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Abstract: Detecting bacteria—Listeria monocytogenes—is an essential healthcare and food industry
issue. The objective of the current study was to apply platinum (Pt) and screen-printed carbon (SPCE)
electrodes modified by molecularly imprinted polymer (MIP) in the design of an electrochemical
sensor for the detection of Listeria monocytogenes. A sequence of potential pulses was used to
perform the electrochemical deposition of the non-imprinted polypyrrole (NIP-Ppy) layer and Listeria
monocytogenes-imprinted polypyrrole (MIP-Ppy) layer over SPCE and Pt electrodes. The bacteria
were removed by incubating Ppy-modified electrodes in different extraction solutions (sulphuric
acid, acetic acid, L-lysine, and trypsin) to determine the most efficient solution for extraction and
to obtain a more sensitive and repeatable design of the sensor. The performance of MIP-Ppy- and
NIP-Ppy-modified electrodes was evaluated by pulsed amperometric detection (PAD). According
to the results of this research, it can be assumed that the most effective MIP-Ppy/SPCE sensor can
be designed by removing bacteria with the proteolytic enzyme trypsin. The LOD and LOQ of the
MIP-Ppy/SPCE were 70 CFU/mL and 210 CFU/mL, respectively, with a linear range from 300 to
6700 CFU/mL.

Keywords: molecularly imprinted polymer; molecularly imprinted polypyrrole; Listeria monocytogenes;
whole-cell imprinting; pulsed amperometric detection; template extraction method; trypsin; L-lysine;
acetic acid; sulphuric acid

1. Introduction

Listeria monocytogenes infections with Gram-positive, rod-shaped bacteria with an
optimum growing temperature at 37 ◦C [1] are among the leading causes of foodborne
illness-related mortality [2]. Listeria monocytogenes is an environmental contaminant that
primarily inhabits soil. Various animals (ruminants, birds, marine life, insects, ticks, and
crustaceans) are carriers of bacteria [3]. Listeria monocytogenes can enter the food supply
chain and contaminate a wide variety of food products, including meat products; raw,
unpasteurised milk and cheeses; ice cream; raw or processed vegetables; raw or processed
fruits; raw or undercooked poultry, sausages, hot dogs, and deli meats; and raw or smoked
fish and other seafood [4].
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One type of sickness induced by Listeria monocytogenes is very dangerous and can
result in septicaemia and meningitis, with a case-fatality rate of 20–30% [5]. Another kind
of disease caused by Listeria monocytogenes is a non-invasive gastrointestinal ailment that
typically has no consequences. However, despite the low-level incidences of listeriosis
in the general population, it remains a significant and deadly food-borne disease with
a hospitalisation rate of over 95% [6]. The major problem is that Listeria monocytogenes
affects vulnerable segments of populations, including the elderly, pregnant women, unborn
babies, and immunocompromised people (patients with cancer or AIDS, or after organ
transplantations) [7]. Thus, pregnant women have a 17-fold increased risk of contracting
invasive listeriosis [8], and the mortality associated with Listeria monocytogenes infection is
responsible for 22% of fatalities in immunocompromised adults [4].

Detecting Listeria monocytogenes is an essential healthcare and food industry issue [9].
The minimal infection dose for listeriosis is 100 colony-forming units per gram (CFU/g)
of food. The majority of countries have zero tolerance towards the presence of Listeria
monocytogenes in food [10]. The European Regulation on Microbiological Criteria for
Foodstuffs does not allow the presence of Listeria monocytogenes in foods for infants and
particular medical purposes. However, all food can have 100 CFU/g of the organism
during its shelf life [11]. In this case, fast and precise detection of Listeria monocytogenes is
required both for the healthcare and food industries.

