
Citation: Dubickas, A. Density of

Some Special Sequences Modulo 1.

Mathematics 2023, 11, 1727. https://

doi.org/10.3390/math11071727

Academic Editors: Diana Savin,

Nicusor Minculete and Vincenzo

Acciaro

Received: 23 March 2023

Revised: 3 April 2023

Accepted: 3 April 2023

Published: 4 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Density of Some Special Sequences Modulo 1
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Abstract: In this paper, we explicitly describe all the elements of the sequence of fractional parts
{a f (n)/n}, n = 1, 2, 3, . . . , where f (x) ∈ Z[x] is a nonconstant polynomial with positive leading
coefficient and a ≥ 2 is an integer. We also show that each value w = {a f (n)/n}, where n ≥ n f and
n f is the least positive integer such that f (n) ≥ n/2 for every n ≥ n f , is attained by infinitely many
terms of this sequence. These results combined with some earlier estimates on the gaps between two
elements of a subgroup of the multiplicative group Z∗m of the residue ring Zm imply that this sequence
is everywhere dense in [0, 1]. In the case when f (x) = x this was first established by Cilleruelo et al.
by a different method. More generally, we show that the sequence {a f (n)/nd}, n = 1, 2, 3, . . . , is
everywhere dense in [0, 1] if f ∈ Z[x] is a nonconstant polynomial with positive leading coefficient
and a ≥ 2, d ≥ 1 are integers such that d has no prime divisors other than those of a. In particular, this
implies that for any integers a ≥ 2 and b ≥ 1 the sequence of fractional parts {an/ b

√
n}, n = 1, 2, 3, . . . ,

is everywhere dense in [0, 1].
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1. Introduction

Let ξ 6= 0 and α > 1 be real numbers. The sequence of fractional parts of powers

{ξαn}, n = 1, 2, 3, . . . , (1)

have been studied starting with the papers of Weyl [1] and Koksma [2], where some metrical
results have been obtained. In particular, their results imply that if ξ 6= 0 (resp. α > 1) is
fixed then for almost all α > 1 (resp. for almost all real ξ) the sequence (1) is uniformly
distributed in [0, 1].

However, for most specific pairs, say for (ξ, α) = (1, a/b), where a/b > 1 is a ratio-
nal number that is not an integer, the results obtained (see, e.g., [3,4]) are very far from
establishing even the density of the sequence

{(a/b)n}, n = 1, 2, 3, . . . ,

in [0, 1]. (We say that a sequence S is dense or everywhere dense in an interval I if for any c ∈ I
and any ε > 0 the set I ∩ (c− ε, c + ε) contains infinitely many elements of the sequence S.)
The most known conjecture concerning the fractional parts of powers of rational numbers
is that of Mahler about the distribution of the sequence {ξ(3/2)n}, n = 1, 2, 3, . . . [5]. The
situation with transcendental α is even less described. For example, any kind of result for
(ξ, α) = (1, e) is completely out of reach: e.g., disprove that {en} → 0 as n→ ∞.

A special kind of sequences for which the density modulo 1 is confirmed are those of
the form {anbmξ}, m, n = 1, 2, 3, . . . , where a, b ≥ 2 are two multiplicatively independent
integers and ξ is irrational. See Furstenberg’s theorem [6,7] and some more general results
of this kind [8–14].
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In [15], Cilleruelo, Kumchev, Luca, Rué and Shparlinski considered another interesting
sequence

{an/n}, n = 1, 2, 3, . . . , (2)

where a ≥ 2 is an integer. They proved that the sequence (2) is everywhere dense
in [0, 1] and obtained some other results on its distribution. A more general sequence
{Q(αn)/n}, n = 1, 2, 3, . . . , where Q ∈ Z[x] and α is a Pisot or a Salem number, has been
considered by the author in [16].

In this paper, we will study some variations of the sequence (2) for a given integer
a ≥ 2. Specifically, we will investigate the sequence

{a f (n)/nd}, n = 1, 2, 3, . . . , (3)

where a ≥ 2, d ≥ 1 are integers and f ∈ Z[x] is a nonconstant polynomial with a positive
leading coefficient.

