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Abstract

This paper develops a systematic algorithmic portfolio management framework, which consists of

4 core parts: information extraction, asset preselection, portfolio optimization and online regulation.

As a case study for the proposed framework, we use Markov Chains model to extract information from

the assets return series and forecast the future wealth distribution attainable by each asset. We utilize

these forecasts to reduce dimensionality of the portfolio optimization problem via asset preselection

using two algorithms: Data Envelopment Analysis and simple ranking algorithm of our own design.

The portfolio weights are optimized by maximizing 3 semi-parametric functions of the forecasted port-

folio wealth distribution, prevalent in the related literature, and a proposed extension of Omega Ratio

to the Markovian, which demonstrates good performance in the empirical tests. Optimization is per-

formed using two heuristic algorithms � Genetic Algorithm and a problem-speci�c simplex exploration

algorithm, the latter of which consistently demonstrated better performance. Moreover, we propose

and validate a simple regularization method in order to control the portfolio weight redistribution in

time performed by the considered model. Within the developed framework, we were able to construct

multiple end-to-end portfolio management algorithms that outperformed the benchmark S&P500 Index

both under favorable market conditions and during the 2022 recession.

Keywords: Portfolio management, Markov Chains, optimization, forecasting, framework, time-

series, �nance.

Notation

In this work we generally stick to the following notation

� Index t = 1, . . . , T is consistently reserved for identifying time step, with h > 0 identifying the

forecasting horizon. We assume that in static perspective the decision on portfolio allocation is

made at time t = T . We also introduce the notation of (t) to denote some vector or matrix at

time t in order to avoid expanding dimensionality to more than 2d where possible.

� N is the number of assets available for trade.

� S is the number of states of the Markov Process.

� WT+h is the discrete distribution of future portfolio wealth at time T+h, estimated by evaluating

all the possible realizations of the Markov wealth process of length h. It is described by two

vectors: w(T+h) and p(T+h) denoting respectively all the possible values of wealth that a given

Markov process can achieve and the probabilities of achieving them.

� x ∈ RN denotes the vector of portfolio weights allocated among assets.

� Z ∈ RN,K denotes the matrix of historical returns.

� b, b denote upper (lower) market stochastic bounds.

� τ - Kendall correlation

� ρ - Pearson correlation
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Introduction

Algorithmic portfolio management can be generally de�ned as a �eld of applied research aimed at

developing end-to-end algorithms for �nancial portfolio weights allocation among given assets. It origi-

nates from the Modern Portfolio Theory proposed by [34], who suggested that portfolio optimization is

a multi-objective problem, since investors strive to maximize the expected returns, while simultaneously

minimizing the associated risk. Since that time a variety of complex approaches for algorithmic port-

folio management have been formulated, see e.g. [1, 18, 5]. However, despite the numerous attempts

to systematize the state of the �eld (for instance, [27, 16, 41]), these works are limited by the nature of

literature review concept to purely describing and classifying the approaches considered. At the same

time, they can hardly answer the question most essential to practitioners: according to certain speci�c

criteria what approach is the best under what conditions? Answering such questions requires a much

more technical analytical framework for model comparison, which would allow directly benchmarking

the approaches against each other in a similar manner as it is being done in other �elds of machine

learning application, for example image classi�cation.

These considerations lead to the main inspiration behind current work, which is the creation of a

framework, both conceptual and programmatic, which would incorporate the variety of currently avail-

able approaches in algorithmic portfolio management. As a theoretical foundation for the proposed

framework, we suggest viewing the algorithmic portfolio management model as inherently consisting of

four core subtasks, which in practical terms are typically represented as separate algorithms combined

together to construct the end-to-end model. These subtasks include information extraction, asset pres-

election, portfolio optimization and online regulation. Information Extraction refers to any processing

of the available raw data with the purpose of extraction of meaningful information about the underlying

assets, which can be used for asset selection or portfolio optimization. Asset Preselection refers to ex-

plicit selection of a pool of assets to be considered for portfolio out of more wide overall market known

and available to the investor or researcher. Portfolio optimization is a problem of allocating funds (or

portfolio weights in more generalized form) among the selected set of assets according to some (often

multiple) optimality criteria under given constraints. Finally, online regulation refers to the strategy

on how the whole portfolio management algorithm is being adjusted in time given the current state of

the portfolio and changing market conditions.

In order to support the argument for the development of the discussed framework, we consider the

case of a Markovian portfolio management approach consistently developed by [18, 40, 4, 3, 39]. The

core idea behind the approach is modeling portfolio returns as a Markov chain process, thus extracting

meaningful information about their structure, which allows forecasting the future wealth distribution

as described in Section 2.1. Applying this same model to individual assets allows estimating multiple

desirable and undesirable statistics, which characterize asset performance and with the application

of additional algorithm, such as Data Envelopment Analysis [52, 18, 15], is used to select the most

perspective assets as discussed in Section 2.2. Moreover, we optimize portfolio weights by maximizing

one of 4 objective functions of the Markov Chains model: MSG Sharpe Ratio, MSG Stable Ratio, MSG

Pearson ration proposed in [18] and our own extension of Omega Ratio to Markovian context - MSG

Omega Ratio, which was found to be the best objective during favorable market conditions. We use a
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problem-speci�c optimization heuristic presented in Section 2.3, which we demonstrate to outperform

widely used Genetic Algorithm for the given problems. Finally, we develop certain top-level extensions,

which are showed to regulate the overall algorithm performance in time, smoothing the sharp changes in

the portfolio weights produced by the direct application of the algorithm, which might be undesirable

in real-life context due to the presence of transaction costs as discussed in Section 2.4. Thus, this

approach represents a good illustrative example for the proposed framework, as it incorporates all the

aforementioned parts of the theoretical algorithmic portfolio management framework we propose.

Moreover, this work additionally contributes to the practical research by developing an open source

Python implementation of the proposed framework (see Appendix A). With each of the subtasks essen-

tially corresponding to a separate algorithm in the end-to-end pipeline, a module based code structure

allows developing and testing a large variety of models by essentially constructing end-to-end algo-

rithms out of several building blocks. A more advanced version of such framework might facilitate

the research in the �eld immensely, as it would provide an environment for further experiments where

researchers or just enthusiasts would not have to implement, test and analyze the whole end-to-end

algorithm from scratch, but could rely on the existing infrastructure and focus their e�ort on making

speci�c improvements. While there are still improvements to make as outlined in Section 4, our im-

plementation is highly optimized, which facilitates the use of this otherwise extremely computationally

expensive approach even not so powerful machines.

This paper is structured in 4 sections. In the �rst section, we develop the theoretical argument for

the proposed framework, discuss its structure and support it by discussing the variety of methods found

in literature, which typically can be attributed to one of the mentioned subtasks. In the second section,

we describe the Markovian approach to portfolio management using it is as a case study to demonstrate

all the constituting parts of the framework on speci�c algorithms. In the third section, we report the

results of testing the considered approach on 2 datasets corresponding to di�erent market conditions

and discuss the empirically identi�ed nuances. In the fourth section we summarize the paper, provide

conclusions and directions for future research.

1 Algorithmic Portfolio Management Framework

In this Section we �rst propose a novel theoretical framework for systematic understanding of the

Algorithmic Portfolio Management models as consisting of 4 primary subtasks: : Asset Preselection,

Information Extraction, Portfolio Optimization and Online Regulation. After the presentation of the

general idea, we provide an overview of the previous research with primary accent on the speci�c parts

of the proposed approaches corresponding to each of the subtasks in the proposed framework.

1.1 Motivation and core idea

Portfolio management is a very broad term and many researchers have provided their de�nitions,

which follow the same general idea, yet highlight di�erent aspects of this problem. One de�nition

within the �eld was provided by [41], who very broadly de�ned portfolio management as �the process of

choosing various assets within the portfolio for a predetermined period� and suggested that it �covers

the following closely related areas: Portfolio Optimization, Portfolio Selection, Portfolio Allocation�.
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The authors highlight one of the conceptual problems in the �eld, which is that these terms are often

being used interchangeably, thus complicating the theoretical discussion. Therefore in this work we

strive to clearly elaborate on the distinction between the constituting parts of the generalized portfolio

management algorithm outlined in the de�nition. Another de�nition can be found in [1], who de�nes

portfolio management as "the process of making decisions for the allocation of resources among a set of

assets while satisfying �nancial constraints (such as cardinality, round-lot, asset class, etc.) in order to

maximize the return". This de�nition highlights the fact that portfolio management in mathematical

terms is a problem with many constraints, but simpli�es the target of the problem as pure return

maximization, which is typically not the only objective of the investor. This latter point is generalized

further by [20], who de�nes portfolio management as "a process of selecting and supervising a group of

�nancial products that meet an individual's long-term �nancial objectives.".

In this thesis, we propose a more structured view on algorithmic portfolio management as a dynamic

process of information extraction, asset preselection, portfolio optimization and online regulation with

the ultimate goal of producing a �nancial portfolio best tailored to the investor's preferences under

given constraints at each moment in time based on available historic information. In order to justify

this de�nition and show it's relevance, we shall consider both the practical problem that investor faces

and expects to be solved by data modeling and the current state of research, to demonstrate how

previously proposed methods can be uni�ed and structured by our framework.

First, let us consider the generic, real-life problem that investor faces and then relate it to our

de�nition and existent literature. Consider a novel investor who has some savings and wants to put

them to work by forming an investment portfolio. One would typically open an account at some broker

and �nd himself in the following environment. Modern days broker o�ers a possibility to purchase

tens of thousands various instruments including stocks from the entire world's markets, corporate

and governmental bonds, commodities, cryptocurrencies, not to mention more sophisticated �nancial

instruments such as options, futures and swaps. There is a vast amount of diverse information available

about each of these instruments, including, besides the standard price and volume, an enormous variety

of technical indicators developed by generations of traders, �nancial statements of the companies,

breaking news, analysts' reports and an occasional tweet from Elon Musk. Moreover, even if one

manages to select the instruments of preference, there is only a limited amount of money to invest,

which has to be split somehow among the chosen assets. Clearly, rational investor wants to get as much

return as possible, but economics teaches us that there is no such thing as a free lunch in the markets.

Bitcoin has been generating enormous returns for a while now, so one might get an impression that

buying it is the way to get rich. On the other hand, if it will go bust, all the savings might be lost at

once, so, perhaps, it might be wiser to spread the investment and buy something else as well. Now one

might think that maybe it would be wise to buy as many instruments as possible, after all, chances

of all of them simultaneously going bust are extremely small. But the broker also has it's stake in

the game, so he is likely to charge a commission on each transaction made and put the lower limits

on the quantity of each asset you may purchase, thus making full diversi�cation costly and technically

constrained. Let's say one managed to make all these choices and acquired a fair portfolio. After a

month, the situation in the markets might change drastically and, suddenly, the investor �nds out there

is an unwinding �nancial crisis and half of his portfolio is under risk of huge losses according to experts.
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Well, probably what is left of it has to be reallocated. And here they come again � the transaction

costs.

While this motivational example is rather informal, we believe it provides a good illustration of the

complex problem this paper addresses, while embedding all the signi�cant aspects of it. Now we turn

to the more formal consideration.

The most widely researched part of portfolio management within data modelling research domain

is Portfolio Optimization, which is at times being called Portfolio Management, thus it is important to

highlight the distinction between the two. Portfolio optimization is a problem of allocating funds (or

weights in more generalized form) among a prede�ned set of assets according to some (often multiple)

optimality criteria under given constraints. As such, it is purely a mathematical optimization problem,

which was �rst formulated by Markowitz [34], who suggested a solution in the form of Mean-Variance

Optimization model. Markowitz suggested that the optimal portfolio is the one that maximizes the

returns, while simultaneously minimizes the associated risks. Since it is a multi-objective optimization

problem, there exist multiple optimal solutions. The set of these optimal solutions Markowitz labelled

E�cient Frontier and suggested that it is up to investor's preferences to select the particular risk-

return trade-o�. The problem of portfolio optimization is still challenging on both theoretical and

practical levels. On theoretical level, the following areas remain open: how optimal portfolio should

be de�ned, how risks and returns should be measured and estimated, and what real-life constraints

should be incorporated in the models. [15, 45] On the practical level, portfolio optimization with

multiple-objectives and various constraints is an inherently di�cult problem in the �rst place, so various

algorithms and methods are being proposed that try to approximate the optimal solution, which can be

found analytically only for some non-realistic formulations of the problem. [16] A more comprehensive

discussion on the nuances and approaches to portfolio optimization is presented in Section 1.2.1.

At this stage, however, it is more important to highlight that portfolio optimization is purely a

problem of allocation of weights (funds). Thus, before portfolio optimization problem can and shall be

solved, two other components of Portfolio Management framework have to be already in place. That

is the discrete set of assets must be de�ned and all the inputs for optimization shall be estimated. It

appears that most of the current research typically pays certain attention to the second part, even

though sometimes it is being incorporated into the optimization model without the distinction, mostly

neglecting the �rst. A very typical, though unfortunate from the practical point of view, approach is

when researchers test their optimization algorithms or models on an arbitrarily selected small pool of

assets, often belonging to the same class. There is a whole range of potential problems associated with

this approach, including generalizability, scalability, �exibility and, ultimately, practicality. Generaliz-

ability refers to the concern that models developed for a small, manually preselected pool of assets and

showing good results on it, even if the testing procedures are done with due diligence, might not work

well when faced with a di�erent pool of assets. Scalability refers to the concern that many models and

methods might not scale well for certain reasons, for instance showing instability of performance when

presented with a signi�cantly larger pool of assets than initially considered or resulting in prohibitive

computation time. [21] Flexibility refers to a very prominent problem that many methods can hardly

incorporate the dynamic changes in the pool of assets. As a result, models become impractical for the

real world where investor faces a dynamically changing pool of tens of thousands of assets belonging
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to di�erent classes. In a sense, this issue can be thought of as researchers solving highly constrained

optimization problems for a particular small part of the market, without acknowledging the fact.

It is important to highlight that asset selection and portfolio optimization can be viewed as the same

problem from mathematical perspective. If the pool of assets for optimization includes all the available

assets, then indeed any optimization algorithm will perform an implicit asset selection by assigning

weights of zero to the not-selected assets. Thus, we can distinguish two types of asset selection: implicit,

done during the optimization, and explicit, done prior to optimization, which is further referred to as

asset preselection. [18] Another important note is that it is practically impossible to de�ne the market

in general as assets appear and disappear all the time and only some portion of them is known and

available for trading to any given investor. Therefore, the notion of the overall market is conceptual,

rather than deterministic. Thus, in the proposed framework and de�nition of portfolio management,

Asset Preselection refers to explicit selection of a subset of assets to be considered for portfolio out of

bigger initial set of assets known and available to the investor or researcher.

Information Extraction is another part of portfolio management that is being performed almost

all the time but is rarely explicitly acknowledged by researchers. Information Extraction refers to any

processing of the available raw data with the purpose of extraction of meaningful information about

the assets, which can be used for asset selection or portfolio optimization. The most straightforward

example is prediction of future prices of the assets in order to use them as input for portfolio optimiza-

tion. Various raw inputs can be used to make such a prediction including historical prices, technical

indicators, fundamental indicators or textual information, which are being somehow processed in order

to estimate the future prices (new information).

The context in which these tasks are performed, according to the proposed de�nition, is dynamic,

subject to investor preferences and constraints. It is dynamic because market conditions continuously

change and, therefore, portfolio should be adjusted accordingly in time. This in-time adjustment cor-

responds to the fourth and last subtask in the general algorithmic portfolio management framework

that we label online regulation. The primary distinguishing feature of the algorithms falling into this

class is that they take into account the current state of the portfolio at the time of making a decision.

Thus, online regulation refers to the process of portfolio weights adjustment in time, which takes into

account the meta context of the end-to-end algorithm, such as, for example, current state and

or previous history of the portfolio performance, potential portfolio allocations produced by di�erent

optimization algorithms, current transaction costs level. [27] It should be mentioned that implementa-

tion of a portfolio management algorithm that would incorporate all the new information as it appears

and make corresponding decisions in real time is extremely challenging. Thus, the standard approach in

the �eld is discretization of time domain, which corresponds the assumption that portfolio management

decisions are done with a certain frequency (daily, for example). [18]

Portfolio management is subject to investor's preferences because there might be di�erent interpre-

tations of the optimality of the portfolio to pursue, as highlighted by Markowitz's E�cient Frontier.

