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ALGEBRAIC INTEGERS WITH SMALL POTENTIAL ENERGY

ARTŪRAS DUBICKAS

(Communicated by A. Filipin)

Abstract. In this paper we give a lower bound on the mean of squares of distances between
the points in two sets in terms of the products of distances between the points in each of those
two sets. These results imply lower bounds on the p th power ( p � 2) of the average distance
between the conjugates of an algebraic integer and of the same quantity between the conjugates
of a totally real algebraic integer.

1. Introduction

The weighted arithmetic and geometric mean inequality asserts that for any real
numbers a1, . . . ,am � 0 and any nonnegative weights w1, . . . ,wm satisfying

w1 + . . .+wm = 1

we have
w1a1 + . . .+wmam � aw1

1 . . .awm
m (1)

(see, e.g., [12]). In particular, for n � 2 and any x1, . . . ,xn ∈ C applying the standard
arithmetic and geometric mean inequality (when the weights wi in (1) are all equal
w1 = . . . = wm = 1/m) to m = n(n−1)/2 numbers of the form |xi − x j|2 , where 1 �
i < j � n , we have

2
n(n−1) ∑

1�i< j�n

|xi − x j|2 �
(

∏
1�i< j�n

|xi− x j|
) 4

n(n−1)
.

For n � 9 this inequality can be improved as follows:

THEOREM 1. For n � 9 and any x1, . . . ,xn ∈ C we have

2
n(n−1) ∑

1�i< j�n

|xi− x j|2 � C(n)
(

∏
1�i< j�n

|xi − x j|
) 4

n(n−1)
, (2)

where
C(n) :=

n(
2233 · · ·nn

) 2
n(n−1)

. (3)
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Moreover, if n � 2 and the numbers x1, . . . ,xn are all real then

2
n(n−1) ∑

1�i< j�n

|xi − x j|2 � 2C(n)
(

∏
1�i< j�n

|xi − x j|
) 4

n(n−1)
, (4)

with equality if and only if xi = aζi +b, where a,b ∈ R and ζ1, . . . ,ζn are the zeros of
the Hermite polynomial

Hn(x) =
�n/2�
∑
k=0

(−1)kn!
2kk!(n−2k)!

xn−2k = (−1)ne
x2
2

dn

dxn e−
x2
2 . (5)

It is easy to verify that C(n) > 1 for n � 9 and

C(n) ∼√
e = 1.64872 . . . as n → ∞. (6)

Inequality (4) (without describing the cases when equality holds) has been recently
established by Cherubini and Yatsyna [3, Theorem 1.5] by the method of Lagrange
multipliers. We will derive it directly from an old result of Schur [16, Satz 2], which
is stated as Lemma 7. Inequality (2) in a slightly different form has been obtained in
[5] by the method of Lagrange multipliers too (see also [6]). Here we give a much
more simple and straightforward proof. In [3], the sum ∑1�i< j�n |xi−x j|2 is called the
potential energy of the set {x1, . . . ,xn} .

We will also prove the following more general inequality about the mean of squares
of distances between the points in two sets:

THEOREM 2. For n,m � 2 and any x1, . . . ,xn,y1, . . . ,ym ∈ C we have

1
mn

n

∑
i=1

m

∑
j=1

|xi− y j|2 � (n−1)C(n)
2n

(
∏

1�i< j�n

|xi − x j|
) 4

n(n−1)

+
(m−1)C(m)

2m

(
∏

1�i< j�m

|yi− y j|
) 4

m(m−1)
.

Moreover, if x1, . . . ,xn,y1, . . . ,ym ∈ R then

1
mn

n

∑
i=1

m

∑
j=1

|xi− y j|2 � (n−1)C(n)
n

(
∏

1�i< j�n

|xi − x j|
) 4

n(n−1)

+
(m−1)C(m)

m

(
∏

1�i< j�m

|yi− y j|
) 4

m(m−1)
.

In particular, (2) and (4) follow from the corresponding inequalities of Theorem 2
by choosing n = m and xi = yi for i = 1, . . . ,n .

