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Abstract: This study presents the development and application of interferometric technique for
the measurement of nonlinear refractive index of optical materials, while directly accounting for
experimentally determined laser pulse shape and beam profile. The method was employed in a
systematic study of nonlinear refractive index on a series of common optical materials used in
near and mid-IR spectral range, where experimental data on nonlinear material properties is still
scarce. The values of nonlinear refractive index were determined at 1.03 µm, 2.2 µm, and 3.2
µm. The measurement results are compared to the values determined by previous studies (where
available), and the influence of cascaded second-order nonlinearities is discussed.
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1. Introduction

With rapid advancement in the development of intense ultrashort pulse sources operating at
wavelengths above 2 µm, there has been much interest in nonlinear optical response of materials
in this spectral region. In most cases, these sources are based on nonlinear frequency converters
containing multiple optical components [1–7] where the intensities of propagating light pulses are
high enough to significantly deteriorate pulse and beam quality due to beam self-focusing, spatial
beam distortion and break up, self-phase modulation (SPM), etc. [8]. Accurate estimates of the
nonlinear refractive index n2 are essential for high fidelity simulations of intense laser propagation
in optical set-ups [9], evaluation of material damage limits [10], development of supercontinuum
sources [11] and post compression of short laser pulses [12]. A number of methods employing
different flavours of z-scan [13,14], nonlinear interferometry [15–20], degenerate four-wave and
nearly degenerate three–wave mixing [21–23], digital holography [24,25], spectrally resolved
two-beam coupling [26] and frequency-resolved optical gating (FROG) [27] have been developed
for characterization of nonlinear refraction of materials. To date, most of n2 measurements have
been carried out in the visible and near-infrared wavelength range and relatively few efforts
were devoted for the determination of n2 at wavelengths above 1.5 µm. With the exception
of several works, where n2 was evaluated by means of spectrally resolved two-beam coupling
technique [28] and nonlinear foci position or four-wave mixing efficiency analysis [29,30], the
majority of nonlinear refractive index measurements in crystals that are used in mid-infrared
experimental set-ups have been performed by using z-scan [31–39]. This method is conceptually
simple, however, the extraction of n2 values usually requires some assumptions about the beam
transverse mode and pulse shape (which are usually taken to be Gaussian). In practice, satisfactory
fulfillment of these requirements quite often is problematic, especially in laser systems operating
in the mid-infrared wavelength range. Accounting for experimental pulse characteristics and
non-Gaussian beam propagation can be quite unpractical, as the wave-packet propagates through
rather large distances of free space. Moreover, while the z-scan technique has a theoretical
economic advantage in being able to operate using just a pair of single point detectors, its practical
implementations are prone to experimental problems pertaining to the beam position and shape
changes when the sample is moved through the laser focus. The illuminated sample area is not
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constant throughout the measurement (and can be quite large at the positions outside the beam
waist), which imposes strict requirements on the optical quality and clear aperture of the sample.

To address the mentioned issues, we have developed a variant of interferometric nonlinear
refraction measurement technique, employing high quality microbolometric imaging detectors
that have become accessible in the past decade. The method is based on Mach-Zehnder
interferometer, one arm of which contains the sample being tested. Nonlinear refractive index
values are calculated from the distortion of interference fringes caused by nonlinear refraction.
Contrary to z-scan, the experiment does not require moving the sample; instead, it exploits the
intensity variation across the beam profile as a source of intensity dependence. This provides
spatially resolved measurements of nonlinear refraction, which allows one to catch the presence
of unexpected effects, that could be overlooked when using techniques, based on single point
detectors. Furthermore, a stationary imaged sample makes the accounting for experimental
wave-packet parameters quite simple. Sample clear aperture of less than a millimeter in diameter
is sufficient for n2 measurements. Using the developed technique, we were able to collect
reference n2 data on a series of common optical materials used in mid-IR spectral range. We
have determined the n2 values at 1.03 µm, 2.2 µm and 3.2 µm. The measurements at 1.03 µm
were performed in order to allow direct comparisons with available literature data. We discuss
potential sources of errors in the obtained n2 values, including, but not limited to, the influence
of cascaded second-order nonlinearities [40].

2. Methods

One of the major effects of third-order nonlinearity is the intensity dependence of refractive index
usually expressed as:

n(x, y, t) = n0 + n2I(x, y, t), (1)

where n0 is the linear refractive index and I(x, y, t) - spatio-temporal intensity profile of light.
The constant n2 in front of intensity is the nonlinear part of the refractive index. In the case of
electronic polarization, the material response is instantaneous and local; therefore, the nonlinear
change of n follows the intensity distribution across both laser beam and pulse profiles. It is
convenient to define a total on-axis nonlinear phase shift at pulse peak acquired in a sample as:

B =
2π
λ

∫ L

0
n2I0(z)dz, (2)

where I0(z) - is the peak intensity at the propagation distance z, λ - wavelength, L - length of the
medium and z - coordinate of the propagation axis. In case of a thin and non-absorbing sample
the intensity profile can be considered constant and Eq. (2) can be rewritten simply as:

B =
2π
λ

n2I0(0)L. (3)

In this context a sample is considered thin, if the propagation of the pulsed beam through
it does not result in the intensity change large enough to cause the B integral to alter <3%
(when compared to the constant intensity case). After passing through such a sample without
spatio-temporal coupling the nonlinear phase shift distribution for arbitrary shaped pulsed-beams
can be expressed as:

ϕnl(x, y, t) = −BIxyIt, (4)

where Ixy and It are, respectively, normalized to their maximum value (peak value is equal to 1)
spatial and temporal intensity profiles of a pulsed-beam.

