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Abstract: Suppose that ξ+ is the positive part of a random variable defined on the probability
space (Ω,F ,P) with the distribution function Fξ . When the moment E

(
ξ+
)p of order p > 0 is

finite, then the truncated moment Fξ,p(x) = min
{

1,E
(
ξ p1I{ξ>x}

)}
, defined for all x > 0, is the

survival function or, in other words, the distribution tail of the distribution function Fξ,p. In this
paper, we examine which regularity properties transfer from the distribution function Fξ to the
distribution function Fξ,p and which properties transfer from the function Fξ,p to the function Fξ . The
construction of the distribution function Fξ,p describes the truncated moment transformation of the
initial distribution function Fξ . Our results show that the subclasses of heavy-tailed distributions,
such as regularly varying, dominatedly varying, consistently varying and long-tailed distribution
classes, are closed under this truncated moment transformation. We also show that exponential-like-
tailed and generalized long-tailed distribution classes, which contain both heavy- and light-tailed
distributions, are also closed under the truncated moment transformation. On the other hand, we
demonstrate that regularly varying and exponential-like-tailed distribution classes also admit inverse
transformation closures, i.e., from the condition that Fξ,p belongs to one of these classes, it follows that
Fξ also belongs to the corresponding class. In general, the obtained results complement the known
closure properties of distribution regularity classes.

Keywords: truncated moment; alternative moment formula; heavy-tailed distribution; dominated
variation; consistent variation; regular variation; long-tailed distribution; exponential-like-tailed
distribution

MSC: 60G50; 60J80; 91G05

1. Introduction

Let ξ be a real-valued random variable (r.v.) defined on the probability space (Ω,F ,P)
with the distribution function (d.f.) Fξ and the distribution tail (d.t.) Fξ = 1− Fξ . Suppose
that the moment

E
(
ξ+
)p

=
∫
[0,∞)

xpdFξ(x)

is finite for positive p values, where ξ+ denotes the positive part of the r.v. ξ, i.e.,
ξ+ = max{ξ, 0}. In such cases, the function

Fξ,p(x) =

0 if x < 0,

max
{

0, 1−E
(

ξ p 1I {ξ>x}
)}

if x > 0,

is a new d.f. with the d.t.

Fξ,p(x) = min
{

1,E
(

ξ p 1I {ξ>x}
)}

, x > 0.
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In this paper, we discuss which regularity properties transfer from the distribution Fξ

to the distribution Fξ,p and which properties transfer from the function Fξ,p to the function
Fξ . The construction of the distribution function Fξ,p describes the truncated moment
transformation of the initial distribution function Fξ . It follows from our Theorem 1 that
the distribution classesR, C,D,L, Lγ(γ > 0) and OL, whose definitions are presented in
Section 2, are closed under this truncated moment transformation. On the other hand, in
Theorem 2, we show that the class of regularly varying distributions R and the class of
exponential-like-tailed distributions Lγ are characterized by inverse closures, i.e., from the
condition that Fξ,p ∈ R, it follows that Fξ ∈ R and from the condition Fξ,p ∈ Lγ, it follows
that Fξ ∈ Lγ. The obtained results complement the known closure properties, some of
which are discussed in Section 2, where the regularity classes are introduced. The main
results are formulated in Section 3. Some auxiliary lemmas are given in Section 4. The
proofs of main results are presented in Section 5. The paper ends with our conclusions in
Section 6.

2. Regularity Classes

In this paper, we limit ourselves to the following heavy-tailed and related classes: Rα

with α > 0, C, D, L, OL and Lγ with γ > 0. In this section, we briefly describe these
regularity classes. Throughout the paper, we say that a distribution or d.f. F is on R+ when
F(−0) := lim

x→−0
F(x) = 0 and we say that a distribution F is on R when the condition

F(−0) = 0 is not satisfied. Obviously, a d.f. concentrated on R describes a real-valued r.v.
and a d.f. on R+ describes a non-negative r.v.

• A d.f. F on R is said to be regularly varying with index α > 0, denoted as F ∈ Rα if, for
any y > 0, it holds that

lim
x→∞

F(xy)
F(x)

= y−α.

We denote the set of all regularly varying distributions asR:

R :=
⋃

α>0
Rα.

