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Abstract: Let α and β be two algebraic numbers such that deg(α) = m and deg(β) = p, where p is a
prime number not dividing m. This research is focused on the following two objectives: to discover
new conditions under which deg(αβ) = mp; to determine the complete list of values deg(αβ) can
take. With respect to the first question, we find that if the minimal polynomial of β over Q is neither
xp + c nor x2 + cx + c2, then necessarily deg(αβ) = mp and αβ is a primitive element of Q(α, β). This
supplements some earlier results by Weintraub. With respect to the second question, we determine
that if p > 2 and p− 1 divides m, then for every divisor k of p− 1, there exist α and β such that
deg(αβ) = mp/k.
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1. Introduction

Suppose α and β are two algebraic numbers such that deg(α) = a and deg(β) = b,
where deg(γ) denotes the degree of an algebraic number γ over the field Q. In [1], Dubickas
established some necessary and sufficient conditions under which

deg(α + β) = ab and deg(αβ) = ab. (1)

Unfortunately, most of the conditions found in [1] are rather difficult to check. This
motivates a search for alternative criteria allowing us to conclude when the equalities in (1) hold.

The additive case of (1) seems to have been first considered by Nagell [2] and then
followed by Kaplansky ([3], Part I, Theorem 63), Isaacs [4], Browkin, and Diviš and Schinzel [5].
A detailed discussion of this question together with some applications can also be found in
the work by Cagliero and Szechtman [6]. In contrast, the multiplicative case of (1) to our
knowledge has been investigated only by Dubickas [1] and Weintraub [7].

One of the most important results on this topic is due to Isaacs [4], who showed that
if a and b are coprime, then deg(α + β) = ab. The primary objective of this research is to
investigate whether the same condition is sufficient for the multiplicative case of (1) to hold.
As the next example shows, the answer is negative. Indeed, we can set α = ζ and β = p

√
2,

where p > 2 is a prime number and ζ is a primitive pth root of unity; i.e., ζ = e2πi/p. Then,
deg(α) = p− 1 and deg(β) = p, but

deg(αβ) = deg( p√2ζ) = p 6= (p− 1)p. (2)

We have found that the example in (2) can be generalized as follows:

Theorem 1. Let p be a prime number. Then there exist algebraic numbers α, β such that deg(α) =
p− 1, deg(β) = p, and deg(αβ) = (p− 1)p/k for any divisor k of p− 1.
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For an illustration, suppose that p = 7 and k = 3. Following the construction process
described in the proof of Theorem 1, we should set α = 1 + ζ + ζ3 and β = 7

√
2, where

ζ = e2πi/7. Then, by calculations with SAGE one can check that:

deg(α) = 7− 1 = 6, deg(β) = 7 and deg(αβ) = 6 · 7/3 = 14.

Motivated by the investigations that led to Theorem 1, in this paper we restrict our
attention to the situation in which deg(α) = m is an arbitrary positive integer and deg(β) =
p is a prime number such that p - m. In this setting, we focus on the following two objectives:
to discover new conditions under which deg(αβ) = deg(α) · deg(β); to determine the
complete list of values deg(αβ) can take.

Our research methods are similar to the ones applied by Dubickas and Jankauskas [8]
in their work on relations between algebraic conjugates. By using Galois theory together
with a well-known result of Drmota and Skałba [9] on the multiplicative relations between
algebraic conjugates of prime degree, we deduce the following sufficient condition under
which deg(αβ) = deg(α) · deg(β):

Theorem 2. Let p be a prime number and let m be a positive integer such that p - m. Suppose
that α, β are algebraic numbers such that deg(α) = m, deg(β) = p, and the minimal polynomial
of β over Q is f (x).

(a) If p > 2 and f (x) 6= xp + c, where c ∈ Q, then deg(αβ) = mp.
(b) If p = 2 and f (x) 6= x2 + cx + c2, where c ∈ Q, then deg(αβ) = mp.

These findings supplement some observations on primitive elements of field exten-
sions made by Weintraub [7]. If α and β are algebraic numbers satisfying the assumptions
of Theorem 2, then it immediately follows that αβ is a primitive element of Q(α, β); i.e.,
Q(α, β) = Q(αβ). For example, take

α =

√√
2 + 2 and β = 1 + 3

√
2 + 3√4.

