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1 V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 117997 Moscow, Russia
2 Institute of Data Science and Digital Technologies, Vilnius University, Akademijos St. 4,

LT-08663 Vilnius, Lithuania; marijus.vaiciulis@mif.vu.lt
* Correspondence: markovic@ipu.rssi.ru

Abstract: Our objective is to survey recent results concerning the evolution of random networks and
related extreme value statistics, which are a subject of interest due to numerous applications. Our
survey concerns the statistical methodology but not the structure of random networks. We focus on
the problems arising in evolving networks mainly due to the heavy-tailed nature of node indices. Tail
and extremal indices of the node influence characteristics like in-degrees, out-degrees, PageRanks,
and Max-linear models arising in the evolving random networks are discussed. Related topics
like preferential and clustering attachments, community detection, stationarity and dependence of
graphs, information spreading, finding the most influential leading nodes and communities, and
related methods are surveyed. This survey tries to propose possible solutions to unsolved problems,
like testing the stationarity and dependence of random graphs using known results obtained for
random sequences. We provide a discussion of unsolved or insufficiently developed problems like
the distribution of triangle and circle counts in evolving networks, or the clustering attachment and
the local dependence of the modularity, the impact of node or edge deletion at each step of evolution
on extreme value statistics, among many others. Considering existing techniques of community
detection, we pay attention to such related topics as coloring graphs and anomaly detection by
machine learning algorithms based on extreme value theory. In order to understand how one can
compute tail and extremal indices on random graphs, we provide a structured and comprehensive
review of their estimators obtained for random sequences. Methods to calculate the PageRank and
PageRank vector are shortly presented. This survey aims to provide a better understanding of the
directions in which the study of random networks has been done and how extreme value analysis
developed for random sequences can be applied to random networks.

Keywords: random network; evolution; PageRank; Max-linear model; tail index; extremal index;
community detection; preferential attachment; clustering attachment; information spreading; leading
nodes

MSC: 62G32; 90B15

1. Introduction

The study of power-law real-world random networks attracts significant attention due
to the many fields of their application, e.g., citation, phone-call, cellular, urban transport,
and economic trade networks, among others [1–3]. Several monographs [4–7] have certainly
contributed to basic concepts of random network theory and practice. “Real networks differ
from random graphs in that often their degree distribution follows a power-law” [1]. Heavy-
tailed distributions are accepted as realistic models for many phenomena in random networks
and graphs. Among the recent applications, we find graphical models that are used to
model extremal dependence or causality between events [8,9], including a bond percolation;
see [10] among others. The distributions of various extremal characteristics of random discrete
structures, such as the maximum number of common neighbors of a set of vertices in the
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graph, the maximum codegree, and the maximum number of cliques sharing a given vertex
in binomial random hypergraphs, are derived in [11,12].

In our survey, we focus on the standard configuration model, i.e., a model of a random
graph with arbitrary degree distribution [13]. Let us denote sets of nodes (or vertices)
and edges as V(n) and E(n), respectively, their cardinality as ‖V(n)‖, ‖E(n)‖, and the
number of edges as n. A graph is a pair of unordered sets G(n) = (V(n), E(n)). Our
survey concerns random graphs evolved using preferential or clustering attachment of new
nodes. Considering extremes in directed graphs, recent results in [14,15] concerning the
tail and extremal indices of non-stationary sums and maxima of regularly varying random
variables (r.v.s) are represented in the new context of evolving directed random graphs [16].
The relation between the tail and extremal indices of the latter sums and maxima and of
PageRanks and the Max-linear models is discussed in [16]. This novel approach allows us
to find the tail and extremal indices of PageRanks and the Max-linear models of random
graphs for attachment methods providing that the distribution tails of the latter measures
are regularly varying, e.g., the preferential attachment.

Special attention is devoted to the impact of the removal of vertices and/or edges
on a graph topology and the tail and extremal indices of node influence measures during
evolution. An important item of the latter modeling is a partitioning of graphs into
communities that constitute some node clusters. The nodes in the communities have
many mutual links and a few links with other communities. Such communities may be
considered independent or weakly dependent sets of nodes. The concept can be helpful for
the statistical analysis of real data.

Our objective is to survey results regarding extreme value statistics and the tail and
extremal indices for the graph enlargement and network evolution obtained in the literature.
The tail index shows the heaviness of the distribution tail of an underlying r.v. The extremal
index measures a local dependence or a cluster structure of a random sequence. It is used
to determine a limit distribution of the maximum of a stationary sequence of r.v.s [17,18].
To determine the extremal index of such node influence indices as PageRank and the
Max-linear model, it is proposed in [16] to consider the nodes as roots of elementary trees
with the nearest neighbor nodes. Then PageRanks and the Max-linear models of the roots
are calculated using sums and maxima of PageRanks of their nearest neighbors that have
in-coming edges to the roots. Using Theorem 1 in [16], the tail and extremal indices of
PageRanks and the Max-linear models are determined by the latter indices of the neighbor
nodes belonging to the most heavy-tailed communities of the network.

The attachment of new nodes usually begins from a seed network consisting of a single
node or node communities. The node indices in the communities may be heterogeneous.
The nodes of the graph cannot be definitely enumerated since V(n) is an unordered set.
This creates an obstacle to defining the stationarity in the graphs. In [19], it is determined
that “a graph is stationary if, for all finite sets of vertices with the same adjacency matrices,
the joint distributions of their in- and out-degrees are the same.” Tail and extremal indices
of sets of injected nodes considered in time depend both on the choice of the seed network
and the attachment policy. There are several open problems, namely, (1) how to define and
test the stationarity on graphs; and (2) how to determine the dependence on graphs, among
other problems. We survey results that may shed light on these problems.

An application related to network evolution is given with information spreading. The
survey of spreading methods is also given in the paper.

We start with our methodology and contributions in Section 2. A power-law distri-
bution and regularly varying distributions arising in random graphs, including evolving
ones, are recalled in Section 3. Regularly varying distributions of PageRanks and the
Max-linear models used as node influence indices are discussed, too. How to determine
and test the stationarity and dependence on random graphs is discussed in Section 4. We
review preferential and clustering attachment tools and distributions of triangle counts,
the topics related to the clustering coefficient, and the attachment probability, as well
as a short representation of other models of random networks in Section 5. Community
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detection and related topics like graph coloring and anomaly detection are discussed in
Section 6. In Section 7, a spreading of information in evolving graphs and its relation to
a preferential attachment are considered. Conclusions and a discussion are presented in
Section 8. Auxiliary materials are represented in the Appendices A–D.

2. Our Methodology and Contributions
2.1. Methodology

This survey focuses on the statistical methodology based on extreme value theory
and its application to evolving random networks rather than on the structure of random
graphs. We do not aim to fit graph models to the observed networks. Our objective is to
find heavy-tailed phenomena on random graphs. As the node influence indices such as
the in-degree, PageRank, and Max-linear model are heavy-tailed distributed, particularly,
if the preferential attachment is used for evolution, and each of the latter indices can be
dependent due to links between nodes, the described methods are based on the statistical
theory of extremes of random sequences, an asymptotic distribution of the maximum of a
finite number of r.v.s (see the Fisher–Tippet–Gnedenko’s theorem [17]).

The tail and extremal indices are key measures of the extreme value theory. To obtain
the latter indices of the PageRank and Max-linear model in the evolving graphs, we use the
results regarding the same indices for sums and maxima of random length non-stationary
random sequences derived in [14] and extended in [15]. To this end, communities of graphs
may be used as a series of r.v.s. To partition graphs into communities, one needs specific
algorithms. Considering existing techniques of community detection, we pay attention
to such related topics as coloring graphs and anomaly detection using machine learning
algorithms based on extreme value theory.

Sometimes, it is required that the node influence indices in the community have to be
stationary distributed, or communities with the smallest tail index have to be independent
or weakly dependent. Then tests of the stationarity and dependence are needed.

To estimate the tail index, we use bias-reduced estimators coupled with methods to
select a number of the largest order statistics related to the distribution tail.

To estimate the extremal index in random graphs, we use the interval estimator [20]
that is modified in [16,21]. Nonparametric estimators of the extremal index require , as
a rule, the selection of a threshold and/or another declustering parameter, e.g., a block
size [17]. A rather simple interval estimator needs only the choice of the threshold and
demonstrates a good accuracy.

Preferential and clustering attachments are considered to model the graph evolution.
The finding of leading communities for a fast information spreading presented in the survey
is based on methods proposed in [22,23].

2.2. Contributions

This survey is an attempt to summarize the achievements of many authors regarding
extremes in random graphs and to provide a structured overview of related topics like
community detection and attachment methods for graph evolution that are needed for our
approaches. Our achievements concern topics like the network classification and the choice
of leading communities using tail indices of communities, the tail and extremal indices
of PageRank, and the Max-linear model for evolving graphs with and without node and
edge deletion.

The survey tries to propose possible solutions to unsolved problems, like a testing of
stationarity and dependence of random graphs using known results obtained for random
sequences. We provide a discussion of unsolved or not sufficiently developed problems
like the distribution of triangle and circle counts in evolving networks, or the clustering
attachment and the local dependence of the modularity, the impact of node or edge deletion
at each step of the evolution on extreme value statistics, among many others. Tail index
estimators derived for random sequences are proposed to be adapted to random graphs.
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We also suggest machine learning methods for anomaly detection as partition methods for
community detection.

3. Heavy-Tailed Distributed Node Influence Indices
3.1. Definitions

Let us consider the in- and out-degrees as well as PageRanks and the Max-linear
models as node influence measures.

Let us begin with definitions. We recall that a discrete r.v. X exhibits a power-law
distribution if

P(X = k) ∼ Ck−(1+ι), k→ ∞, (1)

holds for some positive constants C and ι (an ∼ bn, as usual, means that the sequences an
and bn are asymptotically equal, i.e., an/bn → 1, n→ ∞).

From (1) it follows that ∑∞
k=n+1 P(X = k) ∼ (C/ι)n−ι, as n→ ∞; see, e.g., Ref. [24] for

details. This fact, together with (1), implies that the power-law distribution satisfies a von
Mises-type condition

lim
n→∞

nP(X = n)
∑∞

k=n+1 P(X = k)
= ι.

Thus, using Theorem 3 in [25], a discrete distribution satisfying (1) belongs to the class
of distributions whose right tail F̄(x) := 1− F(x), where F(x) denotes the cumulative
distribution function and is regularly varying at infinity with index −ι (the notation is
F̄ ∈ RV−ι), i.e.,

lim
t→∞

F̄(tx)
F̄(t)

= x−ι

for all x > 0. If F̄ ∈ RV−ι, then it is always possible to represent F̄(x) as `(x)x−ι, where
`(x) is a slowly varying function (`(x) ∈ RV0), i.e., by definition limx→∞ `(tx)/`(x) = 1
for any t > 0, see e.g., p. 13 in [26].

Using [18], p. 67, a stationary sequence {Xn}n≥1 has an extremal index θ ∈ [0, 1] if for
each 0 < τ < ∞ there is a sequence of real numbers un = un(τ) such that

lim
n→∞

n(1− F(un)) = τ, lim
n→∞

P{Mn ≤ un} = e−τθ (2)

holds for Mn = max{X1, . . . , Xn}. Independent identically distributed (i.i.d.) r.v.s {Xn}
provide θ = 1. The converse may be incorrect. The reciprocal of θ approximates a mean
cluster size, i.e., the mean number of exceedances over a threshold per cluster. Then,
the cluster of exceedances may imply a block of data with at least one extreme observation
(an exceedance) over a high threshold [17].

PageRank vector R = (R1, ..., Rn) used using search engine Google is determined as
the unique solution to the system of linear equations [27]

Ri = c ∑
j:(j,i)∈En

Rj

Dj
+

c
n ∑

j∈D
Rj + (1− c)qi, i = 1, . . . , n. (3)

Here, the first sum is taken over pages j that are linked to page i (the in-degree). Dj is
the number of outgoing links of page j (the out-degree). D is a set of dangling nodes,
i.e., nodes without outgoing edges. c ∈ (0, 1) is a damping factor. q = (q1, q2, . . . , qn) is a
personalization probability vector (user’s preferences). It holds qi ≥ 0 and ∑n

i=1 qi = 1. n is
the total number of pages. The World Wide Web (WWW) is a huge interconnected graph
where nodes imply pages. The PageRank was designed to rank pages on the Web in such a
way that a page is important if many important pages have a hyperlink to it [28].