The Pareto, Burr, loggamma, Cauchy, t- and stable distributions, with any exponent
not exceeding two, belong to the classR. Information on the properties of regularly varying
functions, together with some historical notes and various applications, can be found, for
instance, in [1–12]. In [1], Karamata studied the general regularity property for functions
on R+, obtained the main representative expression of regularly varying functions and
determined the asymptotic behavior of the integrals of regular functions. All of the main
properties of general regularly varying functions and regularly varying distributions were
presented in [2–4,6]. Various applications of regularly varying distributions in risk models
were provided in [7–12]. Regular distributions admit a number of closure properties. For
instance, the results of Foss et al. [5] (see also the proposition on page 278 in [13] or Lemma
1.3.1. in [14]) implied that the classR of regularly varying d.f.s is closed under strong tail
equivalence and convolution. The closure under strong tail equivalence means that

F1 ∈ Rα, α > 0, and F2(x) ∼
x→∞

cF1(x), c > 0,⇒ F2 ∈ Rα,

whereas closure under convolution means that

F1, F2 ∈ Rα ⇒ F1 ∗ F2 ∈ Rα,
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where F1 ∗ F2 denotes the standard convolution of d.f.s:

F1 ∗ F2(x) =
∫ ∞

−∞
F1(x− y)dF2(y), x ∈ R.

• A d.f. F on R is said to be consistently varying, denoted by F ∈ C if

lim
y↑1

lim sup
x→∞

F(xy)
F(x)

= 1.

The class of consistently varying d.f.s was introduced in [15,16] as a generalization of
regularly varying d.f.s. By definition, R ⊂ C. Examples showing that C is strictly larger
thanR were provided in [16,17].

The class of consistently varying d.f.s also admits many closure properties, such as
closures under strong tail equivalence, convolution and minimum. Closure under strong
tail equivalence follows immediately from the definition. Closure under convolution is
proved in Theorem 2.2 in [17] (see also Lemma 3 in [18]) and closure under minimum
follows from Theorem 2.47 in [5]. Closure under minimum means that for two independent
r.v.s ξ1 and ξ2 with d.f.s from the class C, it holds that Fξ1∧ξ2 ∈ C.

• A d.f. F on R is said to be dominatedly varying, denoted by F ∈ D if, for any (or some)
0 < y < 1,

lim sup
x→∞

F(xy)
F(x)

< ∞.

Dominatedly varying distributions were introduced in [19] as a generalization of
regularly varying distributions. The various properties of d.f.s from the class D, including
closure properties, were established in [3,17,20–27]. We recall only the relationship between
a d.f. from the class D and two special indices. For a d.f. F on R, we denote the upper
Matuszewska index (see [28]) as J+F and the L-index (see [29]) as LF, as follows:

J+F := lim
y→∞

1
log y

log
{

lim inf
x→∞

F(xy)
F(x)

}
, LF := lim

y↘1
lim inf

x→∞

F(xy)
F(x)

.

It follows from the above definitions that

F ∈ D ⇔ J+F < ∞ ⇔ LF > 0.

• A d.f. F on R is said to be long-tailed, denoted by F ∈ L if, for any (or some) y > 0,

F(x− y) ∼
x→∞

F(x).

The class of long-tailed distributions was introduced in [30] within the context of
branching processes and became one of the most important subclasses of heavy-tailed
distributions. Recall that a d.f. F on R is said to be heavy-tailed when

∫ ∞
−∞ eδxdF(x) = ∞

for any δ > 0. The class L, either alone or in intersection with the class D, was considered
in [17,31–36]. A detailed analysis of distributions from the class L was presented in
Chapter 2 in [5]. For instance, in Lemma 2.23 in [5], closure under mixture and closure
under maximum were established. Closure under mixture means that when the d.f. F1 ∈ L
and either F2 ∈ L or F2(x) = o(F1(x)), then pF1 + (1 − p)F2 ∈ L for any p ∈ (0, 1).
Closure under maximum means that for two independent r.v.s ξ1 and ξ2 with d.f.s from
the class L, it holds that Fξ1∨ξ2 ∈ L. Closure under minimum is similarly defined.
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• A d.f. F on R is said to be exponential-like-tailed, denoted by F ∈ Lγ with γ > 0 if, for any
y > 0,

lim
x→∞

F(x + y)
F(x)

= e−γy.