[34] For instance, some investors might value security over high returns and require much higher diver-

si�cation then the others. Thus, the possibility to tune the optimization target is a desirable property

for portfolio management system. Moreover, any portfolio management system that strives to be prac-

tical shall be able to incorporate the real world constraints, such, as transaction costs (often variable),
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slippage (the fact that it is not always possible to execute the transaction for a given price), limits on

purchase of certain assets (either upper or lower).

Finally, it is necessary to acknowledge the directly related projects. While there were just a few

attempts to formulate and implement a generalized programmatic framework for end-to-end portfolio

management, it is necessary to discuss them in order to highlight the di�erences with the currently pro-

posed approach and, thus, justify the value of the current thesis. The two most developed frameworks

for portfolio management are presented by OLPS [26] and Qlib [57]. The earlier OLPS framework was

implemented in Matlab and Octave and was focused solely on the online portfolio management strate-

gies outlined in [27] and discussed in more details in the corresponding section devoted to portfolio

optimization approaches. Judging by the contents of the project's GitHub repository, the framework

did not get much attention from the practitioners and was not developed further since its initial imple-

mentation. Among clear disadvantages of the OLPS framework, also highlighted by [57], is the choice

of the implementation languages, since Matlab and Octave are clearly much less widespread and, ar-

guably, are less �exible than the mainstream Python language. Moreover, the conceptual scope of the

framework is rather narrow, especially in comparison to the currently suggested one.

The most recent framework � Qlib � initially developed by the team of Microsoft researchers [57]

and turned into an open-source project later on requires closer consideration. This framework is imple-

mented in Python and is being actively maintained, developed and used by practitioners. Thus, it can

be considered a state-of-the-art implementation of the end-to-end portfolio management framework. It

has to be admitted that in terms of technical implementation, the current work will hardly be able

to compete with the Qlib due to severe disparity in available resources. Therefore, this thesis does

not pursue a goal to compete with Qlib in terms of creating a more advanced technical framework,

but rather takes a somewhat di�erent and more general approach to formulating the framework on the

theoretical level. In particular, on the theoretical level, Qlib follows a purely quantitative paradigm and

the standard strategy development work�ow suggested by the framework is presented by a price-based

return forecasting model or ensemble thereof, the predictions of which are then used to solve the op-

timization task. While this is the most conventional and widespread approach in automated portfolio

management, the overall �eld of portfolio management strategies is more diverse than that. Thus, the

current work strives to capture and utilize this diversity as much as possible, instead of focusing on a

more e�cient implementation of a particular group of approaches.

1.2 Literature review

In this section we provide an overview of the existent literature, with the primary focus on high-

lighting the relevant details of methodologies corresponding to speci�c parts of the proposed framework:

asset preselection, information extraction, portfolio optimization and online regulation. Thus, this lit-

erature review pursues two primary goals. First of all, we illustrate how the existent research can be

viewed through the prism of the proposed framework, thus putting it into the context. Secondly, we

present and discuss the speci�c approaches and algorithms corresponding to the particular parts of the

framework.
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1.2.1 Portfolio optimization

Since portfolio optimization is the core part of the general portfolio management framework, it is

necessary to consider it in more details and highlight the main approaches used in the �eld. Classi�-

cation of such approaches is a challenging task by itself due to their number and diversity. Thus, we

review them in the following manner. First, we discuss the main conceptual paradigms considering

what the optimal portfolio is theoretically. Then we brie�y review of the most pronounced general

classes of approaches.

On the theoretical level, three main paradigms in portfolio optimization can be discerned, namely,

the Markowitz's Mean-Variance, the Kelly Criterion and the Risk Parity. [45] Markowitz's paradigm

originating from [34] suggests that optimal portfolio is the one providing the best possible trade-o�

between risk and return. Kelly Criterion suggests that the optimal portfolio is the one maximizing

the wealth in the long-run and is originally based on [24]. Risk parity paradigm suggests that the

optimal portfolio is the one which equalizes each assets contribution to the overall portfolio riskiness.

[12] Thus, Risk Parity focuses purely on the risk minimization, Kelly's Criterion focuses primarily on

return maximization and Mean-Variance takes a sort of middle ground suggesting that a balance should

be achieved. [45] showed that under certain conditions, both Risk Parity and Kelly's Criterion optimal

portfolios lie on the E�cient Frontier of Mean-Variance optimal portfolios, thus suggesting that the

three paradigms are not mutually exclusive, but rather just focus on the di�erent sides of the problem.

However, there is another, more soft dimension in which the aforementioned paradigms di�er. [27]

suggest that Mean-Variance is a static paradigm, focusing purely on a single time portfolio allocation,

while Kelly's Criterion, incorporating the long-run notion of wealth maximization, is dynamic. Thus, it

is important to highlight, that within our proposed framework we interpret portfolio optimization task

as static, while the dynamic aspect of portfolio adjustment is time is considered as a separate, higher

level task of online regulation.

We further propose the following classi�cation of the portfolio optimization approaches based on

two dimensions. First of all, we distinguish direct optimization and proxy optimization. By direct opti-

mization we understand the mathematical models that directly estimate the optimal weight allocation

among given assets from raw data. On the other hand, proxy optimization consists of two parts: the

objective function of data to be optimized and the optimization algorithm itself, which is used to �nd

the maximum (minimum) value of this objective function. Moreover, the proxy optimization meth-

ods can be further classi�ed into analytical and heuristic. Analytical approaches require the objective

function to be formulated in a particular form, for example the standard Mean-Variance optimization

formulates the objective function in quadratic form, which then can be solved e�ciently either by

quadratic programming or using critical line algorithm [35]. On the other hand, heuristic algorithms

do not impose any constraints on the form of the objective function.

First, let us consider the direct optimization algorithms. Originally, the idea of directly estimating

portfolio weights as a function of asset characteristics was proposed by [9], who named their approach

Parametric Portfolio Policies (PPPs). PPPs estimate the portfolio weights as a function of fundamental

characteristics of the �rms, such as market equity and book-to-market ratio. However, the most modern

approach in direct portfolio optimization that has been rapidly developing in the recent years is deep

reinforcement learning (RL). Reinforcement learning is not a strict model itself, but rather an approach
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to training a machine-learning model, which �aims to teach software agents how to optimally perform

a series of decisions by interacting with their environment so as to maximize some notion of cumulative

return� [1]. Clearly, this de�nition aligns well with the portfolio optimization problem, which is precisely

the problem of making a series of decisions about the distribution of weights among given assets, so

that the overall wealth is maximized. Thus, reinforcement learning is dynamic in nature and primarily

follows the Kelly's criteria of portfolio optimality. There are 3 primary types of reinforcement learning:

value-based, policy-based and hybrid. [1], [45]

The value-based approach, also known as �critic�, strives to �nd the optimal state-action value

function Q∗(s, a), where s is the current state and a is the taken action, which is essentially the expected

cumulative return for any action in the current state. The state-value function is typically modeled

by a neural network, which is known as a Q-learning approach. [45] The actual actions taken by the

trading-agents are then aim to maximize this cumulative reward functions, i.e. for each current state

the agent takes an action that is expected to maximize the cumulative reward. A recent example of

such approach can be found in [30], who proposed a deep Q-learning portfolio management framework,

tested it in cryptocurrency market and suggested that results were promising. However, there was some

critique to value-based approaches application to portfolio management. For instance, [51] suggested

that Q-learning turns out to be unstable when presented with noisy data and the performance highly

depends on the choice of value function, while [1] noted that maximization operation performed at each

decision-making step might be computationally infeasible.

Policy-based RL, also known as �actor� models, strives to learn the policy for action selection

directly. Thus, instead of estimating the cumulative-reward function Q∗(s, a), which is then maximized,

the policy based approach strives to estimate the policy, which can be viewed as a function a = a(s),

generally approximated by neural networks. In a sense, policy-based approach is more �exible since

it allows the practitioner to choose the utility function used to train the model, which can be any

�nancially meaningful measure of risk, return or both [1]. In fact, policies trained within the policy-

based RL framework can be seen as a generalization of the parametric portfolio policies approach

proposed by [9]. Recent example of policy-based RL application are provided by [21], who developed a

policy-based RL framework for cryptocurrencies portfolio management with a policy topology labeled

the Ensemble of Identical Independent Evaluators (EIIE).

Finally, the hybrid RL approaches, also known as �actor-critic�, essentially combine the two paradigms

presented above. In hybrid RL, both the cumulative reward function and the policy are modelled by 2

neural networks (named critic and actor, respectively) and are trained simultaneously in such a manner

that the cumulative reward function learned by critic serves as a utility function for actor. In plain

terms, on each iteration of the model training, the actor takes the current state as input and suggests

the action based on its current policy, the critic takes the state and actor's proposed action as inputs

and outputs an expected cumulative reward of the proposed action, which is then used by actor to

adjust its policy. A recent example of such approach is provided by [1], who attempted combining the

two classical paradigms in portfolio optimization by designing the actor to follow Kelly's criteria and

critic to follow Markowitz's criteria. Moreover, the authors tested eight di�erent policy-based learning

algorithms and for the �rst time incorporated the cross-sectional analysis widely used in traditional

�nance into the RL policy. However, authors warn that while RL approaches seem to be promising, in
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the current state they tend to be unstable.

Despite the fact that RL-based models for portfolio optimization are being actively researched,

the width of this �eld is enormous and is unlikely to be exhausted any time soon. It feels necessary

to highlight the number of layers of �exibility that is available within RL framework, because the 3

high-level paradigms presented above are just the tip of the iceberg. Since Reinforcement Learning is a

philosophy of training, the opportunities for speci�c RL-based portfolio optimization implementation

designs are in�nite, due to �exibility in choice of policy model designs, utility functions, training

algorithms, representations of the market states among the most apparently components, but not

limited to them.

Next, we consider the examples of proxy optimization approaches, which we further classify into

two groups: analytical and heuristic. The most straightforward example of analytical optimization

approach is given by the Mean-Variance Optimization itself [34]. In its classical form it requires solving

the following optimization problem

min
x

(x
′
Σx− αµ

′
x)

s. t.
N∑

n=1

xn = 1

0 ≤ xn ≤ 1∀n ∈ 1, . . . , N

α ≥ 0

(1)

where N is the number of assets, x is the vector of portfolio weights, Σ is the covariance matrix of asset

returns, µ is the vector of expected asset returns and α is a user-speci�ed constant typically interpreted

as a risk-tolerance level. [25] Notice that this minimization problem can be solved by either quadratic

programming [25] or critical line algorithm originally developed speci�cally for this purpose [35]. We also

would like to highlight the distinction between information extraction and portfolio optimization parts

of the end-to-end algorithm. The procedure of solving the optimization problem in Statement 1 is an

example of portfolio optimization method, which takes covariance matrix of returns, vector of expected

returns and hyperparameter α as inputs. However, there are plenty of ways that the covariance matrix

and expected returns can be estimated. For example, [31] estimate the expected stock returns based on

fundamental characteristics of the �rms and then use these estimated returns as inputs to the classical

MVO model. Such approach could be described as a 2 step process of information extraction (expected

return estimation) and portfolio optimization (MVO) from the proposed framework perspective.

Another example of analytical portfolio optimization is given by [22], who reformulated the classical

Omega Ratio measure of portfolio performance [23] as a linear function, which then can be optimized

by the means of linear programming.

As opposed to the analytical optimization approaches, which require the objective function to have

a speci�c form suitable for optimization, heuristic approaches are based on the empirical exploration

of the function space and, thus, can be viewed as more �exible. Most often they are used to directly

optimize the non-convex measures of portfolio performance, the most well known being Sharpe Ratio

[48] and Omega Ratio in its initial form [23]. However, even much more sophisticated functions might be

optimized, such as for example MSG Sharpe Ratio, MSG Pearson Ratio and MSG Stable Ratio, which
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are non-parametric, making the analytical solution very di�cult to formulate. [18] These functions are

described in more details in Section 2.3 of this work.

Within the subclass of heuristic optimization algorithms, we can further distinguish between problem-

speci�c heuristics and meta-heuristics. Problem-speci�c algorithms are speci�cally tailored to the given

problem context, thus they typically perform better on it. One example of such heuristic for portfolio

optimization is given by [4] and is described in greater detail in Section 2.3 of this work. On the other

hand, meta-heuristic algorithms are universal (i.e. not problem-speci�c) methods that are used to ap-

proximate the solution of a complex problem e�ciently via intelligent, often nature-inspired strategy

for the solution space exploration and exploitation. Thus, meta-heuristic algorithms do not necessarily

�nd the globally optimal solution for a given problem formulation, but only approximately optimal

(satisfactory) solution. The core advantage of such methods is that typically they are very �exible

in terms of the formulation of the problem, thus allowing the incorporation of almost any objective

function and constraints. Moreover, many meta-heuristic algorithms are able to consider several objec-

tives simultaneously and potentially �nding multiple e�cient solutions, thus explicitly outputting the

e�cient frontier.

One of the most popular classes of meta-heuristics actively applied in portfolio optimization is

Evolutionary Algorithms (EA), inspired by the process of natural selection of genes during evolution.

An extensive review of the application of EAs for portfolio optimization can be found in [37], who

analyzed 91 paper considering application of EA to portfolio optimization. [16] also reviewed EAs,

but also highlighted another class of MHAs, which gained popularity more recently � quantum-inspired

MHAs, which are based on the ideas from quantum physics. While these two classes of evolutionary and

quantum meta-heuristics seem to be the most popular, the diversity of such algorithms is enormous,

not to mention that they can be combined with each other and with other modelling techniques. For

example, [47] tested �ve MHAs: particle swarm optimization (PSO), grey wolf optimization (GWO),

whale optimization algorithm (WOA), Jaya algorithm (JA) and spotted hyena optimization (SHO)

� and concluded that the most successful portfolios are being constructed by the hybrid algorithm

integrating Jaya and spotted hyena ones labelled J-SHO. Novel algorithms are still being developed,

for example, [28] proposed a novel MHA inspired by the virus spreading behavior and validated it on

the portfolio optimization problem.

1.2.2 Information extraction

In the proposed portfolio management framework, information extraction refers to the task of

processing the available raw data with the purpose of extraction of meaningful information about the

assets, which can be used for asset selection or portfolio optimization. In essence, almost any kind of

portfolio optimization requires some kind of information extraction. In the simplest form, the most

traditional Markowitz' Mean-Variance optimization requires estimation of the means and covariance

matrix of historical returns. On the other hand, the same optimization model can be applied to the

forecasted, rather than historical returns (see e.g. [32]), which can be viewed as a much more complex

procedure for the information extraction. This example illustrates the reasoning for de-coupling of

information extraction and portfolio optimization tasks within the proposed framework: the same

optimization models can be directly applied to di�erent kinds of inputs and vice versa � di�erent
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optimization techniques can be applied to the same inputs.

Another big role of information extraction is the possibility to utilize novel types of data for more

e�cient portfolio management. The clearest example nowadays is provided by the possibility to utilize

textual data for assets price forecasting and portfolio optimization, made possible by the advances in

the �eld of natural language processing. Market sentiment, which is the attitude of market participants

towards speci�c assets, industries or market in general, has been studied for a long time within the �eld

of Behavioral Finance. [2] However, it is only recently that modelling techniques became developed

enough to automate the sentiment extraction and text-based inference, thus making the direct usage

of news, analytical reports and social media feeds as a source of information in automated portfolio

management possible. The topics of sentiment analysis and �nancial text mining are too broad and

diverse for detailed discussion in the current work, so the interested readers are referred to the reviews on

the subject provided, among others, by [56], [41] (sections on Financial Sentiment Analysis and Financial

Text mining) and [2]. For our purposes, it is su�cient to highlight that information extraction as a part

of portfolio management framework deals with the issues of how various and possibly qualitative raw

information sources can be processed and utilized for asset preselection or portfolio optimization. One

simplistic example of such application could be a text-based classi�cation model that classi�es market

sentiment regarding particular assets as positive, neutral or negative and only assets with positive

market sentiment are preselected for portfolio optimization.