Let m ≥ 2 be an integer satisfying gcd(a, m) = 1, and let p1, . . . , pk be the set of all
prime divisors of a. Consider the set

Sa = {pα1
1 . . . pαk

k , where α1, . . . αk ≥ 0 are integers}

generated by the prime divisors of a. By Rm(a) we denote the set Sa modulo m. In other
words, Rm(a) is a subgroup of Z∗m generated by the prime divisors of a. Since each element
of Rm(a) is coprime to m, we have

|Rm(a)| ≤ ϕ(m),

where ϕ stands for the Euler totient function.
Our first result gives a complete description of all possible values attained by the

sequence (3) with d = 1:

Theorem 1. Let a ≥ 2 be a positive integer, and let f ∈ Z[x] be a nonconstant polynomial with
positive leading coefficient. Suppose that n f is the smallest positive integer such that f (n) ≥ n/2
for each n ≥ n f , and Va, f is the set of values attained by the sequence of fractional parts

{a f (n)/n}, n ≥ n f , n ∈ N.

Then, w ∈ Va, f if and only if w = 0 or w = r/m, where m ≥ 2 is an integer coprime to a and
r ∈ Rm(a). Furthermore, each value w of Va, f is attained for infinitely many indices n.

The last claim of the theorem is an unusual one. It does not hold either for the sequence
of fractional parts of powers (in fact, for (1) an opposite situation holds by the results in [17])
or, for example, for the sequence {2n/n2}, n = 1, 2, 3, . . . , of type (3), where a = d = 2 and
f (x) = x. In particular, by applying an old result of Hasse [18], we will show that infinitely
many terms of the sequence {2n/n2}, n = 1, 2, 3, . . . , are attained by a unique n ∈ N. (The
proof is given at the end of Section 5).

Note that we have n f = 1 in the case when the coefficients of f ∈ Z[x] are all non-
negative. The condition n ≥ n f in Theorem 1 cannot be removed. Indeed, take, for example,
f (x) = x− 1 and a = 2. Then, the value 1/2 of the sequence {2n−1/n}, n = 1, 2, 3, . . . , is
attained at n = 1 only. Since x − 1 ≥ x/2 for x ≥ 2, we have n f = 2. Thus, Theorem 1
implies that each value of the sequence {2n−1/n}, n = 2, 3, 4, . . . , is attained infinitely
many times.

Recall that the radical rad(a) of an integer a ≥ 2 is the product of its distinct prime
divisors, and rad(1) = 1. Theorem 1 implies the following:

Corollary 1. For any nonconstant f ∈ Z[x] with positive leading coefficient and any integers
a, a′ ≥ 2 satisfying rad(a) = rad(a′) we have Va, f = Va′ , f .
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On the other hand, if rad(a) 6= rad(a′) then there is an integer m ≥ 2 which is coprime
to one of the numbers a, a′ but not to the other. If, say gcd(a, m) = 1 and gcd(a′, m) > 1,
then, by Theorem 1, we find that 1/m ∈ Va, f , but 1/m /∈ Va′ , f .

Let f , g ∈ Z[x] be two nonconstant polynomials with positive leading coefficients.
Assume that n f ≥ ng. Then, by Theorem 1, for any integer a ≥ 2 we have Va, f ∩Va,g = Va, f
and Va, f ∪Va,g = Va,g.

We will also prove the following:

Theorem 2. Let f ∈ Z[x] be a nonconstant polynomial with a positive leading coefficient, and let
a ≥ 2, d ≥ 1 be integers satisfying rad(d) | rad(a). Then, the sequence of fractional parts

{a f (n)/nd}, n = 1, 2, 3, . . . ,

is everywhere dense in [0, 1].

The condition rad(d) | rad(a) trivially holds for d = 1, which implies the density of
{a f (n)/n}, n = 1, 2, 3, . . . . (Of course, Theorem 1 asserts much more than the density of
this sequence in [0, 1].)