The induced nonlinear phase shift can be measured experimentally by means of interferometric
techniques. The electric field of linearly polarized, amplitude and phase modulated light is given
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by:

E =
1
2

A exp (iω0t − ik0z) + c.c. (5)

Here ω0 - carrier frequency, k0 =
n0ω0

c - wave number, c - speed of light in a vacuum,
A = a exp(iΦ) - slowly varying complex envelope, denoting spatio-temporal amplitude a(x, y, t)
and phase Φ(x, y, t) modulations. In Mach–Zehnder interferometer, the beam is split into sample
and reference waves with complex envelopes As0 and Ar0, correspondingly. The wave of the
sample arm, assuming no transformation of the intensity profile and no losses due to absorption,
after passing through the nonlinear medium is given as:

As = (1 − R)As0 exp
(︂
−iBIxy

s0 It
s0

)︂
, (6)

where R - reflection coefficient of a sample. The interference pattern at the output of the
Mach-Zehnder interferometer can be obtained by crossing beams from sample and reference
arms at a small angle γ. In case when As propagates perpendicularly to the XY plane of the
detector and said waves are crossed in the XZ (here Z denotes the direction of the sample beam
propagation) plane the projection of the reference wave to the XY plane can be written as:

Ar = Ar0 (x cos (γ) , y, t′) exp (−ik0 sin (γ) x) . (7)

Here t′ = t − tan(γ)x
c accounts for tilted pulse fronts of interfering waves. The phase factor

corresponds to the phase difference of crossed wave fronts [20]. The net intensity distribution,
recorded by the slow detector, is given by:

Inet =
1
2
ϵ0cn0

∫ +∞

−∞

|As + Ar |
2 dt. (8)

In general, two overlapping laser pulses intersecting at an angle γ result in harmonically
modulated spatial distribution of light in the plane of the detector, which can be qualitatively
expressed as:

Inet ∝ 1 + cos
(︃
2πx
λ

· sin(γ) + ϕ′nl(x, y)
)︃

, (9)

where ϕ′nl(x, y) is the phase modulation of the spatial interference pattern, caused by spatio-
temporal SPM. At low light intensities, the nonlinear phase can be ignored and the interference
patterns consist of straight parallel fringes with a constant spatial frequency determined by
the intersection angle. At higher beam intensities, nonlinear refraction manifests itself as the
distortion of the interference fringes, because the accumulated nonlinear phase has a maximum
at the center of the laser beam and falls off in the periphery. This distortion can be quantified,
thereby obtaining the nonlinear phase shift. With the energy of the used laser pulses known,
Eq. (3) can then be used to evaluate n2. In order to perform an accurate evaluation of n2 we have
recorded interference patterns at several distinct pulse energies E and used the entire accumulated
data set for the determination of n2 value.

The key steps of the retrieval of B value while accounting for the beam profile and pulse shape
of the laser are illustrated in Fig. 1. The mean spatial phase difference between interfering waves
over the entire beam cross section (Fig. 1(c)) is extracted from every measured interference
image (Fig. 1(a)) using Fourier transform method (FTM) [41], carried out in two dimensions.
Here the phase shift information is obtained by singling out the carrier spatial frequency shifted
term of the Fourier spectrum (Fig. 1(b)). The resulting phase surface, corresponding to the
effective total nonlinear phase shift BFTM, is influenced by a number of factors, including the
effect of interest, i.e. nonlinear refraction, but also linear phase shifts caused by tilted pulse fronts,
diffraction, possible sample optical non-uniformity, small misalignment of the experimental
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setup, etc. In order to account for these effects, the background phase distribution, corresponding
to the effective total nonlinear phase shift BFTM

ref and obtained at low pulse energy (on average
about 7 times smaller than the maximum E value), is subtracted from every calculated phase
difference surface of a given sample. Note that there is no strict requirement to take this reference
measurement in the complete absence of nonlinear refraction: initial phase may also contain some
contribution of nonlinear refractive index. The change of total nonlinear phase BFTM − BFTM

ref
remains proportional to the change in the laser pulse energy E − Eref , and can still be used
to determine n2. However, getting the data at lower intensities (and effectively extending the
dynamic range of the experiment) is desirable because it greatly improves the measurement error.
The middle part of the recovered wave front is fitted to the measured normalized sample beam
profile Ixy

s (Fig. 1(d)). The full approximation is in the form of:

ϕ′nl (x, y) = BeffIxy
s + Kxx + Kyy + C. (10)

Here Beff = BFTM − BFTM
ref is an effective change of B, corresponding to the energy change

E − Eref . Parameters Kx and Ky describe the tilt of the wave fronts in X and Y directions, whilst
the C term is a constant phase offset. This fitting procedure is done for every pulse energy.
Intensity-independent fit parameters are allowed to vary with differing E to account for the effects
of uncontrolled linear phase shifts in the experiment, such as slight drift of beam direction. Each
time the proportionality factor, relating Beff and E, could be found from:

Beff = sE(E − Eref). (11)

In practice, the accuracy of Eq. (11) is increased by grouping all Beff measurements of a given
sample and finding sE from a linear fit with a fixed intercept value of zero.