Information extraction approaches can be broadly classi�ed into two categories: forecasting and

encoding. Forecasting is the most widely used type of information extraction, which deals with predict-

ing the future characteristics of the assets, the most common choices being price return forecasting.

While predicting asset price is the most natural challenge for modelling, some researchers attempt

forecasting other features such as volatility or correlations between assets. We refer the reader inter-

ested in more detailed discussion of the issue to the corresponding literature reviews provided among

others by [46], and [28], who speci�cally focus on Deep Learning methods for forecasting, and [17],

who take a bit wider Machine Learning perspective. All the three recent reviews suggest that Deep

Learning is actively changing the �eld of forecasting, with Long-Short Term Memory (LSTM) networks

(a subclass of Recurrent Neural Networks (RNN)) being the most widely used modelling solution. Es-

sentially, any kind of optimization approach can be adapted to use the forecasted features of the assets

for optimization and, hence, the quality of the overall portfolio will largely depend on the accuracy of

forecasting. For example, [32] tested various Machine Learning techniques for return forecasting and

optimized the portfolio using Markowitz MVO model, but with forecasted returns, concluding that

forecast-based portfolio optimization is superior to the one based on historical returns and identifying

Random Forest as the best forecasting model in their experiments. [5] used a hybrid CNN-BiLSTM

model for asset returns forecasting and adapted the classical Black-Litterman model for portfolio op-

timization. [53] introduced a model named Deep Responsible Investment Portfolio, which includes a

Multivariate Bidirectional Long Short-Term Memory neural network predicting stock returns, and a

Reinforcement Learning model optimizing portfolio weights. More classical approach was followed by

[44], who proposed modelling individual asset returns with ARMA-GARCH and the joint distribution

of the residuals with an Archimedean Copula model with marginals de�ned according to Extreme Value

Theory. Subsequently, they used Monte-Carlo simulation to forecast many possible realizations of the
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future market and thus estimate the expectation. A unique approach was consistently developed by

[40, 4, 3, 39, 18], who approximate portfolio returns with a Markov Chain and forecast the future wealth

distribution by evaluating all the possible realizations of the estimated Markov Process. This approach

is discussed in greater detail in Section 2.1 of this thesis.

The encoding type of information extraction strives to obtain a new representation of the separate

assets or even market in general, in order to extract and encode the most essential information about

the assets or market in a lower-dimensional and therefore cost-e�cient representation. Thus, instead of

the human-interpretable information such as future price forecast, trend classi�cation or asset quality

ranking, encoding type of information extraction obtains non-interpretable, but supposedly optimal

representation of all the available information. Then, the speci�c portfolio optimization techniques can

be trained to interpret the resulting representations and optimize the portfolio. An advantage of the

encoding approach is that encoders can be constructed to combine various types of input information,

such as analytical texts and price data (See e.g. [49, 10]). Moreover, it is possible to encode not only

the available information about the speci�c assets, but also their interrelations, which is the target

of Graph Neural Networks (GNNs). [10] proposed a novel high performing multimodal deep learning

architecture labelled Trans-DiCE for stock price prediction, which utilizes two types of data: price data

and textual news data. Trans-DiCE extracts features from price data using a variation of Convolutional

Neural Network (Att-DCNN) and from news data using Event Transformer Encoder (ETE) model,

then the features extracted from both data types are stacked and combined by another encoder. Using

Trans-DiCE as a base for Reinforcement Learning agent, the authors e�ectively combined the tasks of

information extraction and portfolio optimization, thus developing an end-to-end portfolio management

model. [49] developed a model named DeepPocket, which is based on Graph Convolution Network,

thus encoding both the separate asset features and interrelations between assets in the form of a graph,

forecasting the future state of the market using graph convolution and optimizing the portfolio by the

means of Reinforcement Learning.

1.2.3 Asset preselection

Asset preselection is a subtask of reducing the dimensionality of the otherwise prohibitively large

space of assets available for inclusion in the portfolio. Overall, there are two fundamentally di�erent

approaches that we distinguish based on the conducted literature review: approximation and reduction.

Approximation refers to modelling all the asset returns with a smaller number of factors or components.

Then the portfolio weights are being assigned to these components rather than actual assets, however,

one can later estimate the corresponding asset weights, which would provide the optimal component

exposure. There are two primary ways these components can be estimated: fundamental (factor anal-

ysis) and data-driven (principal components analysis). Fundamental approach is based on the idea

that the expected returns and risk of the �rms on the stock market are dependent on and can be

explained by their fundamental characteristics. This idea lies at the core of the classical works of Fama

and French [13], [14] on the empirical asset pricing models, who empirically investigated and identi�ed

such factors. An overview of such approaches can be found in [31], who discusses factor-based mean

variance optimization (FBMVO). Originally, FBMVO was aiming to solve one of the limitations of the

Markowitz's MVO approach, which is the di�culty of estimation of the large-scale portfolio covariance

14



matrix. To solve this issue, the expected returns could be modeled by the fundamental risk factors.

Thus, instead of estimation of N ×N (where N is the number of assets) covariance matrix to be used

for MVO, it would be su�cient to estimate each asset's return variance, loadings on the factors and

the covariance between factors. Given that the number of factors is much smaller than the number of

�rms considered for portfolio, this approach signi�cantly reduces the number of estimates that need

to be obtained. Following the same logic, one might take more straightforward pathway of Principal

Components Analysis (PCA). Using PCA one might estimate few components explaining most of the

variance in underlying asset returns and then use these component series in optimization instead of the

actual asset return series. [18, 3]

The second group of approaches, which we label reduction, focuses on picking the smaller set of

actual assets out of a wider pool. Such selection inherently requires some sort of measure of asset

quality, which can be absolute, meaning that asset is either good or bad, or relative implying that

there is a ranking of assets and several best are selected. Moreover, we may distinguish between

approaches using historical, expected and statistical properties of the assets for selection. For example,

[55] and [38] train several models for asset return forecasting and select the assets with best performance

forecasted for portfolio optimization. Other researchers adapt Meta-Heuristic algorithms widely used

for portfolio optimization to asset preselection. For instance, [58] and [43] employ the meta-heuristic

Genetic Algorithm (GA) for asset preselection. In the �rst case, [58] use the GA to �nd the best

combination of 4 fundamental stock characteristics that corresponds to the highest expected earnings.

In the second, [43] use non-dominated sorting algorithm to rank single assets and pairs of negatively

correlated assets based on their historical returns and volatility. [21] use perhaps the most simplistic

method of selecting the top N assets with the largest trading volume in recent periods. [54] select the

assets based on statistical tests of their returns for stationarity, normality and independence.

A combined perspective is employed by [29] and [18], who consider both historical performance of

the assets and the expectation of the future wealth, estimated by modelling each asset's returns as a

Markov Chain. [29] consider only desirable properties of the assets, i.e. those that rational investor

would like to maximize, and select the �xed number of assets based on direct ranking. On the other

hand, [18] consider both desirable and undesirable properties of the assets and use slack-based model

of Data Envelopment Analysis (DEA) [52] to obtain the overall e�ciency score ranging from 0 to 1

for each asset. Thus, they select only the "fully e�cient" assets with the score of 1. As highlighted

by [15], there is also an adjusted robust DEA version of the model, originally proposed by [42], which

incorporates the uncertainty of the metric estimates.

Besides the practical task of reducing the scale of optimization problem to be solved, asset pre-

selection might also be grounded on more solid theoretical foundations. For instance, pairs trading

strategy is based on identi�cation of fundamentally related assets, and making investment decisions

based on current spread between them, rather than individual assets performance, can be considered a

form of asset preselection, e.g. [33, 11]. In fact, pairs trading can be considered an example of portfolio

management strategy built around asset preselection, since all the other parts of the process have to

be adapted to this strategy correspondingly. Thus, it shall be viewed as a special case and not the

universal and �exible tool within the proposed framework.
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1.2.4 Online regulation

A separate class of portfolio management approaches was originally labeled online portfolio selection

strategies [27]. In order to avoid the potential confusion, within the proposed framework we refer to

these approaches as online regulation, thus they directly formulate the parametric models for weights

adjustment in time, which typically take the current weights and recent performance of the assets

or strategies as inputs. Hence, the core distinctive feature of these approaches is that they are only

concerned with how the weights should be reallocated at each time step, rather than how the weight

should be distributed initially. A large survey of such strategies was provided by [27], who identi�ed

the following four main classes of strategies: Follow-the-Winner, Follow-the-Loser, Pattern Matching

and Meta-Learning.

Follow-the-Winner (FW) strategies follow the paradigm that more weight should be given to the

stocks or experts performing best. The notion of �experts� here refers to the fact that the same strategies

are considered applicable to the case of redistribution of weights between several base portfolios, thus

creating a sort of ensemble in which the portion of total wealth is allocated between several portfolios

experts strategies, which in its term allocate their portion among a set of assets. In the simplest case,

however, the weights are being reallocated between assets in a single portfolio. Thus, FW strategies

de�ne the models for weights reallocation at each time step, such that more weight is given to the

best-performing assets experts, but avoiding dramatic changes in portfolio composition.

Follow-the-Loser (FL) strategies follow the opposite and somewhat counter-intuitive approach of

redistributing the weights to the worst performing assets. This approach is rooted in mean-reversion

trading paradigm, which suggests that the assets performing good (bad) in the past are expected to

perform bad (good) in the future. Essentially, mean-reversion strategy assumes some kind of stationarity

in the market and tries to arbitrage the short-term deviations from the long-term mean. Alternative

relatively broad strategy that is based on mean-reversion paradigm is pairs-trading, which is focused

on identifying cointegrated assets and trading them in pair, thus trading the spread between them,

which is expected to be stationary. More details on this approach, as well as its modern forms, can

be found in [11] and [33]. Thus, FL strategies formulate the parametric models for redistribution of

weights towards the assets that performed poorly in the recent past.

Unlike FW and FL, pattern matching (PM) strategies are typically non-parametric approaches that

follow a 2-step process. In the �rst step, the price-relative set (pattern) similar to the currently observed

one is identi�ed in historical data. In the second step, the portfolio weights adjustment is performed

based on the current weights and the identi�ed similarity set. Essentially, PM strategies are based on

the assumption that markets repeat themselves, thus by identifying the similar pattern in the past and

knowing how the market developed further, one can optimize the current portfolio.

Finally, meta-learning algorithms (MLA) are a set of strategies directly aimed at aggregating several

experts, i.e. several portfolio weights vectors proposed by di�erent strategies, into a single global

portfolio. Thus, they are directly related to the concept of ensembles, were the predictions of several

independently trained models are combined in order to arrive at �nal prediction. Typically, such

approaches increase the stability of the �nal predictions relative to any single base model used in the

ensemble.
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2 End-to-end portfolio management algorithm: Markovian approach

In this Section we brie�y describe the approach consistently developed in [40, 4, 3, 39, 18], who

follow the idea of modelling the portfolio returns and associated wealth as Markov Processes. Thus, at

the core of this approach lies the Markovian assumption suggesting that the return of either a single

asset or a portfolio of assets at time t only depends on the corresponding return at time t− 1. Despite

the fact that it is hardly possible to evaluate to what extent this assumption is realistic in a pure

sense, it allows the formulation of neat mathematical modeling framework presented further, which

was consistently demonstrated to yield good performance by the original authors over the recent years.

Perhaps, this is due to the fact that Markov Process assumption presents a good compromise. On one

hand, the returns are treated as a stochastic process in accordance with the well known E�cient Market

Hypothesis, suggesting that �nancial markets follow a random walk. On the other hand, the assumption

of some memory present in the process seems reasonable from behavioral �nance perspective: people

trading on the stock market clearly take the recent performance of the assets into account making their

decisions and it is their choices that ultimately produce the market price.

The choice of this speci�c modelling approach was based on the following reasons. First of all, it

incorporates all the parts of the portfolio management modeling de�ned within the proposed framework

as described in Section 1.1. Secondly, there was no software implementation available for this rather

complex approach, thus we contribute to the literature and practical research by presenting a working

implementation of the model. Finally, the approach is quite unique in the general �eld of portfolio

management, warranting for a deeper investigation, with certain extensions established in the thesis

that are deemed to expand both theoretical and practical understanding of it. In the following sections,

we present the approach in details following the proposed framework structure and highlighting the

current implementation features.

2.1 Information extraction

In the proposed framework, information extraction part of portfolio management modeling cor-

responds to estimation and prediction of the certain features of the portfolio. Under the considered

approach, the main feature that has to be estimated based on available data is the Markov process

of future wealth, which is expected to be obtained by investing in a given portfolio. The approach is

based purely on historical price data.

De�ne a N × T matrix Φ, consisting of historical price data, where N is the number of assets

and T is the number of observations. Furthermore, de�ne historical returns as a N × (K − 1) matrix

Z = (Zn,t), where Zn,t = Φn,t/Φn,t−1 and the portfolio return as z∗ = x′Z, where x ∈ RN is a vector

of portfolio weights attributed to each asset. Since the concept of portfolio weights is practically just

a representation of allocation of all the available funds, we assume that
∑N

i=1 xi = 1. In the current

modeling approach short selling is not allowed, so weights are further constrained by xi ∈ [0, 1]. We

assume that the returns of either a single asset zi or portfolio of assets z∗ follow a univariate Markov

Process. Such process is fully de�ned by s ∈ RS , Q ∈ RS×S and u ∈ RS , where S is the number of

states of the process, s is the vector of these states, Q = (qi,k) is a transition matrix of probabilities

such that qi,k is a probability to transit from state si to state sk and u is the vector of probabilities to
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be in each state at the start of the process.

In order to estimate the discrete states of the process, we need to discretize the observed continuous

returns. Following the methodology by [29], the vector of states s can be estimated using the following

algorithm.

1. Find the range of returns r = [maxt(zt),mint(zt)].

2. Divide the range of returns r into S intervals, with the boundaries given by

ri =

(
mint(zt)

maxt(zt)

) i
S

max
t

(zt), i = 0, . . . , S.

3. Estimate the states as geometric average of the corresponding interval boundaries,

si =
√
riri−1, i = 1, . . . , S.

Consequently, each state si can be represented as follows:

si = s1d
i−1, where d =

(
mint(zt)

maxt(zt)

) 1
S

, i = 1, . . . , S. (2)

Note, that (2) helps simplifying the computation of subsequent features. Next, the elements of the

transition matrix Q are estimated as

qi,k = P
(
zt+1 ∈ (rk, rk−1)

∣∣ zt ∈ (ri, ri−1)
)
,

=

∑T−1
t=1 1

(
zt+1 ∈ (rk, rk−1)

∣∣ zt ∈ (ri, ri−1)
)∑T−1

t=1 1
(
zt ∈ (ri, ri−1)

) , i, k = 1, . . . , S. (3)

where 1(A) denotes an indicator function for an event A.