The class of exponential-like-tailed distributions is a natural generalization of long-tailed
distributions. It was introduced in [37,38] and later also investigated in [23,31,33,39–45]. We
note only that unlike the class L, the class Lγ with γ > 0 is a subclass of light-tailed d.f.s.
Recall that a d.f. F is light-tailed when

∫ ∞
−∞ eδxdF(x) < ∞ for some δ > 0.

An O-generalization of the classes L and Lγ with γ > 0 was proposed in [34]. The
new class OL includes both heavy- and light-tailed d.f.s that satisfy the requirement below.

• A d.f. F on R is said to belong to the class of generalized long-tailed d.f.s OL if, for any (or
some) y > 0,

lim sup
x→∞

F(x− y)
F(x)

< ∞.

The full range of the properties of the class OL was presented in [46–50]. For instance,
in Theorem 1 in [50], closure under product convolution was established for d.f.s on R+.
This means that for two non-negative independent r.v.s ξ1 and ξ2 with d.f.s from the class
OL, it holds that Fξ1 ⊗ Fξ2 := Fξ1ξ2 ∈ OL.

At the end of this section, we note that

R ⊂ C ⊂ D, L ∪
{ ⋃

γ>0
Lγ

}
⊂ OL.

All of these relationships follow from the definitions above. Moreover, all of these
inclusions are strict.

3. Main Results

In this section, we formulate the main results of the paper. The results are presented in
two theorems. In the first theorem, we present the relationships between the inclusions of
Fξ and Fξ,p in the classes under consideration.

Theorem 1. Let ξ be a real-valued r.v. with the d.f. Fξ and the finite moment E
(
ξ+
)p for some

p > 0. Then, the following relationships hold:

(i) Fξ ∈ R α, p < α, ⇒ Fξ,p ∈ R α−p;
(ii) Fξ ∈ C ⇒ Fξ,p ∈ C;
(iii) Fξ ∈ D ⇒ Fξ,p ∈ D;
(iv) Fξ ∈ L ⇒ Fξ,p ∈ L;
(v) Fξ ∈ OL ⇒ Fξ,p ∈ OL;
(vi) Fξ ∈ Lγ, γ > 0, ⇒ Fξ,p ∈ Lγ.

In the second theorem, we present the inverse relationships to those in Theorem 1.
In the second theorem, we describe for which classes K the inclusion of Fξ,p ∈ K implies
Fξ ∈ K or Fξ /∈ K.

Theorem 2. Let ξ be a real-valued r.v. with the d.f. Fξ and let the moment E
(
ξ+
)p be finite for

some fixed p > 0. Then, in general, the following relationships hold:

(i) Fξ,p ∈ R α−p, p < α, ⇒ Fξ ∈ R α;
(ii) Fξ,p ∈ C 6⇒ Fξ ∈ C;
(iii) Fξ,p ∈ D 6⇒ Fξ ∈ D;
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(iv) Fξ,p ∈ L 6⇒ Fξ ∈ L;
(v) Fξ,p ∈ OL 6⇒ Fξ ∈ OL;
(vi) Fξ,p ∈ Lγ, γ > 0, ⇒ Fξ ∈ Lγ.

Here, the assertion “Fξ,p ∈ K 6⇒ Fξ ∈ K” for some classes K means that p > 0 and the random
variable ξ exist , for which Fξ,p ∈ K but Fξ /∈ K.

4. Auxiliary Lemmas

In this section, we present a collection of auxiliary results that we use in the proofs of
the main results.

Lemma 1. Let ξ be a real-valued r.v., such that E
(
ξ +
)p

< ∞ for some p > 0. Then, for any
x > 0, we have

E
(
ξ p1I{ξ>x}

)
= xpP(ξ > x) + p

∫ ∞

x
up−1P(ξ > u)du.

Proof. The equality of the lemma follows directly from the following well-known formula:

Eηp = p
∫ ∞

0
up−1P(η > u)du

provided that p > 0 and η is a non-negative r.v. (see, for instance, Corollary 2 on page 208
in [51]). Details of the derivation can be found in [52]. For more information on alternative
expectation formulae, see [53–55].

