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Abstract: Epitaxial lateral overgrowth (ELO) of GaN epilayers on a sapphire substrate was studied by
using a laser-patterned graphene interlayer. Monolayer graphene was transferred onto the sapphire
substrate using a wet transfer technique, and its quality was confirmed by Raman spectroscopy. The
graphene layer was ablated using a femtosecond laser, which produced well-defined patterns without
damaging the underlying sapphire substrate. Different types of patterns were produced for ELO of
GaN epilayers: stripe patterns were ablated along the

[
1100

]
sapphire and

[
1120

]
sapphire directions, a

square island pattern was ablated additionally. The impact of the graphene pattern on GaN nucleation
was analyzed by scanning electron microscopy. The structural quality of GaN epilayers was studied
by cathodoluminescence. The investigation shows that the laser-ablated graphene can be integrated
into the III-nitride growth process to improve crystal quality.

Keywords: GaN; MOCVD; ELO; graphene; laser ablation; cathodoluminescence

1. Introduction

Lack of native substrate has always plagued the development of III-nitride materials
and devices. GaN-based structures are usually deposited on various foreign substrates, such
as sapphire or SiC; however, the large lattice and thermal mismatch causes high dislocation
densities [1,2]. To improve the material quality, various technological approaches have
been utilized, such as a multi-step growth procedure [2,3], the introduction of various
interlayers to the structure [4,5], and the pulsed growth [6,7]. Recently, another promising
approach has emerged, based on graphene as an interlayer between the substrate and the
epitaxial layer [8,9]. The weak van der Waals bond at the epilayer/graphene interface
relaxes the lattice and thermal mismatch [10], while keeping the epilayer aligned to the
substrate below the graphene interlayer [11]. On the other hand, the nucleation on the
pristine graphene is very difficult due to the absence of dangling bonds on its surface [12],
and GaN island growth initiates at the graphene defect sites [13]. Then again, if graphene
possesses defects, such as holes, it can act as a mask rather than a proper interlayer, and the
epitaxial lateral overgrowth (ELO) of GaN utilizing self-organized graphene as a mask has
attracted attention [14,15]. Achieving accurate control and high reproducibility of graphene
masks requires reliable patterning techniques, such as lithography. An attractive possibility
to pattern graphene lies in using the ultrafast lasers [16,17]. Being contactless, this method
reduces undesired modification of graphene, while due to its limited thermal influence,
it can be applied for patterning graphene on sensitive substrates. Graphene can be used
as transparent contact in the GaN technology [18,19]; thus, the integration of laser-ablated
graphene into the GaN growth process is in high demand.

In this work, we present graphene ablation on sapphire substrates with a femtosecond
laser and evaluate if the resulting patterns are suitable for ELO of GaN epilayers. Monolayer
graphene is transferred onto the sapphire substrate using a wet method; its quality is
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assessed by Raman spectroscopy. The laser-ablated patterned structures are analyzed by
scanning electron microscopy (SEM). Afterward, the patterned structures are used for the
growth of GaN layers, and the structural properties of the epilayers are studied.

2. Materials and Methods

Epi-ready 2-inch monocrystal (0001) orientation sapphire substrates were used for
graphene layer transfer and further deposition of GaN epilayers. Commercially available
transfer-ready poly(methyl methacrylate)-coated (PMMA-coated) graphene monolayers
from Graphenea Inc. (San Sebastian, Spain) were used to cover the sapphire substrates.
Rapid thermal annealing (RTA) was used for the thermal treatment of the samples. The
GaN epilayers were deposited by low-pressure metalorganic vapor phase epitaxy (MOVPE)
using a flip-top close-coupled showerhead 3×2” reactor (AIXTRON, Herzogenrath, Ger-
many). Trimethylgallium (TMGa) and ammonia (NH3) were used as Ga and N precursors,
respectively. The epitaxy process was monitored by an in situ laser reflectometry system
operating at 650 nm.