Calculations with SAGE show that the minimal polynomial of α is x4 − 4x2 + 2, and
that the minimal polynomial of β is x3 − 3x2 − 3x− 1. We see that deg(α) = 4, deg(β) = 3,
and the minimal polynomial of β is not of the form x3 + c. Therefore, Theorem 2 implies
that the minimal polynomial of αβ has a degree equal to 4 · 3 = 12, and that the generating
element of the composite field extension Q(α, β)/Q can be chosen to be αβ.

It should be noted that Theorem 2 provides a sufficient but not necessary condition, as
even if the minimal polynomial of β is equal to xp + c (or x2 + cx + c2 if p = 2), one can
always choose α of degree m so that p - m and deg(αβ) = mp.

As far as our second research objective is concerned, by applying Theorem 2 together
with the theory of transitive permutation groups, we provide the complete list of values
that deg(αβ) can take in the case deg(α) = m, deg(β) = p, and p is a prime such that p - m:

Theorem 3. Let p be a prime number and let m be a positive integer such that p - m. Suppose
that α, β are algebraic numbers such that deg(α) = m and deg(β) = p.

(a) If p > 2 and p− 1 - m, then deg(αβ) = mp.
(b) If p > 2 and p− 1 | m, then deg(αβ) = mp/k, where k is a divisor of p− 1. In fact, for any

divisor k of p− 1, such α and β exist.
(c) If p = 2 and 3 - m, then deg(αβ) = 2m.
(d) If p = 2 and 3 | m, then deg(αβ) = vm, where v = 1, 2. In fact, for both values of v, such α

and β exist.

Theorem 3 has a strong connection with investigations on product-feasible triplets,
which, together with similar notions of sum-feasible and compositum-feasible triplets,
were introduced by Drungilas, Dubickas, and Smyth [10]. A triplet (a, b, c) ∈ N3 is called
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product-feasible if there exist three algebraic numbers α, β, γ with degrees a, b, c over Q,
respectively, such that αβγ = 1. To this day, all sum-feasible and compositum-feasible
triplets (a, b, c) satisfying a ≤ b ≤ 9 have been found [11–13]. Conversely, due to additional
obstacles arising in the multiplicative setting of the problem, the search for all product-
feasible (a, b, c) triplets satisfying a ≤ b ≤ 9 has not been completed yet. We show how
Theorem 3 can be directly applied for further research on product-feasible triplets. First,
we reformulate it as follows:

Corollary 1. Let p be a prime number and let a be a positive integer such that p - a. Then, the
triplet (a, p, c) is product-feasible if and only if at least one of the following conditions holds:

(a) c = ap.
(b) p− 1 | a and c = ap/k for some divisor k of p− 1.
(c) p = 2 and c = 2a or c = a.

To illustrate how Corollary 1 works, we find all product-feasible triplets (a, 7, c) satis-
fying a < 7.

Corollary 2. The triplet (a, 7, c), where a < 7, is product-feasible if and only if c = 7a or a = 6
and c = 6 · 7/k with k ∈ {2, 3, 6}.

In the next section, we provide some auxiliary results that will be used later. Then,
in Section 3, we prove Theorem 1 and show how to construct non-trivial examples satis-
fying Theorem 1 for any prime p. In Section 4 we investigate the multiplicative relations
between the polynomial roots in order to complete the proof of Theorem 2. Finally, via the
fundamental theorem of Galois theory and the results from earlier sections, the proofs of
Theorem 3 and Corollary 1 and Corollary 2 are derived in Section 5.

2. Auxiliary Results

We start with some basic results from abstract algebra.

Lemma 1 ([14], Chapter 4.1, Exercise 9). Assume that G acts transitively on a finite set Ω and
let H be a normal subgroup of G. Then, all orbits of H on Ω have the same cardinality.

Lemma 2 ([15], Theorem 1.6A). Let G be a group acting transitively on a set Ω and let H be a
normal subgroup of G. If the index [G : H] is finite, then the number of orbits of H divides [G : H].