In addition to the spatial light distribution, the measured phase shift needs to be corrected to
account for the influence of the actual pulse shape. The distortion of interference fringes follows
the intensity envelope of the pulse, i.e. the interference pattern changes in time. However, the
detector is slow compared to the femtosecond laser pulse and can only record time-averaged
(blurred) interference patterns, resulting in Beff value that is always smaller than B (with the
exception of a non-realistic case of a pulse with rectangular intensity envelope). To find the
relationship between the experimental time-averaged phase shift and the instantaneous phase
change due to nonlinear refraction, we simulate interference images by using Eq. (8) with
experimentally measured pulse shapes for a broad range of B. The precise spatial distribution is
not important in this case, so we use the elliptical Gaussian function approximation. The Beff
is obtained the same way as before, by employing a surface fit of retrieved phase surfaces to
Eq. (10). Figure 2 shows the results of numerical simulations for experimentally determined
pulse shapes that were used for n2 measurements presented further in the text. Evidently, for
induced B values below 1.25 rad, this relationship can be satisfactorily approximated as linear:

Beff = sBB. (12)

Therefore, plugging the value of Beff into Eq. (12) yields the value of B. Peak intensity,
required for the absolute n2 evaluation, was calculated by using:

I0 =
E
J

, (13)

where J =
∭

IxyItdxdydt is a numerical integral of normalized experimentally measured beam
and pulse intensity profiles Ixy and It. Finally, from Eq. (3), Eq. (11), Eq. (12), and Eq. (13) we
get the final expression for the nonlinear refractive index:

n2 =
λ

2πL
sE
sB

J. (14)
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Fig. 1. Visual representation of the effective total nonlinear phase shift retrieval sequence
from the interference image.

Fig. 2. Calculated relationships between measured effective total nonlinear phase shift and
set total nonlinear phase shift values for experimentally determined pulse shapes at different
wavelengths used in the n2 measurements. Dots – calculated points, lines – linear fit.
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3. Experiment

The layout of our experimental set-up based on Mach-Zhender interferometer is presented in
Fig. 3. The mid-IR pulses were produced by home built optical parametric amplifier (OPA),
pumped by femtosecond Yb:KGW laser (“Pharos”, “Light Conversion”). The OPA generates
pulses of 2.2 µm and 3.2 µm central wavelength with the energy of up to 40 µJ at 1 kHz repetition
rate. For the measurements at 1.03 µm, properly attenuated fundamental wave of the Yb:KGW
laser was used. The light beam entering the interferometer is split by using a ≈ 4 mm thick CaF2
beamsplitter (BS) and the transmitted beam is focused into the sample using a spherical mirror
SM1 (focal length f = 400 mm). In case of 1.03 µm we replaced SM1 with a flat mirror and
used a misaligned telescope for focusing. Then two lenses were added to the reference arm, to
collimate the beam. The full beam waist at e−2 level varied between 0.62 mm and 0.94 mm for
different pump wavelengths and the Rayleigh length, assuming perfect Gaussian beams, exceeded
100 mm in all cases. The thickness of all investigated media was below 21 mm, therefore the
beam propagating in the sample can be considered quasi-parallel. In addition, the values of B
integral roughly did not exceed 1 rad in all experiments and no discernible self-focusing was
observed. Therefore, the beam profile can be considered constant throughout the entire sample.
In order to avoid diffraction effects, the end of the sample was imaged onto the beam profiler
(BP) using spherical mirrors SM2 (f = 100 mm) and SM3 (f = 500 mm), resulting in 5x overall
magnification. To approximately match the beam intensities in the sample and reference arms, a
Fresnel reflection off a fused silica wedge (W) was utilized in the sample arm.

Fig. 3. Optical layout of n2 measurement setup. BS - beamsplitter, M - flat mirror, SM -
spherical mirror, F - neutral density reflective filter, W - wedge shaped prism.

The beam reflected from BS was directed to the reference arm and its optical path length was
matched to the one of the sample arm by adjusting the delay line. The beams from sample and
reference arms were superimposed on the sensor of BP. The microbolometric camera (“Dataray”,
640x480 pixel matrix with 0.017 mm pixel pitch) was employed for the measurements at 2.2 µm
- 3.2 µm, while a CMOS beam profiler (“Cinogy Technologies”, 2040x2040 matrix and 0.0055
mm pixel pitch) was used for n2 measurements at 1.03 µm. In our experiments γ ≈ 1◦, which
have meant that with this set-up we resolved the spatial period of the fringes with ≈ 10 points.
The pulse energy in both arms was varied by means of the variable neutral density filter (or the
half-wave plate and a polarizer for 1.03 µm experiments) placed at the OPA output and measured
using a thermal power meter (Ophir Vega with sensor 2A-SH).

To address the scarcity of available n2 data in the infrared spectral range, we measured 15
different infrared optical materials, also varying the polarization direction for birefringent samples.
A complete list of investigated samples and their properties is presented in Table 1. ZnSe and
ZnS (“Cleartran”) samples are polycrystalline, SBN-61 is polydomain, KRS-5 and KRS-6 are
mixed crystals, while UVFS is amorphous. The remaining samples are monocrystalline. For the
samples with known orientation, we also presented the polar angle θ and the azimuthal angle φ
of the cut.
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Table 1. Samples and their properties.

