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ABSTRACT
Machine learning (ML) approaches are attracting wide interest in the chemical physics community since a trained ML system can predict
numerical properties of various molecular systems with a small computational cost. In this work, we analyze the applicability of deep, sequen-
tial, and fully connected neural networks (NNs) to predict the excitation decay kinetics of a simple two-dimensional lattice model, which can
be adapted to describe numerous real-life systems, such as aggregates of photosynthetic molecular complexes. After choosing a suitable loss
function for NN training, we have achieved excellent accuracy for a direct problem—predictions of lattice excitation decay kinetics from the
model parameter values. For an inverse problem—prediction of the model parameter values from the kinetics—we found that even though the
kinetics obtained from estimated values differ from the actual ones, the values themselves are predicted with a reasonable accuracy. Finally,
we discuss possibilities for applications of NNs for solving global optimization problems that are related to the need to fit experimental data
using similar models.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0133711

I. INTRODUCTION

Machine learning (ML) techniques, in general, and artifi-
cial neural networks (NNs), in particular, are becoming of ever-
increasing importance in most of the physical sciences.1 In the field
of chemical physics, they have been applied to quantum chemistry
and atomistic molecular physics,2–4 the calculation of Frenkel exci-
ton parameters,5 analysis of quantum dynamics of open molecular
systems,6–8 and calculation of multidimensional optical spectra.9,10

Most of these applications correspond to regression type problems
when a trained machine learning system has to predict one or several
numerical values from numerical input. In such cases, deep NNs are
of particular interest as they are able to learn deep and complicated
relationships between the input and the output data.11

While the problems listed above are naturally important and
rather general, researchers from the chemical physics community
are nonetheless often faced with perhaps more mundane, but still

difficult and time-consuming tasks. A significant amount of them
involves solving an inverse problem—describing some physical phe-
nomena with a model and then obtaining the values of the model
parameters that bring the model predictions as close to the exper-
imental values as possible. Thus, a global optimization problem
has to be solved. This requires a considerable numerical effort as
often good solutions can be consistently obtained only with the help
of population-based methods, such as genetic algorithm,12 particle
swarm optimization,13 or differential evolution (DE).14 Thus, it is of
interest to apply ML algorithms to such problems in order to reduce
the required computational time.

Recently, we have fitted experimental time-resolved fluo-
rescence data of aggregates of both major and minor light-
harvesting complexes (LHCs) of higher plants (LHCII and CP29,
respectively)15–17 using a two-dimensional (2D) lattice model, where
each site corresponded to one of the possible conformational states
of an LHC, and excitation could either hop between them or decay
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to the environment as heat or photon emission. By solving the
resulting kinetic equations, the overall fluorescing population was
obtained, which could then be related to the experimental fluores-
cence kinetics. The fitting involved application of the DE approach
and many time-consuming calculations. It is probable that the anal-
ysis of experimental data from similar systems could also make use
of such a model. Therefore, we are motivated to investigate whether
NNs could be applied to speed up this kind of work.

For simplicity, in this work, we have considered a simplified
version of the model used in Refs. 15–17—a square lattice, where
each site could be in one of two different states. Please note, how-
ever, that the idea behind such a model is rather general and with
some additional complexity, such as different lattice arrangements
(e.g., hexagonal lattice), disordered (in terms of site energy or posi-
tions) lattice, different number of possible states, or Monte Carlo
simulations rather than solving kinetics equations, this type of model
could be used in studies of many completely distinct systems, from
hopping of charge carriers in disordered organic materials,18 exciton
diffusion in perovskites,19 fluorescence quenching in disordered 2D
systems,20 to energy migration in nano-engineered light-harvesting
antenna arrays21 or energy transfer and trapping in photosystems
with different antenna sizes.22

It must be emphasized, however, that the application of ML
algorithms can bear a significant computational overhead. The
majority of it comes from two sources: obtaining the required train-
ing data and training the actual ML system. Additional complexity
arises from the fact that ML algorithms often have metaparameters,
the values of which have to be tuned for each specific application.
Nonetheless, a trained ML system can usually perform calcula-
tions with a negligible numerical cost if compared to that required
to obtain the training data. Thus, using ML algorithms can be
extremely beneficial if a large number of such calculations need to be
performed. The costs and benefits of ML systems have to be weighted
for every application, while also keeping in mind that it is not always
possible for them to reach the desired level of accuracy.1

In this work, we investigate the applicability of deep, sequen-
tial, fully connected NNs to the aforementioned lattice model. We
analyze both the direct problem—predicting the kinetics of the fluo-
rescing population from the values of model parameters—and the
inverse problem—predicting the values of the model parameters
from the kinetics curve. We find that it is crucial to select a suitable
loss function in the training of NNs. Finally, we propose a strategy
for the utilization of NNs for solving global optimization problems
that arise from the need to fit experimental data with similar models.