Among many methods for the identification of Listeria monocytogenes, colony plate
counting is accepted to be the ‘gold standard’ procedure [12]. The detection of Listeria
monocytogenes has been proposed using several standard techniques, including surface plas-
mon resonance [13], quartz crystal microbalance [14], and enzyme-linked immunosorbent
assay (ELISA) [15,16]. These methods are crucial and can essentially meet the criteria for
Listeria monocytogenes detection. However, they often have shortcomings and are labour-
intensive, time-consuming, or complicated. In ELISA, secondary antibodies connected
to an enzyme are immobilised in a well to capture Listeria antigens. These tests are used
in food testing because they are straightforward, simple to interpret, and do not require
much sample handling. However, they produce results in roughly 30–50 h and are not as
sensitive as molecular methods. This technique has a sensitivity range of approximately
105–106 CFU/mL [17]. The electrochemical approach, in comparison, is straightforward,
sensitive, time-saving, inexpensive, and simple to use, giving it several distinct benefits over
the other methods. Many excellent electrochemical systems have been successfully built
in recent years to detect Listeria monocytogenes [18–21], including antibody- or DNA-based
methods [1,12].

The exceptional selectivity of molecularly imprinted polymers towards molecularly
imprinted analytes makes them appealing. Molecular imprinting can create a binding
site uniquely suited to a specific molecule [22]. The molecular imprinting approach en-
ables the development of particular molecular recognition sites that work on the idea of
complementarity between the imprinted sites and the analyte due to its many distinctive
benefits, including simplicity in production, affordability, and excellent stability [23,24].
Therefore, MIPs can specifically bind the analytes of interest that serve as templates for
their development [25–29]. However, due to the size, imprinting the whole cell in the
polymers is exceptionally challenging [30,31]. Several studies have evaluated the suitability
of MIP-based sensors for detecting Listeria monocytogenes bacteria [32–34]. Mainly two
factors governing the recognition of Listeria monocytogenes bacteria should be taken into
account: (i) discrimination of the bacteria by their cell shape (e.g., round or rod-shaped
bacteria, namely Staphylococcus aureus or Escherichia coli) and (ii) chemical recognition due
to the interaction of functional groups present in polymers with functional groups that are
localised on the surface of the cell, e.g., cis-diol groups of the glycan chains [35]. Taking
into account the emerging problems, Piletsky et al. [30] raised some questions related to
the materials suitable for the modification of electrodes by MIP-based layers. The authors
of that study concluded that “success in this area will result in new paradigms for MIP
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applications that both complement existing therapeutic and disposal or reuse in field
diagnostic techniques”.

The current research sought to develop a MIP-based sensor for detecting Listeria
monocytogenes. Firstly, the goal was to test the performance of two electrodes. Pt and SPCE
were modified with a polypyrrole layer made from the polymerisation solution of Listeria
monocytogenes bacteria and pyrrole dissolved in phosphate-buffered saline (PBS), pH 7.4. A
novelty of this study or a second approach was to determine the most efficient solution
for extraction. Thus, Listeria monocytogenes bacteria from imprinted cavities were extracted
using trypsin and L-lysine and compared with more conventional extraction methods such
as sulphuric and acetic acids. Herein, the analytical performance of electrodes modified
by a non-imprinted polypyrrole (NIP-Ppy) layer and the electrodes modified with the
MIP-Ppy layer were compared. Thirdly, the sensitivity (LOD and LOQ) and repeatability
criteria were effectively employed to detect Listeria monocytogenes.

2. Materials and Methods
2.1. Materials and Electrochemical Measurements

Listeria monocytogenes were obtained from the Bacteria Collection of Sumy State Uni-
versity (Sumy, Ukraine). To preserve the antigenic structure on the Listeria monocytogenes
membrane but eliminate virulence, 109 CFU/mL bacteria were immersed in 70% ethanol
and placed under UV light for 24 h. This procedure allows the destruction of bacte-
rial DNA with minimal influence on the cell wall and shape, which are necessary for
MIP development.

Pyrrole 98% (CAS# 109-97-7, Alfa Aesar, Kandel, Germany), phosphate-buffered saline
(PBS) tablets, pH 7.4 (CAS# 7647-14-5, Sigma-Aldrich, Steinheim, Germany), sulphuric
acid (96%, CAS# 7664-93-9, Lachner, Neratovice, Czech Republic), acetic acid (99.8%, CAS#
64-19-7, 99.8%, Lachner, Czech Republic), trypsin 500 U/mL (TrypZean® Solution, Sigma-
Aldrich, SKU T3449-500 ML), and 0.1% (w/v) L-lysine solution in H2O (Sigma-Aldrich,
CAS# 25988-63-0) were used as received for bacteria removal from the Ppy-matrix to form
the MIP-Ppy layer. All reagents were of analytical grade and were used without additional
purification. All aqueous solutions were prepared in deionised water.