Sample Orientation Thickness, mm

GaSe θ = 0◦, E ∥ X 0.56

AGS (AgGaS2) θ = 39◦, ϕ = 45◦ 0.98

ZGP (ZnGeP2) θ = 74◦, ϕ = 0◦ 0.72

SBN-61 (Sr0.61Ba0.39Nb2O6) θ = 90◦, ϕ = 0◦ 5.05

KTA (KTiOAsO4) θ = 45◦, ϕ = 0◦ 5.065

LGS (LiGaS2) θ = 45◦, ϕ = 0◦ 8.195

BGSe (BaGa4Se7) θ = 0◦ 1.785

GaAs (100) 0.50

Si unknown 1.04

ZnTe unknown 0.63

ZnS 6.125

ZnSe 2.04

KRS-5 (TlBr-TlI) 4.01

KRS-6 (TlBr-TlCl) 1.7

UVFS (SiO2) 20

The examples of X and Y cuts of the phase shifts (ϕ′nl (x, y)) retrieved from the interference
patterns for different absolute pulse energies in the sample along with corresponding approxima-
tions are shown in Fig. 4, whilst such data for all investigated samples and conditions is available
in Supplement 1 (Figs. S5–S16), along with examples of experimental interferometric images
(Figs. S18–S20). Here, wave front tilt (Kx and Ky) and constant (C) terms are subtracted to
aid the comparisons. To estimate pulse energy within the medium, we quantified the sample
reflection coefficient. For every instance we made two energy measurements: with and without
the sample. We assumed that R for each surface is the same. The fit range (illustrated by the
vertical dashed lines in Fig. 4) in the X and Y directions for the different samples and wavelengths
varied from ±0.5 mm to ±0.8 mm, which corresponds to 30% - 46% of the beam diameter in
every case. It was chosen arbitrary by considering a trade-off between the number of included
points and visually estimated goodness of fit. The choice was held for all measurements of a
certain wavelength and/or beam size. While the approximation matches experimental data within
the chosen fitting range, clear deviations could sometimes be observed outside these limits. As a
rule, the correspondence between the data and the model improves with the increase of induced
maximum phase shift. Discrepancies outside the fitting range may occur as a consequence of
crossed pulse fronts, errors in the background phase surface measurement, apodization artefacts
in FTM, sample surface quality, insufficient signal-to-noise ratio and uncontrolled factors like
residual air turbulence or beam pointing instabilities.

Fig. 5 presents the extracted effective total phase shift dependence on the pump pulse energy
for the several samples. Identical data for all performed measurements is available in Supplement
1 (Figs. S1–S4). The linear relationship between the induced phase shift and pulse energy with
low data scattering and zero offset indicates the robustness of the measurement and numerical
procedures.

Accurate n2 evaluation using proposed method requires precise knowledge of pulse parameters,
therefore we have measured the amplitude and phase characteristics of the mid-IR pulses at
the output of OPA using sum-frequency generation (SFG) cross-correlation frequency-resolved
optical gating (XFROG) [42]. The 1.03 µm Yb:KGW laser pulse characterized by second-
harmonic generation (SHG) FROG technique [43,44] was used as a reference pulse in the XFROG

https://doi.org/10.6084/m9.figshare.20375268
https://doi.org/10.6084/m9.figshare.20375268
https://doi.org/10.6084/m9.figshare.20375268
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a) b)

c) d)

e) f)

Fig. 4. Retrieved X and Y cuts of phase shifts observed in GaSe (a),(b), KTA (c),(d),
ZGP (e),(f) for various laser pulse energies at 3.2 µm. Dashed line - data, solid line
- approximation. The vertical dashed lines indicate the part of the data included in n2
estimation.
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set-up. The measurement results give the values in vicinity of 230 fs, 170 fs and 190 fs for
1.03 µm , 2.2 µm and 3.2 µm pulses, respectively. Typical pulse characteristics can be found in
Supplement 1 (Fig. S17). It must be noted, that the sample beam propagates through additional 4
mm of CaF2 in the beamsplitter plus the beams of both arms propagate through 2 mm thick filter
F and the combined 1.6 mm thickness of CaF2 collimating lenses (collimating the output of OPA
and not shown in Fig. 3), which were also employed for focusing during 1.03 µm measurements.
The numerical modeling using full n0 dispersion relations from Sellmeier equations indicates that
such dispersive propagation changes the pump pulse duration by up to 16%. Propagation effects
on the pulses were directly included in the model when calculating peak intensity: the pulses as
measured by (X)FROG were first numerically propagated through the transmissive components,
and only then used in the numerical simulations of interference patterns. It was assumed, that
neither of the wave-packets have spatio-temporal couplings. As a result, the correction factor sB
(see Eq. (12)) was extracted, enabling pulse shape correction of the determined nonlinear phase
shift (see Fig. 2).
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Fig. 5. Effective total nonlinear phase shift at different energies within the sample. Dots –
experimental points, lines – linear fits. The raw interference image, obtained during ZGP (o)
measurement at maximum energy, is shown in the inset.