II. METHODS
We seek to describe the electronic excitation dynamics in a 2D

square lattice by modeling the outgoing fluorescence signal, which
can be represented as the total fluorescing population. We assume
that each site of the lattice can be in either a fluorescing (bright) or
a quenched (dark) state. The excitation propagates in the lattice by
hopping between two adjacent sites with the corresponding trans-
fer rate, but it can also decay radiatively or non-radiatively with the
corresponding relaxation rate. We use a large but finite lattice of size
10 × 10, similar to Ref. 15, together with five parameters to describe
the model. The hopping rates between two bright sites, from the
bright to dark site or from the dark to dark site, are chosen to be the

same for simplicity and are denoted as khop. This assumption means
that the free energy of the dark states is lower than those of bright
states; thus, dark states act as shallow or deep excitation traps. The
hopping rate from the dark site to the bright site is kBD. Furthermore,
there are two relaxation rates: kr for the bright site and ktrap for the
dark site. See Fig. 1 for an illustration of the lattice.

Real-life systems are usually heterogeneous. This means that,
in experiments, an ensemble of systems is usually probed. The sta-
tistical properties of the 2D lattice considered in this work are
characterized by the final parameter of the model, nD, which is the
average number of dark sites per lattice.

If we denote the probability that the ith site is excited as Pi(t),
then to obtain the total excitation decay kinetics of this system, we
have to solve the system of Pauli master equations

d
dt

Pi(t) =∑
j≠i

ki←jPj(t) −∑
j≠i

kj←iPi(t) − Pi(t)

×

⎧⎪⎪
⎨
⎪⎪⎩

kr, if i ∈ bright;

ktrap, if i ∈ dark.
(1)

We assume that the initial excitation is distributed homogeneously
across the whole lattice. This initial condition corresponds to the
excitation of the lattice with an ultra-short laser pulse. Thus, our
description considers single excitation per lattice, neglecting any
non-linear effects.

The intensity of the fluorescence of our considered system
would be proportional to the total population of the bright sites as
we assume that the quenched sites fluoresce at other wavelengths if
at all. Due to the statistical nature of this description, we calculate the
averaged kinetics of 1000 realizations with different lattice arrange-
ments and the actual number of dark complexes from the binomial

FIG. 1. Schematic picture of the 2D lattice considered in this work. Light blue cir-
cles represent bright states and dark blue circles represent dark states. Arrows
represent possible hopping and relaxation rates.
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distribution and the same hopping and relaxation rates. Thus, the
averaged fluorescing population kinetics is then calculated as

P(t) = ⟨ ∑
i∈bright

Pi(t)⟩. (2)

Many different systems could be described by the considered
lattice model, depending on the actual values of the parameters.
We are interested in the ability of NNs to model a variety of such
systems. Thus, we consider many different sets of parameter val-
ues. For simplicity, we take the ranges of parameter values to be
similar to previous modeling of real-life processes taking place in
aggregates of light-harvesting complexes:15 khop ∈ (0.005–0.04) ps−1

and kBD ∈ (3.3 ⋅ 10−5–0.04) ps−1. kr is fixed at 0.0002 ps−1, corre-
sponding to the decay time of 5 ns, which approximately represents
many chlorophyll systems.23 We also take ktrap ∈ (0.0002–0.02) ps−1,
which corresponds to an average relaxation lifetime of (50–5000) ps
for the quenched states. Finally, the average number of dark states
is between 0.5 and 15 per 100 lattice sites. All the parameter val-
ues are summarized in Table I. Note that all the parameter values
were sampled from the uniform distribution of timescales, and then,
rates were calculated as inverse lifetimes. Thus, it could occur that
khop < kBD, corresponding to situations when the free energy of the
dark states is higher than those of bright states. As these situations
could occur very rarely, such parameter value combinations were
kept as they correspond to another regime that NNs should learn.