Note that {anb
/nd}, n = 1, 2, 3, . . . , is a subsequence of the sequence {an/nd/b},

n = 1, 2, 3, . . . . So, Theorem 2 with f (x) = xb, b ∈ N, implies slightly more than what was
proved in [15,16]:

Corollary 2. For any integers a ≥ 2, b, d ≥ 1 satisfying rad(d) | rad(a) the sequence of
fractional parts

{an/nd/b} n = 1, 2, 3, . . . ,

is everywhere dense in [0, 1].
In particular, the sequence of fractional parts

{an/ b
√

n} n = 1, 2, 3, . . . ,

is everywhere dense in [0, 1].

An important auxiliary result that we will use several times is the following:

Lemma 1. For any integers t ≥ 1, u ≥ 0, v ≥ 1, a ≥ 2 and any f ∈ Z[x] with positive leading
coefficient there are infinitely many positive integers n for which

f (van)− n ≡ u (mod t). (4)

In the Section 2 we will show how Theorem 1 implies the density of the set Va, f in
[0, 1] and give some examples of Rm(a). In Section 3 we will prove Lemma 1 and its
generalization. The proofs of Theorems 1 and 2 are given in Section 4. Finally, in Section 5
we will show that the sequence {2n/n2}, n = 1, 2, 3, . . . , contains infinitely many values
that are attained only once and that it does not contain certain values r/m, where m ≥ 2 is
an integer coprime to a and r ∈ Rm(a), at all.

2. Some Examples

Fix a ≥ 2. Assume that m = p is a prime number greater than a + 1. Clearly, Rm(a)
contains the multiplicative subgroup {1, a, a2, . . . , aδ−1} of Z∗p, where δ = δp is the order of
a modulo p.

An unsolved Artin’s conjecture asserts that δp = p− 1 for infinitely many primes p
if a is not a square. In [19], Erdős and Murty obtained a nontrivial lower bound on δp,
which implies

δp > p1/2 (5)
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for almost all primes p. See also [20]. On the other hand, under assumption (5), the largest
gap between any two consecutive δp powers of a modulo p is less than

p437/480+o(1) as p→ ∞

(see Theorem 6.8 of [21]); some earlier bounds with slightly worse exponents have been
established in [22–25]). Thus, for almost all prime numbers p, every subinterval of length
p−0.0896 of [0, 1] contains the number r/p, with r ∈ Rp(a). By Theorem 1, such r/p belongs
to Va, f , which implies the density of Va, f in [0, 1]. For infinitely many prime numbers p, the
exponent 0.0896 can be improved by combining [19] with a subsequent result of Baker and
Harman [26] which yields the exponent 0.677 for p in (5).

By a result of Heath-Brown (Corolary 2 of [27]), there are at most three primes a
for which Artin’s conjecture fails to hold. Suppose a has at least three distinct prime
divisors. Then, for infinitely many prime numbers p, at least one of the factors of a is a
primitive root modulo p, that is, the order of this prime factor of a is δp = p − 1. This
implies Rp(a) = {1, . . . , p− 1} for each p. Hence, by Theorem 1, each fraction r/p, where
r = 0, 1, . . . , p− 1, belongs to the set Va, f provided that a has at least three distinct prime
divisors. (For example, this is true if 30 | a).

Let p be a Mersenne prime of the form 2q − 1, where q ≥ 2 is a prime number. Then,
for a = 2, the order δp of 2 modulo p is q. Hence, by Theorem 1, there are q positive rational
numbers with denominator p that belong to V2 (with, say f (x) = x and n f = 1), namely,

1
p

,
2
p

,
4
p

,
8
p

, . . . ,
2q−1

p
.