The data presented in Fig. 5 and Fig. 2 was then used to calculate the absolute value of
nonlinear refractive index using Eq. (14). Complete information about the peak intensities
and Eref used in different experiments can be found in Supplement 1 Table S1 and Table S2,
respectively. We have estimated by numerical simulations that in perfect experimental conditions
we could still reliably detect nonlinear phase shifts of the ≈ 10−7 rad order of magnitude and we
could still sense Beff = 10−8 rad with the accuracy of about 16% (see Fig. S23). However, in
the presence of noise this limit is pushed to about 10 mrad (see Fig. S24). In some cases we
can still retrieve Beff = 10 mrad with the error of about 8%, when the noise to signal amplitude
ratio is 10%. However, the error tends to depend on the actual random manifestation of the noise,
meaning, that this inaccuracy could randomly increase to about 30%. Nevertheless, Beff ≈ 10
mrad seems to be the lower limit, when using our set-up (with microbolometric beam profiler)
and the detector’s noise to signal amplitude ratio is around 2% or higher.

https://doi.org/10.6084/m9.figshare.20375268
https://doi.org/10.6084/m9.figshare.20375268
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4. Results and discussion

To be able to make direct comparisons of determined n2 values with literature data, we performed
n2 measurements on UVFS and several nonlinear crystals at 1.03 µm, the wavelength at which
experimental data is abundant. Table 2. compares the measured values of the effective nonlinear
refractive index neff

2 with previously determined values from scientific literature. We can safely
ignore the effects of diffraction and self-focusing as the Rayleigh length is large when compared to
the sample thickness and B is generally small. However, by performing linear pulse propagation
simulations in every sample we have found that, in some cases, the drop of pulse peak intensity
due to sample dispersion is non-negligible and leads to the change of calculated n2 value up to
10%. To account for this phenomena at certain central wavelengths we calculated the correction
for B by direct numeric integration as per Eq. (2). Such corrections were employed for KTA,
LGS, SBN-61, ZnS, ZnSe at 1.03 µm and for KTA, SBN-61 at 3.2 µm. Overall, our results are
in a good agreement with neff

2 values presented in scientific literature. Note, that the agreement
of the values holds out for media with neff

2 covering the range of almost two orders of magnitude
(see results for UVFS and ZnSe), providing further confidence in the validity of our method.
Importantly, the neff

2 values measured at 1.03 µm consistently matched the earlier works regardless
of the fact that the thickness of used samples varied from 2 mm (ZnSe) to 20 mm (UVFS). This,
along with the fact that the measurements were carried out on a stationary sample (hence looser
focusing conditions had no side effect to the quality of the experiment) is a significant practical
advantage, especially when investigating exotic materials, where making a sample dedicated
solely for neff

2 measurement may be prohibitively expensive. A slight difference in neff
2 for ordinary

(o) and extraordinary (e) waves in KTA and LGS was observed, however, this difference is
within the limits of experimental error. When measuring ZnSe and ZnS we visually observed the
second-harmonic (SH) signal, which is a known consequence of random quasi-phase-matching in
these materials [51]. The random nature of this process led to the appearance of noticeable noise
in the transmitted beam profiles, presumably due to random variation of quasi-phase-matched
SHG efficiency over the beam area. Nevertheless, we believe that this have little impact on our
measurements since the estimated fraction of energy converted to SH is of the order of a few
percent.

Table 2. The n2 results at 1.03 µm.a

Material neff
2 neff

2

(this work) (literature)

KTA (o) 0.185 ± 0.023 b0.17 ± 0.03(0.78µm)[45,46]

KTA (e) 0.17 ± 0.03 b0.15(1.03µm)[47]

LGS (o) 0.45 ± 0.06 b<0.64(1.03µm)[48]

LGS (e) 0.41 ± 0.05 b0.41(1.03µm)[47]

SBN-61 (o) 0.61 ± 0.07 0.524(1.06µm)[49]

0.44 ± 0.07(1.2µm)[29]

ZnS 0.68 ± 0.08 0.84(1.06µm)[49]

ZnSe 2.31 ± 0.35 2.87(1.06µm)[49]

UVFS 0.0253 ± 0.0032 0.0274 ± 0.0017(1.053µm)[50]

aAll n2 values are in units of 10−14 cm2
W .

bSame value for both polarization modes.

The measurements performed at 2.2 µm and 3.2 µm wavelengths provided hitherto scarce neff
2

data on infrared optical media, including narrow band gap solids. The measurement results are
presented in Table 3, where we also compare the obtained neff

2 values to the results reported in
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literature at wavelengths above 2 µm. While most of the determined neff
2 values obtained in our

measurements are similar to those published in scientific literature, the neff
2 values measured for

KRS-5, KRS-6, ZGP (for e polarization), GaSe and Si deviate significantly from earlier works.
Possible reasons for such deviations include different wavelengths and sample orientations, i.e.
parameters defining the effective third-order susceptibility χ(3)eff (here and on the nonlinearity
of interest is χ(3)(ω;ω,ω,−ω)). In non-centrosymmetric crystals, an additional source of neff

2
uncertainty is the cascaded second-order nonlinearities that can induce additional nonlinear
refraction, which can exceed the cubic nonlinearity in magnitude and may have an opposite or
identical sign [40]. The only centrosymmetric materials investigated here are Si, KRS-5, KRS-6
and UVFS. For all other investigated media, the dominant cascaded second-order process was
phase-mismatched SHG and the corresponding cascaded n2 part can be calculated as follows
[40]:

ncasc
2 = −

4π
cϵ0λ

d2
eff

n2ωn2
ω∆k

. (15)