All calculations are done up to 15 ns, as this time is enough
to cover the signal decay by 2–3 orders of magnitude. We obtain
P(t) with a 2 ps discretization time step, corresponding to 7500 data
points in total.

Our goal in this work is to use the NNs to relate the values of the
model parameters to the corresponding averaged fluorescence pop-
ulation kinetics. In the direct problem, the latter should be predicted
by using the former, while in the inverse problem, it is the values of
the model parameters that have to be predicted from the kinetics.

When considering the direct problem, the most straightfor-
ward approach would be to use the obtained kinetics as input data
for the NN. On the other hand, the information content of the
obtained kinetics is significantly smaller than the number of all the
data points. Since kinetics is always a monotonically decaying func-
tion, it is convenient to first fit it with some analytical function with
a small number of parameters. This corresponds to using a reduced
dimensionality data description. In this way, we can predict the para-
meter values of the fitting function, rather than the averaged kinetics
itself. It must be emphasized that choosing the fitting function is not

TABLE I. Lattice parameters and their value ranges considered in this work.

Parameter Value range

khop (0.005–0.04) ps−1

kBD (3.3 ⋅ 10−5–0.04) ps−1

kr 0.0002 ps−1

ktrap (0.0002–0.02) ps−1

nD 0.5–15

trivial because ML algorithms have difficulties in predicting the fit-
ted coefficients of certain functions. Therefore, we must find a fitting
function that fits the data accurately and the chosen algorithm would
be able to learn the coefficients of the function. We have used two
functions for the fits of kinetics, either three terms of the exponential
function,

f (t) = A exp(Bt) + C exp(Dt) + E exp(Ft), (3)

or two terms of stretched exponential functions,

f (t) = A exp(BtC
) +D exp(EtF

), (4)

f (t) = A exp(BtC
) + (1 − A) exp(EtF

). (5)

Note that (3) and (4) fitting functions have six parameters, while
(5) is a normalized version of (4) fitting function with five para-
meters. The rationale for using unnormalized ( f (0) ≠ 1) functions
is that they might fit the overall behavior of the kinetics better, albeit
with some differences at very early times. These functions can repre-
sent the non-exponential behavior of the kinetics P(t)with a limited
number of parameters. To fit the averaged kinetics, we used the DE
method.14

In addition to NNs, we have tested many other ML algorithms
for this task (Random forest regression, k-nearest neighbors algo-
rithm, MultiOutputRegressor, LinearRegression, etc), but they were
outperformed by the NN. This is illustrated for KNeighborsRe-
gressor (realization of k-nearest neighbors algorithm in Python
scikit-learn library) below in Sec. III. In the rest of this paper, we
will, thus, focus on the results based on the NN.

III. RESULTS
A. Direct problem

Let us first focus on the application of NNs to the direct
problem—prediction of the averaged kinetics of the lattice from the
model parameter values.

We generated 18 066 samples with different khop, kBD, ktrap, and
nD as the input parameters and fitted coefficients of Eqs. (3)–(5)
as the output parameters. It is important to note that we ordered
the stretched exponents of Eq. (4) in a descending order based
on the amplitudes. This was done to reduce the ambiguity of the
NN predictions. In addition, we also saved the averaged kinetics
for every sample. For each sample, the values of the model para-
meters were drawn from a uniform distribution with limits listed
in Table I. We used the lower and upper bounds of the parameter
value ranges (listed in Table I) to normalize the input data using
min–max normalization,

xnorm =
x − xmin

xmax − xmin
. (6)

We split the data into a training dataset (85%) and a testing dataset
(15%). Therefore, the accuracy of the NN predictions was based only
on the data that the NN had not seen before. The NN was trained
using Adam, adaptive moment estimation optimizer,24 with a 0.001
learning rate for 100 epochs. The default loss function was defined as
a mean squared error (MSE) between the fitted coefficients and the
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FIG. 2. Schematic illustration of the NN architecture used to predict the excitation
dynamics of a 2D lattice system. The lattice model parameters are used as the
input, while the output corresponds to the coefficients of the fitting function.

NN predictions. The NNs used in this work were constructed using
the PyTorch library.25

While NNs are a versatile tool, this comes with a cost of having
to select a proper network architecture for a particular problem. We
tested a variety of different sequential NN architectures, but the best

result was achieved with a nine-layer network with ReLu activation
functions,

ReLu(x) = max(0, x), (7)

on every layer. First hidden layer had 256 neurons, which were con-
nected to another 256-neuron hidden layer. This was connected with
two 128-neuron hidden layers. This pattern was repeated until we
reached 16 neurons in the final hidden layer, which was connected
with the desired six neurons in the output layer (see Fig. 2).