Note that q− 1 of them (all but the last one) belong to the interval (0, 1/2).
Finally, assume that A ≥ 2 and d ≥ 1 are two fixed integers. Then, by the above-

mentioned result [19], for almost all primes p the order of A modulo p is at least p1/2.
Thus, the order of the multiplicative group generated by A modulo pd, where p is any of
those almost all primes, is at least p1/2 as well. The whole multiplicative group Z∗pd is of

order ϕ(pd) = pd−1(p− 1). The distance between any two consecutive elements of the
multiplicative group generated by A modulo pd can be estimated using a corresponding
exponential sum. (See, e.g., [28] (p. 12).) In our situation, using the main theorem in [29] or,
more specifically, (Theorem 4.7 of [30]) we can record the following:

Lemma 2. For any integers A ≥ 2 and d ≥ 1 there exist δ > 0 and infinitely many prime numbers
p such that the distance between any two consecutive elements of the multiplicative group generated
by A modulo pd is less than pd−δ.

3. Proof of Lemma 1 and Its Generalization

Proof of Lemma 1. The claim is trivial if f is a constant, so assume that deg f ≥ 1. The
proof is by induction on t. There is nothing to prove if t = 1. Assume that t > 1 and that
the claim holds for all positive integers smaller than t. Suppose t0 is the largest divisor of t
which is coprime to a. Set

t′ = t/t0 ∈ N.

Clearly, 1 ≤ t0 ≤ t, so ϕ(t0) < t. By the induction hypothesis, there are infinitely many
positive integers ` satisfying

f (va`)− ` ≡ u (mod ϕ(t0)). (6)

Take any of those ` which is so large that

t′ | va`, (7)

f (va`) > u + ` and f (x) is positive and increasing for x ≥ va`.
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We will show that (4) holds for every n expressible as

n = f (va`)− u.

Note that such n form an infinite set of positive integers, since so is the set of such `.
Observe that for each n, we have

f (van)− n− u = f
(
va f (va`)−u)− f (va`),

which is divisible by

va f (va`)−u − va` = va`(a f (va`)−`−u − 1),

because f ∈ Z[x] and A− B divides f (A)− f (B) for any A, B ∈ Z, A 6= B. Hence, (4) is
true provided that

t | va`(a f (va`)−`−u − 1).

By (7) and t = t′t0, it remains to verify that

t0 | a f (va`)−`−u − 1.

However, this holds by Euler’s theorem in view of gcd(a, t0) = 1 and (6).

In the proof of Theorem 1, we will also need the following generalization of Lemma 1.
(Of course, similarly to the case of Lemma 1, the nontrivial case is when f is non-constant.)

Lemma 3. For any f ∈ Z[x] with positive leading coefficient, any integers t ≥ 1, k ≥ 1, m ≥ 1,
u1, . . . , uk ≥ 0, v1, . . . , vk ≥ 1, K ≥ 1 and any k positive integers P1, . . . , Pk > 1 there is a vector
of positive integers (n1, . . . , nk) such that

vi f (mPn1
1 . . . Pnk

k )− ni ≡ ui (mod t) (8)

for i = 1, . . . , k and min1≤i≤k ni ≥ K.

Proof. We can clearly assume that deg f ≥ 1. As before the proof is by induction on t.
Assume that t > 1 and that the claim holds for all positive integers smaller than t. Introduce
t0 and t′ similarly as in the proof of Lemma 1, namely, let t0 be the largest divisor of t which
is coprime to P1 . . . Pk, and t′ = t/t0.

This time, as ϕ(t0) < t, by the induction hypothesis, there is a vector of positive
integers (`1, . . . , `k) satisfying

vi f (mP`1
1 . . . P`k

k )− `i ≡ ui (mod ϕ(t0)) (9)

for i = 1, . . . , k, which is so large that

t′ | P`1
1 . . . P`k

k , (10)

vi f (mP`1
1 . . . P`k

k )− ui ≥ `i + K for i = 1, . . . , k, and f (x) is increasing for x ≥ mP`1
1 . . . P`k

k .
Set

ni = vi f (mP`1
1 . . . P`k

k )− ui

for i = 1, . . . , k. Then, ni > `i and min1≤i≤k ni ≥ K. Furthermore, with this choice of ni, for
every i = 1, . . . , k we obtain

vi f (mPn1
1 . . . Pnk

k )− ni − ui = vi f (mPn1
1 . . . Pnk

k )− vi f (mP`1
1 . . . P`k

k ),
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which is divisible by

vi(mPn1
1 . . . Pnk

k −mP`1
1 . . . P`k

k ) = vimP`1
1 . . . P`k

k (Pn1−`1
1 . . . Pnk−`k

k − 1).