The situation is interesting with the initial probabilities u. [29] suggest taking them as unconditional

probabilities to be in each state, which can then be estimated as

ui = T−1
T∑
t=1

1
(
zt ∈ (ri, ri−1)

)
, i = 1, . . . , S. (4)

While this proposition seems completely reasonable for the purely theoretical consideration of

Markov processes, for our particular use case it seems somewhat counterintuitive. Since ultimately

our goal is to estimate the distribution of the future wealth generated by this process at time T + h,

h > 0, assuming that we are currently at time T and we use the 1, . . . , T returns to estimate this

process. Thus, we know the state at previous step s
(T )
i , notice that we use the (T ) style notation to

represent the otherwise implicit time dimension, but do not know the initial future state s(T+1) and

the vector u is supposed to represent the probabilities uk = P(sT+1 = sk). Hence, it seems much more

intuitive to estimate u as uk = qi,k,∀k ∈ 1, ..., S, in other words as transition probabilities from the last

known state.
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The estimated parameters of s ∈ RS , Q ∈ RS×S and u ∈ RS thus fully describe the Markov process

of a portfolio return. Based on it, we can estimate the distribution of wealth at time T + h, in the

future that a portfolio can reach. For any t = T, . . . , T + h, the wealth process can be described as

Wt+1 = siWt, i = 1, . . . , S, where si is the state of the return process at time t andWt is portfolio wealth

at time t. This de�nition has a very important implication for the Markovian case, as it suggests that

attainable future wealth at time T + h corresponds to the unique combination of the states traversed

by the Markov process of the return of length h. In other words, the order of the states does not matter

for �nal wealth, only which states were visited. Assuming that the wealth process starts from WT = 1,

there are (S − 1)h + 1 possible wealth values that can be reached in h steps, where S is the number

of states in the return process. This follows from the fact that Wt+1 can take S possible values given

by siWt, i = 1, . . . , S and the recombination e�ect of the Markov chain. Moreover, given the states

de�nition provided above, these wealth values can be computed as w(t)
i = st1d

1−i, where w(t) is a vector

of all the possible wealth values the process can reach at time t > T. The probabilities of attaining each

of these wealth can be computed using the computational scheme suggested by [29], via a sequence of

matrices

G(t) = (g
(t)
i,j )1≤i≤(S−1)t+1,1≤j≤S , t = T, . . . , T + h,

where g
(t)
i,j is a probability to attain the wealth i by time t and in the state j. This sequence of

matrices can then be computed recursively, starting from G(T+1) = u, as G(t) = diagM(Gt−1Q). diagM

is a an operation of shifting each column of any given matrix A ∈ R(m,n) down by j-1 rows, where

j ∈ 1, . . . , n, thus transforming A into Ã ∈ R(m+n−1,n), where all the non-zero elements on the left

from main diagonal, as described by [40]. Finally, the vector of probabilities to attain the wealth values

w(t) is given by p(t) = G(t)IS , where IS is a unit vector. Thus, we de�ne WT+h as a portfolio wealth

distribution at time T + h in the future considering Markovian behavior of portfolio returns and it is

fully described by w(T+h) vector of wealth values and p(T+h) vector of probabilities to attain them.

From it we can compute multiple statistics described further, which can be used for asset preselection

and portfolio optimization, thus we refer to this particular algorithm of estimating the Markovian

distribution of future wealth as information extraction. Furthermore, the approach introduced here

may be extended to bivariate case, in order to evaluate the joint behavior of two wealth processes, as

was originally proposed in [3] and is described in Appendix B.

2.2 Asset preselection

In the current research we consider the general class of asset preselection algorithms based on

comparative evaluation of the assets relative to several statistics, which can be viewed as either desirable

or undesirable. We �rst formulate the abstract approach and then provide the details on speci�c

algorithms and measures used for evaluation.

The general problem of asset preselection can be stated as follows: given a (typically) large set I,
containing the available assets, select a subset J ⊂ I. Throughout the Section we assume that |I| = N ,

|J | = M , M ≤ N . As an input for such preselection we use the N ×K − 1 matrix Z, where K is the

number of historical price observations, consisting of historical returns, although without the loss of
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generality the abstract version of the approach formulated here can be applied to any data representing

the assets as long as some statistics can be formulated for each asset. For example, some technical

indicators used by traders use not only daily closing prices, but also consider the volume of trade and

daily ranges of prices. We then evaluate the individual assets by computing a series of desirable statistics

(throughout the Section denoted by H) and a set of undesirable statistics (L), where the term desirable

(undesirable) refers to the fact whether rational investor would want to maximize (minimize) the given

statistic of asset data. We denote these statistics by ln,i(zn)∀n ∈ 1, ..., N, i ∈ 1, ..., L for undesirable

and hn,j(zn)∀n ∈ 1, ..., N, j ∈ 1, ...,H for desirable. Since we are not limiting our analysis to a single

measure of asset goodness, an algorithm is needed for comparative evaluation of the assets based on

the estimated statistics. In the current work, we consider two such algorithms: a Ranking algorithm,

proposed in Section 2.2.1 and Slack-based Data Envelopment Analysis (SBM DEA), originally proposed

by [52] and applied to asset preselection by [18].

2.2.1 Ranking algorithm

The main idea behind our ranking algorithm is to simply combine all the statistics computed into

a single score, by which the assets can be appropriately ordered, with only the and top q ≤ N being

preselected. Note, that various statistics can have very di�erent scales and that some of them are

desirable and some are undesirable. For this reason, we standardize all the statistics and compute the

�nal score An as

l̃n,i =
ln,i − µ̂(ln,i)

σ̂(ln,i)
∀n ∈ 1, . . . , N, i ∈ 1, . . . , L,

h̃n,j =
hn,j − µ̂(hn,j)

σ̂(hn,j)
∀n ∈ 1, . . . , N, j ∈ 1, . . . ,H

An =

H∑
i=1

h̃n,i −
L∑
i=1

l̃n,i

(5)

Finally, we rank the assets based on the �nal score and pick the top M as our �nal preselection.

While this algorithm is really simple, it is introduced to investigate whether the much more complex

and computationally intensive DEA approach presented further provides a substantial improvement

over it. Thus, we propose it as a sort of preselection benchmark.
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2.2.2 Slack-based Data Envelopment Analysis

The SBM DEA model used in the current work for asset preselection is de�ned as follows for a

single asset n = 1, . . . , N .

min

(
ϕn = q − 1

L

L∑
i=1

s−i
ln,i

)
, (6)

s. t. q +
1

H

H∑
j=1

s+h
hn,j

= 1,

N∑
n=1

δnhn,j − s+j = qhn,j , j = 1, . . . ,H,

N∑
n=1

δnln,i + s−i = qln,i, i = 1, . . . , L,

δ ≥ 0, s− ≥ 0, s+ ≥ 0, q > 0.

Slacks s−j and s+i represent the excess of inputs (undesirable statistics) and shortage of outputs (desir-

able statistics) respectively.q is a non-zero constant introduced by [52] in order to linearize the opti-

mization problem. The asset is deemed e�cient if ϕ∗
n = 1, which corresponds to s−j = 0 and s+i = 0, in

other words when it has no excess in undesirable statistics and no shortage of desirable.

It is important to highlight that in this work we use the original version of SBM DEA as formulated

in [52] and not the modi�ed one from [18]. This is done for two primary reasons. First of all, the

formulation in [18] according to the authors is fully based on [52], however, we noticed few di�erences,

for which no justi�cation was provided. For instance, one may notice, that in [52], statement 9, which

formulates the LP form, the summation is done over input indices in the minimization operation.

At the same time, following their de�nitions, [18], statement 1, sum over output indices in the same

minimization operation. The second reason is purely technical. As the modi�ed formulation would

require full implementation to be done from scratch, it was assessed as infeasible within the scope of the

current work, especially given that the original implementation would need to be not only correct, but

also highly performant due to the nature of the end-to-end algorithm, which requires it to be evaluated

for hundreds of assets multiple times. Therefore, from the practical side, we use the implementation

provided in "additiveDEA"1 R package, which is based on [52] and optimized for performance.

2.2.3 Statistical measures

For the preselection of assets we employ a set of statistical measures as suggested by [18]. They can

be split into 2 categories: historical (HS) and dynamic (MSG). The former are estimated directly from

the historical asset returns, while the latter are estimated by considering the Markovian behavior of

asset returns as described in Section 2.1. In particular, we consider the following undesirable statistics,

that rational investor would like to minimize:

� Standard deviation of the asset returns, denoted by σ̂(zn)

1https://cran.r-project.org/package=additiveDEA
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� Kendall correlation between asset returns and market lower stochastic bound, denoted by τ l(zn, b),

where bt = minn(Z:,t)∀t ∈ 1, ..., T and τ denotes Kendall correlation.

� Standard deviation of future wealth at time T , σ̂(WT+h(zn)), where WT+h is the future wealth

distribution estimates as discussed in Section 2.1.

� Expected amount of time for investor to reach certain level of wealth (win ≥ 1) before time T ,

E (πwin(zn)), where π is a distribution of time it takes portfolio wealth to reach certain level under

the Markovian assumption estimated as discussed in Appendix C. Naturally, rational investor

would like to minimize the time to realize gains. In the current work, we use expectation of time

to �rst gain the wealth of 1.05.

� Conditional Value at Risk (CVaR) of the estimated alpha-stable distribution of the future log

wealth at time T + h � CV aR0.05(ln(WT+h(zn))). The precise formulation of CV aR is provided

in Appendix D.

Moreover, we consider the following desirable statistics that rational investor would like to maximize.

� Cumulative wealth obtained over the last K periods -
∏T

t=T−K zn,t

� Empirical mean of the asset returns -
∑T

t=1 zn,t

T

� Kendall correlation between asset returns and market upper stochastic bound - τu(zn, b), where

bt = maxn(Z:,t)∀t ∈ 1, ..., T

� Expected future wealth at time T + h, E (WT+h(zn))

� Expected square root utility function of future wealth at time T+h - E(2
√

WT+h(zn))

� Location parameter δWT+h(zn) of the alpha-stable distribution, estimated for future wealth. (de-

sirable)

� Expected amount of time for investor to lose certain level of wealth loss ≤ 1 before time T -

E(πloss(zn)). In the current work, we use the value of loss = 0.95.

2.3 Portfolio optimization

Portfolio optimization is a stage in the algorithm evaluation where we allocate the weights among

the assets earlier preselected by one of the algorithms described in the previous subsection. In general

form it might be formulated as follows.

max
x

f(x), (7)

s. t.
N∑

n=1

xn = 1,

0 ≤ xn ≤ 1, n ∈ 1, ..., N. (8)
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Where f(x) is some objective function of the portfolio weights x, with several examples used in the

current work described further. Portfolio weight allocation is thus a constrained optimization problem,

with the two basic constraints being non-negativity of weights and the total wealth available for distri-

bution equal to 1. The non-negativity constraint can be relaxed, which would then implicitly assume

allowing short-selling, when one essentially bets on the drop of asset price. In this work we stick to the

standard case with no short sales.

2.3.1 Objective functions

In this thesis we consider four functions f(x) in (7), each one representing a separate trading strategy

and objective. We consider the 3 objective functions presented in [18], namely the MSG Sharpe Ratio,

MSG Stable Ratio and MSG Pearson Ratio, and extend this list by proposing the MSG Omega Ratio

statistic, which is essentially an adaptation of the well known �nancial performance measure Omega

Ratio to Markovian context. Notice that we follow the [18] manner of naming the functions with MSG

in the beginning, in order to highlight the fact that we refer speci�cally Markovian versions and to

maintain terminology comparability with previous research.

MSG Sharpe Ratio is an extension of the classical risk measure � Sharpe Ratio � originally proposed

in [48] to the Markovian case. It is de�ned as follows:

MSG Sharpe Ratio =
E (WT+h)− 1

σ(WT+h)
. (9)

The MSG Stable Ratio of the portfolio is given by:

MSG Stable Ratio =
δ(WT+h)

CV aR0.05(WT+h − E(WT+h)) + 1
(10)

Where δ(WT+h) is the location parameter of stable distribution, which is considered the best parametric

approximation of the WT+h discrete distribution of future wealth. CV aR0.05(WT+h − E(WT+h)) is

respectively the Conditional Value at Risk of the same stable distribution. Note that it is being

calculated from WT+h −E(WT+h), which refers to the same stable distribution of WT+h with 0 mean.

More details regarding the procedure of estimating the stable distribution parameters and CVaR are

provided in Appendix D. MSG Pearson Ratio is de�ned as:

MSG Pearson Ratio =
1 + ρ(WT+h, b)

1 + ρ(WT+h, b)
(11)

Where ρ(WT+h, b) and ρ(WT , b) are Pearson correlations between the portfolio wealth process and

upper (b) and lower (b) market stochastic bounds processes. In order to estimate these correlations, we

need to consider the joint behavior of the 2 processes. This is being done by estimating the bivariate

Markov process, the procedure for which is outlined in Appendix B. Finally, we also consider the

extension of the Omega Ratio (OR) to Markovian case. Classical Omega Ratio was originally proposed

in [23] as an alternative to Sharpe Ratio, since by de�nition Sharpe Ratio takes into account only the

�rst 2 moments of the return (wealth in Markovian case) distribution, while Omega Ratio by de�nition
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uses all the moments. The MSG Omega Ratio is then given as follows:

MSG Omega Ratio =

∫∞
θ (1− FWT+h

(x))dx∫ θ
−∞ FWT

(x)dx
(12)

Where FWT+h
is a cumulative density function of the stable distribution best approximating the dis-

tribution of WT+h and θ by de�nition is a threshold parameter, which in classical case represents the

required return level and in MSG case represents the required future wealth level. The formulation of

the stable distribution CDF used in the current work is based on [8] and is outlined in Appendix D. It

should be mentioned that for the classical Omega Ratio, which is a statistic of portfolio returns, there

was developed a linear form, which is more suitable for optimization [22], however, this formulation

cannot be directly adapted to the MSG case as it utilizes the property of portfolio return being a linear

function of individual asset returns, which cannot be directly extrapolated to MSG case. Therefore, we

use the standard form presented above, which is being estimated using numeric integration.

The role of θ is interesting in this adaptation and shall be discussed separately. First of all, notice

that since the denominator of OR is the integral from -in�nity to θ of the cumulative distribution

function, it tends to 0 when θ ≤ µ and decreases with µ being the mean of the corresponding stable

distribution, which might create computational issues as OR then goes to in�nity. In the classical OR θ

is a hyperparameter speci�ed by the user. Since in the classical case OR is a function of portfolio returns,

the expectation of which varies rather modestly with portfolio weights, it is not that problematic to set

it even for OR optimization. On the other hand, future wealth expectation might vary dramatically

with portfolio weights. Consider a simplistic example to illustrate this idea. Even without the use of

Markov chain for future wealth forecasting, the most naive way to form expectations about it is given

by

E (ŴT+h) = µ̂(x̃
′
Z)h. (13)

Where E( ˆWT+h) is the expected future wealth at time T+h and µ̂(x̃
′
Z) is the empirical mean of

equally-weighted portfolio returns. This holds since starting from Ŵ0 = 1, future wealth is essentially

a cumulative product of returns at each time step. Therefore, the �rst thing that we should account

for is that the magnitude of future wealth depends on forecasting horizon h and so shall our required

level of it � θ = θ(h). Even then forming an expectation remains problematic for the user, as the space

of future wealth distributions attainable by di�erent portfolios is vast. Therefore, we use the following

heuristic to set it.
θ(h) = (θ̃µ̂(x̃

′
Z))h,

x̃n =
1

N
, for n ∈ 1, ..., N.

(14)

We still leave a hyperparameter notion of θ̃, which shall be speci�ed by user. But now it becomes

essentially a scale on the equally weighted portfolio return, which is taken to the power of h in order

to account for forecasting horizon. We believe that this hyperparameter is more easy to set, as the

meaningful values naturally lie around 1. Moreover, thus we protect the optimization from the numerical

issues associated with potential division by 0.
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2.3.2 Simplex optimization heuristic

It was suggested by [18, 4] that standard out-of-the box optimization algorithms do not perform very

well with the MSG functions and our empirical experiments con�rm it. Thus, in order to optimize the

given functions we use the following heuristic algorithm described in [4]. Given the objective function

f(x), where w is an N-dimensional vector of weights, and initial feasible solution xinit, the algorithm

tries to �nd the best solution xopt, by iteratively increasing and decreasing the value of a single weight

and adjusting all the other weights accordingly. Initially we set xopt = xinit and the improvement by

increasing is performed �rst. For each asset i ∈ 1, ..., N , M - 1 alternative portfolios are evaluated,

de�ned as
x∗m = (1− γm)xopt + γmei

ein =

 0, if n ̸= i

1, if n = i

γm = (
m

M
)p∀m ∈ 1...M − 1

(15)

If a new optimum is found on a search direction i, the current optimum weights are being updated by

xopt = x∗m. Note that optimization takes two parameters M and p. M de�nes how many points on the

interval (xopti , 1) are evaluated, while p de�nes the distribution of these points: larger p means that

the evaluated points will concentrate closer to the xopti value. If for any i better solution is found - it

becomes the new optimum, and the subsequent evaluation starts from there. If increasing evaluation

manages to improve the value of f(x), the algorithm tries to further improve it by decreasing the weight

of a single asset. Again, for each weight i ∈ 1, ..., N , M - 1 alternative portfolios are evaluated, de�ned

as
w∗
x = (1− γm)xopt + γxd

i

di =
(x− xie

i)

1− xi

ein =

 0, if n ̸= i

1, if n = i

γm = (
m

M
)p∀m ∈ 1...M − 1

0 < xi < 1

(16)

If the evaluation by decreasing manages to �nd a new optimum - the increasing is tried again. The

process is repeated until no improvement is made. It should be mentioned that this formulation of

the algorithm slightly di�ers from [4] in a way, that we evaluate M - 1 alternative portfolios on each

direction, instead of M as technically proposed in [4]. We suppose that the original formulation was

somewhat incorrect, since the Mth alternative portfolio is by de�nition the portfolio with i'th weight

equal to 1. If it is to be found optimal by the increasing evaluation, than it would become the initial

one for evaluation by decreasing. However, the evaluation by decreasing includes a constraint of xi < 1,

as for xi = 1 the proposed formulation of di yields division by 0. Moreover, a portfolio of a single asset

is undesirable from the realistic point of view, as it provides no diversi�cation of risks. Thus, we resolve

this inconsistency of the original formulation by simply excluding the Mth portfolio from the search
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space.