Applying Theorem 1 to the set of conjugates of an algebraic integer and using the
power mean inequality

( 1
m

m

∑
k=1

ap
k

)1/p
�

( 1
m

m

∑
k=1

aq
k

)1/q
,

where a1, . . . ,am � 0 and p � q > 0 (see, e.g., [12]), in view of (6) we get the following:
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COROLLARY 3. For any real numbers p � 2 and ε > 0 there is the constant n1

such that for every algebraic integer α of degree n � n1 with conjugates α1, . . . ,αn we
have

2
n(n−1) ∑

1�i< j�n

|αi −α j|p > ep/4− ε, (7)

and the constant n2 such that for every totally real algebraic integer α of degree n � n2

with conjugates α1, . . . ,αn we have

2
n(n−1) ∑

1�i< j�n

|αi −α j|p > (4e)p/4− ε. (8)

Similarly, by Theorem 2 and (6), we derive the following:

COROLLARY 4. For any real numbers p � 2 and ε > 0 there is the constant n3

such that for any algebraic integers α of degree n � n3 with conjugates α1, . . . ,αn and
β of degree m � n3 with conjugates β1, . . . ,βm we have

1
mn

n

∑
i=1

m

∑
j=1

|αi −β j|p > ep/4− ε, (9)

and the constant n4 such that for any totally real algebraic integers α of degree n � n4

with conjugates α1, . . . ,αn and β of degree m � n4 with conjugates β1, . . . ,βm we
have

1
mn

n

∑
i=1

m

∑
j=1

|αi −β j|p > (4e)p/4− ε. (10)

Inequality (7) has been established in [5], while (8) in [16] (see also [9]). Inequal-
ities (9) and (10) are new. For p = 2 the constants in the lower bounds (7), (9) and (8),
(10) are

√
e = 1.64872 . . . and 2

√
e = 3.29744 . . ., respectively. The next statement

shows that the latter constant 2
√

e (for p = 2 in (8), (10)) cannot be replaced by one
greater than 3.79661.

THEOREM 5. There are infinitely many totally real algebraic integers α with con-
jugates α1, . . . ,αn for which

2
n(n−1) ∑

1�i< j�n

|αi −α j|2 < 3.79661.

Theorem 5 is a consequence of a recent result of Smith [18], who showed that there
are infinitely many totally positive algebraic integers whose trace divided by degree is
less than 1.898303. For some time, by the initial conjecture related to the so-called
Schur-Siegel-Smyth trace problem, it was expected that for any ε > 0 there are only
finitely many totally positive algebraic integers whose trace divided by degree is less
than 2− ε . See, e.g., [1], [8], [13], [17], [19] for some lower bounds in the Schur-
Siegel-Smyth trace problem. Currently, the best result in this direction is given in [20],
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where it was shown that, with finitely many exceptions, the trace of a totally positive
algebraic integer divided by its degree is at least 1.793145.

The optimal bounds in (7) and (8) are known only for p = ∞ . Then,( 2
n(n−1) ∑

1�i< j�n

|αi −α j|p
)1/p ∼ max

1�i< j�n
|αi −α j| as p → ∞.

In [10], Langevin proved that for any ε > 0 there exists an integer n0 = n0(ε) such that
for each algebraic integer α of degree n � n0 with conjugates α1, . . . ,αn we have

max
1�i< j�n

|αi −α j| > 2− ε. (11)

Likewise, for a totally real algebraic integer α of sufficiently large degree the corre-
sponding bound is

max
1�i< j�n

|αi −α j| > 4− ε

(see [16]). Of course, the latter inequality immediately implies that for any totally real
algebraic integers α with conjugates α1, . . . ,αn and β with conjugates β1, . . . ,βm ,
where n,m are large enough, we have

max
1�i�n,1� j�m

|αi −β j| > 4− ε.

It would be of interest to find out if inequality (11) (which gives an optimal bound
in an old problem of Favard [7]) can be generalized to the maximal difference between
the conjugates of two arbitrary algebraic integers of sufficiently large degree. Namely,
whether for any ε > 0 there is a constant N(ε) such that for any algebraic integers
α of degree n � N(ε) with conjugates α1, . . . ,αn and β of degree m � N(ε) with
conjugates β1, . . . ,βm the inequality

max
1�i�n,1� j�m

|αi −β j| > 2− ε

is true or not.
In our final theorem we improve the inequalities (7) and (8) for p = 4.

THEOREM 6. For any ε > 0 there is a constant n5 such that for every algebraic
integer α of degree n � n5 with conjugates α1, . . . ,αn we have

2
n(n−1) ∑

1�i< j�n

|αi −α j|4 > e+
√

e− ε. (12)

Similarly, for any ε > 0 there is a constant n6 such that for every totally real algebraic
integer α of degree n � n6 with conjugates α1, . . . ,αn we have

2
n(n−1) ∑

1�i< j�n

|αi −α j|4 > 8e− ε. (13)

Note that the constants in (12) and (13) are e+
√

e = 4.36700 . . . (vs. e = 2.71828 . . .
in (7) for p = 4) and 8e = 21.74625 . . . (vs. 4e = 10.87312 . . . in (8) for p = 4).