Raman measurements for graphene characterization were performed using a confocal
Raman microscope (Renishaw, Wotton-under Edge, UK). The 532 nm laser excitation source
with a power of 1.8 mW was focused on a 0.9 µm diameter spot on the sample surface,
and 1800 lines/mm grating was used to record the Raman spectra. The wavenumber axis
was calibrated using a polystyrene standard. Femtosecond laser microfabrication setup
(Evana Technologies, Vilnius, Lithuania) based on Carbide laser (Light Conversion, Vilnius,
Lithuania) and Aerotech xy stages were used to perform laser ablation. The surface of the
samples after ablation and epitaxy experiments was studied by SEM (CamScan Apollo
300, Cambridge, United Kingdom, now successor Applied Beams, LLC, Beaverton, OR,
USA). Spatially-resolved cathodoluminescence (CL) measurements were performed using
a hybrid CL-SEM system (Attolight Chronos, Lausanne, Switzerland). The electron beam
was accelerated to 4 keV; the collected light was dispersed using a spectrometer (Horiba
iHR, Kyoto, Japan) and recorded using a CCD camera (Andor Newton, Belfast, United
Kingdom). All the measurements were performed at room temperature.

3. Results and Discussion

The key processes involved in the sample preparation are schematically illustrated in
Figure 1. Four main steps can be identified: (a) transfer of monolayer graphene onto the
sapphire substrate by the wet transfer; (b) laser ablation of graphene; (c) nucleation of GaN
seeds; and (d) epitaxial lateral overgrowth of GaN film.
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into deionized water and left floating freely on the water surface for 5 min. Afterward, the 
sapphire substrate was put beneath the floating polymer/graphene piece, which was at-
tached as close as possible to the center of the substrate. The sample was then dried in the 
air until there were no water droplets visible. Next, the sample was heated inside the RTA 
oven for 20 min at a temperature of 100 °C under an N2 atmosphere. The PMMA was 
dissolved by dipping the sample into acetone for 45 min at 40 °C and rinsing in isopropyl 
alcohol for another 45 min at 40 °C. Finally, the samples were annealed for 8 h using RTA 
at 300 °C in a vacuum to remove any organic surface residues left [20]. 

The quality of transferred graphene on the sapphire substrate was verified by Raman 
spectroscopy. The obtained Raman spectrum, shown in Figure 2, exhibits the graphene 
fingerprint modes G and 2D. Defect-related D mode also manifested itself at around 
1355 cm-1. However, the intensity of D mode was low compared to G (IG/ID approx. 12), 
indicating the high quality of the graphene [21,22]. The ratio of 2D and G peak intensities 
(I2D/IG) was 3.8, while the position and full width at half maximum (FWHM) of the 2D 
peak were 2683 cm−1 and 44 cm−1, respectively, indicating monolayer graphene [23]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic diagram of the key processes involved in the growth of GaN: (a) wet transfer
of monolayer graphene; (b) laser ablation of graphene; (c) nucleation of GaN seeds; and (d) ELO of
GaN film. The objects are not to scale.

3.1. Graphene Layer Transfer

Monolayer graphene pieces of size 1.3 × 1.3 cm2 were transferred onto the sapphire
substrates using the wet transfer procedure. First, the PMMA/graphene cuts were dipped
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into deionized water and left floating freely on the water surface for 5 min. Afterward,
the sapphire substrate was put beneath the floating polymer/graphene piece, which was
attached as close as possible to the center of the substrate. The sample was then dried in
the air until there were no water droplets visible. Next, the sample was heated inside the
RTA oven for 20 min at a temperature of 100 ◦C under an N2 atmosphere. The PMMA was
dissolved by dipping the sample into acetone for 45 min at 40 ◦C and rinsing in isopropyl
alcohol for another 45 min at 40 ◦C. Finally, the samples were annealed for 8 h using RTA
at 300 ◦C in a vacuum to remove any organic surface residues left [20].

The quality of transferred graphene on the sapphire substrate was verified by Raman
spectroscopy. The obtained Raman spectrum, shown in Figure 2, exhibits the graphene
fingerprint modes G and 2D. Defect-related D mode also manifested itself at around
1355 cm−1. However, the intensity of D mode was low compared to G (IG/ID approx. 12),
indicating the high quality of the graphene [21,22]. The ratio of 2D and G peak intensities
(I2D/IG) was 3.8, while the position and full width at half maximum (FWHM) of the 2D
peak were 2683 cm−1 and 44 cm−1, respectively, indicating monolayer graphene [23].
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Figure 2. Raman spectrum measured after the transfer of graphene prior to laser patterning.
Characteristic graphene modes are indicated.