A Max-linear model [8] is obtained using the following expression

Ri =
∨

j:(j,i)∈En

AjRj ∨Qi, i = 1, . . . , n, (4)
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where {Qi} are independent continuous r.v.s.

3.2. Power-Law of In- and Out-Degrees

Power-law distributions with different exponents of a node’s in- and out-degree in
evolving networks are approved by numerous theoretical and empirical studies [1]. A
preferential attachment (PA) (see details in Section 5.1) is suggested to explain conjectured
power-law degree distributions in real networks [2]. Tail indices of in- and out-degrees and
the power-law model of their asymptotic distributions were obtained in [29,30] depending
on parameters of specific linear PA schemes named α−, β− and γ− schemes that are used
for growing networks. Namely, these tail indices are obtained as

αin =
1 + δin(α + γ)

α + β
, αout =

1 + δout(α + γ)

β + γ
, (5)

where nonnegative parameters of the PA schemes (α, β, γ, δin, δout) are such that α + β + γ = 1,
see Section 5.1 and formula (2.9) in [30]. A joint distribution of the in- and out-degrees is
derived to have jointly regularly varying tail [29]. As far as we know, the tail index of the
PageRank is not yet obtained in the literature. In [31], the existence of the limit of a graph in
a local weak convergence sense was derived for directed graphs, but a power-law tail of the
PageRank of the root in the limiting graph (that is not a branching tree) is not yet proven.

The distributions of in-degree and the PageRank are found to be similar [32]. Assuming
the weak degree correlations in the Web graph, the PageRank vector may be approximated
using the node in-degrees sufficiently accurate [32]. A statistical analysis of Web graphs has
shown that distribution tails of the in-degree and the PageRank are a power-law (1) with
the same exponent ι ≈ 1.1, Ref. [33]. The in-degree is available statistics that are gathered
using a search engine. Then it is easier to use the in-degree rather than the PageRank
in practice.

The node degree exponent ι of several networks was found to satisfy ι ∈ (2, 3) [34].
Uniform random graphs with specified degree sequences are commonly used to model
(power-law) real-world networks (see, Refs. [35,36] for a survey). In [37], a graph Hamilto-
nian is proposed as a method to model heterogeneous clustered graphs.

3.3. Regularly Varying Distributions of PageRanks and Max-Linear Models
3.3.1. PageRank and Max-Linear Model as Solutions of Fixed-Point Problems

Heavy-tailed regularly varying limit distributions of PageRank were derived in [38,39],
for static networks without any evolution in time. A similar result has been derived in [40] for
the Max-linear model.

The latter papers exploit a probabilistic approach to study (3). A Web page that is
randomly chosen in a Web graph is then represented as a root of a Galton–Watson tree with
random in- and out-degrees. Its PageRank can be modeled as an r.v. R. The latter is the
solution of the following fixed-point problem [28,38,39,41]

R =D
N

∑
j=1

AjRj + Q. (6)

In [39], {Rj} are assumed to be i.i.d. copies of R. A personalization value of the vertex
is assumed to have a bounded expectation E(Q) < 1. N means the in-degree. All r.v.s
in the triple (Q, N, {Aj}) are real-valued. =D denotes equality in distribution. The A′is
are random coefficients that equal c/Di in [39]. Di are the node out-degree such that
Di ≥ 1 Let us recall the following Assumptions A. {Rj} are i.i.d. and independent of
(Q, N, {Aj}) with {Aj} independent of (N, Q). N and Q can be mutually dependent. Then
it is stated in [38,39] that the stationary distribution of R in (6) is stated to be regularly
varying, and its tail index is determined using the most heavy-tailed distributed term in
the regularly varying distributed pair (N, Q). Considering iterations of the PageRank, the
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initial distribution of R(0) impacts on the heaviness of the tail of the kth iteration R(k) of the
PageRank (see, Ref. [39], Theorem 3.2).

The latter results were extended in [42]. The unique solution of (6) is proven to be
intermediate regularly varying. The class of intermediate regularly varying distributions
such that limα↑1 lim supx→∞ F(αx)/F(x) = 1 includes regularly varying distributions. if Q
or N has an intermediate regularly varying distribution, or (Q, N) has a two-dimensional
regularly varying distribution. The multivariate version of (6)

R(i) =D
K

∑
k=1

N(k)(i)

∑
m=1

Rm(k) + Q(i),

where Rm(k) =D R(k) holds, is considered subject to similar independence assumptions
and regularly varying statements, assuming that N(k)(i) is a number of type-k children of a
type-i ancestor and considering a multi-type Galton–Watson tree.

Under Assumptions A the power-law tail P{|R| > x} ∼ Hx−ι, ι > 0, H > 0 as x → ∞
of the so-called “minimal/endogeneous” solution of the equation

R =D

 N∨
j=1

AjRj

 ∨Q, (7)

is derived in [40] without a specification of ι.

3.3.2. PageRank and the Max-Linear Model as Sums and Maxima of Non-Stationary
Sequences of Random Lengths

The reciprocal of the extremal index of random sequences is the limiting mean cluster
size in the point process of exceedance times over a high threshold, i.e., the mean number
of exceedances per cluster. The cluster may imply a block of data with at least one extreme
observation (an exceedance) over a sufficiently high threshold [17].

The random lengths sum and maximum at the right-hand sides of (6) and (7) were
considered in [16] omitting the independence Assumptions A. Based on results in [14,15], it
is derived in Theorem 1 of Ref. [16] that the tail and extremal indices of PageRank and the
Max-linear model of newly appended nodes in evolving networks are determined using
the latter indices of the most heavy-tailed community(ies), i.e., the communities with a
minimum tail index. This result also allows us to classify newly appended nodes. Ranking
the communities in ascending order of their tail indices, a new node is assigned to class i if
it has at least one link to nodes of the community i. If the new node has links to different
communities, then the i is a minimum number. In terms of citation networks, it means,
for instance, that PageRank and the Max-linear model of a set of books cited by papers from
the “dominating” communities having the minimum tail index inherit the same minimum
tail index if the communities are independent or weakly dependent [16]. It is reasonable
that the random number of “dominating” communities be bounded. There exists a “top”
community among the “dominating” ones such that its maximum PageRank is the largest.
Then the Max-linear models of the cited papers published earlier have the extremal index
of the “top” community. If the communities with the minimum tail index are independent
or weakly dependent, then PageRanks of the cited papers have the same extremal index as
the “top” community. If the “dominating” community is unique, then PageRanks and the
Max-linear models of the cited papers have its tail and extremal indices.

In [15,16], {Yn,i : n, i ≥ 1} is a double-indexed array of nonnegative r.v.s such that
the “row index” n indicates the time, and the “column index” i enumerates the series. The
length Nn of “row” sequences {Yn,i : i ≥ 1} for each n is random. For each i the “column”
sequence {Yn,i : n ≥ 1} is assumed to be strict-sense stationary with extremal index θi and
having a regularly varying distribution tail

P{Yn,i > x} = `i(x)x−ki
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with tail index ki > 0 and a slowly varying function `i(x). There are no assumptions about
the dependence structure in i. For a better understanding, we represent the matrix of
{Yn,i : n, i ≥ 1} as 

cY1,1 cY1,2 cY1,N1 . . . 0 0
cY2,1 0 cY2,3 . . . cYn,N2 0
. . . . . . . . . . . . . . . . . .
0 cYn,2 cYn,3 . . . 0 cYn,Nn

, (8)

(
k1 k2 k3 . . . . . . kNn

θ1 θ2 θ3 . . . . . . θNn

)
,

where {ki} and {θi} denote the tail and extremal indices of the “column” series in (8).
Ref. [14] contains a simple result concerning the weighted sums and maxima over the “row”
random-length sequences

Y∗n (z, Nn) = max(z1Yn,1, . . . , zNn Yn,Nn),

Yn(z, Nn) = z1Yn,1 + · · ·+ zNnYn,Nn , z1, z2, ... > 0.

If the “column” series with a minimum tail index is unique, let us say, k1, then the tail
and extremal indices of both Y∗n (z, Nn) and Yn(z, Nn) are equal to k1 and θ1.

A random number d of the “column” series with a minimum tail index, which is
plausible in random graphs, is considered in [15], Theorem 4. If the d “column” series are
mutually independent, and independent of the remaining “columns,” or weakly dependent
(assumptions (A1) and (A2) in [15], respectively), and Nn and {Yn,i} are independent, then
Y∗n (z, Nn) and Yn(z, Nn) have the same tail index k1. Let us recall the latter assumptions for
a fixed d > 1 proposed in [15].

(A1) The stationary sequences {Yn,i}n≥1, i ∈ {1, . . . , d} are mutually independent, and in-
dependent of the sequences {Yn,i}n≥1, i ∈ {d + 1, . . . , ln}.

(A2) Assume {Yn,i}n≥1, i ∈ {1, . . . , d} satisfy the following conditions as x → ∞

P{Yn,i > x}
x−k1`1(x)

→ ci, i ∈ {1, . . . , d},

for some non-negative numbers ci,

P{Yn,i > x, Yn,j > x}
x−k1`1(x)

→ 0, i 6= j, i, j ∈ {1, . . . , d}.

By assumption (A4) in [15,16] there exists i ∈ {1, . . . , d} such that it holds

P{ max
1≤j≤d,j 6=i

(zj M
(j)
n ) > un, zi M

(i)
n ≤ un} = o(1), n→ ∞, (9)

where

M(i)
n = max{Y1,i, Y2,i, . . . , Yn,i}, i ∈ {1, .., ln}, n ≥ 1

denotes the maximum over the ith “column” of (8). If (A4) holds, then Y∗n (z, Nn) has the
extremal index θi. Yn(z, Nn) has the same extremal index if, in addition to (A4), (A1) or (A2)
holds. The (A4) is valid for all d “column” series such that

M(1)
n ≤ M(2)

n ≤ ... ≤ M(d)
n (10)

holds.
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In [16], the results obtained in [14,15] are applied to evolving random networks.
To this end, the evolution starts from a seed network that is represented by matrix (8).
The following recursions

Y(m)
i,j = c

Ni

∑
s=j

Y(m−1)
i,s + Qi, (11)

X(m)
i,j =

c
Ni∨

s=j
X(m−1)

i,s

 ∨Qi, {X
(0)
i,j } ≡ {Y

(0)
i,j }, (12)

m, i, j ≥ 1, where m is connected with the time, are considered. Y(m)
i,j and X(m)

i,j build the jth

“column” series of the next generation matrix A(m) using A(m−1) starting by A(0). It may
be, for instance, the following

A(0) =


Y(0)

1,1 Y(0)
1,2 Y(0)

1,3 . . . 0 Q1

Y(0)
2,1 0 Y(0)

2,3 . . . Y(0)
2,N2

Q2

. . . . . . . . . . . . . . . . . .
Y(0)

n,1 Y(0)
n,2 Y(0)

n,3 . . . Y(0)
n,Nn

Qn

,

(
k(0)1 k(0)2 k(0)3 . . . k(0)N k(0)N+1

θ
(0)
1 θ

(0)
2 θ

(0)
3 . . . θ

(0)
N 1

)
.

{Qi} is a sequence of i.i.d. r.v.s. Hence, its extremal index is equal to 1.