After testing different fitting functions, we found that the best
function for this use is a sum of two stretched exponentials, Eq. (4).
The most accurate fit was achieved with Eq. (3), but the NN was
not able to accurately predict the coefficients for this function. Using
Eq. (4), the obtained fitting coefficient solutions were stable and the
average MSE between the fitted function and the averaged kinetics
was 1.77 ⋅ 10−5. For illustrations of different MSE values, see Fig. 3.
It can be seen that the difference between the curves is barely notice-
able when the MSE is of the order of 10−5. When the MSE is of the
order of 10−4, there are slight differences between the curves. On
the other hand, when the MSE is larger than 10−4, the differences
between the curves are substantial.

To evaluate the quality of the NN predictions, we used the MSE
between the fitted curve and the NN predicted curve. As mentioned
before, at first, the NN training loss function was the MSE between

FIG. 3. Illustration of different MSE val-
ues between the calculated and fitted or
predicted kinetics. (a) Predicted vs. fitted
MSE = 1.93 ⋅ 10−5, predicted vs. calcu-
lated MSE = 1.98 ⋅ 10−5. (b) Predicted
vs. fitted MSE = 1.14 ⋅ 10−4, predicted
vs. calculated MSE = 1.16 ⋅ 10−4. (c)
Predicted vs. fitted MSE = 1.08 ⋅ 10−3,
predicted vs. calculated MSE = 1.12 ⋅
10−3. (d) Predicted vs. fitted MSE = 1.10
⋅ 10−2, predicted vs. calculated MSE =
1.11 ⋅ 10−2.
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TABLE II. Different loss functions and the MSEs achieved with them. To achieve the
accuracy given in the first row, we used the MSE loss function between the fitted
coefficients and the coefficients predicted by the NN. The second row was achieved
using the Lcon loss function. The third row is the result of using MSE loss between the
averaged kinetics and the predicted kinetics, which were reconstructed from the NN
predicted coefficients and the fitting function. The forth row corresponds to the loss
function being the sum of two terms used in previous rows. The last used Lcon with
ten times larger dataset.

Loss function
Fitted curve vs NN

predicted curve
Averaged kinetics vs
NN predicted curve

MSE(ck, pk) 1.85 ⋅ 10−2 1.85 ⋅ 10−2

Lcon 1.40 ⋅ 10−4 1.53 ⋅ 10−4

MSE(P(t), f (pk)) 1.68 ⋅ 10−4 1.93 ⋅ 10−4

Lcon +MSE(P(t), f (pk)) 9.77 ⋅ 10−5 1.21 ⋅ 10−4

Lcon with 10× data size 3.09 ⋅ 10−5 5.94 ⋅ 10−5

the fitted coefficients and the coefficients predicted by the NN. Inter-
estingly, this resulted in clearly inadequate NN predictions, with the
MSE between the fitted and the NN predicted curves being very
large, 1.85 ⋅ 10−2 (see Table II). This result leads us to investigate
other possible loss functions.

Even though the decaying kinetics function can be conveniently
parameterized with a small number of parameters, as in Eq. (4), there

are often many possible parameter values that can describe the same
curve in such description. This could be problematic for the NN to
disentangle. Motivated by this, we decided to investigate whether
more accurate NN predictions could be achieved by comparing the
kinetics obtained from both input and predicted parameters. Thus,
we redefined the loss function as a conditional loss,

Lcon =
N

∑
k=1

⎧⎪⎪
⎨
⎪⎪⎩

MSE(pk, ck), if Bk > 0 or Ek > 0,

MSE( f (pk), f (ck)), if Bk < 0 and Ek < 0,
(8)

where f (⋅ ⋅ ⋅) is the fitting function [Eq. (4)], Bk and Ek are coeffi-
cients predicted by the NN, N is the batch size, pk are the predicted
coefficients by the NN, and ck are the fitted coefficients. We can only
calculate loss as the difference of the functions if the functions are
not divergent when t →∞. This is ensured by checking whether
predicted coefficients satisfy B < 0 and E < 0. Using Lcon as the loss
function improved the NN prediction accuracy by an order of mag-
nitude, see Table II. Note that we also tried to force negative B and E
values in the NN prediction, but that resulted in worse NN accuracy;
thus, such an approach was not adopted.