In the next section we will state and prove some auxiliary lemmas. In Section 3
we will prove Theorems 1, 2, 5 and 6.
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2. Auxiliary lemmas

The next lemma is [16, Satz 2].

LEMMA 7. For n � 2 and any real numbers y1, . . . ,yn satisfying

y2
1 + . . .+ y2

n � 1

we have

∏
1�i< j�n

(yi− y j)2 � 2233 . . .nn(n2−n)−
n(n−1)

2 =
(
(n−1)C(n)

)− n(n−1)
2 ,

with equality if and only if

{y1

√
n2−n,y2

√
n2−n, . . . ,yn

√
n2−1} = {ζ1,ζ2, . . . ,ζn},

where ζ1,ζ2, . . . ,ζn is the set of roots of the Hermite polynomial (5).

Note that the sum of squares of the roots of Hn defined in (5) is n2 − n . This
corresponds to the fact that the maximum is attained for y1, . . . ,yn satisfying y2

1 + . . .+
y2
n = 1.

The next lemma has been proved by Remak in [15]. See also [11] for another
proof and [4] for a more general inequality.

LEMMA 8. For n � 2 and any complex numbers z1, . . . ,zn satisfying

|z1| � |z2| � . . . � |zn|

we have

∏
1�i< j�n

|zi − z j| � nn/2|z1|n−1|z2|n−2 . . . |zn−1|.

We remark that in the case when the numbers z1, . . . ,zn are all real the inequality
of Lemma 8 holds with the constant 2�n/2� instead of nn . This was conjectured by
Pohst in [14] and recently proved by Battistoni and Molteni [2].

Applying (1) with appropriate weights we will derive the following inequality:

LEMMA 9. For n � 2 , any positive number t and any complex numbers z1, . . . ,zn

we have
n

∑
k=1

|zk|t � (n−1)C(n)

2n
t−2
n−1

(
∏

1�i< j�n

|zi − z j|
) 2t

n(n−1)
, (14)

where C(n) is defined in (3).
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Proof. We will apply (1) with weights wk = 2(n−k)
n(n−1) for k = 1, . . . ,n . Note that the

weights sum to 1 and wn = 0, so (1) with m = n− 1 and at
k/wk in place of ak for

k = 1, . . . ,n−1 yields

n−1

∏
k=1

a
2(n−k)t
n(n−1)
k �

n−1

∏
k=1

(
2(n− k)
n(n−1)

) 2(n−k)
n(n−1) n−1

∑
k=1

at
k.

In view of (3) we have

n−1

∏
k=1

(
2(n− k)
n(n−1)

) 2(n−k)
n(n−1)

=
2

n(n−1)
· n
C(n)

·n− 2
n−1 =

2n−
2

n−1

(n−1)C(n)
.

Therefore, for any an � 0

(n−1

∏
k=1

at(n−k)
k

) 2
n(n−1)

� 2n−
2

n−1

(n−1)C(n)

n−1

∑
k=1

at
k � 2n−

2
n−1

(n−1)C(n)

n

∑
k=1

at
k.

Combining this inequality with Lemma 8, where ak = |zk| , k = 1, . . . ,n , are labeled so
that |z1| � . . . � |zn−1| � |zn| , we deduce

(
∏

1�i< j�n

|zi − z j|
) 2t

n(n−1) � 2n
t−2
n−1

(n−1)C(n)

n

∑
k=1

|zk|t ,

which implies (14). �
Finally, we will record two simple identities.

LEMMA 10. For n � 2 and any x1, . . . ,xn ∈ C we have

∑
1�i< j�n

|xi − x j|2 = n
n

∑
k=1

|xk|2−
∣∣∣ n

∑
k=1

xk

∣∣∣2 (15)

and

∑
1�i< j�n

|xi− x j|4 = nS4,0 + |S0,2|2 +2S2
2,0−2(S2,1S0,1 +S2,1S0,1), (16)

where

Sa,b :=
n

∑
k=1

|xk|axb
k (17)

for a,b ∈ N∪{0} .