By (10), t′ divides P`1
1 . . . P`k

k . So, in order to prove (8) it suffices to show that

t0 | Pn1−`1
1 . . . Pnk−`k

k − 1.

As ni > `i, this is the case if, for instance, each factor

Pni−`i
i = P

vi f (mP
`1
1 ...P

`k
k )−ui−`i

i ,

where i = 1, . . . , k, is 1 modulo t0. However, the latter holds by Euler’s theorem due to
gcd(Pi, t0) = 1 and (9).

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. Note that {a f (n)/n} = 0 for each n = as, where s ∈ N is large enough,
so 0 ∈ Va, f , and the value 0 is attained for infinitely many indices n.

Now, assume that w 6= 0 is in Va, f . Evidently, w must be a rational number lying in the
interval (0, 1). Suppose that w = {a f (s)/s} for some s ∈ N satisfying s ≥ n f . We claim that
w = {a f (n)/n} for infinitely many n of the form n = sa`, where ` runs through an infinite
set of positive integers. In order to prove this it suffices to show that the difference

a f (n)

n
− a f (s)

s
=

a f (sa`)

sa`
− a f (s)

s
=

a f (sa`)−` − a f (s)

s
=

a f (s)

s
(a f (sa`)− f (s)−` − 1)

is an integer. Let s0 be the largest divisor of s which is coprime to a. Set s′ = s/s0 ∈ N. We
will prove that

s′ | a f (s) (11)

and
s0 | a f (sa`)− f (s)−` − 1 (12)

for infinitely many ` ∈ N.
Fix any prime p that divides s′ (if any) and assume that the order of p in s′ is l ≥ 1.

Then, p2l | as, since the order of p in as is at least

s ≥ s′ ≥ pl ≥ 2l ≥ 2l.

Applying this argument to each prime divisor p of s′ we deduce s′2 | as. Since s ≤ 2 f (s) for
s ≥ n f , this yields s′2 | a2 f (s), and (11) follows. (There is nothing to prove if s′ = 1.)

To prove (12), by gcd(s0, a) = 1, f (sa`)− f (s)− ` > 0 and Euler’s theorem, it suffices
to show that

ϕ(s0) | f (sa`)− f (s)− `

for infinitely many ` ∈ N. This clearly follows by Lemma 1 with parameters (t, u, v) =
(ϕ(s0), f (s), s). Consequently, each value w = {as/s} of Va, f is attained for infinitely many
indices n = sa` with certain ` ∈ N.

Next, assume that w = r/m ∈ Va, f , where m ≥ 2, 1 ≤ r < m, and gcd(r, m) = 1. Then,
for some s ≥ n f , we must have r/m = {a f (s)/s}. Write s in the form s′s0, where s0 is the
largest divisor of s coprime to a. We claim that s0 = m.

Indeed, by (11), we have s′ | a f (s). So, setting L = [a f (s)/s], we find that {a f (s)/s} equals

r
m

=
a f (s)

s
− L =

a f (s)

s′s0
− L =

a f (s)/s′ − Ls0

s0
.
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Here, the numerator a f (s)/s′ − Ls0 is coprime to s0, which implies

r = a f (s)/s′ − Ls0 and m = s0.

In order to complete the proof of Theorem 1 it remains to show that only r ∈ Rm(a)
occur as numerators of the rational numbers w = r/m ∈ Va, f and that all r ∈ Rm(a) indeed
occur as numerators. The first assertion is clear, because 1 ≤ r < m and a f (s)/s′ is an
integer in Sa, so that

r = a f (s)/s′ − Ls0 = a f (s)/s′ − Lm ∈ Rm(a).