Lemma 2. Let ξ be a real-valued r.v. with the d.f. Fξ , such that E(ξ +)p < ∞ for some p > 0, and
let Fξ(x) > 0 for all x ∈ R. Then, the inequalities

Fξ,p(x− y)

Fξ,p(x)
6 max

{(
1− y

x

)p Fξ(x− y)
Fξ(x)

, sup
z>x

(
1− y

z

)p−1 Fξ(z− y)
Fξ(z)

}
, (1)

Fξ,p(x− y)

Fξ,p(x)
> min

{(
1− y

x

)p Fξ(x− y)
Fξ(x)

, inf
z>x

(
1− y

z

)p−1 Fξ(z− y)
Fξ(z)

}
(2)

hold when x > 0, 0 < y < x and E
(
ξ p1I { ξ>x−y}

)
< 1. In addition,

yp inf
z>x

Fξ(zy)
Fξ(z)

6
Fξ,p(xy)

Fξ,p(x)
6 yp sup

z>x

Fξ(zy)
Fξ(z)

(3)

when x > 0, y > 0, E
(
ξ p1I { ξ>x}

)
< 1 and E

(
ξ p1I { ξ>xy}

)
< 1.

Proof. Let us begin with inequality (1). The conditions of the lemma imply that

Fξ,p(x− y)

Fξ,p(x)
=

E
(
ξ p1I { ξ>x−y}

)
E
(
ξ p1I { ξ>x}

) .
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Therefore, using Lemma 1, we obtain

Fξ,p(x− y)

Fξ,p(x)
=

(x− y)pFξ(x− y) + p
∞∫
x

up−1
(

1− y
u

)p−1
Fξ(u− y)du

xpFξ(x) + p
∞∫
x

up−1Fξ(u)du

6

(x− y)pFξ(x− y) + p sup
z>x

{(
1− y

z

)p−1 Fξ (z−y)
Fξ (z)

} ∞∫
x

up−1Fξ(u)du

xpFξ(x) + p
∞∫
x

up−1Fξ(u)du
.

The upper estimate (1) follows from the min–max inequality

min
{

a1

b1
,

a2

b2

}
6

a1 + a2

b1 + b2
6 max

{
a1

b1
,

a2

b2

}
, (4)

where a1, a2 are non-negative and b1, b2 are positive. The lower inequality (2) can be derived
in a similar way.

Now, let us consider the upper bound in (3). Condition E
(
ξ p1I { ξ>xy}

)
< 1 implies

that
Fξ,p(xy)

Fξ,p(x)
=

E
(
ξ p1I { ξ>xy}

)
E
(
ξ p1I { ξ>x}

) .

Hence, using Lemma 1 again, we obtain

Fξ,p(xy)

Fξ,p(x)
=

(xy)pFξ(xy) + p
∞∫

xy
up−1Fξ(u)du

xpFξ(x) + p
∞∫
x

up−1Fξ(u)du

= yp
xpFξ(xy) + p

∞∫
x

up−1 Fξ (uy)
Fξ (u)

Fξ(u)du

xpFξ(x) + p
∞∫
x

up−1Fξ(u)du

6 yp
xpFξ(xy) + p sup

z>x

Fξ (zy)
Fξ (z)

∞∫
x

up−1Fξ(u)du

xpFξ(x) + p
∞∫
x

up−1Fξ(u)du
.

We obtain the upper bound in (3) by using inequality (4). The lower bound in (3) can
be derived in the same manner. Therefore, the lemma is proved.

Lemma 3. Let the d.f. H belong to the classRα for some α > 0. Then, for an arbitrary σ > −α, it
holds that

lim
x→∞

∫
(x,∞) u−σdH(u)

x−σ H(x)
= − α

σ + α
. (5)

Conversely, when H is a d.f. and the equation (5) holds for some α and σ, such that α > 0, σ+ α > 0,
then H ∈ Rα.

Proof. The formulated lemma is a version of the well-known Karamata’s theorem [1,56].
The presented assertion follows directly from Theorem 1.6.5 in [3]. Further generalizations
of Karamata’s statements can be found in [57–60], among others.



Mathematics 2023, 11, 2172 7 of 15

5. Proofs of the Main Results

In this section, we present the proofs of the main theorems. Both of the presented
proofs consist of several parts.

Proof of Theorem 1. Part (i). As Fξ ∈ Rα, for an arbitrary y > 0,

lim
x→∞

Fξ(xy)
Fξ(x)

= y−α.