Network communities as “column” series of A(0)

Network communities may be treated as columns of A(0).
Since the communities have random lengths, the columns in matrix A(0) may be

supplemented with zeros. A zero sth element in the ith row Y(0)
i,s , s ≥ 1 of A(0) implies

that the ith root node has no followers in the sth community or there is no link between
them; see Figure 1a. For example, if a row corresponds to a set of papers citing a book,
then zero implies that the book is not cited by a paper from the corresponding community.
Using Theorem 4 in [15], it is provedn in Theorem 1 in [16] that sums and maxima Y(m)

i,j and

X(m)
i,j at the mth step of the evolution inherit the corresponding tail and extremal indices

of the most heavy-tailed “column” series of A(0) for any m ≥ 1 under specific conditions.
The conditions are weaker for maxima over rows of A(0) than for sums. The maxima
require the condition (A4) (see, Formula (9)) that is valid for all d the most heavy-tailed
“column” series such that (10) holds. Considering the latter communities with the same
minimum tail index (that are not necessarily distributed the same way) as the “columns”
and taking into account that their order does not matter, one can conclude that (10) is
always fulfilled for maxima over communities.
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(a) (b)

Figure 1. The root nodes and their nearest neighbors (marked by open and filled circles, respectively)
where the community with the heaviest distribution tail is marked by a rectangle with a thick black
line (a). The scheme of communities as the “row” sequences and the representative node series as the
“column” series are demanded where the maxima and sums are taken over node influence indices
in the communities: representative series may be formed by ranking PageRanks of nodes in the
communities (reprinted from Figure 1a in [19]) (b).

Sums over rows of A(0) require the independence or weak dependence of the most
heavy-tailed “column” series (see, namely, conditions (A1) and (A2) in [15,16]) additionally
to (10). The number of the most heavy-tailed “column” series may be random. Theorem 1
in [16] is valid assuming that each row of A(0) contains at least one nonzero element in
the columns with the minimum tail index, i.e., the columns with the most heavy-tailed
distribution tail. Otherwise, the sums and maxima over rows will be non-stationary
distributed with different tail indices. Theorem 1 in [16] states that the limit distributions of
the recursions (11) and (12) are determined using the distributions of columns Y(0)

n,i : n, i ≥ 1.
The proposed approach is valid for any attachment method that leads to PageRanks with
regularly varying distribution tails, particularly, for a preferential attachment.

Example 1. The approach in [16] may be interpreted in terms of citation networks. Namely,
if newly published papers cite at least one paper from the most heavy-tailed communities published
earlier, then the Max-linear models of the new papers have the same tail and extremal indices of such
communities. If communities are weakly connected or disconnected, then the same result is valid for
the PageRanks of the new papers.

Network communities as “row” series of A(0)

From another side, network communities may be interpreted as rows of A(0);
see, Figure 1a in [19]. Such an approach has the advantage that sums and maxima over
communities may be considered independent or weakly dependent r.v.s. Testing of
the dependence on graphs is discussed in Section 4.3. The independent communities
simplify a tail index estimation of sums and maxima over the communities. Let us recall
that the communities are random length sub-graphs. The communities are allowed to be
non-homogeneous. Namely, their node PageRanks may be non-stationary distributed in
contrast to the previous case when the communities representing the most heavy-tailed
“column” series of A(0) are to be stationary distributed.

Using a simulation study, it was found in [19] that the tail indices of the sums and
maxima over communities are close to the minimum tail index of the representative series
extracted from the communities. The representative series can be formed by taking one of
the nodes of a community as a representative. To avoid numerous combinations, the ith
representative series was chosen using the ith PageRank maxima within each community.
Since communities have a random size, some nodes may fall into several representative
series, leading to their dependence. In case of different pair-wise dependency among
elements of the d > 1 “column” series (the representative series) with the minimum tail
index, the sums and maxima calculated over rows (communities) may be non-stationary
distributed [15]. The different pair-wise dependence between the members of the most
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heavy-tailed communities is very restrictive and indefinite since nodes in the communities are
unordered. In practice however, the representative series with a minimum tail index estimate
is likely unique. Thus, the mentioned pair-wise dependency is not required. The results of
the empirical study in [19] are in agreement with theoretical results in [14,15].

4. Stationarity and Dependence on Graphs
4.1. Interpretation of Stationarity on Graphs

In Section 3.3.2, the communities defined as the “column” sequences of matrices
(8) (or A(0)) have to be stationary distributed. Moreover, it is important to understand
whether there are communities with the same tail index. The same issue may concern to
representative series. The following questions arise. How can one interpret the stationarity
on random graphs? How does one test a deviation in the tail indices?

One of the ideas to check non-stationarity is to use data blocks. This approach is
usually applied to random sequences in different applications (see, e.g., Ref. [43]). To apply
this idea to random graphs, one can partition communities into subcommunities (blocks)
and estimate their tail indices, for instance, by methods recalled in Appendix A. Since the
number of communities is random, one can apply a random graph coloring and stochastic
decomposition methods of the symmetric adjacency matrix derived from the underlying
undirected graph; see [44–46] among others (see, Section 6).

Another idea is to use stationary distributed Markov chains like the Metropolis al-
gorithm (see, Refs. [47,48] among others) as sampling tools over networks and to test the
stationarity of the obtained random sequences of node indices in a classical way.

For layered networks considered in [49], the homogeneity for networks implies that
the replacing in the location and layer would lead to the same in-degree distribution.

4.2. Testing of a Change in the Tail Index among Communities

Here, we describe some tests applied to i.i.d. non-homogeneous random sequences
containing observations with different tail indices. The latter tests can be related to random
graphs within our vision.

In [43], an extreme value analysis for independent but non-identically distributed
observations is considered. Assuming continuously changing extreme value indices (EVIs)
(Assuming continuously changing extreme value indices (EVIs), the latter provide a non-
parametric estimate for the EVI functional γ(s), s ∈ [0, 1], based on the observations
X1, . . . , Xn. The (positive) EVI constitutes the reciprocal of the tail index). these observations
provide a non-parametric estimate for the EVI functional γ(s), s ∈ [0, 1], based on the
observations X1, . . . , Xn. The main idea in [43] is the following. The sample X1, . . . , Xn is
divided into blocks

X[(i−1)nh]+1, . . . , X[inh], i = 1, 2, . . . , [1/(2h)],

where each block contains [2nh] observations. [·] denotes the integer part and h = h(n)
is a bandwidth such that h → 0, nh → ∞ as n → ∞. To estimate γ(s), s ∈ [0, 1] locally,
Hill’s estimator [50] is applied to each of the [1/(2h)] blocks. Let γ̂i denote the Hill
estimate associated with the i-th block. Then the function Γ(s) =

∫ s
0 γ(u)du is estimated by

aggregating the local estimators γ̂i, i = 1, 2, . . . , [1/(2h)] as follows:

Γ̂(s) = 2h ∑
1≤i≤1/[2h]: i[2h]≤s

γ̂i, s ∈ [0, 1].

The global estimator Γ̂(s) can be used to test a pre-specified parametric trend in the EVIs,
see [43] for details.

Let

In = {In(v)}, On = {On(v)}, v ∈ V(n) (13)
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denote the sets of the in- and out-degrees of a directed graph (V(n), E(n)) at a time n. Due
to the unorderedness of the elements of the sets In and On, the estimation of the functional
tail index α(s) = 1/γ(s), s ∈ [0, 1] provided in [43] cannot be applied to random graphs
directly. However, the idea can be useful in the statistic of directed graphs. Let d(u, v)
denote the distance in terms of the number of links between the nodes u and v. We define
the h-neighborhood of node v ∈ V(n) as follows

Bn(v) = {u ∈ V(n) : d(u, v) < h · N(n)}, h ∈ (0, 1],

where N(n) is the number of nodes in the network at time n. If the cardinality of a set
Bn(v) is large enough (let us say, at least 500), we may obtain an estimate of the tail index
α(v) based on {In(u), u ∈ Bn(v)}. The set of estimates {α̂(v), v ∈ V(n)} built by disjoint
sets Bn(v) can be used for a preliminary analysis of the tail index behavior.

Assuming that the breakpoint of the tail shape behavior is known, a test for the null
hypothesis that the tail index is constant over time is constructed in [51]. Considering the
case with a single known breakpoint m, we have ”split” observations

X1, . . . , Xm, Xm+1, . . . , Xn

where X1, . . . , Xm are i.i.d. r.v.s from a distribution F1, for which F̄1 ∈ RV−α1 , while
Xm+1, . . . , Xn are i.i.d. r.v.s from a distribution F2, which satisfies F̄2 ∈ RV−α2 . Let us adopt
below a test of [51] to directed random graphs. It is worth noting that this test can be
adopted for undirected random graphs as well.

Let (V(n)′, E(n)′) and (V(n),′′ E(n)′′) be two non-intersected communities of (V(n), E(n))
with the corresponding sets of in-degrees I ′n = {In(v), v ∈ V(n)′} and I ′′n = {In(v), v ∈
V(n)′′}. In particular, the null hypothesis is

H0 : α1 = α2 = α,

where α1 and α2 are the tail indices of the in-degrees in I ′n and I ′′n , respectively. A modified
statistic of Phillips and Loretan

S =
k∗1(α̂2)

2(α̂1/α̂2 − 1)2

(α̂1)
2 +

(
k∗1/k∗2

)
(α̂2)

2 (14)

is represented in [52]. Here, α̂1 and α̂2 are estimates of the tail index computed using
Hill’s estimator α̂

(i)
in (k), i ∈ {1, 2} from observations I ′n (with the optimal choice k = k∗1 of

the k largest order statistics) and I ′′n (with the optimal choice k = k∗2), respectively. The
tail index estimation is described in Appendix A. Under the null hypothesis, statistic S
converges in distribution to an r.v. that is chi-squared distributed with one degree of
freedom. For example, at the 5% level of significance, the rejection region would be the
interval [3.841,+∞).

One can calculate nodes’ PageRanks (see, Appendix C) of communities for directed
graphs or node degrees for undirected ones instead of the in-degrees, and then check the
null hypothesis for pairs of the communities.

Note that the Hill estimator is weakly consistent for i.i.d. data; see [53]. The Hill and
the ratio estimators may be applied to dependent data [54,55]. We recall that the ratio
estimator introduced in [56] is a generalization of the Hill estimator (see Appendix A).
The asymptotic behavior of the Hill estimator when independent observations are from
non-identical distributions with comparable tails was discussed in [57]. The discussion of
the tail index estimation in the case of dependent and non-stationary data can be found
in [58]. There, in particular, a tail index estimator is proposed, whose construction is based
on the block maxima method. The latter is weakly consistent when observations are from a
non-stationary moving maxima model. One more application of the block maxima method
for tail index estimation can be found in [59].
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Although node indices within the communities are not i.i.d., the Hill estimation still works
in practice; see [19,30]. Its consistency for undirected graphs is proven in [60], but the result
regarding directed graphs remains, to the best of our knowledge, an unresolved problem.

4.3. Testing of Dependence on Graphs

Let us recall some methods which may be used to test the dependence of node influence
indices of two communities.

The ρ-correlated Erdős–Rényi (ER) model was proposed to capture correlations be-
tween ER graphs in [61]. A random graph ER where an edge is sampled in i.i.d. fashion
from a Bernoulli distribution with some parameter p is denoted as ER(p). One can calculate
a Pearson’s correlation coefficient of two r.v.s belonging to two graphs. Gij is a r.v. denoting
whether there is an edge between nodes i and j in graph G. Two graphs G and H are called
ρ-correlated ER(p, q) if G is ER(p), H is ER(q), and the r.v.s Gij and Hij have Pearson’s
correlation

ρ =
P{Gij = 1, Hij = 1} − pq√

p(1− p)q(1− q)

for all {i, j} ∈ ([n]2 ), where [n] denotes an integer part, ([n]2 ) denotes a binomial coefficient.
The null hypothesis of the graph independence test is ρ = 0, and the alternative is ρ 6= 0.

The Stochastic Block Model (SBM) generalizes ER graphs [4]. Using the SBM, which
is parameterized by the block probability matrix B ∈ [0, 1]k×k, where k is the number
of blocks, one can check the dependence between two communities [62]. For k = 1 a
SBM is ER. A block refers to a submatrix in the adjacency matrix formed by the edges
connecting every node in community i to every node in community j. The entry Bi,j
gives the probability of an edge from a node in community i to a node in community j,
for all i, j ∈ {1, . . . , k}. The prior estimate of the number of communities can be taken as k.
The choice of k is a sensitive point of the approach. One can generalize the ρ-correlated ER
to the ρ-correlated SBM.