Encouraged by this success, we have also tried other loss func-
tions. We used the MSE between the averaged kinetics and the NN
prediction as the loss function. This resulted in ∼5 fold increase in
NN prediction quality (see the third line in Table II). In addition,

FIG. 4. Examples of averaged
kinetics, fitted curves, and NN pre-
dicted curves. (a) Predicted vs.
fitted MSE = 6.01 ⋅ 10−6, predicted
vs. calculated MSE = 8.41 ⋅ 10−6. khop

= 5.68 ⋅ 10−3 ps−1, kBD = 7.36 ⋅ 10−5

ps−1, ktrap = 1.34 ⋅ 10−3 ps−1, nD
= 10.47. (b) Predicted vs. fitted MSE
= 4.00 ⋅ 10−5, predicted vs. calculated
MSE = 4.10 ⋅ 10−5. khop = 1.56 ⋅ 10−2

ps−1, kBD = 5.67 ⋅ 10−5 ps−1, ktrap

= 2.08 ⋅ 10−4 ps−1, nD = 13.17. (c)
Predicted vs. fitted MSE = 3.91 ⋅ 10−6,
predicted vs. calculated MSE =
5.10 ⋅ 10−5. khop = 5.59 ⋅ 10−3 ps−1,
kBD = 3.72 ⋅ 10−5 ps−1, ktrap = 2.50 ⋅
10−4 ps−1, nD = 8.47. (d) Predicted
vs. fitted MSE = 1.00 ⋅ 10−5, predicted
vs. calculated MSE = 1.21 ⋅ 10−5.
khop = 1.00 ⋅ 10−2 ps−1, kBD = 4.50 ⋅
10−5 ps−1, ktrap = 1.82 ⋅ 10−2 ps−1,
nD = 3.05.
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we also tried adding this MSE with Lcon, but this did not result in a
noticeable improvement over the latter result (see the fourth line in
Table II).

Finally, we tried to train the NN using Lcon and a ten times
larger training dataset, and we achieved MSE (5.94 ⋅ 10−5

) of the
same order of magnitude as was obtained when fitting the averaged
kinetics (1.77 ⋅ 10−5

); see the last line in Table II. Since, in this case,
the training data do not have to include the averaged kinetics, thus
saving memory, we hold this choice as our final result. This NN
was able to accurately predict the averaged kinetics for all parameter
values, as illustrated in Fig. 4.

Next, we investigated how the NN prediction accuracy depends
on the size of the dataset. We trained the network with differ-
ent amount of training data, and the obtained MSE values are
presented in Fig. 5. We see that a training dataset with 5 ⋅ 103 sam-
ples already results in reasonable accuracy. The accuracy improves
rapidly upon increasing the size of the dataset to 2 ⋅ 104 samples.
Further increase in the training dataset size results in somewhat bet-
ter accuracy. Therefore, we can conclude that it would be optimal
to use a dataset of about 40–80 thousands of samples with the same
train/test (85%/15%) split. Still, larger training datasets do not result
in any additional gain in the NN prediction accuracy. In Fig. 5, we
also present the accuracy dependence for the KNeighborsRegressor
algorithm, which was the best of all non NN methods. Clearly, it
is outperformed by the NN by two to three times, depending on
the dataset size. Other tested methods showed even worse accuracy,
with the MSE between the predicted curve and averaged kinetics
of the order of 10−3. These results justify our focus on NNs in this
study.

It is also important to investigate how the accuracy of the
NN predictions depends on changes n one single parameter value.
To this end, we performed a variation of one of the lattice model
parameter value while keeping the other parameter values fixed.
The NN was trained on a bigger dataset, which consisted of 101
thousand samples. We have chosen the default value set to be
khop = 0.011 ps−1, kBD = 0.0004 ps−1, ktrap = 0.0011 ps−1, and
nD = 3.82, and the initial MSE between the NN predicted kinet-
ics and the calculated kinetics was 2.08 ⋅ 10−5. Figure 6 shows the
dependence of the accuracy of the NN predictions on the variation of
lattice model parameters separately. Since it is of considerable inter-
est whether the NN can extrapolate when encountering parameter
values that were not present in the training set, we also checked the
parameter values outside the limits listed in Table I. We see that the

FIG. 5. NN and KNeighborsRegressor prediction accuracy dependence on the
training dataset size.