2.4 Online regulation

The �nal part of the end-to-end algorithm according to the proposed framework is online regulation,

which deals with how portfolio is being adjusted in time. The original approach features one notion,

which we interpret as an online regulation part of the algorithm. Since all the MSG statistics are

dependent on the forecasting horizon h, which corresponds to the number of steps in the future for

which we forecast wealth distribution, it is suggested in [18, 4, 40, 3] that the full portfolio selection

cycle, meaning asset preselection and subsequent optimization, shall be performed only each h'th step

respectively. In the mean time, at steps t mod h ̸= 0, the weights should be maintained constant.

By maintenance of weights, we refer to the fact that the real weights in the portfolio are naturally

changing in time as underlying asset prices change. Consider the simpli�ed example, where there are

only 2 assets and at step t0 we assign equal 0.5 weights to them. Suppose that the realized returns at

step t0 were z1,t0 = 2 and z2,t0 = 0.5, meaning that the price of the �rst asset increased 2-fold and of

the second decreased. Then, at the beginning of step t1:

Wt1 = 0.5z1,t0 + 0.5z2,t0 = 1.25,

x̃1,t1 =
0.5z1,t0
Wt1

= 0.8,

x̃2,t1 =
0.5z2,t0
Wt1

= 0.2

(17)

Therefore, in order to set equal weights again for step t1, we need to redistribute 0.3 of our wealth,

which becomes important and shall be kept in mind if one wants to account for transaction costs. If

transaction costs are not accounted for in the model, the notion of maintaining weights simply implies

that the adjustment presented above shall not be performed.

Besides the simplistic online regulation approach used in the original approach formulations, which

essentially implies not applying the otherwise necessary adjustment, we propose two other algorithms,

which pursue the goal of regularizing the portfolio allocation in time. [18] found that the weight

turnover, de�ned as a portion of portfolio weights being changed between redistribution was rather high

for the proposed method. High turnover in general is undesirable, as in real-life environment it would

yield large transaction costs, which might outweight the gains provided by more e�cient distribution

at a given time. We shall further distinguish between two potential sources of the turnover, the �rst

being asset preselection, where the overall set of assets changes and portfolio optimization turnover,

where the weights are being redistributed between assets.

2.4.1 MSG optimization regulation (R1)

The �rst regularization method we propose is associated with the very nature of the Markovian

approach described in this work. The penalty for weight redistribution can be integrated in the proposed

approach by adjusting the starting wealth for the forecasting. By default, for the estimation of future

wealth distribution, the starting wealth is always taken as WT = 1. However, very naturally, we can

consider the notion of transaction costs as a penalty on the redistribution of weights. Suppose we have
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two vectors of weights, xc and x̃, where xc are current weights at the beginning of the period and x̃

are new weights that are considered by the optimizer. The turnover (TO), representing what portion

of wealth is being redistributed, is then given by:

κTO =

∑
|xc − x̃|
2

. (18)

Assuming that transaction costs take a form of certain % commission on either sale or purchase of

assets, given by commission rate c the portion of wealth we would lose by making the considered

redistribution is given by cκTO. Then, we can modify the starting wealth value used for evaluation

of future wealth distribution as WT = 1 − cκTO, since the default 1 is essentially the base multiplier

representing "full" wealth whatever it is, now we adjust it so that we incorporate the expected initial

loss from redistribution. This would ultimately result in future wealth distribution mean being a

function of turnover, thus for higher turnover the values of all the objective functions that are based on

expectation of WT+h, including MSG Sharpe Ratio, MSG Omega Ratio and MSG Stable Ratio will be

lower. Note that such modi�cation will have no e�ect on MSG Pearson Ratio, which is purely based

on concordance between portfolio wealth and marker stochastic bounds and is thus independent of the

mean of the future wealth. Moreover, this method does not anyhow a�ect the turnover coming from

asset preselection, as it's impact is limited to optimization. Nonetheless, we �nd it interesting and

appealing for it very natural interpretation.

2.4.2 General purpose regulation (R2)

The second regularization method we consider is more simple and universal, as it is not directly

associated with the Markovian approach, but can be used as a general online regulation tool. It also

demonstrates more straightforwardly the whole idea behind the class of methods that we call online

regulation. Instead of taking the new weights found by the whole portfolio allocation procedure, we

take some function of the current weights that we have in portfolio and the new ones proposed by the

algorithm. The simplest function to use in this case is weighted average. Thus, we can de�ne the �nal

weights allocated at each redistribution step as

xt = νxt−1 + (1− ν)x∗t (19)

Where ν is the weight parameter controlling how much redistribution we allow and x∗t are weights

proposed by the allocation procedure. Notice that this approach handles both sources of the turnover,

as weights for the assets that were not selected for portfolio have weight 0 in x∗t and vice verse - the

newly selected assets have weight 0 in xt−1.

3 Empirical results

In this Section we present and discuss the empirical results of testing the current implementation of

the proposed framework on real life data. First, we introduce the general set up for experiments, then

provide some technical analysis for each of the end-to-end algorithm constituents, �nally we close this

Section by reporting and analyzing the best strategy con�gurations discovered so far.
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3.1 Experimental setup

For the empirical tests, we use the dataset covering stock price data on S&P5002 constituents

obtained from open source. This dataset covers 10 years of daily price history for 500 stocks included

in the S&P500 index, which features 500 leading U.S. publicly traded companies, with a primary

emphasis on market capitalization. It is one of the most widely used benchmarks in the investment

�eld and a common choice for testing purposes, e.g. [18, 11, 55].

Due to computational complexity of the considered algorithms, the long-term testing is extremely

time-consuming, therefore we select 2 speci�c subsets of 1 calendar year or 252 trading days each for the

tests. The �rst subset, labeled Growth, covers the year of 2016, when the global economic environment

was stable and S&P500 index was growing steadily as shown in Figure 1. The second subset, labeled

Recession, covers the current year from 2021-12-09 to 2022-12-09, during which there was a substantial

drop in S&P500 index valuation, as shown in Figure 2, and the global economy was in the state of

turbulence caused by pandemic of Covid-19 and Russian invasion to Ukraine. Thus, we try to grasp

some insights on how di�erent models behave under di�erent market conditions.

The standard algorithm back testing pipeline consists of the following steps, which are repeated for

each trading day in the testing set:

� Take some period of historical returns prior to assumed decision making time as training set. In

the current work we use 5 calendar years or approximately 1260 trading days.

� Fit the information extraction model on the training data.

� Select the initial subset of assets to be considered for portfolio using preselection algorithm.

� Allocate weights among the preselected assets using optimization algorithm.

� Evaluate portfolio performance based on the asset returns in the next day not included in the

training set.

� Shift the training set by 1 trading day into the future.

� Apply online regulation rules to get the new weights.

Recall from Section 2.4 that Online Regulation is the part of the algorithm that controls strategy

behavior in time. In the simplest case applied if not speci�ed otherwise, it simply tracks the number

of algorithm evaluations (time steps) and initiates the new �t�preselect�optimize cycle each k steps.

By default, we use k=5, meaning that full portfolio redistribution is performed each 5 trading days or

weekly and use the same forecasting horizon for Markovian information extraction model. Moreover,

we use S = 9 states for the Markov model estimation, same as in [18], and MSG Omega Ratio θ̃ = 1.01,

unless speci�ed otherwise. The hyperparameters of the metrics used for preselection are set as de�ned

in Section 2.2.
2https://www.kaggle.com/datasets/andrewmvd/sp-500-stocks
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Figure 1: S&P500 Index performance on the Growth dataset

Figure 2: S&P500 Index performance on the Recession dataset
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3.2 Strategy evaluation

We evaluate the performance of the tested strategies using multiple metrics characterizing di�erent

sides of the strategy performance. Notice that in order to distinguish between theoretical and empirical

variables, we stick to ˆ notation in this Section. Thus x̂t is the vector of weights allocated by the

algorithm for step t, ẑt is the vector of observed asset returns at step t, x̂
′
tẑt is the realized portfolio

return, Ŵt is wealth achieved by portfolio at step t and t ∈ [1, . . . , T ] is the evaluation step. Return

metrics quantify the positive side of portfolio performance, i.e. how much return and wealth the strategy

managed to generate over the testing period.

� Mean portfolio return - empirical average of daily returns realized by the strategy on the testing

data.

µ̂(x̂
′
ẑ) =

∑T
t=1 x̂

′
tẑt

T
. (20)

� Final wealth - the cumulative wealth achieved by the strategy on the testing dataset.

ŴT =

T∏
t=1

x̂
′
tẑt (21)

Risk metrics quantify the stability of portfolio performance. They measure how volatile the strategy

returns are and quantify the expected and realized losses.

� Standard deviation of returns - empirical portfolio volatility.

σ̂(x̂
′
ẑ) =

√∑T
t=1(x̂

′
tẑt − µ̂(x̂′ ẑ))2

T
. (22)

� Maximum Drawdown (MDD) - is the maximum observed loss from a peak to a trough of a

portfolio, before a new peak is attained. With trough being the maximum realized consecutive

loss and peak being the previous peak value of wealth, MDD is de�ned as follows:

MDD =
trough− peak

peak
(23)

� Value-at-Risk (VaR) - the minimum expected loss at some probability level. Empirical VaR is

essentially a quantile of the distribution of losses, given by x̂
′
ẑ − 1. We use standard 5% VaR.

P (x̂
′
ẑ − 1 < −V aR0.05) = 0.05 (24)

� Conditional Value-at-Risk (CVaR) - expected value of loss at a given probability level. Empirically

it can be approximated as the average of losses below certain quantile.

CV aR0.05 = −
∑

(x̂′ ẑ−1)<−V aR0.05
(x̂

′
ẑ − 1)∑T

t=1 I((x̂
′ ẑ − 1) < −V aR0.05)

(25)
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Integrated portfolio performance measures attempt to provide a more robust view on portfolio perfor-

mance by considering both return and risk simultaneously.

� Sharpe Ratio (SR). Empirical version of the standard Sharpe Ratio.

SR =
µ̂(x̂

′
ẑ)− 1

σ̂(x̂′ ẑ)
(26)

� Win Ratio (WR). Ratio of the number of times portfolio realizes gains over number of times it

loses.

WR =

∑T
t=1 1(x̂

′
ẑ > 1)∑T

t=1 1(x̂
′ ẑ < 1)

(27)

Turnover measures quantify how much portfolio composition changes in time. Following the discus-

sion in Section 2.4, we distinguish two types of turnover: asset turnover resulting from preselection

algorithm selecting di�erent assets and weight turnover which is the ultimate measure of �nal weights

redistribution.

� Asset turnover. Asset turnover is de�ned as an average number of assets that are being changed

by the preselector on each time step. Recall from Section 2.2 that at each redistribution step

preselection algorithm selects a subset J of assets out of the set of all available assets I. Denote
the subset of assets selected at time t as J (t). Then asset turnover can be estimated as follows

AT = (T − 1)−1
T∑
t=2

(1− |J (t) ∩ J (t−1)|
|J (t−1)|

) (28)

� Weights turnover. Weights turnover is de�ned same as in Section 2.4 and incorporates the concept

of natural weights change over time discussed therein captured by x̃. Moreover, we consider the

turnover in the most practical sense, as the portion of portfolio that has to be redistributed, hence

the division by 2 based on the assumption that any value of sold assets is being immediately

reinvested into the portfolio by purchasing some other assets.

WT =

∑T
t=2 |x̂t − x̃t−1|
2(T − 1)

(29)

Finally, we use a single measure of Mean sum of squared weights (MSSW) to quantify the sparsity of

the resulting portfolios. In other words, we want to quantify whether the strategy tends to select just

a few assets with high weights assigned to them as opposed to spreading the weights thinly over all the

available assets.

MSSW = T−1
T∑
t=1

N∑
n=1

x̂2t,n (30)

Notice, that theoretically this measure takes values in the interval (0, 1], however for speci�c dataset

the lower bound is given by N( 1
N )2, where N is the total number of assets in the dataset.
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3.3 Information extraction analysis

In this Section, we provide technical analysis of the Markov Chains model of future wealth used as

information extraction tool in current work. By doing so, we pursue two goals. First we would like to

illustrate the caveats of the method identi�ed empirically. Secondly, we strive to test the suggestion

provided in Section 2.1 that it might be more meaningful to evaluate the space of Markov Process

realizations starting with initial state probabilities conditional on the last state in the data used for

�tting the model, rather than unconditional ones as proposed in [18].

The main weak spot of the Markov chain model identi�ed within current research is its susceptibility

to outliers in the modelled series. Recall from Section 2.1, that in order to estimate Markov process

states the range of returns is being discretized into S intervals. Consequently, dramatic outliers in data

series lead to poor discretization as the intervals become too wide. This results in sparse transition

matrix being estimated, as most of the empirical returns are being attributed to the same interval. In

the worst-case scenario of a very small return variance except for a single dramatic outlier, the result-

ing transition matrix might essentially contain a single state with transition probabilities signi�cantly

di�erent from 0. Such a transition matrix results in forecasted wealth distribution being extremely

narrow, to the extent that stable distribution approximation elaborated in Appendix D becomes im-

possible both from theoretical and practical perspectives, as it becomes impossible to estimate distinct

quantiles of the future wealth distribution.

While running empirical experiments, we identi�ed 11 SNP500 index constituents for which stable

distribution approximation of future wealth was not possible in standard setting: BIIB, DRI, EPAM,

HIG, OKE, OXY, PEP, SWK, TGT, TRGP, WMB. Besides simply removing the assets from consider-

ation, we identi�ed two possible remedies for this problem: increasing the number of states or somehow

dealing with outliers. Number of chain states is a model hyperparameter that directly controls the gran-

ularity of discretization. However, it directly a�ects the computational complexity of the algorithm, so

increasing it would adversely a�ect the computation time. Moreover, identifying the number of states

that would suit all the assets in the market then becomes manual and cumbersome procedure, which

goes against our philosophy of algorithmization. Therefore, we suggest that it might be simpler to treat

the outliers themselves. Outlier removal is not considered an option in the given case as the outliers are

not anyhow erroneous data points, on the opposite, they carry important information about potential

extreme behavior of the asset returns. Therefore, we chose to suppress outliers closer to the center

of distribution by using the rule-of-thumb Tukey's fences method. Tukey's fences suggest considering

values above q0.75 + 1.5IQR and below q0.25 − 1.5IQR as outliers and values above q0.75 + 3IQR and

below q0.25−3IQR as extreme outliers, where qp is a pth quantile of the sample distribution and IQR is

the inter-quantile range given by IQR = q0.75 − q0.25. Thus, we suggest suppressing the outliers found

according to these de�nitions by setting their values to the threshold levels. Using such approach, we

still retain part of the information regarding the extreme behavior, while at the same time improv-

ing the stability of the model. Suppressing just the severe outliers was su�cient for stabilizing stable

distribution parameters estimation for 11 stocks we identi�ed as problematic.