Here nω - refractive index of the fundamental wave, n2ω - refractive index of the second-
harmonic wave, deff - effective second-order nonlinearity for a given SHG process type and
∆k = k (2ω) − 2k (ω) - phase mismatch. The deff expressions for a given crystal class and
process type of the uniaxial crystals were taken from [53]. For mm2 biaxial crystals (KTA and
LGS) we derived deff expressions using the formalism presented in [54]. We have skipped the
ncasc

2 calculation for ZnS, ZnSe and SBN-61 samples because of polycrystalline or polydomain
structure of these materials. Furthermore, we did not calculate contribution of cascaded processes
to measured n2 for BGSe, GaAs and ZnTe due to lack of full information on crystal orientation
of the available samples. GaSe belongs to 6m2 crystal class and for θ = 0◦ cut samples and
o-polarized pump the oo-o and oo-e frequency doubling processes should be accounted for.
AGS and ZGP are 4̄m2 symmetry class crystals. Therefore, depending on the φ value, the oo-e
process type for the o-polarized incident wave or ee-o and ee-e process types for the e-wave
were evaluated when performing ncasc

2 calculation for these crystals. The evaluation of deff for
GaSe, AGS and ZGP samples was performed using values of second-order nonlinear coupling
tensor elements (dij) taken from [55]. For KTA and LGS crystals, the nonzero contribution to
deff were found for oo-e and ee-e types of interaction for o and e polarized pump, respectively.
The deff for KTA and LGS was calculated using dij values presented in [56,57]. In all the cases
dij values were scaled to the experimental wavelengths by using the Miller’s rule [58]. The n2
values measured in our experiments with subtracted ncasc

2 contribution (nKerr
2 ) are presented in

Table 4. The last column of the table contains nKerr
2 values that we calculated using the data from

other published works.
Since the presented method relies on the measurements of interference-modulated beam

profiles, it is perhaps unsurprising that its results are sensitive to the optical surface quality of
the samples. We have found, that in cases where the experiments are performed on samples
with optical or mechanical damage, the obtained neff

2 values can be wrong, often without any
indication in the quality of the fits. As can be expected, such errors tended to decrease with
increased wavelength. The ilustration of interference patterns, recorded using different quality
samples, is presented in Supplement 1 (Fig. S21). On the other hand, the presented technique has
an advantage of being able to work on low aperture samples, with the beam size on the sample
small and kept constant throughout the measurement. The method also turned out to be robust to
small clipping of the peripheral part of the measuring beam: as long as the central part of the
beam was on an optically clear sample, the resulting n2 values did not change. It was tested by
measuring two different samples of GaSe. In one case the beam was slightly clipped because of
small clear aperture (data not shown) and the resulting n2 value did not change. However, the

https://doi.org/10.6084/m9.figshare.20375268
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Table 3. The n2 results at 2.2 µm and 3.2 µm.a

Material neff
2 at 2.2µm neff

2 at 3.2µm neff
2

(this work) (this work) (literature)

GaSe 2.14 ± 0.34 0.71 ± 0.1 2.1 ± 1.3(10µm) [30]

AGS (o) 1.95 ± 0.35 1.99 ± 0.37 1.5 ± 0.2(4.65µm) [33]

AGS (e) 2.29 ± 0.42 1.37 ± 0.18 1.6 ± 0.3(4.65µm) [33]

ZGP (o) 5.99 ± 0.99 4.4 ± 0.61 5.5 ± 0.6(2.2µm) [33]

5.3 ± 0.8(4.7µm) [33]

ZGP (e) 7.1 ± 0.88 1.02 ± 0.3 5.1 ± 0.7(2.2µm) [33]

6.3 ± 0.9(4.7µm) [33]

SBN-61 (o) 0.87 ± 0.13 0.58 ± 0.09 0.81 ± 0.23(2µm) [29]

1 ± 0.15(2.4µm) [29]

KTA (o) 0.22 ± 0.03 0.22 ± 0.03
KTA (e) 0.13 ± 0.02 0.22 ± 0.05
LGS (o) - 0.56 ± 0.1
LGS (e) 0.57 ± 0.08 0.48 ± 0.08
GaAs - 8.56 ± 1.2 13 ± 3.25(3.9µm) [36]

BGSe 1.96 ± 0.4 0.95 ± 0.18
Si 7 ± 1.14 4.54 ± 0.64 ≈ 10.4 ± 2(2.2µm) [32]

7.7 ± 1.54(2µm) [36]

11 ± 2.75(3.9µm) [36]

ZnS 0.74 ± 0.1 0.6 ± 0.09 0.55 ± 0.11(2µm) [36]

0.478 ± 0.05(2.3µm) [28]

0.5 ± 0.125(3.9µm) [36]

0.455 ± 0.05(3.5µm) [28]

ZnTe 3.01 ± 0.41 1.32 ± 0.21
ZnSe 1.59 ± 0.24 1.22 ± 0.21 1.5 ± 0.3(2µm) [36]

1.13 ± 0.12(2.3µm) [28]

1.2 ± 0.3(3.9µm) [36]

1 ± 0.11(3.5µm) [28]

KRS-5 2.6 ± 0.59 2.14 ± 0.32 1.05 ± 0.19(3.1µm) [52]