Electrochemical characterisation of the working surfaces was performed using two
systems. A potentiostat/galvanostat AUTOLAB TYPE III (ECO-Chemie, Utrecht, The
Netherlands) operated by FRA2-EIS ECO-Chemie software (ECO-Chemie, Utrecht, The
Netherlands) was used for the first electrochemical system. The first set of electrodes, DRP-
110 screen-printed carbon electrodes (SPCEs), which are based on a working electrode with
a geometric area of 0.126 cm2, a carbon-based counter electrode, and an Ag/AgCl-based
reference electrode, was purchased from Metrohm DropSens (Oviedo, Spain).

For the second electrochemical system, the second set of electrodes was based on (i) a
Pt disk with a 1 mm diameter sealed in glass as the working electrode, (ii) an Ag/AgCl
in 3 M KCl solution electrode as a reference electrode (Ag/AgCl), and (iii) a Pt disk of
2 mm diameter as a counter electrode. Measurements were done in a home-made cell
with a total volume of 300 µL, and electrochemical characterisation was performed using a
portable potentiostat controlled by DStat interface software from Wheeler Microfluidics
Lab (University of Toronto, Toronto, ON, Canada).

Scanning electron microscope (SEM) images were obtained with a scanning electron
microscope (Hitachi-70 S3400 N VP-SEM).

2.2. Pre-Treatment of Working Electrodes

Pre-treatment of electrodes for the first electrochemical system: Before the electro-
chemical deposition of Ppy, the working electrodes underwent pre-treatment. A potential
cycling approach was used to electrochemically clean SPCEs. The cleaning was carried out
in 0.5 M sulphuric acid by 20 potential cycles in a potential range between −100 mV and
+1200 mV vs. Ag/AgCl at a potential sweep rate of 100 mV/s.
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Pre-treatment of electrodes for the second electrochemical system: The Pt electrode
was pre-treated before electrochemical deposition following the procedure described in
previous studies [36]. All solutions were thoroughly degassed just before use with a stream
of nitrogen (N2). According to this procedure, the Pt electrode was rinsed with concentrated
HNO3 solution in an ultrasonic bath for 10 min, then rinsed with water and polished with
alumina paste. Later, it was rinsed with water again and then with a solution of 10 M NaOH,
then with a 5 M sulphuric acid solution in an ultrasonic bath for 5 min. Electrochemical
electrode cleaning was carried out in 0.5 M sulphuric acid by cycling the potential 20 times
in the range between −100 mV and +1200 mV vs. Ag/AgCl at a sweep rate of 100 mV/s.
The assessment of the bare electrode surface was performed by cyclic voltammogram. To
improve the adhesion of the Ppy layer to the electrode surface, a layer of ‘platinum black’
was formed over the working electrode. The deposition of ‘platinum black’ clusters was
performed in a solution of 5 mM H2PtCl6 containing 0.1 M of KCl by 10 potential cycles
in the range between +500 mV and −400 mV vs. Ag/AgCl at a potential sweep rate of
10 mV/s.

2.3. Electrochemical Modification of Electrodes by NIP-Ppy and MIP-Ppy Layers

The polymerisation solution contained 0.5 M of pyrrole in PBS and was used to
electrochemically deposit the NIP-Ppy layer [25]. The deposition of MIP-Ppy on Pt and
SPCE electrodes was performed in several steps: (i) during the first step, the Ppy under-
layer was electrochemically deposited from polymerisation solution containing a 0.5 M
solution of pyrrole, and a sequence of 5 potential pulses (of +950 mV for 1 s and 0 V for
30 s) was applied [29,36]; (ii) during the deposition of the second layer, 109 CFU/mL of
Listeria monocytogenes bacteria was additionally added into the same polymerisation bulk
solution and again the sequence of 5 potential pulses (of +950 mV for 1 s and 0 V for 30 s)
was applied; (iii) the purpose of the third step was to remove imprinted bacteria from
the formed Ppy layer by incubating electrodes in different extraction solutions to form
the MIP-Ppy (0.05 M sulphuric acid, 10% acetic acid, 0.1% L-lysine, 10 U/mL trypsin for
at 37 ◦C for 30 min). The NIP-Ppy-based layer was formed similarly to MIP-Ppy (only
bacteria were not added), and the abovementioned extraction solutions similarly treated
the NIP-Ppy-modified electrode.