Therefore, using inequality (3) from Lemma 2, we obtain

lim sup
x→∞

Fξ,p(xy)

Fξ,p(x)
6 yp lim sup

x→∞
sup
z>x

Fξ(zy)
Fξ(z)

= yp lim sup
x→∞

Fξ(xy)
Fξ(x)

= yp−α, (6)

and similarly,

lim inf
x→∞

Fξ,p(xy)

Fξ,p(x)
> yp lim inf

x→∞
inf
z>x

Fξ(zy)
Fξ(z)

= yp lim inf
x→∞

Fξ(xy)
Fξ(x)

= yp−α.

The last two derived inequalities show that Fξ,p ∈ Rα−p.

Part (ii). According to the definition, Fξ ∈ C if and only if

lim
y↑1

lim sup
x→∞

Fξ(xy)
Fξ(x)

6 1.

Therefore, using inequality (6), we obtain

lim
y↑1

lim sup
x→∞

Fξ,p(xy)

Fξ,p(x)
6 lim

y↑1
yp lim sup

x→∞

Fξ(xy)
Fξ(x)

= 1,

which implies that Fξ,p ∈ C.
Part (iii). According to the definition, Fξ ∈ D if and only if

lim sup
x→∞

Fξ(x/2)

Fξ(x)
< ∞.

Meanwhile, inequality (6) implies that

lim sup
x→∞

Fξ,p(x/2)

Fξ,p(x)
6

1
2p lim sup

x→∞

Fξ(x/2)

Fξ(x)
,

and, therefore, Fξ,p ∈ D as well.
Part (iv). Let us suppose that Fξ ∈ L and E

(
ξ+
)p

< ∞. Since

lim
x→∞

sup
z>x

Fξ(z− 1)

Fξ(z)
= lim sup

x→∞

Fξ(x− 1)

Fξ(x)
= 1,

according to inequality (1) from Lemma 2, we have

lim sup
x→∞

Fξ,p(x− 1)

Fξ,p(x)

6 max
{

lim sup
x→∞

(
1− 1

x

)p Fξ(x− 1)

Fξ(x)
, lim sup

x→∞
sup
z>x

(
1− 1

z

)p−1 Fξ(z− 1)

Fξ(z)

}
= 1.
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Similarly, by the condition

lim
x→∞

inf
z>x

Fξ(z− 1)

Fξ(z)
= lim inf

x→∞

Fξ(x− 1)

Fξ(x)
= 1,

and inequality (2) from Lemma 2, we obtain

lim inf
x→∞

Fξ,p(x− 1)

Fξ,p(x)

> min
{

lim inf
x→∞

(
1− 1

x

)p Fξ(x− 1)

Fξ(x)
, lim inf

x→∞
inf
z>x

(
1− 1

z

)p−1 Fξ(z− 1)

Fξ(z)

}
= 1.

The derived inequalities imply that Fξ,p ∈ L.
Part (v). According to the definition, Fξ ∈ OL if and only if

lim sup
x→∞

Fξ(x− 1)

Fξ(x)
< ∞,

or equivalently,

sup
x∈R

Fξ(x− 1)

Fξ(x)
< ∞.

According to (1) from Lemma 2, we have

sup
x>M

Fξ,p(x− 1)

Fξ,p(x)
6 cp sup

x>M

Fξ(x− 1)

Fξ(x)

with sufficiently large M > 2 and

cp =

{
1 if p > 1,
21−p if p < 1.

The last inequality implies that Fξ,p ∈ OL.
Part (vi). For Fξ ∈ Lγ, according to the definition, we have that

lim
x→∞

sup
z>x

Fξ(z− y)
Fξ(z)

= lim
x→∞

inf
z>x

Fξ(z− y)
Fξ(z)

= lim
x→∞

Fξ(x− y)
Fξ(x)

= eγy

for fixed y > 0. For such y, according to inequalities (1) and (2), we have

lim sup
x→∞

Fξ,p(x− y)

Fξ,p(x)

6 max
{

lim sup
x→∞

(
1− y

x

)p Fξ(x− y)
Fξ(x)

, lim sup
x→∞

sup
z>x

(
1− y

z

)p−1 Fξ(z− y)
Fξ(z)

}
= eγy,

and

lim inf
x→∞

Fξ,p(x− y)