Lemma 3. Let G be a group acting transitively and faithfully on a set Ω of size m and let N denote
a point stabilizer in G. If N is normal in G, then |G| = m.

Proof. Consider the group action of G on Ω. Since G acts transitively, we know that all
point stabilizers are conjugate to N in G. However, N is normal in G, hence gNg−1 = N
for all g ∈ G. Thus, N stabilizes all points of Ω. Since G acts faithfully, we conclude that N
consists only of the identity element; i.e., |N| = 1. Finally, by the orbit-stabilizer theorem,
we have that |G| = 1 ·m = m.

Lemma 4. Let f (x) be the minimal polynomial of α over Q and suppose L is a normal extension of
Q(α) such that f (x) splits in L. Let G denote the Galois group of L/Q. Assume that the number of
distinct automorphisms in G fixing α is equal to k. Then, deg(α) = |G|/k.

Proof. Let deg(α) = d and let Ω = {α1 = α, . . . , αd} be the set of all conjugates of α.
Consider the group action of G on Ω. Then, the set of all automorphisms in G that fix α
form the stabilizer subgroup Gα. Thus, |Gα| = k. Since G is transitive, it is well-known that
[G : Gα] = d. Therefore, d = |G|/k.

The following lemma will be frequently used in the proof of Theorem 1.
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Lemma 5. Let p be a prime number and let ζ be a primitive pth root of unity; i.e., ζ = e2πi/p. Let
{b1, . . . , bn} and {c1, . . . , cn} be two subsets of {0, 1, . . . , p− 1}. If

ζb1 + . . . + ζbn = ζc1 + . . . + ζcn ,

then {b1, . . . , bn} = {c1, . . . , cn}.

Proof. The claim follows easily from the fact that if p is a prime number and ζ = e2πi/p,
then the only linear relation over Q between the numbers 1, ζ, . . . , ζ p−1 is

1 + ζ + · · ·+ ζ p−1 = 0,

or a non-zero constant multiplied by the above relation (see the proof of Lemma 4 in [16]).

The next two lemmas were derived by Drungilas, Dubickas, and Smyth in [10].

Lemma 6 ([10], Proposition 21). Suppose that α and β are algebraic numbers of degrees m
and n over Q, respectively. Let α1 = α, α2, . . . , αm be the distinct conjugates of α and let
β1 = β, β2, . . . , βp be the distinct conjugates of β. If β is of degree n over Q(α), then all the
numbers αiβ j, 1 ≤ i ≤ m, 1 ≤ j ≤ n are conjugate over Q (although not necessarily distinct).

Lemma 7. Suppose that deg(α) = a, deg(β) = b, and deg(αβ) = c. Then, for any positive
integer v, there exist algebraic numbers α′ and β′ such that deg(α′) = av, deg(β′) = b, and
deg(α′β′) = cv.

Proof. Recall that a triplet (a, b, c) ∈ N3 is called product-feasible if there exist three
algebraic numbers α, β, γ of degrees a, b, c over Q, respectively, such that αβγ = 1. By
assumption, α and β are algebraic numbers such that deg(α) = a, deg(β) = b, and
deg(αβ) = c. Set γ := 1/αβ. Note that deg(γ) = c and αβγ = 1, hence the triplet (a, b, c) is
product-feasible. It is also trivial to check that the triplet (v, 1, v) is product-feasible for any
positive integer v. Moreover, the triplet (v, 1, v) satisfies the exponent triangle inequality
with respect to any prime number p (see ([10], Theorem 6)). Therefore, from Theorem 28
in [10], it follows that the triplet (a · v, b · 1, c · v) is also product-feasible. Thus, there exist
algebraic numbers α′, β′, γ′ of degrees av, b, cv, respectively, such that α′β′γ′ = 1. Since
deg(α′β′) = deg(γ′), the conclusion follows.

Now we turn our attention to the multiplicative relations between algebraic conjugates.
Let α1, α2, . . . , αn be the roots of a non-zero separable polynomial f (x) ∈ Q[x] of degree
n ≥ 2. A multiplicative relation between α1, . . . , αn is a relation of the kind

αk1
1 αk2

2 · · · αkn
n ∈ Q,

where all the ki ∈ Z. If k1 = k2 = . . . = kn, the multiplicative relation is called trivial.