Pulsed amperometric detection was used to assess MIP-Ppy- and NIP-Ppy-modified
electrodes utilising a sequence of 10 potential pulses of +600 mV vs. Ag/AgCl lasting for
2 s, and 0 V vs. Ag/AgCl for 2 s.

The limit of detection (LOD) and limit of quantification (LOQ) were calculated accord-
ing to Equations (1) and (2):

LOD = 3.3 σ/S (1)

LOQ = 10 σ/S (2)

where σ is the standard deviation and S is the slope of the linear relationship on the
calibration plot. A schematic representation of electrode modification is presented in
Scheme 1.
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3. Results
3.1. Electrodeposition of Molecularly Imprinted Polypyrrole

MIP-Ppy and NIP-Ppy layers were electrochemically deposited on the surface of Pt
and SPCE electrodes using a series of potential pulses. Figure 1A,B depict the profile
of the potential pulse series during the deposition of the NIP-Ppy layer on Pt and SPCE
electrodes, respectively. The electrochemical formation of the MIP-Ppy layer on Pt and
SPCE electrodes was performed in several steps as described in the experimental section, re-
spectively (Figure 2A,B). The first step was based on the electrodeposition of the Ppy-based
under-layer to support and cover the electrode. This Ppy-based under-layer decreased the
direct interaction of Listeria monocytogenes with the electrode surface before forming the
MIP-Ppy sensing layer. The deposited thin Ppy under-layer effectively favoured the for-
mation of the MIP-Ppy-sensing layer during the second sensing-layer-formation step. The
entrapped Listeria monocytogenes bacteria acted as a template in an upper Ppy layer (sensing
layer), which, after the removal of bacteria, formed the MIP-Ppy layer. Electrochemical
Ppy deposition enabled control of the thickness of formed layers and entrap the Listeria
monocytogenes bacteria templates in the electropolymerised matrix. The entrapped Listeria
monocytogenes bacteria templates were removed from the MIP-Ppy layer by incubation in
several extraction solutions.
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3.2. Extraction of Imprinted Bacteria from the MIP-Ppy Layer

Several different extraction solutions were used to remove Listeria monocytogenes bac-
teria from the MIP-Ppy layer formed on the SPCE. The first template extraction method
was based on the incubation of NIP-Ppy/SPCE, and MIP-Ppy/SPCE acetic acid solution
was applied. Acetic acid is a weak organic acid harmful to most bacteria, even at con-
centrations as low as 0.5 wt%. Acetic acid, among other harmful effects, leads to a drop
in intracellular pH and the disruption of some metabolic chains by acetic acid anion [37].
Figure 3B represents the bacteria cells after incubation in acetic acid. As a result, the cell
membrane develops holes that allow the cytosol and cytoplasmic organelles to leak out.
The rough, uneven pits on the bacteria cell surface showed that the extraction by acetic
acid was highly effective. However, the incubation of NIP-Ppy/SPCE and MIP-Ppy/SPCE
in a sulphuric acid-containing solution revealed that the surface of formed NIP-Ppy and
MIP-Ppy (Figure 3C,D) seem identical.