Fξ,p(x)

> min
{

lim inf
x→∞

(
1− y

x

)p Fξ(x− y)
Fξ(x)

, lim inf
x→∞

inf
z>x

(
1− y

z

)p−1 Fξ(z− y)
Fξ(z)

}
= eγy,

implying that Fξ,p ∈ Lγ.
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Proof of Theorem 2. Part (i). Suppose that E
(
ξ+
)p

< ∞ for some p under the condition
0 < p < α. For sufficiently large x, we have

Fξ,p(x) = E
(
ξ p1I{ξ>x}

)
= −

∫
(x,∞)

updFξ(u),∫
(x,∞)

u−pdFξ,p(u) =
∫
(x,∞)

u−pd
(∫

(u,∞)
zpdFξ(z)

)
= −Fξ(x).

When Fξ,p ∈ Rα−p, then according to Lemma 3, we obtain

lim
x→∞

∫
(x,∞) u−pdFξ,p(u)

x−pFξ,p(x)
= −α− p

α
,

implying that

lim
x→∞

∫
(x,∞) updFξ(u)

xpFξ(x)
= − α

(−p) + α
.

In this case, we have that α > 0 and (−p) + α > 0. Hence, using the converse part of
Lemma 3, we can derive that Fξ ∈ Rα, which finishes the proof of Part (i).

Part (ii). To prove this part of the theorem, we present a counterexample. We introduce
an r.v. ξ such that Fξ,1 ∈ C but Fξ /∈ C. Let us define the tail function of the r.v. ξ as follows:

Fξ(x) = 1I(−∞,2)(x) +
∞

∑
n=1

1
n22n 1I[2n ,2n+1)(x).

This tail function describes the distribution of the r.v. ξ, for which

P(ξ = 2) =
1
2

, P
(
ξ = 2n+1) = 1

n22n −
1

(n + 1)22n+1 , n ∈ {1, 2, . . .}.

The moment of order p

E
(
ξ+
)p

= E
(
ξ
)p

= 2p−1 + 2p
∞

∑
n=1

2n(p−1)
( 1

n2 −
1

2(n + 1)2

)
is finite for each p ∈ [0, 1].

For p = 1 and large x,

E
(
ξ1I{ξ>x}

)
= 2 ∑

n>blog2 xc

( 1
n2 −

1
2(n + 1)2

)
.

Therefore,

Fξ,1(x) ∼
x→∞

1
log2 x

, (7)

implying that Fξ,1 ∈ R0 ⊂ C.
However, for the sequence xn = 2n + 1/2, n ∈ N,

lim sup
x→∞

Fξ(x− 1)

Fξ(x)
= lim

n→∞

Fξ(xn − 1)

Fξ(xn)
= 2. (8)

This shows that Fξ /∈ L ⊃ C, which finishes the proof of Part (ii) of the theorem.
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Part (iii). To prove this part of the theorem, we again present a counterexample. We
introduce an r.v. ξ such that Fξ,1 ∈ D but Fξ /∈ D. Let us take the following two sequences
{an} and {bn}:

an = 2n(n+1)/2, n = 1, 2, 3, . . . ,

b1 = 1, b2 = 1/2, bn = 2−1−(n+7)(n−2)/2, n = 3, 4, . . . .

For such sequences, we define the distribution of the r.v. ξ using the distribution tail

Fξ(x) = b11I(−∞,a1)
(x) +

∞

∑
n=2

bn1I[an−1,an)(x). (9)

When an 6 x < 2an, n > 2, then

Fξ(x/2)

Fξ(x)
=

bn

bn+1
= 2n+3,

implying that Fξ /∈ D.
Using the formula from Lemma 1, we find that the moment of order p

E
(
ξ+
)p

= b1ap
1 +

∞

∑
n=2

bn
(
ap

n − ap
n−1
)

= 2p +
1
2

∞

∑
n=2

1
2(n+7)(n−2)/2

((
2n(n+1)/2

)p
−
(

2(n−1)n/2
)p
)

is finite for each p ∈ (0, 1]. In addition,

max
p∈(0,1]

E
(
ξ+
)p

= E
(
ξ+
)
=

130
21

.