KRS-6 1.21 ± 0.27 1.19 ± 0.19 0.54 ± 0.1(3.1µm) [52]

aAll n2 values are in units of 10−14 cm2
W .
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Table 4. The neff
2 values with excluded ncasc

2 .a

Material nKerr
2

(1.03µm)

nKerr
2 (2.2µm) nKerr

2 (3.2µm) nKerr
2

(this work) (this work) (this work) (literature)

GaSe 3.52 ± 0.66 3.47 ± 1.13 4.31 ± 1.58(10µm) [30]

AGS (o) 2.13 ± 0.36 1.36 ± 0.42 1.22 ± 0.22(4.65µm) [33]

AGS (e) 2.49 ± 0.43 1.71 ± 0.21 1.98 ± 0.32(4.65µm) [33]

ZGP (o) 5.99 ± 0.99 4.4 ± 0.61 5.5 ± 0.6(2.2µm) [33]

5.3 ± 0.8(4.7µm) [33]

ZGP (e) 7.6 ± 0.88 b5.44 ± 0.95 5.58 ± 0.71(2.2µm) [33]

KTA (o) 0.19 ± 0.02 0.22 ± 0.03 0.23 ± 0.03 0.15(1.03µm) [47]

KTA (e) 0.23 ± 0.03 0.26 ± 0.02 0.3 ± 0.05 0.2(1.03µm) [47]

LGS (o) 0.46 ± 0.06 0.49 ± 0.1 0.42(1.03µm) [47]

LGS (e) 0.42 ± 0.05 0.59 ± 0.08 0.5 ± 0.08 0.41(1.03µm) [47]

aCalculated for various measurements. All n2 values are in units of 10−14 cm2
W .

bCalculated numerically by simulating the propagation of the measured pulse.

beam in presented measurements was not clipped as the apertures of the samples are significantly
larger than the beam diameter.

The results presented in Tables 2, 3, and 4 exhibit several interesting features. For generality
we have compared our nKerr

2 (or neff
2 if not available otherwise) data to the two-band model

[49,59] in Supplement 1 (Fig. S22). We used various suggested parameters [49,60]. Some
points did not agree with the theoretical tendency well. This can be explained by indirect band
gap, cascaded second-order processes and complicated band structure. Nevertheless, we believe
that the remaining discrepancy can be further corrected by using different band gap energy
Eg values, since they vary in the scientific literature and n2 ∝ E−4

g . It seems that SBN has an
additional peak of neff

2 far from two-photon absorption (2PA) cut-off wavelength between 1 µm
and 3 µm. Also, it is evident that ncasc

2 is rather insignificant (in comparison to neff
2 ) for the

presented cases of LGS measurements. We skipped the LGS (o) measurement at 2.2 µm because
the experimental conditions were too close to phase matched SHG. For KTA pumped by the
e-wave, the cascaded contribution is quite large. This can explain the anomalous neff

2 value at
2.2 µm. Both of these mm2 crystals exhibit a slightly larger nKerr

2 value for the e-wave, however,
the differences are still within the error bounds of the measurement. When looking at AGS and
ZGP samples at both wavelengths it is clear that nKerr

2 differs for different polarizations. This
could be explained by the fact, that for 4m2 crystals and e-waves χ(3)eff depends on more tensor
elements than for o-waves. Furthermore, for AGS and ZGP the ncasc

2 at 2.2 µm is quite low, while
for GaSe it has a negative sign and large absolute value. Interestingly, for GaSe the neff

2 decreased
substantially with increased wavelength, but this decrease was almost entirely due to stronger
negative cascaded contribution, while the value of nKerr

2 was nearly identical for both wavelengths.
The values of nKerr

2 determined for AGS at both polarizations differ significantly from those
provided in the literature. Given that the polar angle of the samples used in our measurements
differs only by 1◦ from the referenced work [33], the observed discrepancy is most likely due
to significant difference in the pump wavelength. In contrast, for ZGP samples at 2.2 µm the
notable nKerr

2 distinction is observed only for the e-wave. Here, the source of discrepancy may
have been the difference in polar angle.

At 3.2 µm, we have observed a large difference between neff
2 values in ZGP for different

polarizations. This can be fully explained by the large negative ncasc
2 contribution. Unfortunately,

https://doi.org/10.6084/m9.figshare.20375268


Research Article Vol. 30, No. 17 / 15 Aug 2022 / Optics Express 30520

in this case the Eq. (15) is not applicable because of small phase mismatch and significant
fundamental wave depletion. Therefore, we had to evaluate the ncasc

2 by numerically simulating
the propagation of a measured pulse in ZGP crystal. Notice, that for ZGP (o) ncasc

2 = 0, because
deff = 0 for oo-e process and φ = 0◦. Also, the agreement of neff

2 values is rather good for
o-waves, because χ(3)eff does not depend on θ. In fact, when φ = 0◦ χ(3)eff consists of only 1 tensor
element. Therefore, for this propagation direction and o polarization neff

2 represents χ(3)xxxx tensor
element. The same is true for the nKerr

2 values of GaSe when using the o-wave, since χ(3)eff is also
independent of propagation direction.