Proof. From

2 ∑
1�i< j�n

|xi − x j|2 =
n

∑
i, j=1

|xi − x j|2 =
n

∑
i, j=1

(|xi|2 + |x j|2 − xix j − xix j)

= 2n
n

∑
k=1

|xk|2 −2
∣∣∣ n

∑
k=1

xk

∣∣∣2
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we get (15).
To prove (16) observe that |xi− x j|4 = (|xi|2 + |x j|2 − xix j − xix j)2 equals

|xi|4 + |x j|4 + x2
i x j

2 + xi
2x2

j +4|xi|2|x j|2−2(|xi|2 + |x j|2)(xix j + xix j).

So, using (17), we find that

2 ∑
1�i< j�n

|xi− x j|4 =
n

∑
i, j=1

|xi − x j|4

equals
2nS4,0 +2|S0,2|2 +4S2

2,0−4(S2,1S0,1 +S2,1S0,1).

This implies (16). �

3. Proofs of the theorems

Proof of Theorem 1. Note that in inequality (2) we can replace each xi by x∗i =
xi + s with arbitrary s ∈ C . In particular we can choose s so that the sum of all x∗i is
zero. Then, ∑1�i< j�n |x∗i − x∗j |2 = n∑n

k=1 |x∗k |2 by (15). So, by Lemma 9 with t = 2,
we derive (2).

To prove (4) we can replace each xi by axi + b with arbitrary a,b ∈ R . The
inequality clearly holds and becomes equality if a = 0. If not all xi are equal then we
replace each xi by xi +b , where b is chosen so that sum over all xi is zero. Then, we
can replace each new xi by x∗i = axi so that the sum of squares of all x∗i is 1 . Then, as
for x∗i we have ∑n

i=1 x∗i = 0 and ∑n
i=1 x∗i

2 = 1, by Lemma 7, we find that

(
∏

1�i< j�n

|x∗i − x∗j |
) 4

n(n−1) � 1
(n−1)C(n)

=
1

(n−1)C(n)

n

∑
k=1

x∗k
2.

This implies (4) in view of ∑1�i< j�n(x∗i − x∗j)2 = n∑n
k=1 x∗k

2 , which holds by (15) and
∑n

k=1 x∗k = 0.
Furthermore, by Lemma 7, under assumptions ∑n

k=1 x∗k = 0 and ∑n
k=1 x∗k

2 = 1,
equality in (4) holds if and only if

{x∗1, . . . ,x∗n} = {ζ1/
√

n2−n, . . . ,ζn/
√

n2−n},
where ζ1, . . . ,ζn is the set of roots of Hn defined in (5). This completes the proof,
because the original xi are linear transformations of those x∗i . �

For any set of complex numbers X = {x1, . . . ,xn} we define

Δ(X) := ∏
1�i< j�n

|xi− x j|. (18)

Proof of Theorem 2. Set s = − 1
n ∑n

i=1 xi and replace each xi by x∗i = xi + s , and
also each y j by y∗j = y j + s . Then, for X = {x1, . . . ,xn} and X∗ = {x∗1, . . . ,x∗n} we
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have Δ(X) = Δ(X∗) by (18). Likewise, Δ(Y ) = Δ(Y ∗) , where Y = {y1, . . . ,ym} and
Y ∗ = {y∗1, . . . ,y∗m} . Using

x∗1 + . . .+ x∗n = 0 = x∗1 + . . .+ x∗n,

we find that

n

∑
i=1

m

∑
j=1

|xi − y j|2 =
n

∑
i=1

m

∑
j=1

|x∗i − y∗j|2

=
n

∑
i=1

m

∑
j=1

(|x∗i |2 + |y∗j|2 − x∗i y∗j − x∗i y
∗
j)

= m
n

∑
i=1

|x∗i |2 +n
m

∑
j=1

|y∗j |2.

Applying Lemma 9 with t = 2 and zk = x∗k for k = 1, . . . ,n we obtain

n

∑
k=1

|x∗k |2 � (n−1)C(n)
2

Δ(X∗)
4

n(n−1) =
(n−1)C(n)

2
Δ(X)

4
n(n−1) .

Likewise,
m

∑
k=1

|y∗k |2 � (m−1)C(m)
2

Δ(Y )
4

m(m−1) .

Adding these two inequalities with weights 1/n and 1/m , respectively, we derive the
first inequality of Theorem 2.

The proof of the second inequality is similar to that above. This time, for real x∗i ,
i = 1, . . . ,n , and y∗j , j = 1, . . . ,m , by (4) and (15), we have

n

∑
k=1

x∗k
2 � 1

n

( n

∑
k=1

x∗k
)2

+(n−1)C(n)Δ(X∗)
4

n(n−1)

� (n−1)C(n)Δ(X∗)
4

n(n−1) = (n−1)C(n)Δ(X)
4

n(n−1) .