Using Lemma 1 again, for p ∈ (0, 1] and x > 0, we obtain

E
(
ξ p1I{ ξ>x}

)
=

(
b1ap

1 +
∞

∑
n=2

bn
(
ap

n − ap
n−1
))

1I[0,a1)
(x)

+
∞

∑
k=2

(
bkap

k +
∞

∑
n=k+1

bn
(
ap

n − ap
n−1
))

1I[ak−1,ak)
(x).

Therefore, for x > 0,

E
(
ξ p1I{ ξ>x/2}

)
E
(
ξ p1I{ ξ>x}

) = 1I[0,a1)
(x) +

∞

∑
k=2

1I[2ak−1,ak)
(x)

+
∞

∑
k=1

bkap
k + ∑∞

n=k+1 bn
(
ap

n − ap
n−1
)

bk+1ap
k+1 + ∑∞

n=k+2 bn
(
ap

n − ap
n−1
) 1I[ak ,2ak)

(x),
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and

lim sup
x→∞

Fξ,1
(
x/2

)
Fξ,1(x)

= lim
k→∞

2(k(k+1)−(k+7)(k−2))/2 +
∞
∑

n=k+1
2−(n+7)(n−2)/2

(
2n(n+1)/2 − 2(n−1)n/2

)
2
(
(k+1)(k+2)−(k+8)(k−1)

)
/2 +

∞
∑

n=k+2
2−(n+7)(n−2)/2

(
2n(n+1)/2 − 2(n−1)n/2

)
= lim

k→∞

1
3 2−2(k−4) − 1

7 2−3(k−2)

1
3 2−2(k−3) − 1

7 2−3(k−1)
= 4.

We conclude that Fξ,1 ∈ D (but Fξ /∈ D), which finishes the proof of Part (iii).
Part (iv). To prove this part of the theorem, we use the same counterexample as in Part

(ii). According to relationship (7), the d.f. Fξ,1 belongs to the class L. On the other hand, the
relationship (8) gives that Fξ /∈ L. Therefore, Part (iv) is proved.

Part (v). To prove this part of the theorem, we use the same counterexample as in Part
(iii). For the distribution tail (9), we obtain that Fξ,1 ∈ OL because D ⊂ OL, according to
the definitions of the classes D and OL. On the other hand, for the distribution tail (9), we
have

Fξ(x− 1)

Fξ(x)
= 1I(−∞,a1)

(x) + 21I[a1,a1+1)(x) +
∞

∑
n=2

1I[an−1+1,an)(x) +
∞

∑
n=2

2n+31I[an ,an+1)(x),

where an = 2n(n+1)/2, n ∈ N. Therefore,

lim sup
x→∞

Fξ(x− 1)

Fξ(x)
= lim

n→∞

Fξ (an − 1)

Fξ(an)
= ∞,

implying that Fξ /∈ OL.
Part (vi). The condition Fξ,p ∈ Lγ implies that the function Fξ,p(log x) with x > 1

is regularly varying with the index −γ. The Karamata characterization theorem (see, for
instance, Theorem 1.4.1 in [3]) implies that

Fξ,p(log x) = x−γL(x), x > 1,

or

Fξ,p(x) = e−γxL
(
ex), x > 0,

with some slowly varying functions L.
When x is sufficiently large, then

Fξ,p(x) = E
(
ξ p1I{ξ>x}

)
=
∫
(x,∞)

updFξ(u) > xpFξ(x). (10)

Therefore, for large x,

Fξ(x) 6 x−pe−γxL
(
ex).

Now, suppose that ε ∈ (0, 1/2) and δ ∈ (0, 1). According to the last inequality and
Lemma 1 for large x, we obtain

Fξ,p(x) 6 xpFξ(x) + p

(1+ε)x∫
x

up−1Fξ(u)du + p
∞∫

(1+ε)x

u−1e−γuL
(
eu)du.



Mathematics 2023, 11, 2172 12 of 15

Using the basic properties of slowly varying functions (see Theorem 1.3.1 or Proposi-
tion 1.3.6 in [3]), we obtain

Fξ,p(x) 6 (1 + ε)pxpFξ(x) +
p

(1 + ε)x

∞∫
(1+ε)x

e−γ(1−ε/2)udu

6 (1 + ε)pxpFξ(x) +
p

γ(1 + ε)(1− ε/2)x
e−γ(1+ε/4)x (11)

because (1− ε/2)(1 + ε) > (1 + ε/4) for ε ∈ (0, 1/2). Using the same basic properties of
slowly varying functions again, we obtain

e−γ(1+ε/4)x

Fξ,p(x)
=

e−γεx/4

L
(
ex
) →

x→∞
0.