To prove the second assertion assume that r ∈ Rm(a). Then, for some integers
u1, . . . , uk, T ≥ 0, we have

r = pu1
1 . . . puk

k − Tm. (13)

(Recall that p1, . . . , pk are the prime divisors of a.)
Write

a = pv1
1 . . . pvk

k ,

with v1, . . . , vk ∈ N. Then, by Lemma 3 with t = ϕ(m) and Pi = pi, there is a vector of
positive integers (n1, . . . , nk) satisfying

vi f (mpn1
1 . . . pnk

k )− ni ≡ ui (mod ϕ(m)) (14)

for i = 1, . . . , k. Therefore, for
n = mpn1

1 . . . pnk
k , (15)

we find that

a f (n)

n
=

pv1 f (n)
1 . . . pvk f (n)

k
mpn1

1 . . . pnk
k

=
p

v1 f (mp
n1
1 ...p

nk
k )−n1

1 . . . p
vk f (mp

n1
1 ...p

nk
k )−nk

k
m

.

In view of (14) and gcd(pi, m) = 1, i = 1, 2, . . . , k, the numerator of the last fraction equals
pu1

1 . . . puk
k modulo m, which is r modulo m by (13). Thus, a f (n)/n = r/m + B with some

B ∈ Z. Consequently, for every n as in (15), we obtain {a f (n)/n} = r/m, which completes
the proof of the theorem.

Proof of Theorem 2. Write

f (x) = amxm + · · ·+ a1x + a0 ∈ Z[x], m, am ∈ N,

and select a nonnegative integer c such that

d | a0 − c.

In all what follows we will show that the sequence {a f (n)−c/nd}, n ≥ 1, is everywhere
dense in [0, 1]. In particular, it is everywhere dense in [0, a−c]. Since

{a f (n)/nd} − ac{a f (n)−c/nd} ∈ Z,

this clearly implies that the original sequence {a f (n)/nd}, n = 1, 2, 3, . . . , is everywhere
dense in [0, 1].

Let p > a be a prime number. Consider the value of a f (n)−c/nd at n = pas, where
s ≥ 0 is an integer:

a f (n)−c

nd =
a f (pas)−c

(pas)d =
a f (pas)−c−ds

pd . (16)
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We claim that for each u ≥ 0 there are infinitely many positive integers s for which

pd | a f (pas)−c−ds − adu = adu(a f (pas)−c−ds−du − 1). (17)

If this is the case, then, by (16), each value

Au (mod pd)

pd ,

where A = ad and u ≥ 0 is an integer, is attained for infinitely many indices n of the se-
quence {a f (n)−c/nd}, n = 1, 2, 3, . . . . Thus, this sequence is everywhere dense by Lemma 2.

In order to prove (17) we will apply Lemma 1 to the polynomial

g(x) =
f (al x)− c

d
=

am(al x)m + · · ·+ a1al x
d

+
a0 − c

d
∈ Z[x]

with v = p, t = ϕ(pd) and u + l in place of u, where l ≥ 0 is a fixed integer satisfying d | al .
(Here, we use the condition rad(d) | rad(a).) Then, by (4) applied to the polynomial g,
there are infinitely many integers s > l satisfying

g(pas−l)− (s− l) ≡ u + l (mod ϕ(pd)),

and hence
ϕ(pd) | g(pas−l)− s− u.

Thus, from dg(pas−l) = f (pas)− c it follows that

ϕ(pd) | f (pas)− c− ds− du.

Also, f (pas)− c− ds− du > 0 for s sufficiently large. Since gcd(a, pd) = 1, this implies
(17) by Euler’s theorem, which completes the proof of Theorem 2.