To further investigate the influence of cascaded second-order nonlinearity on the nonlinear
refraction, we performed the measurements of n2 at different polar angles in AGS and compared
them with the prediction of Eq. (15) in Fig. 6. We used nKerr

2 value from Table 4. as a third-order
n2 contribution. As one can see, the formula predicts the experimental values quite well when
pump propagation angle is far from SHG phase matching (in our case when detuning is > ≈ 1.5◦).
However, around the phase-matching angle (≈ 35.3◦ at 3.255 µm), the discrepancies become
more pronounced. This can be expected as the assumptions of Eq. (15) are not valid anymore,
plus the fundamental wave begins to suffer from losses, caused by efficient conversion, thereby
increasing the error of neff

2 calculation.

Fig. 6. Nonlinear refractive index as a function of internal polar angle for AGS (o) at 3.2
µm.

Data, colected on n2 in Si and GaAs pumped by 2.2 µm pulses, presented additional
interpretation difficulties. The function of Beff(E − Eref) was no longer linear, indicating that the
nonlinear phase was no longer a linear function of light intensity. For Si this problem could be
addressed by taking into account the 2PA effect. We measured the normalized transmittance T of
the sample as a function of energy (see Fig. 7) and retrieved the 2PA coefficient β2PA = 0.238
cm
GW by numerically fitting the experimental data points to the model:

I(E, x, y, t, z) =
I(E, x, y, t, 0)

1 + I(E, x, y, t, 0) · β2PA · z
, (16)

T =

∭
I(E, x, y, t,L)dxdydt

E
·

Emin∭
I(Emin, x, y, t,L)dxdydt

, (17)

where Emin is the lowest E value used in this experiment. The determined β2PA value was close
to the one reported in literature [32]. Then we accounted for 2PA by correcting B values while
performing the linear fit of a function B(E − Eref) (see section “Methods”). The mentioned
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procedure was performed for low E values, where the relationship B(E − Eref) is still close to
linear. The corrected value of neff

2 was found to be ≈ 0.5 · 10−14 cm2

W higher in comparison to the
value calculated without taking 2PA into account. This adjustment is included in the final result,
presented in Table 3.

Fig. 7. Normalized transmittance measurement of Si at 2.2 µm.

In the measurements on Si sample, all the phase shift surfaces were qualitatively similar to the
ones shown in Fig. 4, i.e., they had the shape of the measured beam profile. This turned out not
to be the case for GaAs. Figure 8 presents the retrieved phase shift profile in the y coordinate as
a function of beam incident peak intensity within the sample as well as the variation of Beff value
measured at the beam center for different pump energies. The surface plot presented in Fig. 8 was
constructed by interpolating the measured data taken at 11 different intensity values. At low peak
intensities (up to 3 GW

cm2 ), the phase shift resembles the beam profile, and Beff increases with pulse
energy, however, this relationship is no longer linear. When increasing pump intensity, the phase
shift in the center saturates and begins to decrease resulting in non-monotonous toroidal-like
nonlinear lens. Moreover, Beff reaches 0 at about 5.5 GW

cm2 . By further increasing pulse energy the
SPM in the center of the beam reverses its sign, which corresponds to a defocusing wave front.
At the highest intensity of 7.7 GW

cm2 we retrieved that Beff = −1.1 rad. There are several candidate
mechanisms that could cause a defocusing SPM: three-photon absorption (3PA)-induced plasma
generation, impact ionization via intrinsic carriers and cascaded SHG. Including such effects
in direct propagation model may be possible, but is beyond the scope of the present study. We
hypothesize, that the full explanation of observed nonlinear refraction in GaAs could lie in
additional effects such as 2PA from one second-harmonic photon and one fundamental photon or
higher-order Kerr effect. However, it is important to note that the presented method does clearly
signal about such irregularities in the intensity dependent data shown in Fig. 8. This creates the
opportunity to use the experimental information for unraveling the underlying mechanisms of
nonlinear refraction and in principle enables the measurements of spatially resolved n2, useful
for specially tailored materials. In contrast, such subtleties might be harder to observe in other n2
measurement techniques that employ single point detectors. This is especially true when working
outside the visible range, where non-trivial intensity-dependent beam profile transformations,
caused by exotic phase fronts, similar to the ones shown in Fig. 8(a), are easy to miss.
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Fig. 8. The GaAs n2 measurement at 2.2 µm. (a) Intensity dependence of y-profile of
nonlinear phase shift induced in GaAs; (b) dependence of retrieved accumulated nonlinear
phase on incident pulse energy.

5. Conclusion

We have presented a newly developed interferometric technique for the measurement of nonlinear
refractive index, which allows directly accounting for the spatio-temporal parameters of the
measuring laser pulses. In addition, the method enables nonlinear refraction measurements
without mechanically moving the sample, and sub-millimeter diameter optically clear aperture is
sufficient for accurate determination of n2. We employed this technique to collect hitherto scarce
n2 data on a series of infrared optical media using 2.2 µm and 3.2 µm wavelengths. The obtained
n2 values were in good agreement with available literature values. Collected data also revealed
significant influence of cascaded second-order nonlinearities on the resulting value of nonlinear
refractive index in non-centrosymmetric optical media. Additional bonus of the presented n2
measurement procedure lies in the direct measurements of laser beam inteference patterns using
high quality microbolometric imaging detectors that have emerged in the past decade. Beam
profile and interference data that can be internally checked for experimental consistency (e.g.
optical quality of the sample, beam clipping, etc.,), which facilitates accurate spatially resolved
measurements of nonlinear optical properties in mid-IR, where the traditional methods are prone
to error and the data on the material properties is still scarce.
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