Therefore, for large x,

Fξ,p(x) 6 (1 + ε)pxpFξ(x) + δFξ,p(x),

or

Fξ,p(x) 6
(1 + ε)p

1− δ
xpFξ(x). (12)

The derived estimates (10) and (12) imply the following double inequality:

(1− δ)

(1 + ε)p x−pFξ,p(x) 6 Fξ(x) 6 x−pFξ,p(x) (13)

provided ε ∈ (0, 1/2), δ ∈ (0, 1) and x is sufficiently large.
Let us now suppose that y > 0. From (13), we have

Fξ(x + y)
Fξ(x)

6
Fξ,p(x + y)

Fξ,p(x)
xp

(x + y)p
(1 + ε)p

1− δ
.

Condition Fξ,p ∈ Lγ implies that

lim sup
x→∞

Fξ(x + y)
Fξ(x)

6 e−γy (1 + ε)p

1− δ
.

Since ε ∈ (0, 1/2) and δ ∈ (0, 1) are arbitrarily chosen, we have

lim sup
x→∞

Fξ(x + y)
Fξ(x)

6 e−γy.

In a similar way, from (13), the opposite inequality follows

lim inf
x→∞

Fξ(x + y)
Fξ(x)

> e−γy.

The last two inequalities imply that Fξ ∈ Lγ. Therefore, the theorem is proved.

6. Conclusions

In this paper, we studied the closure of regularity classes under the truncated moment
transformation. We proved that the classes R, C,D,L,OL and Lγ with γ > 0 are closed
under the truncated moment transformation. This means that the condition Fξ ∈ K for
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the d.f. Fξ implies that the d.f. Fξ,p(x) = 1−min
{

1,E
(
ξ p1I{ξ>x}

)}
∈ K for the classes

K ∈ {R, C,D,L,OL,Lγ}, where γ is supposed to be positive. The second theorem of this
work showed that the classesR and Lγ with γ > 0 also have the inverse closure property,
while the classes C,D,L and OL do not admit the inverse closure property. The following
conclusions were drawn from both of the main theorems in this article.

Corollary 1. Let ξ be a real-valued r.v. with the d.f. Fξ . Then, Fξ ∈ Rα with α > 0 if and only if
Fξ,p ∈ Rα−p for some 0 < p < α.

Corollary 2. Let ξ be a real-valued r.v. with the d.f. Fξ . Then, Fξ ∈ Lγ with γ > 0 if and only if
Fξ,p ∈ Lγ for some p > 0.

As for Corollary 2, we note that the r.v. ξ with a d.f. from the class Lγ has a finite
moment of any order for the positive part of ξ+.

The results of this work could provide a new way to verify whether d.f.s are regularly
varying and whether d.f.s are exponential-like-tailed. Instead of checking Fξ ∈ Rα with
α > 0, we can check Fξ,p ∈ Rα−p for some 0 < p < α and instead of checking Fξ ∈ Lγ with
γ > 0, we can check Fξ,p ∈ Lγ for some p > 0.

The results obtained in this paper complement the results presented in [41,42,61–64],
which considered how the d.f.s from some regularity class affect the regularity properties
of the integrated tail

F(I)
ξ (x) =

1∫ ∞
0 Fξ(u)du

∫ x

0
Fξ(u)du.

For instance, the following assertion can be derived by combining Corollary 2 and
Lemma 3.1 in [42] (see also Theorem 1.1 in [41]).

Corollary 3. Let γ > 0 and let ξ be a real-valued r.v. with the d.f. Fξ . Then,

Fξ ∈ Lγ ⇔ lim
x→∞

Fξ(x)∫ ∞
x Fξ(u)du

= γ⇔ F(I)
ξ ∈ Lγ ⇔ Fξ,p ∈ Lγ for some p > 0.

For future research, we plan to extend the obtained results to other heavy- and light-
tailed distribution classes of interest. Finally, the obtained results are not only interesting
from a theoretical point of view but could also have some potential applications, e.g., the
construction and investigation of various risk measures.
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