under = 3)

summary(Smote_training$Application_rating2class)

#--

set.seed(123)

#==

Logistic Regression

#==

#prediction

library(pROC)

library(caret)

library(InformationValue)

library(ISLR)

start_time_Logistic <- Sys.time()

set.seed(1123)

regression=glm(Application_rating2class~Application_filling_duration+Req_amou

nt+Age+Official_income+

 Income_fill_difference+Children+Filled_obligations_monthly+

 Quer_by_inst_90d+Open_debt_count+Past_Debt_count+

Open_Debt_sum+Past_Debt_sum+Employment_duration_months+Active_credit_sum+

 Active_credit_monthly_sum+Auth_duration+Auth_Number+

 Returning_30_days_num+ID_Card+Married+

 Male+Big_City+Med_city+Labour_LT+

 Labour_Abroad+Individual_work+State_officer+Has_real_est_num+

 Has_open_debt_num+Has_debt_Past_num+Has_activ_credit_num,

53

 data = training, family=binomial(link="logit"))

end_time_Logistic<-Sys.time()

Logistic_duration=end_time_Logistic-start_time_Logistic

Logistic_duration

summary(regression)

Evaluation of regression

library(car)

vif(regression)

AUC

probabilities = predict(regression,testing,type="response")

roc_object <- roc(testing$Application_rating2class,probabilities)

plot(roc_object, main="ROC Curve [Logistic Regression]",print.auc=TRUE,

print.auc.x = 0.5, print.auc.y = 0.3, add=FALSE)

auc(roc_object)

#Confusion matrix

confusionMatrix(testing$Application_rating2class, probabilities)

#==

RANDOM FOREST

#==

#Random Forest

library(randomForest)

colnames(training)

?randomForest

#Short Data

start_time_RF <- Sys.time()

start_time_RF

rf=randomForest(Application_rating2_numerical~Application_filling_duration+Re

q_amount+Age+Official_income+

 Income_fill_difference+Children+Filled_obligations_monthly+

 Quer_by_inst_90d+Open_debt_count+Past_Debt_count+

 Open_Debt_sum+Past_Debt_sum+Employment_duration_months+Active_credit_sum+

 Active_credit_monthly_sum+Auth_duration+Auth_Number+

 Returning_30_days_num+ID_Card+Married+

 Male+Big_City+Med_city+Labour_LT+

 Labour_Abroad+Individual_work+State_officer+Has_real_est_num+

 Has_open_debt_num+Has_debt_Past_num+Has_activ_credit_num,

 ntree=200,mtry=5,

 data = oversampled_training

)

end_time_RF<-Sys.time()

RF_duration=end_time_RF-start_time_RF

RF_duration

Confusion

RF2_predictions <- predict(rf, testing, type = "class")

confusionMatrix(testing$Application_rating2class,RF2_predictions)

#ROC

test.predictions_RF <- predict(rf, newdata=testing)

roc.RFtest <- roc(testing$Application_rating2class,

as.numeric(test.predictions_RF))

plot(roc.RFtest, add = FALSE,col = "Blue", print.auc=TRUE, print.auc.x = 0.5,

print.auc.y = 0.3)

print(rf)

rf

Plotting model

plot(rf)

54

Importance plot

importance(rf)

Variable importance plot

varImpPlot(rf)

#==

SVM

#==

library(e1071)

Start_time_SVM<-Sys.time()

set.seed(123)

svm_fit=svm(Application_rating2_numerical~Application_filling_duration+Req_am

ount+Age+Official_income+

 Income_fill_difference+Children+Filled_obligations_monthly+

 Quer_by_inst_90d+Open_debt_count+Past_Debt_count+

 Open_Debt_sum+Past_Debt_sum+Employment_duration_months+Active_credit_sum+

 Active_credit_monthly_sum+Auth_duration+Auth_Number+

 Returning_30_days_num+ID_Card+Married+

 Male+Big_City+Med_city+Labour_LT+

 Labour_Abroad+Individual_work+State_officer+Has_real_est_num+

 Has_open_debt_num+Has_debt_Past_num+Has_activ_credit_num,

 data = Smote_training, kernel="radial",gamma=0.05,

 cost=2)

end_time_SVM<-Sys.time()