In [63], it is shown that the sample Pearson correlation coefficient fails to capture linear
dependence between two random variables when their variances are infinite, which is
realistic for real-world networks. In such networks, it is important to measure degree–
degree dependencies for neighboring vertices. Examples where the Pearson coefficient
converges to zero in a network with strong negative degree-degree dependencies and an
example where this coefficient converges in distribution to an r.v. are provided. It is also
shown that Spearman’s ρ coefficient is able to reveal strong dependencies in large graphs.

A distance correlation is an extension of Pearson’s correlation both to linear and
nonlinear associations between two r.v.s or random vectors [64]. It takes values in [0, 1].
The independence corresponds to the distance correlation equal to zero. The distance
correlation is applied with a permutation test to check the dependence hypothesis because
the numeration of nodes is undefined. The distance correlation is calculated first for an
original pair of vectors. It is compared with those calculated with shuffles of these vectors.
Under a ρ-correlated SBM, a naive permutation and Pearson’s test for a conditional depen-
dency graph model is shown to be invalid in [64]. As an alternative, a block-permutation
procedure is proposed. The procedure is proved to be valid and consistent—even when the
two graphs have different marginal distributions.

One can measure dependencies in data of a power-law graph using statistical inference
for multivariate regular variation. To this end, the polar coordinate transform to the exam-
ined random vectors {Xi} and {Yi}, i = 1, . . . , n can be applied [30,55,65]. The empirical
distribution function (edf) of the angular coordinates for the k largest values of the radial
coordinate is calculated. The total dependence (or total independence) corresponds to the
concentration of the edf to π/4 (or, to 0 or π/2). In the case of bivariate data, a Resnick–
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Starica plot built with radii can be used to find a suitable value of k.
To detect the dependence between in- and out-degrees a polar coordinate transform

(Ia, O) →
(√

I2a + O2, arctan(O/Ia)
)
= (R, T)

is applied in [30] if the limiting random vector (I, O) ∼ F is jointly regularly varying.
Here, a = τin/τout is estimated in practice using the estimation of tail indices τin and τout
of in- and out-degrees. The conditional distribution P{T ∈ ·|R > r} → S(·) converges
weakly to the angular measure S(·). The edf of S(·) is calculated using the sample angles
Tn(v) = arctan(On(v)/In(v)â) for vertices v = 1, 2, . . . , N(n) of the graph G(n) at time
n for which radial coordinates Rn(v) > r exceed some large threshold r. In [30], the tail
indices are proposed to be estimated with the Hill estimator without a rigorous justifica-
tion of the latter for non-i.i.d. data. For the case of dependent data consisting of node
degrees from preferential attachment models, the consistency of the Hill estimator has been
shown in [60,66] but asymptotic normality of the Hill estimator in this setting remains an
open problem.

A conditional dependence is often considered in graphs. Suppose cycles of nodes
c1 and c2 may have joint vertices, but they do not have any edge in common. Then for
such c1 and c2 the r.v.s Yc1 and Yc2 are conditionally independent given the node weights
W1,. . . ,Wn [67]. Here, Yc denotes the indicator that c ∈ I(k) occurs as a cycle in the graph,
taking into account two orientations and k starting points, and I(k) denotes the set of
potential cycles of length k.

Conditional independence is tightly linked to graphical models [8,10,68–70]. Nodes in
graphical models are associated with variables, and the set of edges encodes the conditional
independence relations. Let X = (Xi)i∈I be a random vector, and XA = (Xi)i∈A⊂I denotes
the sub-vector. Then XA ⊥⊥ XB|XI\(A∪B) is denoted if XA and XB are conditionally indepen-
dent given XI\(A∪B). Let us consider disjoint subsets A, B, C of the set of vertices V of the
undirected graph G = (V, E). In terms of graphs, the conditional independence A ⊥⊥ B|C
implies that all paths from A to B pass through at least one vertex in C [68]. The conditional
independence relates to max-stable random vectors. vectors. A random vector X is called
max-stable if it satisfies the distributional equality anX + bn =D max(X(1), . . . , X(n)) for
independent copies (X(1), . . . , X(n)) of X for some normalizing sequences an > 0 and
bn ∈ R, where all operations are meant componentwise [70]. In [70], it is shown that for
a max-stable random vector with positive continuous density, conditional independence
implies unconditional independence.

Considering a sequence of random vectors X(n) = (X1(n), . . . , Xd(n))T ∈ Rd, where
d = d(n) is a sequence of positive integers, the distribution of the maximal component
of X and the distribution of the maximum of their independent copies are proved to be
asymptotically equivalent under certain weakly sufficient dependence conditions, i.e.,∣∣∣∣∣∣P{max

i∈[d]
Xi ≤ x} − ∏

i∈[d]
P{Xi ≤ x}

∣∣∣∣∣∣ → 0

for any fixed x ∈ R; see [11]. The notation [d] is used for the set of indices {1, 2, . . . , d}.
This property is called extremal independence. The latter means, in fact ,the fulfillment of
the max-stable property for the maximal component of X. As applications, distributions
of various extremal characteristics of binomial random hypergraphs, such as a maximum
codegree and a maximum number of cliques sharing a given vertex, are obtained in [11].

5. Network Evolution: Attachment Tools
5.1. Preferential Attachment

A PA, introduced by [71], is the most popular model of network evolution. It reflects a
natural attachment of newly appended nodes likely to the most influential ones, i.e., to those
with the largest node degrees. Usually, the attachment starts from a single node connected
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with itself (or a seed network) to evolve a network. The evolving network without node and
edge deletion can be represented as a sequence of graphs G(n) = (V(n), E(n)). Typically,
the PA leads to the sudden appearance of a giant connected component at a certain critical
point that is reflected in a heavy-tailed distribution of vertex degrees [30,72,73]. Using
a linear PA, a newly appending node can be attached randomly to an existing node i
with probability

PPA(i) = di/
||V(n)||

∑
s=1

ds

proportional to the degree di (or a number of nearest neighbors) of node i. Further gen-
eralization of the linear PA is given in [74], where a non-linear PA with the attachment
probability proportional to the function of the node degree PPA(i) ∝ f (di) is proposed.
A ∝ B means that A is directly proportional to B, i.e. there exists some constant k such
that A = kB. Particularly, the power function f (di) = dα

i , α > 0 is studied to generate
graphs. Two models of the PA probability for non-directed graphs that depend on the
preferential attachment function f (j), j ≥ 1 are proposed in [60]. Namely, a new node vn+1
may connect to one of the existing nodes vi ∈ V(n) with probability

f (Di(n)) + δ

∑n
i=1( f (Di(n)) + δ)

(Model A),

where f (j) is assumed to be deterministic and non-decreasing, Di(n) is the degree of vi in
the existing graph G(n), or

f (Di(n)) + δ

∑n
i=1( f (Di(n)) + δ) + f (1) + δ

(Model B),

where δ > − f (1) is a parameter. A fruitful discussion of Model A can be found in [60].
In particular, three cases of the preferential attachment function f are distinguished. If
f (j) = j, j = 1, 2, . . . , then Model A is called the linear preferential attachment model.
Degree frequencies have a power-law distribution in this case. The function f (j) = jβ,
β > 1 corresponds to a so-called super-linear case. We refer to [75] for a comprehensive
study of this model. Finally, by taking f (j) = jβ, 0 < β < 1, we consider a so-called
sub-linear case. Then the degree distribution is much light-tailed distributed in comparison
with the linear case.

The PA provides the “rich-get-richer” mechanism since earlier appended nodes may
increase the number of their edges further. The PA exhibits the scale-free and the small-
world properties [76]. Spatial versions exhibit geometric clustering [77,78]. The scale-free
property means that the degree distribution of such a network follows a power law for
large node degrees. To model large-scale networks, a class of random graphs is defined
in [79], which may show the small-world characteristics of “localized” clustering with a
longer range of connectivity. Such a graph may be considered as the superposition of many
subgraphs, each of whose subgraph contains only edges of a certain range k, which are
presented with a power-law probability.

The small-world property [80] implies that the graph distance between different net-
work nodes is typically short. The small-world phenomenon or “six degrees of separation”
(i.e., every pair of individuals in the world is separated by only six links on average) is
a fundamental issue in social networks where there is an abundance of short paths in
a graph whose nodes are people with links joining pairs of people who know one an-
other [80]. The small-world networks have two properties: small average path length
and a high clustering coefficient [5]. An ER network displays a very small average path
length as small-world networks, but fails in reproducing high clustering coefficients [5].
The Watts–Strogatz model is used in the small-world random network [81]. In this model,
if n is equal to the number of nodes, each node is connected to the number of k/2 closest
clockwise neighbors and also to k/2 closest counterclockwise neighbors. This produces
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a ring that is full of triangles for k > 2 and, thus, has a high clustering coefficient. The
geometric clustering affirms the property that a geometric vicinity of vertices results in a
higher probability of establishing an edge between them.

Nodes i and j may be connected with probability didj/ ∑
||V(n)||
s=1 ds, [73]. A kind of

PA with a Poisson random number of new edges to the new vertex is proposed in [73].
The procedure works as follows. First, considering a sequence of graphs Gn with possible
multiple edges and self-loops, one calculates the mean degree Λi over Gn of each node
i which is called capacity, i = 1, . . . , ||V(n)||. Then, each pair of nodes is connected,
independently of the other pairs, with E(i, j) edges, where E(i, j) has Poisson distribution
with parameter ΛiΛj/ ∑

||V(n)||
k=1 Λk.

The Spatial Preferential Attachment (SPA) model is introduced in [78]. This model
combines the geometry and preferential attachment by introducing “spheres of influence,”
which volume grows with the degree of a vertex. Then, the vertex degree distribution was
shown to follow a power law.

The linear α−, β−, and γ− PA schemes for directed graphs are proposed in [2]
and developed in [29,30]. The dynamics of this model depend not only on non-negative
parameters α, β, and γ, but on parameters δin > 0 and δout > 0 as well. A single directed
edge is added to a directed graph at each step of evolution with an appended new node.
A finite directed graph G(n0) is used as a seed network. It consists of at least one node v0
and n0 edges. A new node v is appended to the existing graph G(n− 1), n > n0, by adding
a single edge to G(n− 1). Thus, after n steps, G(n) will be a graph with n + n0 edges and a
number of nodes N(n) ≥ n + 1. The edge creation is provided by flipping a three-sided
coin with probabilities α, β, and γ such that α + β + γ = 1. An i.i.d. sequence of trinomial
r.v.s with values 1, 2, and 3 and the corresponding probabilities α, β, γ ≥ 0 are generated
to select one of the following schemes. Furthermore, In(v) and On(v) denote the in- and
out-degree of v.

1 (α−scheme) The edge v → w ≡ (v, w) ∈ E(n) directed from the new node v ∈ V(n)
to an existing node w ∈ V(n− 1) is created with probability α, while the existing node
w ∈ V(n− 1) is chosen with probability

In−1(w) + δin
n− 1 + δinN(n− 1)

. (15)

2 (β−scheme) An edge (v, w) is added to E(n − 1) with probability β and the existing
nodes v, w ∈ V(n− 1) = V(n) are chosen independently from G(n− 1) with probability(

In−1(w) + δin
n− 1 + δinN(n− 1)

)
·
(

On−1(v) + δout

n− 1 + δoutN(n− 1)

)
. (16)

3 (γ−scheme) An edge (w, v) from the existing node w ∈ V(n− 1) to the new node v is
created with probability γ. The existing node w is chosen with probability

On−1(w) + δout

n− 1 + δoutN(n− 1)
. (17)

It is remarkable that the latter schemes allow us to construct multiple edges and loops
in the graph.

5.2. Tail Indices of Node Influence Characteristics for Preferential Attachment

The tail indices of the in- and out-degrees of graphs evolved by the linear α−, β−, and
γ− PA schemes may be calculated using formula (2.9) in [30] (see also [29]):

αin =
1 + δin(α + γ)

α + β
, αout =

1 + δout(α + γ)

β + γ
,
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where marginals of the in- and out-degrees satisfy a power-law behavior

pin
i ∼ Cini−(1+αin) as i→ ∞,

pout
j ∼ Cout j−(1+αout) as j→ ∞

for some positive constants Cin and Cout. The parameters δin and δout of the PA method
(see, Section 5.1) can be estimated with the semi-parametric extreme value method (EV)
based on the maximum-likelihood method; see [30].