Likewise,
m

∑
k=1

y∗k
2 � (m−1)C(m)Δ(Y)

4
m(m−1) .

Adding these inequalities with weights 1/n and 1/m , by the above established identity

n

∑
i=1

m

∑
j=1

|xi − y j|2 =
n

∑
i=1

m

∑
j=1

(x∗i − y∗j)
2 = m

n

∑
i=1

x∗i
2 +n

m

∑
j=1

y∗j
2,

we arrive to the second inequality of Theorem 2. �

Proof of Theorem 5. By [18, Corollary 1.1], there are infinitely many totally
positive algebraic integers α for which the sum of their conjugates is less than σn ,
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where n = degα and σ = 1.898303. Take any of those α with n = degα large enough.
Consider the totally real algebraic integer β > 0 defined by β =

√
α . Assume that β is

of degree m over Q . It is clear that m = n or m = 2n . In the first case the squares of n
conjugates of β are α1, . . . ,αn , while in the second case the squares of 2n conjugates
of β are α1,α1, . . . ,αn,αn . In both cases the sum of squares of the conjugates of β is
m(α1 + . . .+ αn)/n . Thus, by (15), we obtain

∑
1�i< j�m

|βi −β j|2 � m(β 2
1 + . . .+ β 2

m) =
m2

n
(α1 + . . .+ αn) < m2σ .

Consequently,
2

m(m−1) ∑
1�i< j�m

|βi −β j|2 <
2σm
m−1

,

which implies the result, since m ∈ {n,2n} is large enough. �

Proof of Theorem 6. Let α be an algebraic integer of degree n � 2 with conju-
gates α1, . . . ,αn . Set

E(α) =
2

n(n−1) ∑
1�i< j�n

|αi −α j|4, (19)

and consider the algebraic number γ = α + s , where s = − 1
n ∑n

j=1 α j is in Q . Then,
γk = αk + s for k = 1, . . . ,n and

γ1 + . . .+ γn = 0. (20)

Moreover, by (18) and (19), E(α) = E(γ) and Δ(α) = Δ(γ) , where α is understood
as the set of its conjugates over Q .

Clearly, Δ(α) � 1, since Δ(α)2 is the modulus of the discriminant of α . Thus,
Lemma 9 with t = 2 and t = 4 implies that

n

∑
k=1

|γk|2 � (n−1)C(n)
2

and
n

∑
k=1

|γk|4 � (n−1)C(n)

2n
2

n−1

.

Now, we will apply (16) to xk = γk , k = 1, . . . ,n . Then, by (20), we have S0,1 = 0.
Also, |S0,2|2 � 0, so from (16) and the above inequalities it follows that

n(n−1)
2

E(γ) = ∑
1�i< j�n

|γi − γ j|4 � n
n

∑
k=1

|γk|4 +2
( n

∑
k=1

|γk|2
)2

� n(n−1)C(n)

2n
2

n−1

+
(n−1)2C(n)2

2

� (n−1)2(C(n)+C(n)2)

2n
2

n−1

.
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Hence, E(γ) � n−
2

n−1 (1− 1/n)(C(n)+C(n)2) , which implies (12) by (6), (18) and
E(α) = E(γ) .

Now, let α be a totally real algebraic integer of degree n � 2 with conjugates
α1, . . . ,αn . As above, we set γ = α + s , where s = − 1

n ∑n
j=1 α j . Then, γk = αk + s for

k = 1, . . . ,n satisfy (20). So, by (15), we have

∑
1�i< j�n

|γi − γ j|2 = n
n

∑
k=1

|γk|2 = n
n

∑
k=1

γ2
k ,

and hence (4) combined with Δ(γ) = Δ(α) � 1 yields

n

∑
k=1

γ2
k � (n−1)C(n).

Now, we can apply (16) to xk = γk , k = 1, . . . ,n , again. This time, we have not only
S0,1 = 0 by (20), but also S0,2 = S2,0 by (17). Consequently, using (16), (17), (19) and
the Cauchy-Schwarz inequality, we find that

n(n−1)
2

E(α) =
n(n−1)

2
E(γ) = n

n

∑
k=1

γ4
k +3

( n

∑
k=1

γ2
k

)2

� 4
( n

∑
k=1

γ2
k

)2
� 4(n−1)2C(n)2.

This finishes the proof of (13) by (6). �
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