SVM_duration=end_time_SVM-Start_time_SVM

SVM_duration

print(svm_fit)

summary(svm_fit)

svm_fit

Predict the testing set with the trained model

SVM_predictions <- predict(svm_fit, testing, type = "class")

Accuracy and other metrics

confusionMatrix(testing$Application_rating2class, SVM_predictions)

svmPrediction=predict(svm_fit,testing)

roc_svm_test <- roc(response = testing$Application_rating2class, predictor

=as.numeric(svmPrediction))

plot(roc_svm_test, add = FALSE,col = "green", print.auc=TRUE, print.auc.x =

0.5, print.auc.y = 0.3)

#==

XGBoost

library(xgboost)

?xgboost

library(pacman)

#prepare training data

colnames(training_short)

trainm=data.matrix(oversampled_training[,c("Application_filling_duration","Re

q_amount","Age","Official_income",

"Income_fill_difference","Children","Filled_obligations_monthly",

"Quer_by_inst_90d","Open_debt_count","Past_Debt_count",

"Open_Debt_sum","Past_Debt_sum","Employment_duration_months","Active_credit_s

um",

"Active_credit_monthly_sum","Auth_duration","Auth_Number",

"Returning_30_days_num","ID_Card","Married","Male","Big_City","Med_city","Lab

our_LT",

55

"Labour_Abroad","Individual_work","State_officer","Has_real_est_num",

"Has_open_debt_num","Has_debt_Past_num","Has_activ_credit_num")])

train_label = oversampled_training[,"Application_rating2_numerical"]

train_matrix = xgb.DMatrix(data = as.matrix(trainm), label = train_label)

#prepare validation data

testm=data.matrix(testing[,c("Application_filling_duration","Req_amount","Age

","Official_income",

"Income_fill_difference","Children","Filled_obligations_monthly",

 "Quer_by_inst_90d","Open_debt_count","Past_Debt_count",

"Open_Debt_sum","Past_Debt_sum","Employment_duration_months","Active_credit_s

um",

"Active_credit_monthly_sum","Auth_duration","Auth_Number",

"Returning_30_days_num","ID_Card","Married",

"Male","Big_City","Med_city","Labour_LT",

"Labour_Abroad","Individual_work","State_officer","Has_real_est_num",

"Has_open_debt_num","Has_debt_Past_num","Has_activ_credit_num")])

test_label = testing[,"Application_rating2_numerical"]

test_matrix = xgb.DMatrix(data = as.matrix(testm), label = test_label)

?xgb.train

#parameters

xgb_params = list(objective = "binary:logistic",

 eval_metric = "error",

 max_depth = 6,

 eta = 0.01,

 gammma = 1,

 colsample_bytree = 0.5,

 min_child_weight = 2)

#model

set.seed(123)

start_time_XGboost<-Sys.time()

XGBoost_model = xgb.train(params = xgb_params, data = train_matrix,

 nrounds = 500)

end_time_XGboost<-Sys.time()

XGboost_duration=end_time_XGboost-start_time_XGboost

XGboost_duration

#feature importance

imp = xgb.importance(colnames(train_matrix), model = XGBoost_model)

xgb.plot.importance(imp)

Confusion matrix

XGB2_predictions <- predict(XGBoost_model, newdata = test_matrix, type =

"class")

confusionMatrix(testing$Application_rating2class, XGB2_predictions)

#NORMAL AUC

p_full = predict(XGBoost_model, newdata = test_matrix)

plot.roc(test_label, p_full, col="Orange", print.auc=T, print.auc.y=0.5,

add=FALSE)

56

#----------------------

#Keras ANN

#----------------------

library(keras)

library(lime)

library(rsample)

library(recipes)