In [82], a generalized class of random graphs with common dynamics is considered.
At every time step, a new vertex appears in the graph, and it connects to m ≥ 1 existing ver-
tices with a probability proportional to a function of the degrees of the nodes f (di(n− 1)),
where di(n− 1) denotes the degree of vertex i in the graph PAn−1 obtained using the PA
with n− 1 vertices, and f (·) is some PA function. Regarding the original Barabási–Albert
model, which is the most popular random graph model for real-life networks, f (k) = k
holds. The function f (k) = k + δ, for some constant δ > −m, can also be found in ap-
plications. In this case, the power-law exponent of the degree distribution is given by
τ = 3 + δ/m, [7]. In general, every vertex may join the existing network with a random
number of edges that connects it to the existing vertices preferentially to their degrees.
In [83], it is shown that such a system also exhibits the power-law degree distribution.

The formulae of the tail index of PageRank and the Max-linear model are not yet
obtained to the best of our knowledge. In [19], tail indices of the PageRanks and the
Max-linear models of superstar nodes in graphs evolved using the linear PA (15)–(17)
are investigated with an empirical study. A superstar node within the community is
assumed to have incoming links from all nodes of the community. Such nodes may be
artificial, and they may not exist in the network. The sums and maxima of PageRanks
over communities may serve as PageRanks and the Max-linear models of superstar nodes,
respectively. It is shown that the tail indices of PageRanks and the Max-linear models of
superstar nodes are close, and they may be approximated by the minimum tail index of
PageRanks among representative series containing nodes taken within the communities
as their representatives. The novelty of study [19] is that the evolution without node and
edge deletion, with the uniform node deletion, and the uniform edge deletion has been
studied. Namely, one node or one edge can be deleted at each evolution step when a new
node is appended. The number of nodes in the graph is preserved if a node is deleted.
Estimates in [84] suggest that the quantity of nodes in the Web graph is growing by a few
percent a month. Thus, the mixed deletion policy can be plausible. It is found in [19] that
the distribution tails of the PageRanks and Max-linear models of superstar nodes become
heavier during the PA evolution without node and edge deletion. This means that the
superstars become “richer” and rarer. In contrast, the distribution tails of the PageRanks
and Max-linear models of superstar nodes become lighter by the evolution with a uniform
node or edge deletion.

In a traditional directed PA, every new edge is added sequentially into the network.
However, for real datasets, it can be realistic that several new edges are created at the same
timestamp. Previous analyses on the evolution of social networks reveal that after reaching
a stable phase, the growth of edge counts in a network follows a nonhomogeneous Poisson
process with a constant rate across the day but varying rates from day to day. Taking
this result into account, a new modification of the PA model with Poisson edge growth is
proposed in [85], and its asymptotic behavior is studied.

5.3. Clustering Attachment

A network may grow through attachment of nodes proportionally to the clustering
coefficients, or local densities of triangles of existing nodes. The clustering coefficient is
proposed in [13] where the clustering is determined as “the propensity for two neighbors
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of the same vertex also to be neighbors of one another, forming a triangle of connections in
the network.” The local clustering coefficient of vertices with degree k equals to

c(k) =
1

Nk

2∆k
k(k− 1)

(18)

for all k with Nk ≥ 1, where Nk denotes the number of vertices of degree k, and ∆k is the
number of triangles attached to vertices of degree k [35]. The local clustering coefficient
c(k) is not defined if Nk = 0, k ∈ {0, 1}. The asymptotic number of triangles for specific
graphs was obtained in [35,86]. The asymptotic behavior of c(k) for uniform graphs is
derived in [35] and for the SPA model in [87], see also Section 5.5.

Usually, one can observe only node connections, but the presence of a network geome-
try is not always evident. High clustering and triangle counts are not enough to indicate
the presence of geometry in the network since closely located nodes (like neighbors living
in the same district or working in the same office) may intensively communicate and build
triangles in the same way as nodes with high degrees, Ref. [86]. The extremal index cannot
reflect the network geometry by indicating a concentration measure of giant nodes as well.

Based on the clustering coefficient of an individual node, a clustering attachment (CA)
for undirected graphs is proposed in [88]. The attachment to an existing node i is proceeded
with a probability proportional to its clustering coefficient

PCA(i, t) ∝ cα
i,t + ε, (19)

where

ci,t =

{
0, ki,t = 0 or ki,t = 1,
2∆i,t/(ki,t(ki,t − 1)), ki,t ≥ 2,

where ci,t is the clustering coefficient, ki,t is the degree of node i, ∆i,t is the number of
triangles involving node i at a time t, ε is a constant probability for attachment, which may
be zero, and α ≥ 0 is a parameter of the model. x ∝ y means there is a non-zero constant C
such that x = C · y. Non-negative values of α are considered in [88].

For brevity, we omit further t in notations. Since ki(ki − 1)/2 is the maximum number
of triangles that may exist for node i, 0 ≤ ci ≤ 1 holds. In fact, ci and hence, PCA(i) are r.v.s.
Regarding the PA tool, the ith node degree may only increase, i.e., ki = ki + 1 upon attaching
to node i. For the CA one of two cases (ki → ki + 1, ∆i → ∆i) or (ki → ki + 1, ∆i → ∆i + 1)
is possible. With (19), one can see that even when a new triangle appears, the clustering
coefficient increases only if ki > (1 + a)2/(1− a2), where a = ∆i/(∆i + 1). In contrast to
PA, the CA does not feature a power-law distributed ki since attaching to a node i most
likely drives down the i’s probability for further attachment.

Another novelty introduced in [88] is that each new node may attach not only to one
of the existing nodes for the linear PA in [30] but to a fixed number m0 ≥ 2 of existing
nodes. This approach excludes the appearance of multiple edges. An existing node is
(uniformly) removed at each step of evolution when a new node is added to preserve a
constant number of nodes in the network in [88]. Removal of a node or an edge at each
evolution step impacts both ∆i and ki and influences the attachment probability to node i.

The CA causes clusters of consecutive exceedances of the evolving modularity over a
sufficiently high threshold [88] The modularity is a measure that allows us to divide graphs
into communities. It shows the connectivity of nodes in the community. More precisely,
regarding an undirected graph G = (V, E), the modularity Q of a partition C shows how
many edges exist within communities and between them [89]:

Q =
1
2s ∑

ij

[
Aij −

kik j

2s

]
1(i, j) (20)

Here, Aij is an element of an adjacency matrix (Aij = 0 if the edge between vertices i and j
does not exist and Aij = 1 otherwise), s = 1

2 ∑ij Aij = ‖E‖/2 is a half of the edge number
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in G, 1(i, j) is equal to 1 when nodes i and j belong to the same community, ki = ∑j Aij is
the degree of node i, Refs. [90,91]. In fact, s increases linearly as m0 ≥ 2 or it is constant
as m0 = 1 if one edge is removed at each evolution step, and m may remain constant,
or it decreases if one node is removed together with its edges. This evolution impacts
modularity.

The community detection using modularity maximization using the definition of (20)
is unable to find the community structure in networks with many small communities [92].
To overcome the problem, a generalized modularity function is proposed in [93] that can
be written in the form

Q =
1
2s ∑

ij

[
Aij − γ

kik j

2s

]
1(i, j), (21)

where γ is the resolution parameter. A similar generalization was proposed previously on
different grounds in [94]. What γ one should use is discussed in [92].

Regarding directed graphs the modularity can be easily formulated by

Qd =
1
s ∑

ij

[
Aij −

kin
i kout

j

s

]
1(i, j), (22)

where kin
i and kout

j denote the in-degree of node i and the out-degree of node j, respec-
tively [91].

Considering the change of the modularity at each evolution step, the extremal index
of the modularity sequence indicates the consecutive large connectivity of nodes within
the evolving communities, and thus, it reflects the evolution of the communities, [95].
Fluctuations of the modularity over time for α 6= 0 in (19) are far larger than for α = 0;
see Figure 1(b) in [88]. The modularity can become very large due to the sparsity in
the network.

Denoting the graph at evolution step t as G(t) = (V(t), E(t)), the probabilistic measure

PCA(i, t) =
cα

i (t) + ε

∑j∈V(t) cα
j (t) + ‖V(t)‖ε (23)

is used instead of (19). The case ε = 0 is specific. If, in addition, node i does not belong to
any triangle of nodes and ci = 0 holds not for all i ∈ V(t), then PCA(i, t) = 0 follows by
(23). It implies that new nodes cannot be attached to node i.

The simulation in Figure 2 shows that a cluster structure of the time series ψ(t) =
Q(t)/〈Q〉 − 1, where 〈Q〉 denotes the average over evolution steps over a time interval,
against evolution steps, t is very sensitive to node removals. The creation of a new triangle
leads to increasing modularity and, thus, to the appearance of its clusters of exceedances.
The CA evolution without node and edge deletion causes a kind of a barbell graph (see,
Figure 1 in [95]), i.e., a path of well-conducted cliques that are weakly connected with each
other due to bottlenecks. A uniform node deletion at each step of the evolution leads to a
large number of isolated nodes since the number of edges decreases due to node removal.
The modularity is nearly constant for α = ε = 0 due to a constant attachment probability
PCA(i, t) since per (23) it holds

PCA(i, t) =
1{ci,t > 0}+ ε

∑j∈V(t) 1{cj,t > 0}+ ‖V(t)‖ε , i ∈ V(t), α = 0. (24)

The extremal index of the evolving modularity and the tail index of node degrees were
estimated for a variety of parameters α and ε ∈ {0, 1} in (23) [95]. The smaller the extremal
index is, the larger the clustering (or local dependence) of a modularity sequence. Applying
different parameters of the CA both to the cases without the node and edge deletion and
with uniform node deletion, it is found that ε = 1 in (23) leads to stable large values of
the extremal and tail indices. This feature happens since the clustering coefficient does not
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impact the CA due to a dominating ε. It means a weak clustering of the modularity and a
light-tailed node degree distribution. Without the node and edge deletion, ε = 0 causes
decreasing extremal indices that are close to zero and increasing of the tail indices of node
degree as α > 0 increases [95]. With uniform node deletion, the extremal indices increase,
and node degree tail indices increase slower than for the case without edge and node
removal. It means that the node deletion leads to a weaker clustering of the modularity
and a heavier tail of node degrees than without node and edge deletion.

(a) (b)

(c) (d)

Figure 2. The evolution of the normalized graph modularity ψ(t) = Q(t)/〈Q〉 − 1, where 〈Q〉
denotes the average over evolution steps over the interval t ∈ [104, 5 · 104], against the CA evolution
steps; and spike trains denoting injections of new triangles when new nodes are appended and their
clustering coefficient cnew is equal to one: without node and edge deletion (a,b) and with uniform
node deletion (c,d) for m0 = 2 (reprinted from Figure 2 in [95]).

5.4. Other Models of Random Networks

Some other models to generate random graphs that may fit observed networks are
represented in [4,96,97].

In [96], the model is characterized by four stochastic discrete-time processes—the
creation processes for node- and edge-creation, and the deletion processes for node- and
edge-deletion. It is stated that random copying of edges is a simple stochastic mechanism
for creating a Zipfian degree distribution. More exactly, one adds links to a node v by
picking a random (other) node u in the graph, and copying some links from u to v. A node
is created or deleted independently at each step with some probabilities. With probability
β one adds k edges from node v to nodes chosen independently and uniformly at random.
With probability 1− β, one copies k edges from a randomly chosen node to v. The value k is
the parameter to be selected. If the out-degree of u is less than k, its edges are first copied to
v, and then by picking another random node u′ one can copy the required number of edges
from u′ to u until the number of edges of u will not be enough. The processes creating the



Mathematics 2023, 11, 2171 20 of 35

graphs differ from traditional graph models. However, the process of copying generates
complicated dependencies that make analysis very complex.