The third template extraction solution used to remove the Listeria monocytogenes
bacteria template from MIP-Ppy/SPCE was an enzyme (trypsin) solution. Trypsin catalyses
the hydrolysis of cell wall proteins to form peptides. In addition, we tried to remove Listeria
monocytogenes bacteria from MIP-Ppy/SPCE by L-lysine, which is a zwitterion amino acid
and was expected to be efficient for the dissociation and removal of bacteria from the
Ppy-based matrix. However, registered results (Figure 3H) illustrate that the L-lysine-based
bacteria extraction procedure was not efficient compared to that based on trypsin. Moreover,
L-lysine is crucial for protein synthesis and is also present in the peptidoglycan layer on the
cell walls of Gram-positive bacteria; therefore, it supports cell metabolism. Additionally,
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it should be noted that trypsin has a specific target in the cell wall and does not affect
the Ppy layer; this effect would be an extra advantage for the removal of bacteria-based
templates and the development of MIP-Ppy-based sensor platforms. Trypsin is a well-
known pancreatic enzyme that digests proteins by specifically hydrolysed peptide bonds
C-terminal to the amino acid residues of lysine (Lys) and arginine (Arg) [38]. Some studies
have shown increased levels of proteolytic enzymes, including trypsin in inflammatory
sites, followed by bacterial lysis. For example, Grenier demonstrated that Gram-positive
bacteria from the oral cavity are more resistant to lysis than Gram-negative bacteria [39].
Meanwhile, Zhou et al. showed the same effect of the enzyme on both bacteria types
(including biofilm formation) in a concentration of 2 mg/mL [40].
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acid, (E,F) 10 U/mL trypsin, (G,H) 0.1% L-lysine at 37 ◦C for 30 min.
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In contrast to trypsin, L-lysine is an amino acid that, at pH = 7.0, is a zwitterion;
therefore, we expected that it can act as an efficient agent for the dissociation/removal of
some compounds from polymeric structures. As demonstrated by this research, 10 U/mL
trypsin solution is the most efficient for Listeria monocytogenes cell removal from the Ppy
layer and to form MIP-Ppy.

3.3. Electrochemical Characterisation of Bacteria-Imprinted MIP-Ppy Layer

The formed NIP-Ppy and MIP-Ppy layers were assessed using pulsed amperometric
detection to assess the current density in a sequence of 10 potential pulses of +600 mV for
2 s and 0 mV for 2 s. The determination of Listeria monocytogenes bacteria at several different
concentrations was performed using two different electrochemical systems (Figure 4).
MIP-Ppy- and NIP-Ppy-modified SPCE electrodes (Figure 4A) and MIP-Ppy- and NIP-
Ppy-modified Pt electrodes (Figure 4B) were incubated in a PBS solution, pH 7.4, in a
concentration range of 3.4 × 106–1.0 × 108 CFU/mL Listeria monocytogenes bacteria. Figure 4
shows the dependence of the amperometric response. During the analysis, a decrease in the
current with increasing bacteria concentration was observed, as usual in the redox-inactive
analytes [41].

3.3.1. Assessment of first Electrochemical System

Assessment of MIP-based sensor towards imprinted Listeria monocytogenes bacteria was
performed in the concentration range from 0 to 108 CFU/mL. First, Listeria monocytogenes
bacteria were eliminated from imprinted cavities using several extraction solutions, namely
10% acetic acid (Figure 5A), 0.05 M of sulphuric acid (Figure 5B), 10 U/mL of trypsin
(Figure 5C), and 0.1% L-lysine (Figure 5D). As we can see from Figure 4, acetic acid was
highly effective, as the current density of MIP-Ppy/SPCE was at least 12 times higher
than that of NIP-Ppy/SPCE. While using the sulphuric acid solution, we observed only a
slight change in the current density. However, the acid tolerance of Listeria monocytogenes
bacteria is a predicted molecular response, which ensures cell survival in an unfavourable
environment. The increased intracellular survival and the development of acid-adapted
Listeria monocytogenes cells in the vacuoles and cytoplasm were confirmed by morphological
methods [42]. To avoid the acid tolerance response in Listeria monocytogenes bacteria, we
tried different approaches, one of which was based on applying the enzyme trypsin. Thus,
trypsin was utilised to remove the Listeria monocytogenes bacterium template from the
NIP-Ppy/SPCE and MIP-Ppy/SPCE. Accordingly, the electrodes were individually treated
with solutions containing trypsin (Figure 5C) and L-lysine (Figure 5D). The current density
for MIP-Ppy/SPCE, treated with trypsin, increased around three times compared with
that registered for NIP-Ppy/SPCE, while MIP-Ppy/SPCE treated with L-lysine showed no
changes in current density. Electrochemically registered results reveal that the electrical
capacitance changed after removing imprinted bacteria; acetic-acid- and trypsin-based
solutions were the most suitable for extracting entrapped Listeria monocytogenes bacteria
and the preparation of MIP-Ppy.