Lemma 8 ([9], Theorem 1). Let f (x) ∈ Q[x] be an irreducible polynomial over Q of prime degree
p > 2. If there exists a non-trivial multiplicative relation between the roots α1, . . . , αp of f (x), then
f (x) = xp + c.

The fact that the analogous statement to Lemma 8 is no longer true for algebraic
conjugates of non-prime degrees prevents us from extending the methods used in this
paper to algebraic numbers, whose degrees are non-prime.

The proof of the following lemma mimics the proof of Theorem 2’ in [17], which deals
with a slightly different relation.

Lemma 9. Suppose that α is an algebraic number of degree d ≥ 2 over Q and let α′ 6= α be a
conjugate of α. Assume also that αrα′q = 1, where r, q ∈ Z. Then, α is a root of unity or r = ±q.
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Proof. Let K denote the Galois closure of Q(α) over Q and let σ be an automorphism of K
defined by

σ : K → K, α 7→ α′. (3)

Assume that the order of σ is equal to m, so that

σ0(α) = σm(α) = α. (4)

By definition of σ in (3), the equality αrα′q = 1 can be rewritten as

αrσ(α)q = 1. (5)

By applying σ repeatedly on (5) and taking into account that σ(1) = 1, we derive that

(σj−1(α))r · (σj(α))q = 1 (6)

for any j = 1, . . . , m. Thus, by raising both sides of (6) to the power of rm−j(−q)j−1, we
obtain m equalities of the following form

(σj−1(α))rm−j+1(−q)j−1 · (σj(α))−rm−j(−q)j
= 1, (7)

where j = 1, . . . , m. By multiplying all m equalities in (7) and taking into account (4),
we obtain

αrm−(−q)m
= 1. (8)

Put rm − (−q)m = t. If t 6= 0, then from (8) it follows that α is a tth root of unity.
However, if t = 0, then from rm = (−q)m it follows that r = ±q. Whence, the proof is

complete.

The final lemma with minor adjustments is a special case of a theorem proved by
Dubickas ([17], Theorem 4’), who generalized an earlier result of Smyth ([18], Lemma 1).

Lemma 10. Suppose that α1, . . . , αn, where n ≥ 3 are distinct algebraic numbers conjugate over Q.
If q1, . . . , qn ∈ Z are non-zero numbers such that |q1| = |q2|+ . . .+ |qn| and α

q1
1 = α

−q2
2 · · · α−qn

n ,
then αw

2 α
q
1 = 1 and αl

3αs
1 = 1 with integers w > 0, l > 0, q, and s.

Proof. If α is torsion-free over Q (α is called torsion-free if none of the ratios αi/αj with
1 ≤ i 6= j ≤ n has a root of unity), then the result follows directly by following the proof of
Theorem 4’ in [17]. Note, however, that the assumption of α being torsion-free in the proof
of [17] was needed only to ensure that there is no restriction of generality by considering
the case in which

α
q1
1 α

q2
2 · · · α

qn
n = 1. (9)

Since in our lemma it is assumed that α
q1
1 = α

−q2
2 · · · α−qn

n , the equality in (9) holds.
Therefore, it is not necessary to require that α be torsion-free.

3. Proof of Theorem 1

Proof. If p = 2, the claim is trivial. Therefore, for the rest of the proof we assume that
p > 2. First, we treat the case in which k > 1; i.e., k denotes a non-unit divisor of p− 1. It is
well-known that for any such k one can choose r ∈ {2, . . . , p− 1} so that k is the order of r
modulo prime p; i.e., k is the least positive integer for which rk ≡ 1 mod p. Set

ai := r0 + r1 + . . . + ri−1 mod p, (10)

where i ∈ {1, . . . , k}. Since r 6≡ 1 mod p, observe that

ai ≡ r0 + r1 + . . . + ri−1 ≡ ri − 1
r− 1

mod p. (11)



Mathematics 2023, 11, 1485 6 of 16

By the choice of k and r, it immediately follows from (11) that ak ≡ 0 mod p. Moreover,
since 2 ≤ k ≤ p− 1 and rk − 1 ≡ 0 mod p, we derive that

a1 + . . . + ak−1 ≡
(r− 1) + (r2 − 1) + . . . + (rk−1 − 1)

r− 1

≡ r + r2 + . . . + rk−1 + 1
r− 1

− k · 1
r− 1

≡ rk − 1
(r− 1)2 −

k
r− 1

≡ − k
r− 1

6≡ 0 mod p.