In [97] such models like a deterministic block model, the configuration random graph
model, d-regular random graph, a geometric random graph model apart from the ER,
and the SBM described in Section 4.3 are presented as a list of most common models.
In [4], much attention is devoted to spatial networks, e.g., the Spatially Embedded Random
Networks and the Waxman model.

Spectral density (i.e., the distribution of the graph adjacency matrix eigenvalues) and
its kernel estimator are used in [97] to find the best graph model for the observed network
in such a way that the divergence between the estimated spectral density and the known
limiting spectral density (or one obtained using Monte Carlo) will be the smallest. A rich
theory of the kernel estimators of probability density functions can be applied to spectral
densities in a similar way. As the divergence measure, one can take the `1 distance as in [97]
or the Kullback–Leibler measure as proposed in [98].

5.5. Triangle Counts and Local Clustering Coefficients

The number of triangles of connected nodes has been studied for specific models
of random graphs with known node degree distributions and in the context of different
problems.

Network geometry is an important feature of real-world networks since it explains
their scale-invariance, high clustering, and overlapping community structures. Indeed,
triangles may overlap in real networks. Intuitively, node connections can either be formed
between high-weight nodes, or between close-by nodes. When the node degree distribution
has a heavy tail, the triangles are formed by high weighted vertices. At the same time,
in geometric graphs similar vertices (which could represent people living in the same region
and having similar social interests) are likely to connect and form triangles [86]. In [86], it
is shown that the triangle counts {∆i} and an average clustering coefficient

Ct =
1
n ∑

i∈V(t)
ci,t (25)

for ‖V(t)‖ = n nodes, where the clustering coefficient ci,t of node i at the time t is de-
termined per (19), are not enough to detect the presence of geometry in the graph if the
node degree distribution has a sufficiently heavy tail. To show this, the inhomogeneous
random graph (IRG) and geometric inhomogeneous random graph (GIRG) were compared
as benchmark models. For the GIRG model, each node i was equipped with a weight hi and
a uniformly sampled position xi on a d-dimensional torus [0, 1]d endowed with the infinity
norm. Weights were sampled independently from the Pareto distribution with the density

ρ(h) = K1h−τ , τ ∈ (2, 3),

for any h > h0 > 0, where K1 is the normalized constant. Two nodes i and j are then
connected independently with probability

p
(
hi, hj, xi, xj

)
= K2 min

(hihj

µn
∥∥xi − xj

∥∥−d, 1
)γ

, (26)

for some γ > 1, where µ is the average weight, K2 is a correction factor, which ensures that
the expected degree of any vertex i is proportional to its weight hi. The IRG model is a
non-geometric one and it differs from the GIRG in the sense that the nodes possess only
weights hi, sampled from the Pareto distribution. They are connected with probability

p
(
hi, hj

)
= min

(hihj

µn
, 1
)

.
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Denoting the number of triangles in a graph G as ∆(G), the following asymptotic
results are derived in [86]

∆(G)

n3(3−τ)/2
P−→ AGIRG

for the GIRG, when τ < 7/3, and

∆(G)

n3(3−τ)/2
P−→ AIRG

for the IRG as n→ ∞, where AGIRG and AIRG are explicit constants that depend on model
parameters. Regarding the GIRG, ∆(G) scales as n, when τ ≥ 7/3 holds. Since the model
parameters, and hence, the constants AGIRG and AIRG, cannot be evaluated in practice, one
cannot detect the geometry by distinguishing the constants. Similar conclusions concern
the average clustering coefficient (25).

If the value of C does not vanish in n, then this indicates a geometry in the graph [86].
The average clustering in the GIRG is Ω(1), i.e., it does not vanish as n increases [99].
The asymptotic decay of C for non-geometric graphs depends on the tail index ι in (1),
and it may be very slow for some values of ι [86]. For example, C decays asymptotically
as nι−2 ln n for the IRG [7]. Then it is difficult to distinguish between the geometry and
non-geometry of the graph in practice.

An important notice is that for d = 1, γ = ∞ (γ is the parameter in (26)) the GIRG is
asymptotically equivalent to the hyperbolic random graph. Thus, the asymptotic results on
the GIRG stay valid for the hyperbolic random graph.

As an alternative to the triangle counts and clustering coefficients, Ref. [86] proposes
weighing triangles so that triangles with low evidence for geometry have a low weight.
The statistic

W = ∑
i,j,k∈V,i<j<k

1
didjdk

1{(i, j, k) = ∆},

where 1{(i, j, k) = ∆} is the indicator function of the event that the vertices i, j, k form a
triangle, is implemented in [86]. It is significantly greater for GIRGs (W = O(n)) than for
IRGs (W = O(1)), and hence, it may serve to detect the network geometry.

Another natural model for real-world networks is given using the uniform random
graph (URG). Given a positive integer n and a graphical degree sequence, a sequence of n
positive integers d = (d1, d2, . . . , dn), where ∑n

i=1 di ≡ 0(mod2), the uniform random graph
is a simple graph, uniformly sampled from the set of all simple graphs with degree sequence
(di)i∈[n], Refs. [35,36]. It is assumed that d is a realizable degree sequence, meaning that
there exists a simple graph with degree sequence d. Let G(d) denote the ensemble of
all simple graphs on degree sequence d, and let dmax = maxi∈[n] di, [n] = {1, 2, . . . , n}.
In [35], (di)n follows a power-law distribution with exponent τ ∈ (2, 3). If, in addition,
the empirical degree distribution Fn(j) = 1/n ∑i∈[n] 1{di ≤ j} satisfies Assumption 1:
(i) There exists a constant K > 0 such that for every n ≥ 1 and every 0 ≤ j ≤ dmax,
1− Fn(j) ≤ Kj1−τ ; (ii) There exists a constant C > 0 such that for all j ∈ O(

√
n), 1− Fn(j) =

Cj1−τ(1 + o(1)) holds [35], then the number of triangles in the URG follows

∆(G)

n3(3−τ)/2
P−→ − 1

12

(
πC(τ − 1)µ−(τ−1)/2

cos
(

πτ
2
) )3

,

where µ = E[d], and C is a constant. The result is similar to the number of triangles in
the erased configuration model, where all multiple edges of the configuration model are
merged, and all self-loops are removed

∆(G)

n3(3−τ)/2
P−→ − 1

12

(
C(τ − 1)µ−(τ−1)/2Γ

(
1
2
− τ

2

))3
.
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The local clustering coefficient c(k) averaging over the vertices of degree k was inten-
sively studied both theoretically and empirically. In real-world networks c(k) ∼ k−φ for
some φ > 0 is observed. The asymptotic behavior of c(k) in (18) is derived for the uniform
random graph in Theorem 2 in [35]. For small values of k, c(k) is independent of k. Then a
range of slow decay in k follows. When k�

√
n, c(k) decays as a power of k.

In [100], it is shown that c(k) can be well approximated using k−1 for four large
networks. In [34], φ = 0.75, and in [101], φ = 0.33 were obtained. In [87], it was proven for
the SPA model that both c(k) and a local individual clustering coefficient ci of a vertex i
(see, (19)) with a large enough degree k behave as k−1.

The convergence with rate O
(

n−1/2
)

in total variation between the distribution of
triangle counts and a Poisson distribution in generalized random graphs (GRG) is proved
using the Stein–Chen method in [67]. Let Wi > 0 be the weight of node i. The probability
of the edge between any two nodes i and j, for i 6= j, is equal to

pij =
WiWj

WiWj + ∑n
i=1 Wi

.

Self-loops are prohibited. The node weights {Wi}n can be taken to be either deterministic
or random. The ER random graph with pij = λ/n is a special case of the GRG, if Wi ≡
nλ/(n− λ) for some 0 ≤ λ < n. Let L(Y) be a distribution law of Y. For any integer-
valued non-negative r.v.s Y and Z, we denote the total variation distance between their
distributions L(Y) and L(Z) by

‖L(Y)−L(Z)‖ ≡ sup
‖h‖=1

|Eh(Y)− Eh(Z)|,

where h is any real function defined on {0, 1, 2, . . . } and ‖h‖ ≡ supm≥0 |h(m)|. Let Wi,
i = 1, 2, . . . , n be i.i.d. r.v.s distributed as a r.v. W. Let Sn(k) be the number of cycles of
length k ≥ 3 (cycles are triangles for k = 3). The main result per [67] (Theorem 1) states
that for k ≥ 3, one has

‖L(Sn(k))−L(Zk)‖ = O
(

n−1/2
)

, (27)

provided that
P(W > x) = o

(
x−2k−1

)
, as x → +∞.

Zk is a r.v. having a Poisson distribution with parameter λ(k) =
(
EW2/EW

)k/(2k).
Relation (27) is valid, if W has a power-law distribution or the moment EW2k+1 is finite.

6. Community Detection Methods and Related Topics
6.1. Partition into Communities

Graph clustering attracts interest from many authors with a different understanding
of what the cluster in the graph means [4]. The cluster is determined to be a smaller,
denser ER graph planted within an ER graph in [102]. Generally, the community detection,
or the graph clustering, consists of partitioning the vertices of a graph into clusters that are
more densely connected [45]. Communities may more generally refer to groups of vertices
that behave similarly [45]. Numerous existing methods for community detection relate
mostly to conductance [22,23] or modularity measures, [90–92,94] as well as to information
theory [103], and Bayesian generative models [104,105].

A Greedy Modularity Maximization Algorithm (GMMA) [90] is used to detect the
community structure quickly. To maximize the modularity, Loivan’s algorithm is applied
to non-directed graphs [106]. The directed Loivan’s algorithm with adapted modularity
(20) is used for directed graphs [91,107].
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The monitoring of the formation and evolution of communities in large social networks
like Twitter is an important problem. One can study evolving subgraphs corresponding to
a topical community. The conductance (see, Appendix D) quantifies how well or poorly
connected a subgraph is to the rest of the graph relative to its internal connections. The pa-
per [108] addresses tracking the conductance in real-time since the number of communities
that are active at any time is very large, and the rate at which the communities evolve
is very high. The minimum conductance might not be the best criterion for local graph
clustering [102]. The mean field analysis is based on an aggregation of Web pages into
classes according to pairs k = (kin, kout) of their in- and out-degrees and using averages of
PageRanks within each k-degree class to calculate the PageRank [109].

Most of the proposed methods to discover a community structure in networks are
unsuitable for very large networks because of their computational cost. The GMMA is
a hierarchical agglomeration algorithm for detecting communities, which is faster than
many competing algorithms: its running time on a network with n vertices and m edges is
O(md log(n)), where d is a depth of the “dendrogram” describing the community struc-
ture [90,110]. Since many real-world networks are sparse and hierarchical, with m ∼ n and
d ∼ log n, the GMMA runs in essentially linear time, O(n log2 n).

Some methods of community detection, including ones based on modularity, return
multiple plausible partitions rather than just one. Many of them are similar to one another,
differing only by a few nodes. In [111], it is proposed to cluster similar partitions into a
small number of groups and then identify an archetypal partition as a representative of
each group. This method allows the reduction of a number of partitions into communities.

Some cut-based methods and their relaxation in the form of spectral clustering for
separating the graph into K ≥ 2 groups—such that inside the group, the edge density is
higher than between two different groups—are considered in [4]. The Laplacian is used
instead of the adjacency matrix for spectral clustering. It is noted that the computation of
eigenvectors required for the spectral analysis has complexity O(n3) (n is the number of
nodes in the graph). In practice, when dealing with a sparse matrix whose eigenvalues
are well separated, the complexity can be close to O(Kn), where K is the number of
eigenvectors needed.

6.2. Related Topics
6.2.1. Coloring Random Graphs

A vertex coloring of the graph relates to the community detection color problem.
The related detection algorithms are based on the theory of random graph coloring and
stochastic decomposition methods of the symmetric adjacency matrix derived from the
underlying undirected graph; see [44–46,112] among others. Let us focus on directed
graphs with possibly non-symmetric adjacency matrices. A survey of polynomial time
algorithms that optimally color random k-colorable graphs (including the sparse ones) for
a fixed k ≥ 3 with high probability is given in [46]. The sparsity is governed by a parameter
p that specifies the edge probability. The latter probability may be determined using the
PA α−, β−, γ− schemes recalled in Section 5.1. In [46] a polynomial time algorithm that
works for sparse random 3-colorable graphs for a specific p is proposed.