3.2. Graphene Lithography

Laser processing of the graphene layer was performed using a 1030 nm laser line
with a repetition rate of 60 kHz and 350 fs pulse duration; the pulse energy was set to
60 nJ. The laser beam was focused onto the sample by means of an aspherical objective
lens with a focal length of 4 mm; the ablated areas were scribed with a scanning speed of
v = 6 mm/s. To check the sensitivity of the experimental setup to surface roughness, the
initial ablation experiments were performed without using the surface tracking system.
Figure 3 presents the optical image of the graphene layer ablated by varying the distance
between the focusing lens and the sample surface. Two types of surface modification can
be observed: the wide gray stripes of ~4 µm width indicate the removal of graphene, and
the narrow dark lines with the width below 1 µm are due to the modified surface of the
sapphire substrate. The laser fluence at the center of the Gaussian beam at the focal plane
was ~9 J/cm2, which was significantly above the ablation threshold of both graphene
(~70 mJ/cm2 [16]) and sapphire (~2 J/cm2 [24]). Changing the distance between the
focusing lens and the sample surface led to laser beam defocusing and a larger spot
diameter, which, in turn, produced lower laser fluence. The shift of the focal plane by a
couple of microns already resulted in laser fluence below the sapphire ablation threshold
when only the graphene layer was affected (see Figure 3). The strong dependence of the
damage profile on the distance between the focusing lens and the sample surface occurred
due to the distance variation of 1 µm being similar to the depth of focus of our system
(~2.5 µm). Therefore, a tracking system autocorrecting for all the surface irregularities was
necessary for the reproducible ablation process.
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Figure 3. Optical image of laser-ablated graphene, demonstrating the influence of the distance
between the focusing lens and the surface of the sample. Distance is varied by the step size of 1 µm.

The subsequent ablation experiments were performed employing the surface track-
ing system. To remove 2-µm-wide stripes of graphene without damaging the sapphire
substrate, the focal plane was set at the 5 µm distance from the sample surface, and the
pulse energy was reduced. The 2 µm width of the graphene window was selected to ensure
fast island coalescence during the ELO process: the diameter of the GaN islands reaches a
couple of microns before fully merging into a 2D layer [25].

Several patterns with different distances between graphene windows were fabricated,
as shown in SEM images in Figure 4. The pattern orientation was along the

[
1100

]
sapphire

direction of the sapphire substrate. The areas without graphene revealed undamaged
sapphire, even though some ablation debris could be spotted. The thinnest obtained
graphene stripes were 200 nm wide; however, the stripe width was highly uneven [see
Figure 4a]. The evenness slightly improved for thicker stripes with the standard deviation
of stripe width of 50 nm. Nevertheless, the overall pattern showed a nice periodic structure
with repeating stripes.
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the same for all images.

For the following ELO of GaN epilayers, the graphene layer was divided into four
quadrants (zones A-D, as illustrated in Figure 5), and periodic patterns were fabricated
in three of them. The periodic structure consisting of alternating graphene stripes and
windows, both having the width of 2 µm and running along the

[
1100

]
sapphire direction

was fabricated in zones A and B. Analogous periodic structure but running along the[
1120

]
sapphire direction was fabricated in zones B and C. Since both structures intersected

in zone B, it resulted in square graphene islands with a side length of 2 µm. A single
quadrant (zone D) was kept with unmodified graphene as a reference. The obtained
graphene pattern is schematically illustrated in Figure 5.
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GaN seeds on each graphene pattern type (b,c,f); unmodified graphene (e); and bare sapphire surface
(d). The directions of sapphire crystal lattice are indicated.