(12)

Finally, note that a1, a2, . . . , ak−1 are all distinct mod p. Indeed, for any 1 ≤ i < j ≤
k− 1, we see that

aj − ai ≡
rj − 1
r− 1

− ri − 1
r− 1

≡ ri(rj−i − 1)
r− 1

6≡ 0 mod p, (13)

because k is the least positive integer such that rk − 1 ≡ 0 mod p and 0 < j− i < k.
Let ζ be a primitive pth root of unity. Set

α := 1 + ζa1 + ζa2 + . . . + ζak−1 , (14)

where a1, . . . , ak−1 are defined in (10). Next, we will prove that α as defined in (14) has
degree p− 1.

Proposition 1. The degree of α over Q is p− 1.

Proof. Suppose, conversely, that deg(α) 6= p− 1. It is clear that all the conjugates of α
lie in Q(ζ). Moreover, the extension Q(ζ)/Q is Galois and [Q(ζ) : Q] = p − 1. Thus,
deg(α) < p− 1, which implies that there exists a non-identity automorphism σ of Q(ζ)
such that σ(α) = α. Clearly, σ(ζ) = ζs for some s ∈ {2, . . . , p− 1}. Hence,

α = 1 + ζa1 + . . . + ζak−1 = σ(α) = 1 + ζsa1 + . . . + ζsak−1 . (15)

Since a1, . . . , ak−1 are all distinct mod p, as are the numbers sa1, . . . , sak−1. Thus,
Lemma 5 implies that

{a1, . . . , ak−1} = {sa1, . . . , sak−1} mod p.

Consequently,

(sa1 + . . . + sak−1)− (a1 + . . . + ak−1) = (s− 1)(a1 + . . . + ak−1) ≡ 0 mod p.

Since s 6≡ 1 mod p, we must have a1 + . . . + ak−1 ≡ 0 mod p. However, this is a
contradiction to (12). Therefore, deg(α) = p− 1.

Let β = p
√

2 and α be defined as before.

Proposition 2. The degree of αβ over Q is (p− 1)p/k.

Proof. It is well-known that the minimal polynomial of β over Q is f (x) = xp − 2. Further,
the splitting field of f (x) is Q(β, ζ) and [Q(β, ζ) : Q] = p(p− 1). Since

αβ = (1 + ζa1 + . . . + ζak−1)β ∈ Q(β, ζ), (16)

the minimal polynomial of αβ also splits in Q(β, ζ). Next, we are going to show that
there are exactly k automorphisms of Q(β, ζ) that fix αβ. Consider the automorphism
φ ∈ Gal(Q(ζ, β)/Q) defined by φ(ζ) = ζr and φ(β) = βζ (recall that r ∈ {2, . . . , p− 1}
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was chosen so that k be in the order of r mod p). Then, it is not difficult to show that φ
is also of order k; i.e., k is the least positive integer such that φk(ζ) = ζ and φk(β) = β.
Further, from the definition of ai in (11), we derive that

air + 1 ≡ r(ri − 1)
r− 1

+ 1 ≡ ri+1 − r
r− 1

+ 1 ≡ ri+1 − 1
r− 1

≡ ai+1 mod p. (17)

Recall that a1 = 1 and ak = 0, which implies that ζa1 = ζ1 and ζak = ζ0 = 1. Hence, as
a result of the relation in (17), we have

φ(αβ) = φ((1 + ζa1 + . . . + ζak−1 + ζak−1)β) = (1 + ζa1r + . . . + ζak−2r + ζak−1r)βζ

= (ζ1 + ζa1r+1 + . . . + ζak−2r+1 + ζak−1r+1)β

= (ζa1 + ζa2 + . . . + ζak−1 + ζak )β = (ζa1 + . . . + ζak−1 + 1)β = αβ.