The determining or estimating of the chromatic number χ(G) of a graph G, which is
the minimum number of colors in a proper vertex coloring, is also connected to the selection
of the number of communities in the random graph. The probable value of χ(G) is roughly
comparable with the average degree of the random graph, and it may be, therefore, much
higher than a fixed number of expected colors [44].

6.2.2. Anomaly Detection Using Machine Learning

Community detection and clustering are central problems in machine learning [45].
A comprehensive review of an extreme learning machine is given in [113]. In [114,115],
the machine learning algorithms based on extreme value theory are proposed to detect an
abnormal class of anomaly observations. Since a training set may not include all possible
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classes, one may distinguish between known normal data and unknown abnormal test
data. Considering a community to be a class may be used to test a new community not
observable before.

Let xi ∈ Rp be the training data that are labeled as a class yi ∈ {C1, . . . , CJ}, i = 1, . . . , n.
J ∈ N is the number of different classes in the training set. p ∈ N is the dimension of the
predictor space. The extreme value machine (EVM) introduced in [115] is based on the
concept of margin distance of a training point xi as half of the minimum distance between
xi and all the points belonging to a different class in the training data set:

M(i) = min
j:yj 6=yi

D(i)
j = min

j:yj 6=yi

‖xi − xj‖
2

.

A new point is classified as normal if it is inside the marginal distribution of some point in
the training set with high probability.

Using the equivalent representation M̄(i) = maxj:yj 6=yi (−D(i)
j ), it is proposed to use

the Fisher–Tippet–Gnedenko theorem to fit to the k largest observed −D(i)
j for each point

xi a Generalized Extreme Value (GEV) distribution

W(i)(z) =

{
exp{−

(
− z

σi

)αi}, if z ≤ 0,
1, if z ≥ 0,

assuming a zero upper endpoint. b∗ = sup{x ∈ R : F(x) < 1} denotes the right endpoint
of the distribution F(x). b∗ = 0 since M̄(i) is a negated distance. Here, αi ∈ R and σi ≥ 0
are the shape and scale parameters, respectively. The latter are to be estimated to obtain
Ŵ(i)(z). A new point x0 is assigned as normal, if

Ŵ(i)(−‖x0 − xi‖) ≥ δ,

and as abnormal otherwise, where a threshold δ is chosen by a heuristic formula.
The drawbacks of the EVM are that it strongly relies on the distances between dif-

ferent classes in the training set, the endpoint is assumed to be zero, σ is not rigorously
selected, and the EVM gives a non-justified premium to normal classes far from the others.
In contrast, in the generalized Pareto distribution classifier (GPDC) proposed in [114],
the training data are assumed to be sampled from only one class, the class of the normal
data points. This is a significant simplification. The upper endpoint is taken to be b∗ < 0.
The Euclidean distances are used for simplicity. The evaluation of a new point x0 re-
quires computing O(k log n) distances, where k is the biggest number of negated distances
−D(n), . . . ,−D(n+1−k), as far as the EVM needs O(n) distances.

To apply the latter algorithms to irregular community detection, one can calculate
the length of the shortest path between two nodes in links as the distance. To this end,
Dijkstra’s algorithm may be applied [116].

6.2.3. Classification of Newly Appended Nodes in Evolving Graphs

An algorithm to classify newly appended nodes in evolving graphs is proposed in
Algorithm 1 in [16]. It is based on results from [15], see also Section 3.3.2.

To this end, an initial directed graph with n > 1 nodes used as a seed network is
partitioned into communities. PageRanks of all nodes of the initial graph are calculated.
The tail and extremal indices of each community are estimated by non-parametric esti-
mators, e.g., the tail index using the Hill estimator [50] and the extremal index with an
intervals estimator [20], see Appendices A and B. The communities are ranked in ascending
order of their tail indices. A new node is assigned to Class 1 if it has a link to one of the
most heavy-tailed (“dominating”) communities with the minimum tail index k1. If the new
node has a link to communities with the next minimum tail index ki, i ≥ 2, and it is not
linked with communities with smaller tail indices, then it is assigned to Class i.
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The minimum tail index k1 and the extremal index θ1 of the “dominating” community
are assigned to PageRanks and the Max-linear models of the new nodes from Class 1, if the
“dominating” community is unique. If there is a random number of “dominating” commu-
nities, then the Max-linear models of the new nodes from Class 1 have the extremal index
of the “dominating” community with the maximum PageRank. If arbitrary enumerated
sequences of node PageRanks of the “dominating” communities are independent or weakly
dependent, more precisely, they satisfy conditions (A1) or (A2) (see, Section 3.3.2), then
the PageRanks of the new nodes from Class 1 have the same extremal index as Max-linear
models. The conditions (A1) or (A2) for the “dominating” communities provide the same
minimum tail index k1 for the PageRanks and the Max-linear models of the new nodes
from Class 1. Class 2 obtains the second minimum tail index corresponding to the next set
of communities in the range and the respective extremal index as in the previous case, and
in the same way, classes with numbers i > 2 obtain their tail and extremal indices.

Since the tail index is to be estimated, it is plausible to assume that the community
with the minimum tail index is unique. However, the tail indices may have close values.
One can apply a test statistic (14) to show that the tail indices of the communities are
likely different.

7. Leading Nodes for Information Spreading in Evolving Graphs

The influence maximization (IM)—the problem of finding a relatively small optimal set
of nodes that have the most influence—is central for many applications, e.g., in social and
computer networks for rapid information spreading [22,23] or for studying an epidemic
spreading in heterogeneous complex networks [117]. The IM term was first introduced
in [118], where a greedy optimization algorithm was proposed. At each stage of the
algorithm, the best spreader is chosen sequentially outside the current set of optimal
spreaders, which generates the largest increment in the influence of the set of spreaders.
The algorithm is computationally costly and can be applied to relatively small networks.

The information spreading, as a a delivery model of messages in the whole network
(the full spreading) [23] or in its part (the partial spreading) [22], may be applied to the
parallel grid calculations in computation networks. Using a SPREAD algorithm proposed
in [23] for undirected stationary graphs and assuming that all nodes have asynchronous
or synchronous clocks, a node i that initiates communication at time t is first selected.
The node i chooses the next node u randomly among nodes of the network by the global
clock tick that works according to a Poisson process. The node u sends all of the messages
it has to the node i. In [119], Algorithm 1, the SPREAD algorithm is modified for directed
graphs. It is assumed that a single message that has been at the disposal of an initial graph
or just a single node has to be spread to a fixed number of the rest nodes. The clocks of the
latter nodes are assumed to be asynchronous. The message can be sent from node i to node
j if there is a directed edge from i to j. Node j is selected uniformly with a node i among its
neighbors without the message. This is proposed to provide with probability Pij = 1/Oi,
where Oi denotes the out-degree of node i and sends its single message to node j.

Let G = (V, E) be an undirected connected graph of order n and (X1, . . . , Xn) be
a sample of node characteristics with a marginal cumulative distribution function F(u).
A standard graph index used for the leader election is the closeness centrality Cx of node x

Cx =
n− 1

∑y,y 6=x d(x, y)
, 0 < Cx ≤ 1, (28)

where d(x, y) is the shortest path (x, . . . , y) between nodes x and y [120]. If a node is closer
to other nodes, then its value Cx is closer to 1. Using the closeness centrality as a measure
of a node’s leadership, the relation between its extremal index and the minimal spreading
time is found using a simulation study in [21]. To determine the extremal index of the
community S, assuming that the latter index exists, a high quantile of F(x), the cumulative
distribution function of Cx, is taken as the threshold u∗. The community S is assumed
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to be a strict-sense stationary set with extremal index θ. The stationarity implies that the
distribution of all nodes of S remains the same irrespective of the numeration of the nodes.

In [21], the selection of a leading community in a network and the comparison of the
spreading time by the latter and other communities are observed using an example of
homogeneous geometric undirected graphs. In geometric graphs, two nodes are connected
if and only if the distance between them is less than a given radius r [4]. Such graphs
cannot describe real-world networks, where there are many nodes of low degrees and a
few nodes of extremely high degrees. It is found in [21] that a community with the same
extremal index as the entire geometric graph is a leading one and determines the minimal
spreading time of the entire graph.

In [119], the linear PA β− and γ− schemes proposed in [30] and recalled in Section 5.1
are applied to the information spreading purpose in directed graphs. The SPREAD algo-
rithm is also reconsidered for directed graphs. Both the PA and the SPREAD are applied to
non-homogeneous graphs. A message from one node is spreading to a given number of
nodes in the network. The PA may be a better spreader than the SPREAD algorithm. This
result is valid for the sets of the PA parameters with relatively small α. The latter means
dominating proportions of created new edges from existing nodes to newly appending
ones or between the existing nodes only. The information spreading is investigated both for
simulated and real non-homogeneous directed graphs generated by the PA with different
sets of parameters. Such graphs may contain cycles and multiple edges. It is found in [119]
that some nodes in the community with the smallest tail index of the out-degrees and
PageRanks may spread the message faster than other nodes.

In [121], it is proposed to divide the network into sectors of influence and then to
select the most influential nodes within these sectors.

8. Conclusions and Discussion

In our survey, we focus on the problems arising in evolving networks mostly due to
the heavy-tailed nature of node indices. Much attention is devoted to one of the authors’
results devoted to the tail and extremal indices of PageRanks and the Max-linear models
that are used as node influence indices in the evolving networks, as well as to the search
for leading nodes and communities that may spread the information faster than other
nodes in the network. The latter results are based on theoretical results regarding the tail
and extremal indices of sums and maxima of random-length non-stationary stochastic
sequences obtained in a series of the authors’ papers. Some results are obtained using
simulation studies due to their complexity and application to real-world networks.

Related topics like preferential and clustering attachments, community detection,
stationarity and dependence of graphs, information spreading, finding the most influential
nodes and communities, and concerning methods are surveyed.

There are many unsolved or not sufficiently developed problems yet, like the distribu-
tion of triangle and circle counts in evolving networks or the tail index of the PageRank,
among many others. The clustering attachment and asymptotic behavior of its characteris-
tics like node degrees and triangle counts, the local dependence of the modularity are not
yet well investigated. An application of well-known estimators of the extreme value index
(or the tail index) created for random sequences is not rigorously supported for random
graphs due to the non-homogeneity and dependence in real-world networks.

A future study may concern reconsideration of the same problems for evolving net-
works with node and edge deletion. A deeper study of the attachment models may lead
not only to power-law distributed node in- and out-degrees and heavy-tailed PageRanks
like preferential attachment tools but also to light-tailed distributed ones like the clustering
attachment model. More attention may be devoted to new influence measures like the
Max-linear model. A new challenge may appear due to the application of machine-learning
methods to community detection.

Our future research will concern a deeper study of the CA. We aim to investigate the
evolution of random undirected graphs using the CA without node and edge deletion and
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with uniform node or edge deletion, and to obtain an average clustering coefficient and an
attachment probability for the CA.

Author Contributions: Conceptualization, N.M.; methodology, N.M. and M.V.; formal analysis,
N.M. and M.V.; writing—original draft preparation, N.M.; writing Section 4.2, Appendix A, M.V.;
writing—review and editing, M.V. All authors have read and agreed to the published version of the
manuscript.

Funding: The reported study was supported by the Russian Science Foundation RSF, project number
22-21-00177 (recipient N.M. Markovich).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

CA Clustering attachment
i.i.d. independent identically distributed
IM Influence maximization
IRG inhomogeneous random graph
ER Erdös-Rényi graph
EVI Extreme value index
GEV generalized extreme value
GIRG geometric inhomogeneous random graphs
GRG generalized random graph
KS Kolmogorov-Smirnov
MDM minimum distance method
MSE mean squared error
RMSE square root of MSE
r.v. Random variable
PA Preferential attachment
POT Peak over Threshold
SBM Stochastic Block Model
SPA Spatial Preferential Attachment
URG Uniform random graph
URL Uniform Resource Locator
WWW World Wide Web

Appendix A. Tail Index Estimators

Let us consider a sequence of random graphs. Regarding graph G(n) at time n, where
N(n) is the number of nodes in G(n), the in- and out-degrees (13) of nodes are available
statistics for estimation. For the sake of brevity, we denote Iv = Iv(n), Ov = Ov(n).