FIG. 6. NN prediction accuracy dependence on the variation of one lattice model
parameter values. Default parameters values set was khop = 0.011 ps−1, kBD =
0.0004 ps−1, ktrap = 0.0011 ps−1, and nD = 3.82, and the initial MSE between the
NN predicted kinetics and the calculated kinetics was 2.08 ⋅ 10−5. (a) Accuracy of
the NN predictions for different khop values. (b) Accuracy of the NN predictions for
different kBD values. (c) Accuracy of the NN predictions for different ktrap values.
(d) Accuracy of the NN predictions for different nD values.
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variation of khop within the boundaries of the training set does not
lead to worse accuracy. On the other hand, using values outside the
boundaries results in a significantly deteriorating accuracy. The vari-
ation of kBD parameter caused the biggest decrease in accuracy. The
small decrease in NN prediction accuracy, when we vary the lattice
model parameters ktrap and nD, suggests that the NN is able to gener-
alize the predictions for input values in the training data value range
and even beyond the upper limit. It is interesting to observe that
the NN prediction accuracy is most sensitive to the variation of the
khop parameter, which defines the overall transport timescale of the
system.

B. Inverse problem
Now, let us turn to the inverse problem—predicting the val-

ues of the lattice model parameters from the averaged kinetics. If
compared to the direct problem, the input and the output of the
NN are switched. Therefore, we feed the coefficients of the fitting
function or the fitting curves themselves to the NN and compare the
values of the predicted lattice model parameters with the real lattice
model parameter values used to calculate the corresponding kinetics.
As mentioned previously, NNs have difficulties interpreting certain
fitting functions, and we achieved the most accurate results using
Eqs. (4) and (5).

Once again, we first discuss the network architecture. The most
straightforward approach would be to reverse the network architec-
ture used for the direct problem. After testing numerous NN archi-
tectures, however, we concluded that better accuracy is achieved
when a separate NN is created for every lattice model parameter.
Thus, four separate NNs taken together are needed to fully charac-
terize the lattice model. The input layer of each NN has the same
amount of neurons as there are fitting parameters in the chosen fit-
ting function. As was the case for the direct problem, we used a nine
layer network with ReLu activation functions on every layer. The
number of neurons in the hidden layers gradually decreases from
256 to 16 and finally reduces to one in the output layer (see Fig. 7).
For the optimization of the NNs, we used the Adam optimization

FIG. 7. NN architecture for the inverse problem, if six coefficients from the fitting
function of Eq. (4) are used in the input layer. If we use the fitting function of Eq. (5),
only the input layer changes to five neurons and the rest of the architecture remains
the same.

FIG. 8. NN architecture for inverse problem, when using fitting curve as the input.
Here, P(i) = P(i ⋅ Δt) with Δt = 2 ps.

algorithm. The NNs were trained for 100 epochs with a 0.001 learn-
ing rate.24 The loss function was defined as the MSE between the
predicted and true parameter values. The dataset consisted of 133
thousand samples with 75%/25% train/test split.

As another possible strategy, we also tried using the fitted kinet-
ics as the input of the NN. The fitted curve was recreated using the
fitting coefficients and consisted of 7500 data points. The number
of neurons in the hidden layers decreased from 4096 to 16 and then
reduced to 1 in the output layer (see Fig. 8).

Using these NN architectures with Eqs. (4) and (5) fitting func-
tions, we generated predictions and calculated the NN output. To
obtain a more intuitively understandable accuracy measure, for each
parameter we then calculated the ratio of the MSE to the parameter’s
value range, listed in Table I, which results in an estimation of rel-
ative error. These results are presented in Table III. A number of
observations can be made. First, the errors of the NN predictions are
not large, on the order of 10%. Second, larger errors are obtained for
the parameters that have more influence on the kinetics curve, khop
and nD. Even for these parameters, however, the ratio of the MSE
to the input interval length is less than 14%. Third, the difference
between NNs trained with Eqs. (4) and (5) fitting functions is very
minor. Fourth, results obtained using the coefficients of the fitted
functions are consistently better than those obtained using the fit-
ted curves. This might be related to the fact that, in the latter case,
the NN itself has considerably more parameters; thus, a much larger
training dataset could be needed to avoid overfitting.

In order to evaluate the accuracy of the set of NNs in solving
the inverse problem, we adopted the following procedure. First, we

TABLE III. The ratio of the MSE to the input parameter intervals for the inverse
problem.