3.3.2. Assessment of MIP-Ppy/Pt- and NIP-Ppy/Pt-Based Electrodes

After preparation, NIP-Ppy/Pt and MIP-Ppy/Pt electrodes were incubated in solutions
of Listeria monocytogenes bacteria of different concentrations and evaluated using pulsed
amperometric detection based on 10 potential pulses of +600 mV for 2 s and 0 mV for
2 s. Figure 6A–D depict the dependence of the amperometric response of the second
electrochemical system after the incubation of MIP-Ppy- and NIP-Ppy-modified platinum
electrodes in PBS, pH 7.4, with a different concentration of Listeria monocytogenes bacteria.
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Figure 6. The current density of NIP-Ppy/Pt (solid black lines) and MIP-Ppy/Pt (dashed red lines)
electrodes registered using pulsed amperometric detection after incubation in solutions containing
different Listeria monocytogenes bacteria concentrations; Listeria monocytogenes from MIP-Ppy was
extracted using different extraction solutions: (A) 10% acetic acid, (B) 0.05 M of sulphuric acid,
(C) 10 U/mL of trypsin, (D) 0.1% L-lysine.

With different working electrodes, including platinum, different techniques can be
used to remove the imprinted material. Various solvents are often used to remove bacteria,
for instance, acetic acid, hydrochloric acid, other acids, methanol, and mixtures of those
solvents [32,34,43]. Although challenging, extraction of the bacteria from the polymer
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is essential for forming the MIPs [44]. During the formation of the MIP-Ppy structure
within Ppy, entrapped Listeria monocytogenes bacteria were removed, leaving imprinted
cavities using different extraction solutions, including 10% acetic acid (Figure 6A), 0.05 M
of sulphuric acid (Figure 6B), 10 U/mL trypsin (Figure 6C), and 0.1% L-lysine (Figure 6D).
Unlike the MIP-Ppy/SPCE electrode, a somewhat different situation was seen with the
MIP-Ppy/Pt electrode. Trypsin- and L-lysine-based solutions proved to be the best for
extracting Listeria monocytogenes bacteria from the Ppy layer. In the latter case, the current
density of the MIP-Ppy/Pt electrode was twice as high compared to that registered by
the NIP-Ppy/Pt electrode (Figure 6D). Trypsin proved to be effective in preparing the
MIP-Ppy/Pt electrode suitable for the determination of Listeria monocytogenes bacteria in a
broad concentration range.

3.4. Determination of Limit of Detection and Limit of Quantification

As discussed, acetic acid and trypsin-based solutions were the most suitable for
extracting Listeria monocytogenes bacteria entrapped within the Ppy-based layer and forming
MIP-Ppy/SPCE. To assess the limit of detection (LOD) and limit of quantification (LOQ),
pulsed amperometric detection-based electrochemical measurements were conducted. ∆I
values were employed, respectively, for NIP-Ppy/SPCE and MIP-Ppy/SPCE, as analytical
signals. Listeria monocytogenes bacteria concentration calibration logarithmic curves plotted
against ∆I (µA) are shown in Figure 7. The slope for the variations in the current (I, µA)
vs. concentration of Listeria monocytogenes bacteria (concentration expressed in CFU/mL)
registered by the NIP-Ppy/SPCE electrode was 0.016 µA/(CFU/mL), with R2 = 0.98, while
the linear regression slope for the Listeria monocytogenes bacteria imprinted MIP-Ppy/SPCE
was 0.063 µA/(CFU/mL), with R2 = 0.97.
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Molecular imprinting is ranked according to the relationship between the MIP and the
non-imprinted polymer (NIP), which is obtained according to Equation (3) [45,46]:

IF = IMIP/INIP (3)
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Usually, IF is called an imprinting factor, whereas Ayerdurai et al. [47] argued that an
apparent imprinting factor is a more correct term for IF. According to the measurements, the
MIP-Ppy/SPCE had an apparent imprinting factor toward the Listeria monocytogenes bacte-
ria that was approximately four times higher than that registered by the NIP-Ppy/SPCE
electrode. The LOD and the LOQ were calculated according to Equations (1) and (2).
It was evaluated that the LOD and LOQ for the MIP-Ppy/SPCE were 70 CFU/mL and
210 CFU/mL, respectively, in the linear range from 300 to 6700 CFU/mL.