3.3. ELO of GaN Epilayers

The GaN epilayers were deposited on top of the laser-patterned graphene by MOVPE.
First, we evaluated the suitability of the sapphire substrate covered by different laser-
ablated graphene patterns for the formation of GaN seeds. The epitaxial process in the
reactor started from the in situ surface cleaning procedure in the H2 atmosphere and
reactor pressure of 150 mBar. To preserve the graphene layer, the cleaning temperature was
reduced from the standard 1100 ◦C down to 800 ◦C: it is still high enough to remove the
possible organic and water contamination, although it is too low to modify the sapphire
surface by removing some oxygen [26]. The surface was nitridated at 575 ◦C and 600 mBar
for 140 s. Following the nitridation, a low-temperature (LT) GaN layer was deposited for
250 s at 575 ◦C using flow rates of TMGa and NH3 at 0.05 µmol/min and 80 µmol/min,
respectively. The thickness of the LT-GaN layer was ~40 nm. The recrystallization and
seed formation was performed at 1100 ◦C and 400 mBar. To increase the seed size, extra
growth was performed for 180 s using flow rates of TMGa and NH3 at 0.16 µmol/min and
130 µmol/min, respectively. All steps were carried out in the H2 atmosphere.

The formation of GaN seeds on different surfaces is shown in the SEM images in
Figure 5. It is evident that GaN seeds are formed only on sapphire (either bare or in the
graphene windows), with practically no seeds formed on graphene. Such distribution is re-
lated to the different GaN nucleation processes on sapphire and graphene. GaN nucleation
on sapphire is mainly due to the chemical adsorption process, while physical adsorption
dominates in nucleation on graphene due to its low surface energy [12]. Nucleation on
graphene is enhanced in the remote epitaxy, which occurs due to the interaction between
the sapphire substrate and GaN through a monolayer graphene [11,27]; however, it is still
significantly less effective compared to chemical adsorption.

Meanwhile, the concentration of the dominant seeds with diameter larger than
0.5 µm is very similar both on bare sapphire and on the surface with laser-ablated graphene
pattern, regardless of the pattern details. This points to a clean laser ablation process with
no damage to the sapphire epi-ready surface or possible contamination by carbon.

Following the seed formation, the growth continued until GaN islands coalesced into a
complete 2D layer on the surface of a bare sapphire. The island coalescence was performed
at 1080 ◦C and 150 mBar using flow rates of TMGa and NH3 at 0.16 µmol/min and
112 µmol/min, respectively.
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Figure 6 presents the SEM images of the GaN layers grown on different graphene
patterns. A nearly continuous 2D layer was formed on the surface with a square graphene
island pattern (zone B). The striped graphene pattern resulted in an incomplete GaN layer
(zones A and C). Furthermore, a certain difference could be observed for different graphene
stripe orientations. Considering that hexagonal GaN lattice has a 30◦ rotation from sapphire,
the relative growth rate of GaN

(
1120

)
GaN plane is higher than that of the

(
1100

)
GaN plane.

Similar trends of growth anisotropy have been reported for GaN growth using SiO2 or
SiN masks both on sapphire and SiC substrates [28,29]. Meanwhile, many small, closely
packed islands composed the GaN layer deposited on the unmodified graphene (zone D).
The detailed analysis of the surface morphology revealed a flat surface with well-ordered
monolayer steps for GaN grown on patterned graphene (zones A, B, and C), as expected
for growth on a sapphire substrate with a vicinal angle toward the m-axis of 0.2 ÷ 0.4◦ [30],
although some step bunching is visible. On the other hand, no step-flow growth mode could
be observed on the surface of GaN islands grown on unmodified graphene (zone D). The
surface with macrosteps and islands indicates insufficient large holes in the graphene layer
for GaN seed formation. As discussed above, this is due to weak nucleation on graphene.
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Figure 6. SEM images of GaN layers grown using ELO on different graphene patterns (indicated in
the center of the figure, the directions represent GaN crystal lattice).

To compare the structural quality of GaN layers grown on different graphene patterns,
dislocation densities (DD) were evaluated in each zone using CL. The typical images of the
spatial distribution of integrated CL intensity are shown in Figure 7. Dislocations manifest
in the images by spots of low CL intensity (dark spots), with the density of dark spots
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corresponding to dislocation density. The dark spot capture in CL images was performed
using Laplacian of Gaussian blob detection algorithm.
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