In order to illustrate the idea, consider the example of EPAM stock during the 6 year period of

2016-12-09 � 2022-12-09. Figure 3 demonstrates original EPAM stock return series together with the

series obtained by suppressing severe outliers and all outliers according to Tukey's fences de�nition.
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Figure 3: EPAM stock returns under di�erent outlier suppression regimes
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Figure 4: Wealth distribution forecasted for EPAM stock 5 days in the future under di�erent number
of states and outlier removal

Figure 4 demonstrates the e�ect of outlier suppression on the wealth distribution forecast for 5 steps

into future produced by the Markov chain model, as well as the e�ect of increasing the number of states.

Notice the seeming convergence of the center of distribution as the number of states increases with the

distribution obtained with outliers suppression, suggesting that at least in terms of the �rst moments,

outlier suppression has similar e�ect to �ner discretization. Obviously, the tails are considerably shorter

in the distribution forecasted under outlier suppression, but we suppose that this information loss is

outweighed by the reduced complexity of the method �ne-tuning and computational time improvement

as long as it is not too dramatic.

In order to test the e�ect of the outlier suppression on the model performance, test the proposition

on the use of conditional probabilities and gain some additional insights about the model, we need a

way to evaluate it's alignment with the empirical, out-of-sample data. Since standard metrics such as

Mean Squared Error or Mean Absolute Percent Error, cannot be used to evaluate the goodness of �t

for Markov Chain model as we forecast the distributions of future wealth values, rather than a speci�c

value, we propose the following metric to assess how well the actual realized wealth values align with

the forecasted distributions.

ω =
(Ŵt − E(Wt))

2

σ(Wt)
(31)
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Con�guration Mean SD Median Q75 Q25 Max Min
Unconditional 0.016738 0.039029 0.006212 0.016246 0.001301 0.547281 2e-6
Conditional 0.016784 0.039044 0.006248 0.016246 0.001301 0.547273 6e-6

Unconditional (Out 3) 0.016711 0.033896 0.006148 0.016798 0.001320 0.375054 2e-6
Conditional (Out 3) 0.016693 0.033882 0.006190 0.016788 0.001335 0.375747 7e-6

Unconditional (Out 1.5) 0.019617 0.039803 0.007375 0.019598 0.001637 0.456352 4e-6
Conditional (Out 1.5) 0.019583 0.039775 0.007330 0.019448 0.001634 0.456187 5e-6

Table 1: Exploratory statistics of the ω-statistic for 490 asset return series

Where Ŵt is the realized wealth at time T. The proposed ω-statistic can be interpreted as a sort of

realized standard deviation, since the numerator is e�ectively a variance between forecasted model

expectation and empirical values and we divide by standard deviation of the forecasted distribution to

account for expected amount of deviation. Naturally, higher values of ω correspond to less alignment

between the forecast and reality. Despite the fact that it is di�cult to interpret the absolute values of

this statistic, it can be utilized in a relative sense to compare how well the model performs for di�erent

series or with varying con�guration.

In order to grasp the details of model performance and carry out all the comparisons of interest,

we embrace the following testing procedure. For each of the 490 stocks that were consistently included

in the SNP500 index over the period from 2016-12-09 to 2022-12-09, we apply the following iterative

procedure starting from 2021-12-09:

� Fit the Markov chain model on 5 years period preceding the current date.

� Obtain the forecast for wealth distribution 5 days into future.

� Evaluate the realized wealth over the next 5 days as a cumulative product of 5 subsequent returns.

� Shift the current date and the bounds of the training period by 1 day.

� Repeat the procedure until no data left.

Thus, for each of the 490 assets we obtain 253 (number of trading days between 2021-12-09 and 2022-12-

09) forecasts for 5 days into future together with realized wealth values over the same time frame. We

repeat this procedure under 6 di�erent conditions, de�ned by whether the conditional or unconditional

starting probabilities are used for wealth forecast and whether outliers are being suppressed and under

what criteria (severe only or all). For each of the 253 forecasts we compute the ω-statistic and then

average it to get the aggregated measure of the model performance under di�erent regimes for each

of the 490 asset series. The resulting statistic distribution over asset series is presented by boxplot

chart in Figure 5, while the Table 1 summarizes the exploratory statistics over asset series. We indicate

the statistics referring to severe outliers suppression as Out 3 and all outliers suppression as Out 1.5,

corresponding to the respective IQR multipliers.

From these results, we derive several conclusions. The most apparent one is that there are dramatic

di�erences in how well are the di�erent assets are being modelled by the Markov chain, as suggested by

our daily average of the ω-statistic. The boxplot in Figure 5 clearly shows that there are many outliers

among the asset series, for which the performance is considerably worse compared to the majority of the
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Figure 5: Daily average omega statistic for 490 SNP500 constituents on the Recession dataset
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assets. Although it was not utilized this way in the current work, this analysis might serve as another

asset preselection technique, suggesting that the outlying assets which do not seem to be modelled well

by the Markov chain shall not be considered for portfolio as our ability to get reasonable forecasts for

their wealth distribution is doubtful.

Secondly, there seems to be barely any di�erence between the model performance under conditional

and unconditional starting probabilities. Therefore, we found our proposed modi�cation from Section

2.1 invalid, and conclude that unconditional start proposed in [40] should be preferred, as it is less likely

to produce any unexpected behavior and there are no performance gains achieved with the conditional

version.

Finally, what concerns outlier suppression we observe an interesting pattern where suppressing just

the severe outliers by Tukey's de�nition yields some performance improvement for the most problematic

assets, while suppressing all the outliers results in noticeable average asset performance deterioration.

We thus interpret it as a con�rmation of the aforementioned trade-o� between improving model stability

and losing some information through the outlier suppression. Therefore, we conclude that severe outliers

suppression is a useful heuristic to avoid the estimation stability issues outlined in the beginning of this

Section.

3.4 Asset preselection analysis

Recall from Section 2.2 that in the current work we consider two preselection algorithms, which

both use a set of statistics to identify most e�cient assets which should be considered for the portfolio

� Ranking and DEA. In this Section we analyze and compare the considered algorithms from two per-

spectives: asset turnover, which can be considered as algorithm stability, and selected sets intersection,

which can be considered as a measure of how di�erent the results obtained by each of the algorithms

are. For both algorithms we use the same set of preselection metrics with the same hyperparameters,

therefore any performance di�erences shall be purely attributed to the preselection algorithm itself.

Moreover, we investigate how preselection is a�ected by outlier suppression heuristic introduced in Sec-

tion 3.3, following the conclusions made in that Section, we consider only severe outlier suppression. In

order to obtain the necessary results, we consider the preselections made by both of the algorithms with

and without outlier suppression on the Recession dataset following the standard back-testing procedure.

Figure 6 demonstrates asset turnover in time for the 4 considered con�gurations. Since asset pre-

selection is made only each 5 trading days, the Moving Average(20) smoothing was applied for visual

comeliness. We may clearly see that DEA method exhibits much higher asset turnover compared to our

Ranking algorithm, thus we deem it to be more unstable in time and more susceptible to transaction

costs. Moreover, suppressing the severe outliers (annotated by "_out" post�x) clearly increases asset

turnover for both algorithms. From more detailed analysis, we observed that the most unstable assets

tend to be preselected consistently due to unrealistic expectations resulting from poor Markov chain �t

when outliers are not suppressed.

Figure 7 demonstrates the % of intersection between the preselections made by each pair of con-

�gurations. The intersection is calculated as a number of assets included in both sets over the total

number of unique assets in both sets. It was also smoothed with Moving Average (20) for visual clarity.

This chart demonstrates that DEA method is more a�ected by outlier suppression compared to Rank-
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Figure 6: Rolling average daily asset turnover of Ranking and DEA algorithms with and without outlier
suppression

38



Figure 7: Rolling average daily % intersection in assets preselected by Ranking and DEA algorithms
with and without outlier suppression
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ing. In fact, for the Ranking algorithm the preselection decisions changed only slightly with outlier

suppression, while DEA and DEA with outliers suppressed show the lowest intersection out of all pairs.

Moreover, we can see that when outliers are not suppressed, the intersection between DEA and Ranking

is considerably higher, supporting the argument that both algorithms are being a�ected in a similar

manner by distorted Markov chain �t, although DEA is a�ected much more signi�cantly. These results

con�rm that the two considered algorithms, while very similar in nature and using the exactly same

inputs, produce considerably di�erent results.

Finally, analyzing the performance of the assets preselected by each of the algorithms, we observed

that assets preselected with Ranking performed much worse on the testing Recession dataset on average

as compared to DEA and benchmarks. At the same time, equally weighted portfolio of DEA preselected

assets outperformed both S&P index and global equal-weight portfolio used as benchmarks on both

datasets (see Table 4). Moreover, in contrast to our stability considerations, both Ranking and DEA

preselected assets with outlier suppression showed worse performance than the sets obtained with no

outlier suppression.

3.5 Portfolio optimization analysis

In this Section we conduct empirical analysis of the optimization procedure and optimized functions.

In particular, we provide analysis of the optimized functions themselves, compare the optimization

performance of the heuristic approach outlined in Section 2.3 with Genetic Algorithm that is widely

used in the �eld [37, 16] and, �nally, demonstrate the impact of outlier suppression discussed in Section

3.3 on the optimization.

In order to grasp the understanding of how optimized functions presented in Section 2.3 look like

and what issues they might present we developed the following procedure. Same as in Section 3.3 we

take a single time period of 6 years from 2016-12-09 to 2022-12-09, corresponding to Recession dataset

with all the training data. In order to reduce dimensionality of the weight space, we use Principal

Component Analysis (PCA) to extract just the �rst two components, PC1 and PC2, explaining the

maximum portion of variance in the underlying assets - 46.1% in our case. We then interpret the scores

of these components as the two series best representing the underlying market. Similar interpretation

of PCA components as market driving factors can be found in [18]. Notice that originally extracted

components have mean of 0, which is problematic for Markov chain estimation procedure designed

for return series non-negative by de�nition. Therefore, we shift both score series up by the absolute

value of the minimum among both series plus a small constant. Since it is relation between the series

that a�ects optimization results, shifting location of both series by the same value does not cause any

distortion to results. Finally, we evaluate each of the 4 optimized functions on 100 portfolios of these 2

components obtained by increasing the weight of the �rst component xPC1 from 0 to 1 with the step

of 0.01. The weight of the second component, by de�nition, is given by xPC2 = 1− xPC1. The results

of this exploration are displayed in Figure 8. This analysis yields several observations.

First of all, we clearly see that none of the functions is smooth, even though Sharpe Ratio looks

rather close to it, so each of them presents several local maximums. Secondly, we may clearly see that

the 4 observed global maximums suggest di�erent weight allocations, thus con�rming that each of the

objective functions utilizes di�erent market information and conveys unique trading signal. Moreover,
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Figure 8: Optimized functions evaluation on the space of portfolios including �rst two principal com-
ponents of the overall market
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since the �rst principal component captures the biggest portion of variance, the function favoring it

might be considered as more risk-taking. From this analysis it happens to be MSG Omega Ratio

proposed in the current work. Finally, as a more technical observation, the shape of the MSG Omega

Ratio and MSG Stable Ratio is interesting as they both present very sharp step-function pattern. The

most reasonable explanation we have is that it is associated with the way stable distribution parameters

are estimated, as both of the functions utilize it. Perhaps minor adjustments in weights result in the

same quantiles estimated for future wealth distribution as the currently used method described in

Appendix D is rather rough.

Next, we consider the optimization performance of the heuristic algorithm described in Section 2.3,

which we refer to as Simplex for convenience, in comparison with the widely used Genetic Algorithm.

To do so, we use the DEA method for asset preselection and run the simulated trading evaluation on

both Growth and Recession datasets with preselection and weights redistribution done each 5 trading

days. In such a manner we evaluate 12 strategies, given by all the combinations of the following

con�gurations:

� Severe outliers, either suppressed or not suppressed.

� Optimized function: MSG Sharpe Ratio, MSG Omega Ratio, MSG Stable Ratio

� Optimization algorithm: GA or simplex exploration heuristic

Figure 9 presents the optimization times for 3 optimized functions without outlier suppression

optimized with GA and Simplex algorithms. The tests were performed on the same machine. One

may notice that Genetic Algorithm is typically slower than the discussed Simplex algorithm, however

it's optimization times are much more stable. The instability of the Simplex optimization times is

determined by 2 reasons. First, exploration is being done steadily, attending any single parameter

individually, hence optimization time depends on the number of parameters (weights), which di�ers in

time using DEA preselection. Secondly, the number of objective function evaluations is not �xed, it

keeps searching as long as the improvements within the given tolerance level are achieved, as opposed

to GA, which uses the notion of maximum number of generations a limit for the search. In our testing

setup, GA was con�gured to make no more than 2000 function evaluations as otherwise computational

time would become prohibitive.

Table 2 summarizes the performance of the two algorithms over di�erent strategy con�gurations.

In particular, we are interested in the Win rate and VT (Value per Time) columns, which correspond

to the number of times optimal function value found by a given algorithm exceeds the result of its

counterparts and the average improvement per second respectively. This summary clearly shows the

superiority of the Simplex algorithm in terms of the improvement per time. However, this only holds

as long as the number of weights for optimization stays within reasonable limits. The next thing we

observe is that the extremely high values of MSG Omega Ratio and MSG Stable Ratio recorded when

outliers are not being suppressed. They highlight the instability of the whole algorithm performance

in the presence of severe outliers. Recall from Section 2.3, Eq. 12, that denominator of the ratio

is the integral of future wealth stable distribution cumulative density function from minus in�nity to

threshold. Thus, as estimated location of the stable distribution increases and moves further from the
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Figure 9: Aggregated optimization times on both Recession and Growth datasets for GA and Simplex
optimization algorithms

Function No outliers Optimizer Mean time Mean value Win rate V/T
MSG Sharpe Ratio yes Simplex 27.18 0.28 0.48 0.011
MSG Sharpe Ratio yes GA 54.03 0.28 0.52 0.005
MSG Sharpe Ratio no Simplex 34.85 0.84 0.80 0.028
MSG Sharpe Ratio no GA 68.32 0.50 0.20 0.0074
MSG Omega Ratio yes Simplex 300.84 0.74 0.98 0.0046
MSG Omega Ratio yes GA 176.34 0.20 0.02 0.0007
MSG Omega Ratio no Simplex 73.38 5.29 · 1019 1 9.54 · 1017
MSG Omega Ratio no GA 174.04 1.06 0 0.0059
MSG Stable Ratio yes Simplex 47.48 35.00 0.58 0.85
MSG Stable Ratio yes GA 70.15 35.16 0.42 0.50
MSG Stable Ratio no Simplex 53.26 323519 0.76 6346
MSG Stable Ratio no GA 87.68 101968 0.24 1168

Table 2: Optimization summary, where win rate refers to the number of times optimization algorithm
�nds superior value, V/T is Value per Time
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Strategy µ̂ σ̂ WT SR WR MDD VaR CVaR AT WT MSSW
Sharpe 0.999 0.021 0.705 -0.056 0.969 -0.088 0.033 0.053 0.151 0.167 0.615

Sharpe R1 1 0.025 0.708 -0.041 1.032 -0.148 0.044 0.061 0.151 0.147 0.870
Sharpe R2 1 0.016 0.954 -0.004 0.992 -0.068 0.028 0.035 0.037 0.089 0.282
Stable NO 1 0.012 1.102 0.039 1.181 -0.084 0.020 0.027 0.161 0.179 0.321

Stable NO R1 1 0.012 1.104 0.039 1.074 -0.119 0.020 0.028 0.161 0.155 0.349
Omega NO 1 0.036 0.765 -0.011 0.895 -0.193 0.056 0.082 0.161 0.197 0.695

Omega NO R1 1 0.034 0.793 -0.009 1.016 -0.129 0.052 0.082 0.161 0.175 0.717

Table 3: Strategies performance with and without online regulation

threshold, the denominator tends to 0. In order to avoid division by 0, in our implementation we set

the limit for MSG Omega Ratio to equal 120 when denominator is 0. Thus, the results for data without

�ltering the outliers suggest that unrealistically high location parameter is being forecasted resulting

in MSG Omega Ratio hitting this cut o� point.