?keras_model_sequential

model_keras22 <- keras_model_sequential()

model_keras22 %>%

 # First hidden layer

 layer_dense(

 units = 20,

 kernel_initializer = "uniform",

 activation = "relu",

 input_shape = ncol(trainm)) %>%

 # Dropout to prevent overfitting

 layer_dropout(rate = 0.1) %>%

 # Second hidden layer

 layer_dense(

 units = 20,

 kernel_initializer = "uniform",

 activation = "relu") %>%

 # Dropout to prevent overfitting

 layer_dropout(rate = 0.1) %>%

 # Output layer

 layer_dense(

 units = 1,

 kernel_initializer = "uniform",

 activation = "sigmoid") %>%

 # Compile ANN

 compile(

 optimizer = optimizer_adam(learning_rate = 0.0001),

 loss = 'binary_crossentropy',

 metrics = c('accuracy'))

model_keras22

start_time_ANN2L<-Sys.time()

history <- fit(

 object = model_keras22,

 x = as.matrix(trainm),

 y = train_label,

 batch_size = 32,

 epochs = 300,

 validation_split = 0.20

)

End_time_ANN2L<-Sys.time()

Duration_ANN2_L=End_time_ANN2L-start_time_ANN2L

Duration_ANN2_L

print(history)

plot(history)

57

#----------------------------------

2 Layers results

#----------------------------------

Confusion matrix

x = as.matrix(testm)

predictions_keras=model_keras22 %>% predict(x, batch_size=32)

y_pred=round(predictions_keras)

predictions_keras=as.numeric(predictions_keras[,1])

confusion_matrix=table(test_label,y_pred)

confusion_matrix

#Auc

roc_object_Keras <- roc(testing$Application_rating2class, predictions_keras)

plot(roc_object_Keras, main="ROC Curve [Keras Neural Network]",print.auc=TRUE,

print.auc.x = 0.5, print.auc.y = 0.3, add=FALSE)

auc(roc_object_Keras)

#-------------------------

4 layers

model_keras4 <- keras_model_sequential()

model_keras4 %>%

 # First hidden layer

 layer_dense(

 units = 20,

 kernel_initializer = "uniform",

 activation = "relu",

 input_shape = ncol(trainm)) %>%

 # Dropout to prevent overfitting

 layer_dropout(rate = 0.1) %>%

 # Second hidden layer

 layer_dense(

 units = 20,

 kernel_initializer = "uniform",

 activation = "relu") %>%

 # Dropout to prevent overfitting

 layer_dropout(rate = 0.1) %>%

 # Third hidden layer

 layer_dense(

 units = 20,

 kernel_initializer = "uniform",

 activation = "relu") %>%

 # Dropout to prevent overfitting

 layer_dropout(rate = 0.1) %>%

 # Fourth hidden layer

 layer_dense(

 units = 20,

 kernel_initializer = "uniform",

 activation = "relu") %>%

 # Dropout to prevent overfitting

 layer_dropout(rate = 0.1) %>%

 # Output layer

 layer_dense(

 units = 1,

 kernel_initializer = "uniform",

58

 activation = "sigmoid") %>%

 # Compile ANN

 compile(

 optimizer = optimizer_adam(learning_rate = 0.0001),

 loss = 'binary_crossentropy',

 metrics = c('accuracy'))

model_keras4

start_time_ANN4L<-Sys.time()

history <- fit(

 object = model_keras4,

 x = as.matrix(trainm),

 y = train_label,

 batch_size = 32,

 epochs = 300,

 validation_split = 0.20

)

End_time_ANN4L<-Sys.time()

Duration_ANN4_L=End_time_ANN4L-start_time_ANN4L

Duration_ANN4_L

print(history)

plot(history)

#----------------------------------

4 Layers results

#----------------------------------

Confusion matrix

x = as.matrix(testm)

predictions_keras=model_keras4 %>% predict(x, batch_size=32)

y_pred=round(predictions_keras)

predictions_keras=as.numeric(predictions_keras[,1])

confusion_matrix=table(test_label,y_pred)

confusion_matrix

#Auc

roc_object_Keras <- roc(testing$Application_rating2class, predictions_keras)

plot(roc_object_Keras, main="ROC Curve [Keras Neural Network]",print.auc=TRUE,

print.auc.x = 0.5, print.auc.y = 0.3, add=FALSE)

auc(roc_object_Keras)