Input khop (%) kBD (%) ktrap (%) nD (%) Average

5 fit coefficients 13.07 1.96 6.50 10.96 8.12
6 fit coefficients 12.69 2.19 6.92 11.52 8.33
5 coeff. fit curve 13.57 2.99 7.19 12.34 9.02
6 coeff. fit curve 13.49 2.34 7.22 12.94 9.00

AIP Advances 13, 035224 (2023); doi: 10.1063/5.0133711 13, 035224-7

© Author(s) 2023

 26 January 2024 08:43:03

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 9. The set of the most accurate NNs predictions accuracies dependence on
the training dataset size for the inverse problem.

predicted 1500 lattice model parameter sets using the most accurate
set of NNs (see the first row of Table III). Then, we used the lattice
model together with Pauli master equations to calculate the averaged
kinetics for every predicted parameter set, which we will denote as
Ppred(t). Finally, we calculated the MSE between the true averaged
kinetic curve P(t) and Ppred(t), which was 1.31 ⋅ 10−2. The kinet-
ics reconstructed from the predicted lattice model parameters are
clearly inaccurate, if we compare them to the initial (true) averaged
kinetics. One of the reasons is the limited accuracy of lattice model
parameter predictions by the set of sequential NNs. Another rea-
son is that the lattice model, involving the Pauli master equations
and averaging through different lattice arrangements, is extremely
sensitive to the parameter variations.

Finally, we tried training the set of the most accurate NNs (see
the first row in Table III) with different dataset sizes and investigated
its effect on the prediction accuracy. These results are presented in
Fig. 9. It is interesting to note that contrary to the direct problem,
there is no sharp increase in accuracy. Instead, we observe gradual
improvement for khop and nD lattice parameter values that are pre-
dicted less accurately. Interestingly, ktrap and kBD parameters exhibit
no significant change in accuracy upon increasing the dataset size
from 5 ⋅ 103 to 8.5 ⋅ 104 training samples. Overall, it seems that at
least 6 ⋅ 104 training samples are needed if the best possible accuracy
for all parameters is required.

IV. DISCUSSION AND CONCLUSIONS
In this work, we are interested in the applications of artifi-

cial NNs to electronic excitation dynamics in 2D lattice systems. In
particular, we would like to find out if the NNs are useful for speed-
ing up solutions of a global optimization problem, which has to be
solved when we want to fit some specific experimental data using
a lattice model. We will first highlight the most important of our
results and insights that follow from them. Then, we will move on to
discussing the application of the NNs to the aforementioned global
optimization problem.

We have successfully trained a deep, fully connected, sequen-
tial NN to predict the averaged kinetics of the lattice model from the
values of the model parameters. We have achieved excellent accu-
racy that is similar to that obtained from fitting the modeled kinetics
curve with suitable analytical functions. This result is interesting,
as it means that the NN has successfully managed to account for
the heterogeneity of the lattice system and the required statistical

averaging over different random distributions of the dark sites.
However, it must be noted that we obtained high accuracy only with
a quite deep NN.

We would like to highlight that our investigations demon-
strated that a choice of a suitable loss function is crucial. In our case,
there is some degeneracy in the input parameters, as functions that
we used to fit the calculated kinetics [Eqs. (3)–(5)] are composed of
two or three functionally identical terms. This degeneracy makes the
training of the NN problematic if the loss function is the MSE of the
coefficients of the fitting function. This is evident from a poor agree-
ment between the predicted and fitted kinetics curves. On the other
hand, if we change the loss function in training to MSE between the
predicted and fitted decay curves, the prediction accuracy of the NN
increases substantially. This highlights that the reduced dimension-
ality data descriptions, while very useful, must be used with care, as
usually, it is the actual data, and not its reduced representation that
is of interest.

Using the NNs for the inverse problem was less successful than
for the direct problem. While the values of the lattice model para-
meters could be predicted with a reasonable accuracy, the resulting
curves differ substantially from the fitted kinetics. This is probably
related to the fact that the inverse problem for our lattice model is ill-
posed. For example, the limit of infinitely deep traps can be reached
when either ktrap →∞ or kBD → 0. Thus, for large values of ktrap, the
value of kBD does not affect the kinetics, while the value of ktrap ceases
to matter when kBD is very small.