The resulting strategy performance further con�rms the superiority of the Simplex algorithm as

under all the con�gurations the realized Sharpe Ratio for the strategies using Simplex optimization

outperformed the GA version. This result additionally supports the overall idea that the considered

target functions carry relevant trading signals, thus portfolio with a higher historical value of the given

function is expected to demonstrate better performance, which we observe. As a side observation, due

to internal mechanics of the algorithms, GA tends to produce much more sparse portfolios compared

to Simplex (see Tables 4 and 5).

3.6 Online regulation analysis

In this section we demonstrate the results of testing the regularization technique proposed in Section

2.4. Recall, that we suggested regularizing weight redistribution in time by adjusting the initial wealth

value used as a stating point for evaluation of the Markov process realizations by the ratio of the

considered weight redistribution. In the empirical results presentation, we refer to this regulation

approach as R1, while notation R2 corresponds to the second regulation method discussed in the same

section. In order to test this approach, we test 6 strategies de�ned by 3 objective function to optimize:

MSG Omega Ratio, MSG Sharpe Ratio and MSG Stable Ratio and whether R1-type regulation is

applied or not. For the tests, we set the R1-type regularization parameter to c = 0.1. Recall that we do

not consider MSG Pearson Ratio, since starting wealth adjustment has no e�ect on correlations. Since

R2-type of regulation is much more straightforward, we only provide its results for MSG Sharpe Ratio

optimizing strategy for illustrative purposes. For it we use smoothing parameter ν = 0.5.

Figure 10 shows the weight turnover in time for all the considered strategies. We apply Moving

Average (20) smoothing for visualization purposes, as weights are being redistributed only each 5 trading

days. We can clearly see, that our proposed method works for all the considered objective functions

optimization, resulting in considerably lower weight redistribution in time. Notice, that unlike R2-type

regulation which straightforwardly reduces weight turnover proportional to the value of ν (2 times in

this case), R1-type regulation e�ect varies in magnitude from no di�erence at all to dramatic decrease,

which can be seen for MSG Sharpe Ratio optimizing strategy in the beginning of the testing period.

Table 3 summarizes the �nal performance of the strategies with and without regularization in
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Figure 10: Averaged daily weight redistribution for strategies with and without regulation applied
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numeric terms. Notice that we use NO (No Outliers) notation to indicate the outlier suppression

applied for Omega and Stable strategies, as they are considered to be more susceptible to them as

indicated in Section 3.5. Comparing the average weight turnover realized by the strategies we see, that

while in time the e�ect of R1 regulation varies, on average it is rather similar for all the optimized

functions and even close to the value of regularization parameter set. For MSG Sharpe Ratio the

average weight turnover reduction of around 12% was achieved, while for MSG Stable Ratio and MSG

Omega Ratio � 13.4% and 11% respectively. Another interesting observation is that R1-type regulated

strategies show higher weight sparsity, as opposed to R2-type regulation, which naturally results in more

dense portfolios through maintaining some weights even for assets not preselected in a given evaluation.

The increase is very substantial for the Sharpe Ratio optimizing strategy, although not that big for

Stable and Omega. Perhaps, it is related to the fact that for the 3 Sharpe strategies, outliers where

not suppressed, unlike for Omega and Stable strategies. What concerns the overall performance, we

may see that at least in this test regulated strategies realized slightly better Sharpe Ratios than their

unregulated counterparts.

3.7 Final results

In this Section we report the �nal results of the top 10 best performing strategies identi�ed from

the multitude of experiments conducted on both Growth and Recession datasets. The selection was

performed based on the realized Sharpe ratio of the strategies and in each table they are sorted by it

in decreasing order. The notation used to identify di�erent strategy con�gurations is the following:

� "NO" indicates that severe outliers were suppressed prior to model �tting.

� Omega (x) indicates the θ̃ = x hyperparameter value, if several versions are presented in the same

table. Otherwise the default value of 1.01 is implied.

� 1/N indicates equal weight distribution

� R1 indicates R1-type regulation method applied

� T refers to the redistribution frequency used in the experiment

� GA refers to Genetic Algorithm used for optimization

The default setting is considered to be DEA preselection, no outlier suppression, Simplex optimization

and no regulation, in these cases we indicate only the objective function optimized. It is necessary

to elaborate, that while no full scale cross-validation of the hyperparameters was performed due to

computational complexity of the end-to-end approach testing, two hyperparameter values were tested

for Omega ratio - 1.01 and 1.05. Moreover, we tested two redistribution frequencies T=5 and T=20,

corresponding to weekly and monthly redistribution respectively.

Table 4 presents the results of the evaluation of the selected strategies on the Growth dataset. The

corresponding wealth paths of the strategies are displayed in Figure 11. On this dataset, all of the top

performing strategies realized Sharpe Ratio between 2 and more than 4 times higher than the S&P500

index benchmark, thus validating the considered approach. 5 out of 10 strategies optimized MSG Omega

46



Strategy µ̂ σ̂ WT SR WR MDD VaR CVaR AT WT MSSW
Omega (1.05) 1.004 0.022 2.775 0.196 1.312 -0.048 0.026 0.040 0.152 0.201 0.711

Stable 1.002 0.013 1.811 0.185 1.471 -0.029 0.014 0.019 0.152 0.181 0.312
Omega (1.01) NO R1 1.005 0.030 2.843 0.153 1.135 -0.110 0.037 0.053 0.157 0.167 0.798

Omega (1.01) 1.002 0.019 1.666 0.119 1.312 -0.103 0.026 0.036 0.147 0.187 0.732
Pearson 1.002 0.019 1.679 0.118 1.066 -0.049 0.021 0.031 0.152 0.194 0.535
DEA 1/N 1.001 0.008 1.253 0.110 1.377 -0.030 0.014 0.019 0.152 0.159 0.032

Omega (1.01) NO GA 1.001 0.010 1.304 0.109 1.312 -0.039 0.016 0.022 0.156 0.182 0.071
Sharpe 1.002 0.019 1.541 0.101 1.049 -0.053 0.026 0.033 0.152 0.189 0.736

DEA 1/N NO 1.001 0.008 1.220 0.097 1.333 -0.043 0.012 0.020 0.157 0.164 0.030
Sharpe NO R1 1.003 0.029 1.809 0.096 1.118 -0.138 0.046 0.055 0.157 0.147 0.999

S&P500 1 0.008 1.095 0.048 1.082 -0.039 0.013 0.020 - - -
1/N 1.001 0.009 1.163 0.069 1.355 -0.048 0.015 0.023 0 0.005 0.002

Table 4: Growth Dataset Results

Strategy µ̂ σ̂ WT SR WR MDD VaR CVaR AT WT MSSW
Stable (T5) 1.001 0.015 1.340 0.083 1.144 -0.077 0.020 0.029 0.150 0.188 0.587
Omega (T5) 1.002 0.027 1.386 0.061 0.961 -0.155 0.035 0.044 0.150 0.186 0.694
Sharpe (T5) 1.001 0.023 1.296 0.055 1.049 -0.103 0.030 0.038 0.150 0.182 0.560
Stable (T20) 1.001 0.028 1.332 0.052 1.126 -0.094 0.028 0.037 0.036 0.047 0.559
Omega (T20) 1.002 0.032 1.360 0.052 0.902 -0.120 0.030 0.041 0.018 0.050 0.700
Stable NO (T5) 1 0.012 1.102 0.039 1.181 -0.084 0.020 0.027 0.161 0.179 0.321

Stable NO R1 (T5) 1 0.012 1.104 0.039 1.074 -0.119 0.020 0.028 0.161 0.155 0.349
Ranking Sharpe (T5) 1 0.013 1.069 0.026 1.202 -0.050 0.022 0.030 0.018 0.002 0.976
Pearson NO (T5) 1 0.016 1.013 0.011 0.820 -0.082 0.023 0.029 0.161 0.196 0.276
Stable GA (T5) 1 0.013 0.995 0.005 1.007 -0.092 0.022 0.028 0.150 0.174 0.051

S&P500 0.999 0.015 0.843 -0.037 0.762 -0.089 0.026 0.033 - - -
1/N 1 0.015 0.913 -0.017 0.917 -0.098 0.024 0.032 0 0.006 0.002

Table 5: Recession Dataset Results

Ratio proposed in current work, thus con�rming the validity of such optimization target and indicating

its superior performance on the growing market, as the strategy optimizing this metric showed the

best overall performance judging by Sharpe Ratio. The di�erence in results between experiments with

di�erent hyperparameter values for MSG Omega Ratio indicate the need for more detailed analysis of

its e�ect on strategy performance. Due to scope of this thesis, only two values of 1.05 and 1.01 were

used in experiments, however in future research, it would be interesting to consider a more granular

and deeper inspection of the optimal hyperparameter choice.

Clearly, the large impact on the achieved results is made by preselection. Notice that equal-weight

strategy with DEA preselection scores the top 5 Sharpe Ratio, suggesting that even without any

optimization the sets of assets preselected by it outperform the general market. In this regard it is

also important to mention that MSG Sharpe Ratio optimizing strategies, while present among the top,

performed worse than the equal weight strategy for the same asset preselection. This result suggests

that Sharpe Ratio might under-perform, at least on the growing market.

Table 5 presents the results of the evaluation of the selected strategies on the Recession dataset.

The corresponding wealth paths of the strategies are displayed in Figure 12. The results demonstrate

that even during turbulent economic conditions, the considered strategies still outperform the S%P500

index benchmark given both by index itself and equally-weighted portfolio of its constituents. Moreover,
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Figure 11: Wealth pathes of strategies on Growth dataset
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Figure 12: Wealth pathes of strategies on Recession dataset

unlike on the Growth dataset, Omega and Stable ratio optimizing strategies with monthly redistribution

(T=20) show similar results to their weekly redistributing counterparts. This result is interesting, since

naturally less frequent redistribution results in lower weight turnover and, thus, is less susceptible to

transaction costs in the real world environment.

Interestingly enough, one con�guration with Ranking preselection appears among top performers.

However, one might notice that extremely low weights turnover together with MSSW being reasonably

close to 1 suggest that this strategy essentially was holding a single asset over the whole test period. It

is likely that the sole asset might be a proxy to some growth signal of the market that we would want

to maximize. This suggests an avenue for future research, in the direction of sparse recovery of leading

market signals.

Considering the results from both datasets, we may see that di�erent optimization objectives tend

to produce the �nal portfolios of certain sparsity. Thus, Sharpe and Omega ratios tend to produce

more sparse portfolios as compared to Pearson and Stable ratios. While sparsity is not synonymous

to diversi�cation, the empirical results show that Omega and Sharpe ratio tend to be more risky as

compared to Stable and Pearson ratio maximizing strategies. Essentially, the main impact of it may be

seen in the fact that Omega-based con�guration realized the top performance on the growing market,

while Stable-based won during the recession, realizing approximately 33% higher Sharpe ratio.

Despite the previous results indicating that outlier suppression improves numerical stability of the

considered methods, from the �nal results we may see that strategies with no outlier suppression
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managed to achieve better results. However, we suspect that these results might be sporadic, therefore,

in order to make �rm conclusions, a larger comparison study may be needed, covering a wider range of

diverse datasets.

4 Conclusions

In this paper we proposed a conceptual framework for algorithmic portfolio management, disas-

sembling this complex problem into 4 subtasks: information extraction, asset preselection, portfolio

optimization and online regulation. On the theoretical level, we demonstrated that this representation

helps unifying the otherwise fragmented approaches used both in literature and in practice. Moreover,

this representation was designed with programmatic implementation in mind and was put in the foun-

dation of the Algoport3 Python package that was developed during this work, which is presented in

more details in Appendix A. We believe that this implementation demonstrates in practice, the appli-

cability of the proposed framework concept, as it allows con�guration, tuning and testing of multiple

end-to-end algorithms in e�cient manner.

As a case study for the proposed framework, we implemented the Markovian portfolio manage-

ment approach consistently developed by [29, 40, 18] and proposed several extensions. Considering

the Markov Chain model itself, we identi�ed the following issues. The state discretization procedure

described in Section 2.1 is highly susceptible to outliers in return series, which can be addressed by

either �ne tuning the number of states or treating outliers themselves. Since increasing the number

of states directly a�ects computational time of the algorithm, which was found to be challenging even

in the initial setting, we explored the second option. Since outliers in return series carry important

information about the assets, we suggest that they should not be removed, but can be suppressed thus

achieving a trade-o� between model stability and information loss. Using the proposed ω-statistic of

our own design, in Section 3.3 we demonstrated that suppressing severe outliers using Tukey's fences

method does not deteriorate, but even improves model �tness for the most problematic assets, while

solving the stability issues. On the other hand, our �nal results suggest that in general strategies run

without outlier suppression performed better already on the asset preselection stage. Thus, at this

stage we conclude that results of this method are mixed and require further investigation.

The same ω-statistic analysis rejected idea formulated in Section 2.1 expecting that we might

get more accurate predictions by evaluating the Markov Process of wealth realizations starting with

probabilities conditional on the last observed state, rather than unconditional ones. Since no prediction

accuracy gains were achieved in the conducted experiment, we conclude that unconditional probabilities

should be preferred as such approach is likely to be more numerically robust. Moreover, we identi�ed

that Markov Chain model performance di�ers substantially among assets, thus suggesting that assets

might be preselected based on their concordance with Markov Chains model. We leave the additional

tests of this proposal for future research as the validity of the proposed ω-statistic itself should be �rst

tested more thoroughly, as it was developed for comparative and analytical purposes and not to be

used in the actual algorithm.

Considering preselection part of the framework, we formulated a simple ranking algorithm, which

3https://github.com/astekas/algoport
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was supposed to serve as a benchmark for the more sophisticated DEA approach. The empirical

results provided in Section 3.4 suggest that while the two algorithms indeed generate alternative asset

sets and our ranking algorithm was found to be more stable in time, DEA algorithm managed to

preselect much better assets in terms of their performance. This con�rms the applicability of DEA

as a useful tool in algorithmic portfolio management, which not only reduces the dimensionality of

the optimization problem, but is alone su�cient to outperform the benchmark index by equal-size

investment in preselected assets.

In Section 3.5 we demonstrated the inherent challenge of semi-parametric function optimization by

evaluating the space of portfolios constructed out of �rst two principal components of asset returns.

Thus, we justi�ed the use of heuristic Simplex optimization procedure introduced in Section 2.3. We

further benchmarked it against the popular Genetic Algorithm, showing the superiority of Simplex

both in terms of computational time and achieved results. Moreover, in the thesis we introduced

the extension of Omega Ratio to the Markovian case as a new objective function to optimize. The

empirical results con�rm that such optimization target is indeed valid and demonstrates extremely

good performance, especially under favorable market conditions.

In Section 2.4 we also introduced a novel regulation method, which successfully regularizes weight

redistribution done by the model in time as was demonstrated in Section 3.6. Since in the real world

weight redistribution is associated with transaction costs, the proposed method helps adjusting the

algorithm performance dynamically, based on the current transaction cost level. As an unanticipated

side e�ect, the empirical results suggest that this method also tends to increase sparsity of the �nal

portfolios. A clear limitation of the proposed method is that it deals only with weight turnover, while

part of it is irreducible due to asset turnover. Therefore, we also introduced the so-called R2 regulation

method, which is more straightforward in it's nature and is able to handle both asset and weight

turnover.