A comparison of electrochemical methods previously used to detect Listeria monocyto-
genes is shown in Table 1.

Table 1. Summary of the electrochemical methods previously used for the detection of Listeria
monocytogenes.

Electrode Detection Technique Method Used LOD, LOQ and LR Ref.

Gold disk RAA-based E-CRISPR 1 Square wave
voltammetry

LOD 26 CFU/mL;
LR 2.6 × 101 to

2.6 × 109 CFU/mL
[48]

Gold electrode Sandwich assay CV, EIS LR 102 to 106 CFU/ml [18]
Multiwalled carbon
nanotube electrode Immunoassay CV LOD 1.07 × 102 CFU/mL;

LR 102 to 105 CFU/mL
[49]

Aluminium disc Immunoassay EIS LOD 1.3 log CFU/mL
LR 1.3 to 4.3 log CFU/mL [50]

1 RAA-based E-CRISPR—recombinase-assisted amplification-based CRISPR/Cas12a into an E-DNA biosensor
platform.

The investigation of the interaction between Listeria monocytogenes bacteria and the
MIP-Ppy-modified electrode has several advantages, but the one that stands out the most
is that just two of them use electrochemical techniques (Table 2). This suggests that there
were only a few studies on applying MIP-based sensors for detecting Listeria monocytogenes
bacteria. Additionally, Table 2 summarises other MIP-based sensors for certain bacterial
species, employing electrochemical and quartz crystal microbalance (QCM) approaches.
The electrode, the polymer used for MIP preparation, the bacteria extraction method, the
analytical method, and sensitivity (LOD and linear range) are included in Table 2. In most
cases, when an enzyme was used to extract the template from the polymer during MIP-
based sensor design, that enzyme was lysozyme. Meanwhile, a similar enzyme, trypsin,
was employed in this study.

Table 2. Summary of the MIP-based sensors for Listeria monocytogenes and other bacteria.

Bacteria Electrode Polymer Bacteria Extraction
from the Polymer Method Used LOD, LOQ and Linear

Range (LR) Ref.

Listeria
monocytogenes -

Acryloyl-
functionalised

chitosan with CdTe
quantum dots

10% acetic acid, 1% SDS,
water, and methanol

Fluorescence
microscope LOD 103 CFU/mL [32]

Listeria
monocytogenes GCE Poly(TPA) SDS/AA (w/v, 5%)

solution DPV LOD 6 CFU/mL;
LR 10 to 106 CFU/mL [33]

Listeria
monocytogenes

GCE with
MXenes

nanoribbon
(Ti3C2TxR)

Poly(Th) with 0.5 M HCl DPV LOD 2 CFU/mL;
LR 10 to 108 CFU/mL [34]

Klebsiella
pneumoniae SPE

Acrylamide-based
polymer with
carbon or gold

or rGO

10% acetic acid for
30 min

CV in PBS with a
redox probe

LOD of 0.012 CFU/mL
and LOQ of

1.61 CFU/mL
[51]

Klebsiella
pneumonia

ITO coated
glass electrode

Ppy obtained by the
interfacial oxidative

polymerisation
process

DI and ethanol
DPV and CV in

PBS with a
redox probe

LOD of 1.352 CFU/mL [52]
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Table 2. Cont.

Bacteria Electrode Polymer Bacteria Extraction
from the Polymer Method Used LOD, LOQ and Linear

Range (LR) Ref.