Let us now turn our attention to the application of the NNs to
the solution of the global optimization problem. There are two pos-
sible strategies for applying NNs in the case considered here. One
would be to use the NN trained for the direct problem as a replace-
ment for full simulation using the lattice model. This change should
speed up the calculation of the objective function during the solu-
tion of the global optimization problem. The other choice would be
to use the NN trained for the inverse problem to obtain the lattice
model parameter values, bypassing the global optimization problem
altogether.

First, let us estimate the numerical effort required using the
straightforward approach without NNs. In order to solve the global
optimization problem accurately, a population-based method is usu-
ally the best choice. If we assume the DE method, the size of the
population is usually ten times the number of parameters; thus, for
the present case of four parameters, we would have a population of
size 40. Assuming 500 population generations that should ensure the
convergence to the global minimum, 2 ⋅ 104 of calculations of the
averaged kinetics P(t) are required.

Applications of NNs involve a few steps. First, the training data
have to be generated. Second, the NNs have to be trained. Third,
the best possible NN has to be selected for the problem at hand.
Often, it is the first step that is the most expensive computationally.
Therefore, we will concentrate on the numerical cost of that step. We
have demonstrated that for direct prediction of excitation kinetics, a
dataset of at least 4 ⋅ 104 samples should be used for training. Our
estimations imply that if only a single experimental dataset needs to
be fitted based on such a lattice model, applications of NNs would
not help to reduce the required calculation time. Nonetheless, it is
often the case that a single model is checked for the applicability to
several similar experimental datasets collected under different con-
ditions. For example, in Ref. 15, we applied a similar lattice model
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for the description of time-resolved fluorescence spectra of LHCII
aggregates at nine temperatures. Continuing our estimations, this
would correspond to 1.8 ⋅ 105 calculations required, exceeding by
far the number of samples needed to train the NN. Therefore, we can
reasonably conclude that in such a case applications of NN should be
beneficial.

Considering the inverse problem, our results show that at least
6 ⋅ 104 training samples should be used for the best possible accu-
racy. Unfortunately, the NN predicted model parameter values do
not result in a kinetics curve that is close to the input data. Thus,
it may appear that the NN trained for the inverse problem is not
very useful. That is not the case because we could exploit the fact
that the predicted values of the model parameters are quite close to
the actual ones. Thus, a population-based global optimization algo-
rithm, like DE, could be set up with significantly narrower bounds
for parameters, which should result in a much faster and, therefore,
computationally less expensive convergence.

Finally, let us discuss a possible strategy for the application of
the NNs to solving the global optimization problem using the lattice
model. Let us assume that several experimental datasets have to be
fitted with the same model. The key point to recognize is that using
the population-based optimization algorithms, like DE, generates a
lot of data, which usually goes to waste. If instead we save that data,
it could be used as a training dataset for an NN. Thus, we suggest
that the first experimental dataset should be fitted with a population-
based algorithm with reasonably wide bounds for parameters, and
the calculation data should be saved. Then, while the second exper-
imental dataset is being fitted, a suitable NN could be constructed.
Since the first dataset should already be fitted, the NN could be eas-
ily tested with respect to accuracy and speed-up of calculations. If
the NN is trained successfully, the rest of the experimental datasets
could be fitted using the NN, thus saving computational time and
resources.

Clearly, the strategy presented is based on a somewhat sim-
plified picture of the NN application, and some possible issues
(regarding, e.g., suitable network architecture) might arise, com-
plicating the process. Nonetheless, our experience shows that even
straightforward application of population-based methods also often
involves several starts and stops with different bounds for para-
meters or a number of iterations. Therefore, applications of NN
should be beneficial in a real-world scenario.

Let us stress that here we focused on the application of NNs to
population kinetics. In many quantum mechanical systems that are
probed by ultrafast spectroscopy methods, such as two-dimensional
optical spectroscopy,26–28 effects of quantum coherence are also
of importance. The dynamics of such open quantum systems are
described by much more complicated master equations than Eq. (1).
Thus, it is interesting to note recent work where NNs were used
for the inverse problem of recovering the system parameters from
its calculated dynamics.29 Therefore, we expect a growing inter-
est in applications of NNs for such problems in the foreseeable
future.

ACKNOWLEDGMENTS
This work was supported by the Research Council of Lithuania

(LMTLT Grant No. S-MIP-20-44). Computations were performed

using the resources of the supercomputer “VU HPC” at the Faculty
of Physics, Vilnius University.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions
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