Concluding this thesis, we would like to brie�y mention several approaches and ideas that were

considered during the current research, but were not fully developed due to the scope and time lim-

itations, therefore we leave them as pathways for the future research. On the information extraction

part, ARMA-GARCH-Copula family of approaches (e.g. [44]) can be very straightforwardly integrated

into the developed framework with the initial rough implementation already available in the software

implementation, developed alongside this thesis, "Algoport". As opposed to the Markov Chains model

used in the current work, this approach is fully parametric and can be brie�y summarized as modelling

individual return series with ARMA-GARCH family of models and capturing their joint distribution

with a copula model of ARMA-GARCH residuals. Then, a Monte Carlo simulation of possible realiza-

tions for future time can be drawn in order to forecast the distribution of the whole market returns,

similarly to how we do it for a single series with a Markov Chain. We deem that such approach might

be a viable and more �exible alternative to Markov Chains, able to capture more complex dependencies

between the assets and, thus, possibly resulting in more stable and better performing strategies.

During the current study, we also formulated a novel approach for asset preselection, yet did not have

su�cient time to test it. Following the idea of factor-based portfolios found in literature, we suggest

that Non-negative Matrix Factorization (NMF) [19] might be a more suitable tool than Principal

Component Analysis, widely used for this purpose. The problem with PCA, which we slightly touch
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upon in Section 3.5, is that while the component scores can be interpreted as latent factors, based on

the underlying asset returns given certain loading weights, which implies that the factors themselves

can be optimized in-line with the approaches, discussed within this thesis, the conversion back from the

weights in latent space to asset weights is not straightforward. Component loadings cannot be directly

interpreted as such "asset weight" in the component, as they are not constrained to be non-negative.

[6] On the other hand, NMF strives to �nd an optimal representation of a non-negative matrix as a

product of 2 non-negative matrices, which can be interpreted as scores and loading in PCA terminology.

As returns are non-negative by their nature, the �rst condition is satis�ed. Then, the non-negative

loadings produced by the method can be normalized to sum up to one, essentially making each NMF

"factor" a valid portfolio. From our brief tests, it seemed that such procedure allows representing the

whole market as a several valid portfolios, which represent approximately same percentage of variance

as the same number of principal components. However, the certain advantage of this method is that

once we allocate the weights to the representative portfolios, conversion to actual asset weights is as

simple as matrix multiplication of factor weights by the normalized loadings. Clearly, further research

is necessary to validate this method, but we �nd it very promising and thus considered for inclusion in

"Algoport".
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APPENDICES

A Algoport package

Algoport4 is a Python package implementation of the framework proposed in this work. As of

version 0.1.2 it consists of the following modules:

� Markov. Contains a single class of MarkovChainModel, which is our original Python implemen-

tation of the information extraction model described in this paper.

� AssetSelection. De�nes the class hierarchy for asset preselection algorithms. DEA_AS is a

wrapper around R "additiveDEA" package, accessed via rpy2 bridge. Ranking_AS is our pure

Python implementation of the Ranking preselection algorithm.

� PortfolioOptimization. De�nes the class hierarchy for weight optimization algorithms. Currently

available optimizers include: SimplexOptimizer, which is our original implementation of the Sim-

plex optimization algorithm described in Section 2.3; SciPy, providing a wrapper around SciPy

optimization algorithms, which handle constraints necessary for weight optimization; PyMoo pro-

viding a wrapper around GeneticAlgorithm implementation in PyMoo package. In future versions

it will be extended to the multitude of algorithms available therein; MVO, which is a classical

Mean-Variance Optimization algorithm, solved by the means of quadratic programming.

� Strategy is the main class, which serves as a decision making hub. It collects the history of

portfolio performance over subsequent evaluations and provides the endpoint for implementing

various regulation approaches.

� Backtesting. A technical module, de�ning Backtest class, which iteratively passes data to Strat-

egy, computes and records the �nal test run metrics, stores and plots the results.

4https://github.com/astekas/algoport
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� Data. Technical module with a single Dataset, which class manages the datasets included in the

package. At the moment, only SNP500 is available.

More detailed usage guidelines will be consistently added to git repository.

B Bivariate Markov process estimation

The Markov process of portfolio wealth estimation procedure, described in section 2.1 for univariate

case can be further extended to bivariate case using the following method. Suppose that we have two

series of returns zx,t, zy,t, each following a homogeneous Markov process. Then, we can approximate

their joint behavior with a bivariate Markov process Zt = (zx,t, zy,t). In order to describe it we need

to estimate the states of this process, transition matrix and the initial state. We assume that both

individual processes have the same number of states S. In fact, the formulation given in [3] does not

impose such constraint, but the implementation can be made more e�cient by assuming it. Then the

bivariate process has S2 states s(i) = (s
(ix)
x , s

(iy)
y )∀i ∈ 1, ..., N2. In order to estimate them we consider

the range of K past returns given by

( min
t∈−K,...,0

zx,t, max
t∈−K,...,0

zx,t) x ( min
t∈−K,...,0

zy,t, max
t∈−K,...,0

zy,t) (32)

This range is then divided into S2 bidimensional intervals (ai, ai−1) x (bj , bj−1), where ai and bj are

given by:

ai := (
mint zx,t
maxt zx,t

)
i−1
S max

t
zx,t, i = 1, ..., S + 1

bj := (
mint zy,t
maxt zy,t

)
j−1
S max

t
zy,t, j = 1, ..., S + 1

(33)

Similarly to the univariate case, the bivariate states are then estimated by the geometric average of the

interval bounds.
s(ix)x :=

√
aixaix−1, ix = 1, ..., S

s
(iy)
y :=

√
biybiy−1, iy = 1, ..., S

(34)

Respectively, we can introduce d = (dx, dy) as a universal multiplier for alternative state representation

given by:
s(ix)x := s(1)x d1−ix

x , ix = 1, ..., S

s
(iy)
y := s(1)y d

1−iy
y , iy = 1, ..., S

dx := (
maxt zx,t
mint zx,t

)
1
S ; dy := (

maxt zy,t
mint zy,t

)
1
S

(35)

Next, we estimate the transition matrixQ = {q(ix, iy, jx, jy)}ix,iy ,jx,jy∈1,...,S . Notice that since transition
matrix is a matrix of probabilities to transit from the state s(i) to the state s(j) and the states are 2-

dimensional for bivariate case - transition matrix becomes 4-dimensional. More formally it is given

by

qi,j = P (Zt+1 = s(j)|Zt = s(i)) (36)

It can be estimated non-parametrically, by counting the number of times empirical returns fall within

the interval corresponding to a given state s(i) and how many times transitions to each other state s(j)
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occurred from it.

q̃i,j =
πi,j
πi

πi,j =

0∑
t=−K

I(zx ∈ (a(jx)x , a(jx−1)
x ) ∩ zy ∈ (b

(jy)
y , b

(jy−1)
y )|zx ∈ (a(ix)x , a(ix−1)

x ) ∩ zy ∈ (b
(iy)
y , b

(iy−1)
y ))

πi =
0∑

t=−K

I(zx ∈ (a(ix)x , a(ix−1)
x ) ∩ zy ∈ (b

(iy)
y , b

(iy−1)
y ))

(37)

Where I is an indicator operator taking value of 1 if condition is true and 0 otherwise. Next the bivariate

wealth process can be evaluated similarly to univariate case. Recall from section 2.1 that a univariate

return process generates (S-1)h + 1 possible wealth values at time T+h in the future. Respectively, the

bivariate wealth process can reach ((S − 1)h + 1)2 values of wealth at time T+h in the future. They

are given by
wl,h = (w(lx,h)

x , w
(ly ,h)
y )

w(lx,h)
x = w(lx,0)

x (s(1)x )td1−lx
x

w
(ly ,h)
xy = w

(ly ,0)
y (s(1)y )td

1−ly
y

l = (lx, ly) ∈ Lh := {(lx, ly) : 1 ≤ lx, ly ≤ 1 + h(S − 1)}

(38)

In order to evaluate the probability of attaining each of these wealth values, we need to consider the

evolution of such process, which can be represented by a sequence of matrices G(l,i)
t . Notice, that since

the evolution matrix by de�nition contains the probabilities to attain wealth wl, while being in the

state si, it is a 4-dimensional matrix with dimensions given by:

G
(l,i)
t = {gt(l, i)},

l = (lx, ly) ∈ Lt := {(lx, ly) : 1 ≤ lx, ly ≤ 1 + h(S − 1)}

i = (ix, iy) ∈ I := {(ix, iy) : 1 ≤ ix, iy ≤ S}

(39)

In order to initiate the process, we need to �x the starting wealth wl,0 = (1, 1) and the starting state

probabilities u, where ui = πi
T , which essentially represents the unconditional probability of being in

each state. Then, the sequence of matrices G(l,i)
t can be computed iteratively from the following scheme:

gt(l, i) =


ui, t = T, l = (1, 1),∑

h gt−1(l − k + 1, k)q(k, i),
1 ≤ lx − kx + 1 ≤ (1 + (h− 1)(S − 1))2,

1 ≤ ly − ky + 1 ≤ (1 + (h− 1)(S − 1))2

(40)

This computation scheme di�ers from the one formulated in [3], statement 2.15, rather dramatically.

The reason for this is that we believe the original formulation to be incorrect and somewhat misleading.

First of all, the original formulation did not feature the upper constraints on the indices from gt−1 that

are to be used, making the direct implementation of it infeasible, as it required taking values of gt−1

which simply do not exist as dimensionality expends with time. Secondly, the original formulation

imposed constraints on the values of i, rather than h to be taken, which again can be proved wrong
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very easily, as it essentially implies that transition probabilities to some states in Gt are to be set to

0, while in the Markov chain, with starting probabilities ui ̸= 0∀i ∈ I and transition probabilities

qi,j ̸= 0,∀i, j ∈ I there will always be non-zero probability to be in any state for any attained wealth.

Finally, the probabilities P l = {p(l)} to obtain the wealth wl at time T+h are given by:

pt(l) =

1, t = 0, l = (1, 1),∑
k∈I gt(l, k)

(41)

Thus the probabilities P l together with wl fully de�ne the distribution of future wealth at time T WT ,

which is two-dimensional for bivariate case.

C Time to gain or lose distribution approximation

In this appendix we outline the approach used for estimation of the distribution of time to gain/lose

certain portion of wealth (WT ) before the forecasting horizon T , assuming that it follows Markov

process estimated as described in Section 2.1. We implement the method as described in [39].

We denote by stopping time τT = argmintWt ∈ A as the shortest passage of time, such that

portfolio wealth following Markov process reaches the value below (loss) or above (gain) certain thresh-

old (denoted as condition A) before the stopping time T . Respectively, we want to evaluate the

distribution of it π(τT ) = P(τ = t|Wt ∈ A), t = 1, . . . , T . Consider two sequences of matrices

Q̂(t) = {q̂(t)l,s }1≤l≤(S−1)t+1,1≤s≤S and Q̃(t) = {q̃(t)}1≤l≤(S−1)t+1,1≤s≤S , where t = 0, 1, ..., T is the step

of the Markov process and S is the number of states. Q̃(t) represents the matrix of probabilities of

obtaining, at time t, a wealth w(l), while being in the state s and never obtaining wealth satisfying

the condition A at previous steps k = 0, . . . , t − 1. At the same time, Q̂(t) represents the matrix of

probabilities of obtaining at time t wealth w(l) /∈ A, while being in the state s and never obtaining

wealth belonging to A at previous steps k = 0, ..., t− 1. Thus, q̃(t)l,s = 0 if w(l) ∈ A.

These matrices can be computed sequentially, starting with Q̃(0) = u and Q̂(t) = u, where u is the

vector of unconditional probabilities to be in each of the states at time 0. We suppose that the starting

wealth w
(1)
0 = 1 /∈ A at time t = 0. Then, the sequence of matrices is estimated iteratively as follows:

Q̃(t) = diagM(Q̂(t−1)P ),

Q̂(t) = ZeroA(Q̃(t)),
(42)

for t = 1, ..., T , where P is the transition matrix of the Markov process estimated as described in

Section 2.1, diagM is an operation shifting each column j of the given matrix down by j − 1 and

ZeroA denotes the operation where we set to 0 all the rows l = 1, . . . , 1 + t(S − 1) of the matrix Q̃(t)

corresponding to the wealth w(l) ∈ A. Finally, the distribution of probabilities is given by

P (τ = t) =

 e(t)
′
Q̃(t)1S , for t = 1, ..., T − 1,

1
′

(S−1)t+1Q̃
(t)1S , for t = T,

e(t)s =

 1, if w(l,t) ∈ A,

0, otherwise
(43)
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D Stable distribution of WT : parameters estimation, CVaR, CDF

Several statistics used in the current work rely on the stable distribution of future wealth WT , so we

believe that it is necessary to outline all the details of its estimation. First of all, recall that we denote

by WT the distribution of the future wealth which can be attained by a portfolio following Markov

process in T time steps starting from t = 0, W0 = 1. This distribution is described by 2 vectors: wt of

attainable wealth values and pt of probabilities to attain them and it's estimation is described in section

2.1. It is suggested by [40] that this discrete distribution is best approximated by a stable non-Gaussian

law. Thus, we need to estimate 4 parameters: α, β, σ and µ to fully characterize it. µ is a standard

location parameter, which simply shifts the distribution to left or right. σ is a scale parameter, which

compresses or extends the distribution relative to µ. β de�ned on the [−1, 1] interval is also known

as skewness and is a measure of asymmetry of the distribution. Finally, α is known as characterizing

parameter and determines the heaviness of distribution tails. It should be mentioned that in general α is

de�ned as lying in the range (0, 2], however for α ≤ 1, µ is unde�ned. Therefore, both we and original

authors [18] assume that α ∈ (1, 2] in our particular case. To estimate these parameters we utilize

the quantiles method proposed by [36], which allows estimating stable distribution parameters from

5 quantiles of the given observed distribution: q0.05, q0.25, q0.5, q0.75, q0.95. We do not describe the full

method here as it was implemented without any modi�cation, just mention our approach to computing

the quantiles, since we need to estimate quantiles of Wt, rather than some observed sample. Assuming

that wt and pt are sorted in increasing order, we �rst compute the empirical cumulative distribution

C̃Wt = {cWt(i)}i∈1,...,1+t(S−1) as

cWt(i) =
i∑

n=1

pt(n) (44)

Then any quantile qm(Wt) can be found as

qm(Wt) = wt(argmaxi(cWt(i) ≤ m)) (45)

From the estimates of 5 quantiles we then �nd the estimates of the stable distribution parameters

α̃, β̃, σ̃ and µ̃.

Conditional Value at Risk (CVaR) is a common risk measure quantifying the expected loss in case

of the most negative scenario realization. [50] suggested the following formulation of CVaR for stable

distributions, which we use in this work:

CV aRϵ(X) =
α|V aRϵ(X)

(1− α)πϵ

∫ π
2

−θ̃0

g(θ)exp(−|V aRϵ(X)|
α

(α−1)
ν(θ)

)dθ

g(θ) =
sin(α(θ̃0 + θ)− 2θ)

sin(α(θ̃0 + θ))
− α cos2(θ)

sin2(α(θ̃0 + θ))
,

ν(θ) = (cos(αθ̃0))
1

(α−1) (
cos(θ)

sin(α(θ̃0 + θ))
)

α
(α−1)

cos(αθ̃0 + (α− 1)θ)

cos(θ)
,

θ̃0 =
1

α
arctan(β̃ tan(

πα

2
)),

β̃ = −sign(V aRϵ(X))β

(46)
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V aRϵ(X) is de�ned by P (X ≤ −V aRϵ(X)) = ϵ, which makes −V aRϵ(X) an ϵ quantile of the distribu-

tion of X, or, in our case the estimated stable distribution. This formulation is given for the standardized

case, however given the translation and scale invariance properties of it, they are incorporated back by:

CV aRϵ(σX + µ) = σCV aRϵ(X)− µ (47)

Finally, this work also utilizes the cumulative density function of the estimated stable distribution

(CDF). For it we use the formulation originally suggested in [7]. As we assume that α ∈ (1, 2], we use

only the corresponding cases.

F (X,α, β) =


1− 1

π

∫ π
2

−θ̃0
exp(−(X − ζ)

α
α−1 )ν(θ)dθ, if X > ζ,

1
π (

π
2 − θ̃0), if X = ζ,

1− F (−X;α,−β), if X < ζ

ζ = −β tan(
πα

2
)

θ̃0 =
1

α
arctan(−ζ)

(48)
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