Assume that the right tails of the marginal distributions of the in- and out-degrees
are regularly varying with indices −αin and −αout, respectively. Despite the in- and out-
degrees are integer-valued, one can accept distribution with regularly varying tail as the
relevant model for these r.v.s. This model is motivated by several papers; see [39,122,123]
among them. Empirical analysis of social network data shows that the degree distributions
follow power laws, and theoretically, this is true for linear preferential attachment models
(see [2]).

Hill’s estimator is a common way to estimate the tail index αin (the estimation of
αout similar) [50]. Let I(1) ≥ · · · ≥ I(N(n)) be the decreasing order statistics of Iv(n),
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v = 1, . . . , N(n). The semi-parametric statistics Mr(k), r ∈ {1, 2}, introduced in [124],are
based on the k largest degrees and have the form

Mr(k) =
1
k

k

∑
j=1

(
ln

(
I(j)

I(k+1)

))r

.

The above mentioned Hill’s estimator can be expressed via statistic M1(k) as follows
α̂
(1)
in (k) = (M1(k))

−1. Hill’s estimator is known to be consistent and asymptotically nor-
mally distributed for i.i.d. samples. The consistency of Hill’s estimator for some dependent
data is proven in [125]. The ratio estimator is a generalization of Hill’s estimator in the
sense that an arbitrary threshold level xn between some order statistics is used instead of
an order statistics I(k+1) in M1(k) [56].

We note that the estimators

α̂
(2)
in (k) =

(
M2(k)

2

)−1/2

, α̂
(3)
in (k) =

2M1(k)
M2(k)

can be considered a good alternative to the Hill estimator. The estimator α̂
(2)
in (k) has been

suggested in [126]. α̂
(3)
in (k) was introduced by de Vries; see [127].

The construction of the estimators α̂
(i)
in (k), i ∈ {1, 2, 3} is based on a peaks-over-

threshold (POT) approach, i.e., one selects those of the initial observations that exceed the
kth largest order statistic used as a certain high threshold. More POT-type estimators can be
found in [128]. There it was noted that the slope of the least squares line through the plot{(

− ln
(

j
N(n) + 1

)
, ln
(

I(j)

))
, 1 ≤ j ≤ k

}
is a weakly consistent estimator of αin when observations are i.i.d. r.v.s.

Let us assume now that nodes of directed graph G(n) are divided into non-overlapping
communities by some partition algorithm. That is, nodes in the graph belong to only one
community. Each community is nothing else but a subgraph of G(n). It is natural to
take several communities, say s, with the biggest number of nodes and to apply the Hill
estimator to each of them. Then the sample mean over the s communities

α̂
(4)
in (s) =

1
s

s

∑
i=1

α̂
(1,i)
in

(
k(∗)i

)
(A1)

is the estimator of parameter αin. Here, k(∗)i denotes the optimal choice (in the sense of
minimal asymptotic mean squared error) of a sample fraction k in the ith community. The
optimal choices k(∗)1 , . . . , k(∗)s can be computed by using a heuristic Eye-Ball method [129].
Another heuristic rule is picking a fixed percentage of the number of nodes in each commu-
nity, for instance, 5% of the upper-order statistics. These methods have a weak theoretical
foundation and might, therefore, not be robust. The minimum distance method (MDM)
to estimate the optimal choice k∗i is proposed in [130]. It is based on a computation of
the Kolmogorov–Smirnov distance between the empirical distribution tail of the upper k
observations and the power-law distribution (see also [30]). A mathematical analysis of the
MDM in a classical context, where data are assumed to come from an i.i.d. model, can be
found in [131].

In the context of the tail index estimation in random graphs, the number of nodes
within the communities may be different. Let us assume again that s communities with the
largest amount of nodes are taken and the ith community, 1 ≤ i ≤ s, contains mi nodes. Let
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I(i)
(1) ≥ · · · ≥ I(i)

(mi)
be the decreasing order statistics of I(i)1 , . . . , I(i)mi . By using only the ri + 1

largest order statistics I(i)
(j) , 1 ≤ j ≤ ri + 1, the estimator of αin is defined as

α̂
(5)
in (s) =

( s

∑
i=1

ri

)−1 s

∑
i=1

ri

∑
j=1

ln

 I(i)
(j)

I(i)
(ri+1)

−1

in [132]. Regarding i.i.d. data, assuming that {ri}, 1 ≤ i ≤ s are fixed, s = sn, sn → ∞,
n/sn → ∞, as n → ∞ and that the law of observations satisfies a classical second order
condition of regular variation, the estimator α̂

(5)
in (s) is asymptotically normal; see Theorem

2 in [132].
A generalization of α̂

(5)
in (s) can be found in [133]. There, considering the case of equal-

sized blocks and i.i.d. data it is shown that, in general, Hill’s estimator α̂
(1)
in (k) does not

have a better performance than the estimator proposed in [133].
The reasons for using the block type estimators are the following. The block type

estimators may be preferable against the POT estimators when the observations are not
exactly i.i.d. However, at most, the block type estimators are introduced by considering the
equal-sized blocks, and thus, their application to random graphs is quite restrictive.

The performance of Hill’s estimator α̂
(1)
in (k∗), where k∗ is chosen using the MDM,

was examined in [131]. There, data were simulated with a directed linear PA model, and
the estimation of the tail index of the limiting in-degree distribution was analyzed. It is
concluded in [131] that the estimator α̂

(1)
in (k∗) often works well on the linear PA models

under proper choices of parameters.
In [30], an empirical comparison of the EV model with two parametric approaches

for the linear PA model (15)–(17), namely, the maximum likelihood and snapshot meth-
ods, proposed in [134] can be found. The EV estimates use the before-mentioned Hill’s
estimator α̂

(1)
in (k∗) to estimate of the in- and out-degree tail indices (ιin, ιout) beforehand.

The estimation of the tail indices of in- and out-degrees (see Figure 4.1 in [30] for biases
comparison) gives the following conclusion. The estimator α̂

(1)
in (k∗) tends to have a much

larger variance than both the maximum likelihood and snapshot methods with slightly
more bias. The situation is different when data are simulated from the directed linear PA
model but corrupted by the random addition of edges. Then, the EV estimates for (δin, δout)
obtained by using Hill’s estimator exhibit a smaller bias than the maximum likelihood and
snapshot methods. By considering the directed linear PA model with randomly deleting
edges, the estimator α̂

(1)
in (k∗) also gives reasonable results. This allows us to conclude that

in the case when the model is misspecified, the semi-parametric estimators can provide an
attractive and reliable alternative to the parametric estimation.

Appendix B. Extremal Index Estimation

Among well-known estimators of the extremal index are the interval estimator by [20],
the K-gap estimator by [135], the sliding block estimators by [136,137], and the multilevel
blocks estimator in [138], among others. The latter estimators are applied to stationary
sequences {Xi}. The main parameter in these estimators requires the choice of a threshold
u. One of the high quantiles (i.e., those quantiles close to 100%) of the sample {Xi}i=1,...,n
is taken usually as u or u is selected visually corresponding to a stability interval of the
plot of some estimate θ̂(u) against u. Following [135], a list of pairs (u, K) is selected using
the information matrix test (IMT) in [139]. The semiparametric maxima estimators depend
on the block size only [136,137]. In order to select u, a discrepancy method based on the
Cramér–von Mises–Smirnov statistic ω2 and calculated with the k largest order statistics
of the underlying sample instead of the entire sample is proposed in [140]. Its asymptotic
distribution as k→ ∞ is proved to coincide with the ω2-distribution.
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Let us recall the interval estimator. Let T(u) imply the number of observations running
under u between two consecutive exceedances. L− 1 is the random number of the inter-
exceedance times {T(u)i}. For exceedance times 1 ≤ S1 <. . .< SL ≤ n it follows

T(u)i = Si+1 − Si, i ∈ {1, . . . , L− 1}. (A2)

The interval estimator is determined by [20]

θ̂n(u) =
{ min(1, θ̂1

n(u)), if max{T(u)i : 1 ≤ i ≤ L− 1} ≤ 2,
min(1, θ̂2

n(u)), if max{T(u)i : 1 ≤ i ≤ L− 1} > 2,
(A3)

where

θ̂1
n(u) =

2(∑L−1
i=1 T(u)i)

2

(L− 1)∑L−1
i=1 (T(u)i)2

, (A4)

θ̂2
n(u) =

2(∑L−1
i=1 (T(u)i − 1))2

(L− 1)∑L−1
i=1 (T(u)i − 1)(T(u)i − 2)

, (A5)

In [16,21], the interval estimator is modified for random graphs. To this end, we
consider influence node indices, e.g., PageRanks, as our data {Xi}. A numeration of nodes
in the graph does not matter. A high quantile of {Xi} can be taken as threshold u∗. We
mark nodes with exceedances, i.e., such that the event {Xi > u∗} holds. Then one can
calculate T(u∗) as the length of the path expressed in edges between two nodes whose
influence indices exceed the threshold u∗. All internal nodes along the path should have
the influence indices less than u. Having a set of such L paths {T(u∗)i, i ∈ {1, 2, . . . L}}, one
can calculate the intervals estimate of the graph per (A3)–(A5). Note that the numeration of
the paths is not required.

Appendix C. Calculation of the Pagerank and Pagerank Vector

There are numerous approaches to calculate the PageRank Ri of a randomly chosen
page v = i ∈ V in a Web graph G = (V, E). One of them is determined using the following
iteration

R̂(n,0)
i = 1, R̂(n,k)

i = ∑
j→i

c
Dj

R̂(n,k−1)
j + (1− c), k ∈ N, (A6)

proposed in [28,141], for a given uniform personalization vector qi = 1/n, 1 ≤ i ≤ n = ‖V‖.
R(n,k)

i denotes the scale-free version of the PageRank, i.e., R(n,k)
i = nRi of a node v = i.

j→ i implies that node j is linked to node i, i.e., (j, i) ∈ E. The iteration (A6) is proceeding
until the difference between two consecutive iterations ‖R(n,k)

i − R(n,k−1)
i ‖ in some metric

will be small enough, which is sufficient for a moderate number of iterations k.
The mean field method provides another important approach [109]. Its idea is to

average the PageRanks of nodes that are aggregated within classes according to their
degree κ ≡ (kin, kout). Such a class includes nodes with the same in-degree kin and the
same out-degree kout.

Analytical formulae for the PageRank vector were obtained in [142,143]. In [144] the
PageRank is calculated by a gradient procedure. In [145], the PageRank problem is solved
with a regularization method by decreasing the regularization parameter to ∼ 1/k, which
leads to a convergence rate with an order of 1/k for the kth step of the iterative algorithm.
In [146], a robust PageRank problem is stated as a saddle-point problem for solving convex–
concave optimization problems. It is solved using deterministic and stochastic Mirror
Descent algorithms with convergence rate ∼ 1/

√
k. The red light green light (RLGL)
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method proposed in [147] demonstrates exponential convergence. However, the problem
of the PageRank calculation is not the focus of the present survey.

Appendix D. Definition of Conductance

Let G = (V, E) be the graph with the number of vertices ‖V‖ and the number of
edges ‖E‖. The conductance measures the minimum relative connection strength between
“isolated” subsets {S} and the rest of the network [22,23,148]. In [148], the following
definition is provided. Let A be the adjacency matrix of a graph G. The conductance of a
set of nodes S is defined as

Φ(S) =
∑i∈S,j∈S Aij

min{A(S), A(S)}
,

where A(S) = ∑i∈S ∑j∈V Aij, or equivalently A(S) = ∑i∈S d(i), where d(i) is a degree
of node i in G. S denotes the complement of S. Then the conductance of the graph G is
determined with

ΦG = min
S∈V

Φ(S).
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