Salmonella GCE Ppy with MXene
SDS/acetic acid (5%,
w/v) for 5 min and
washed three times

EIS LOD of 23 CFU/mL [53]

Pseudomonas
aeruginosa QCM electrode Overoxidised Ppy

With lysozyme
(10 mg/mL) for 2 h at
4 ◦C and 10% Triton X

for 80 min

QCM LOD 103 CFU/mL [54]

Escherichia coli
and

Pseudomonas
aeruginosa

QCM electrode Overoxidised Ppy

Lysozyme (10 mg/mL)
containing 10% Triton X
and EDTA (200 µg/mL)

for 1 day at
room temperature

QCM - [55]

Escherichia coli
(serotypes
O157:H7

and O26:H11)

QCM sensor Overoxidised Ppy
Lysozyme (30 mg/mL)
and 5% SDS for 48 h at

30 ◦C
QCM - [56]

Escherichia coli Gold electrode
Polymer of MAH,

HEMA,
and EGDMA

10 mM sodium
phosphate buffer

(pH 7.4) and treated
with 10 mg/mL

lysozyme solution (in 10
mM Tris-HCl buffer, pH
8.0, with 1 mM EDTA)

for 30 min

Capacitance
measurements in

a continuous
flow system

LOD 70 CFU/mL,
LR 1.0 × 102–

1.0 × 107 CFU/mL
[57]

Escherichia coli
K-12 GCE Polymer of 2-APBA

and ANI

2 h treated with 2 mg
mL−1 lysozyme enzyme
in PBS (pH 1/4 7.4), 10%

Triton X, water, and
then overoxidised

DPV, EIS - [58]

Saccharomyces
cerevisiae

(Bakers’ yeast)
QCM Polyurethane Hot water QCM LOD 1 × 104 cells/mL [59]

Staphylococcus
epidermidis Gold electrode Poly(3-APBA)

30 min with fructose (20
mM), plenty of water,

and phosphate solution
(pH 2.2) for 20 min

EIS LR 103–107 CFU/mL [60]

Bacillus subtilis
endospore GCE polypyrrole/poly(3-

methylthiophene)
In DMSO for 10 min at

room temperature CV and EIS - [61]

SPE—screen-printed electrode; rGO—reduced graphene oxide; redox probe—K4[Fe(CN)6]/K3[Fe(CN)6];
ITO—indium tin oxide; DPV—differential pulse voltammetry; GCE—glassy carbon electrode; SDS—sodium
dodecyl sulphate; 3-APBA—3-aminophenylboronic acid; GCE—glassy carbon electrode; MAH—N-methacryloyl-
L-histidine methylester; HEMA—2-Hydroxyethyl methacrylate; EGDMA—ethyleneglycol dimethacrylate;
2-APBA—2-aminophenylboronic acid; ANI—aniline; TPA—3-thiopheneacetic acid; SDS—sodium dodecyl sul-
phate; AA—acetic acid; Th—thionine; GCE—glassy carbon electrode.

4. Conclusions

This study involved the electrochemical modification of two types of electrodes,
namely, SPCE and Pt, with different Ppy layers, i.e., not imprinted (NIP-Ppy) and bacteria
Listeria monocytogenes imprinted (MIP-Ppy). The pulsed amperometric detection method
was used to evaluate the performance of MIP-Ppy/SPCE and MIP-Ppy/Pt electrodes. MIP-
Ppy/SPCE electrodes were found to be more effective in detecting Listeria monocytogenes in
terms of the substantial changes in current density. Furthermore, the study analysed the
efficiency of various template extraction solutions on the sensor’s sensitivity. The results
showed that the acetic acid solution was highly effective in removing imprinted bacteria
from the MIP-Ppy layer. MIP-Ppy/SPCE exhibited at least 12 times higher current density
than NIP-Ppy/SPCE. The current density increased around 3 times for MIP-Ppy/SPCE
designed by extraction of Listeria monocytogenes bacteria with trypsin compared to changes
in the current density registered by similarly treated NIP-Ppy/SPCE. Based on these results,
it can be assumed that an efficient MIP-Ppy-based sensor can be designed by extracting
bacteria using acetic acid and the proteolytic enzyme trypsin. The results showed that the
limit of detection (LOD) and limit of quantification (LOQ) of the MIP-Ppy/SPCE prepared
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using trypsin were 70 CFU/mL and 210 CFU/mL, respectively, within the linear range of
300 to 6700 CFU/mL.
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