5. Fractional Parts of 2n/n2 Behave Differently

First, we will show that the sequence {2n/n2}, n = 1, 2, 3, . . . , attains the value 7/25
for n = 5 only and does not attain the value, e.g., 2/25 at all, although 2 ∈ R25(2). This
indicates that the behaviour of {2n/n2}, n = 1, 2, 3, . . . , is different from that of {2n/n},
n = 1, 2, 3, . . . , as described in Theorem 1. (Note that {2n/n2}, n = 1, 2, 3, . . . , is everywere
dense in [0, 1] by Corollary 2).

Suppose that {2n/n2} = r/25, where r is a positive integer smaller than 25 and
coprime to 5. Set L = [2n/n2]. Then,

rn2

25
= 2n − n2L ∈ N, (18)

so 25 | n2. Hence, n = 5lm with l, m ∈ N, gcd(m, 5) = 1. Inserting this into (18) we obtain

52l−2rm2 = 25lm − 52lm2L.

The argument modulo 5 shows that l = 1 is the only possibility, and hence rm2 = 25m −
25m2L. Now, the argument modulo m shows that m = 2`, where ` is a nonnegative integer.
It follows that

r + 25L =
25m

m2 = 25·2`−2`,

and so
r ≡ 25·2`−2` (mod 25).
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Therefore, r/25, where 1 ≤ r < 25 and gcd(r, 5) = 1, occurs as the value of {2n/n2} if and
only if r = r`, where

r` = 25·2`−2` (mod 25)

for some integer ` ≥ 0.
Note that 220 ≡ 1 (mod 25). Hence, the sequence r2, r3, r4, . . . is purely periodic with

period 10, because for each ` ≥ 2 the difference

5 · 2`+10 − 2(`+ 10)− 5 · 2` + 2` = 5 · 1023 · 2` − 20

is divisible by 20.
For ` = 0, 1, . . . , 11 we have the following table.

` 0 1 2 3 4 5 6 7 8 9 10 11

5 · 2` − 2` 5 8 16 34 72 150 308 626 1264 2542 5100 10,218

r` 7 6 11 9 21 24 6 14 16 4 1 19

Therefore, the fractional parts {2n/n2}, n = 1, 2, 3, . . . , attain any value from the set{ 1
25

,
4
25

,
6

25
,

9
25

,
11
25

,
14
25

,
16
25

,
19
25

,
21
25

,
24
25

}
for infinitely many n ∈ N. The value 7/25 is taken for n = 5 only, since r` = 7 for ` = 0
only, while the values

2
25

,
3

25
,

8
25

,
12
25

,
13
25

,
17
25

,
18
25

,
22
25

,
23
25

(19)

are not attained.
The reason behind this is that, in general, for integers t ≥ 1, u ≥ 0, v ≥ 1 we cannot

claim that there are nonnegative integers n for which

v2n − 2n ≡ u (mod t). (20)

(Compare to (4) in Lemma 1.) For v = 5 and t = 20 all possible u that can be obtained in (20)
are either 5 (which happens for n = 0) or even. The values u = 1, 3, 7, 9, 11, 13, 15, 17, 19 are
never attained in (20), which gives the corresponding numerators

2u (mod 25) = 2, 8, 3, 12, 23, 17, 18, 22, 13

in (19).
Finally, take any odd prime p such that the order δp of 2 modulo p is even. There are

infinitely many of such p, and, by [18], the density of such primes is 17/24. Consider the
value w = {2p/p2}. We claim that the value w is unique, namely, attained by n = p only.

Assume that w = {2n/n2} for some n 6= p. Then, it is easy to see that n must be of the
form n = p2k with some k ∈ N. This happens if and only if

2n

n2 −
2p

p2 =
2p2k

p222k −
2p

p2 =
2p

p2 (2
p2k−2k−p − 1)

is an integer. This is only possible if p divides 2p2k−2k−p − 1. Since the order δp of 2 modulo
p is even, and δp divides the exponent p2k − 2k− p, the latter integer must be even, which
is not the case. This completes the proof of the fact that for each of those infinitely many
primes p the value w = {2p/p2} in the sequence {2n/n2}, n = 1, 2, 3, . . . , is attained at
n = p only.
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