Therefore, all k distinct automorphisms φ, φ2, . . . , φk fix αβ. We will show that there
are no more automorphisms of Q(ζ, β) that fix αβ.

Assume, conversely, that there exists an automorphism τ ∈ Gal(Q(ζ, β)/Q) such that
τ(αβ) = αβ and τ 6= φu for any u ∈ {1, . . . , k}. Let

τ(ζ) = ζx and τ(β) = βζy, (18)

where x ∈ {1, . . . , p− 1} and y ∈ {0, . . . , p− 1} (it is well-known that all automorphisms
in Gal(Q(ζ, β)/Q) are of this form). From τ(αβ) = αβ, it follows that

(ζ0 + ζa1 + . . . + ζak−1)β = (1 + ζa1 + . . . + ζak−1)β

= αβ

= τ(αβ)

= (ζy + ζy+xa1 + . . . + ζy+xak−1)β.

(19)

Hence,
ζ0 + ζa1 + . . . + ζak−1 = ζy + ζy+xa1 + . . . + ζy+xak−1 . (20)

By applying Lemma 5 to the equality in (20), we obtain

{0, a1, . . . , ak−1} = {y, y + xa1, . . . , y + xak−1} mod p. (21)

Therefore,

0 ≡ (y + (y + xa1) + . . . + (y + xak−1))− (0 + a1 + . . . + ak−1)

≡ ky + (x− 1)(a1 + . . . + ak−1) mod p.
(22)

Recall from (12) that (a1 + . . . + ak−1) 6≡ 0 mod p. If y = 0, then x = 1. In this case,
τ is the identity automorphism; i.e., τ = φk, a contradiction. If y 6= 0, then from (21) it
follows that

y = aj (23)

for some j ∈ {1, . . . , k− 1}. Substituting (11) and (12) into (22) we obtain

0 ≡ k · rj − 1
r− 1

+ (x− 1) · −k
r− 1

≡ k(rj − x)
r− 1

mod p. (24)

The equality in (24) implies that

x ≡ rj mod p. (25)
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Consider the automorphism φj. Note that φj(ζ) = ζrj
. We also know that φj(β) = βζw

for some w ∈ {0, . . . , p− 1}. Since φj(αβ) = αβ, by applying the same arguments as in (19),
we deduce that

{0, a1, . . . , ak−1} = {w, w + rja1, . . . , w + rjak−1} mod p. (26)

Taking into account (11), (12) and (26), we derive that

0 ≡ (w + (w + rj · a1) + . . . + (w + rj · ak−1))− (0 + a1 + . . . + ak−1)

≡ kw + (rj − 1)(a1 + . . . + ak−1)

≡ kw + (rj − 1) · −k
r− 1

≡ kw− kaj ≡ k(w− aj) mod p.

(27)

Therefore,
w ≡ aj. (28)

As a result of (18), (23), (25) and (28) we obtain

φj(ζ) = ζrj
= ζx = τ(ζ) and φj(β) = βζw = βζaj = βζy = τ(β).

Consequently, τ = φj, a contradiction. Thus, we have proved that there are exactly k
automorphisms of Q(ζ, β) fixing αβ. Finally, by applying Lemma 4 we obtain that

deg(αβ) =
(p− 1)p

k
.

As a result of Proposition 1 and Proposition 2, we obtain that there exist α and β
such that

deg(α) = m, deg(β) = p, deg(αβ) =
(p− 1)p

k
,

where k > 1 can be chosen as any non-unit divisor of p− 1.
Finally, we treat separately the case in which k = 1; i.e., (p− 1)p/k = (p− 1)p. Let

α, γ be arbitrary algebraic numbers of degrees p− 1 and p, respectively. Then, it follows
easily that the extension Q(α, γ) over Q has degree (p− 1)p. Therefore, for all but finitely
many rational numbers r we have Q(α, γ) = Q(α(r + γ)) (see [10], Proposition 1). Set
β := r + γ. Then, we have:

deg(α) = p− 1, deg(β) = p, deg(αβ) = (p− 1)p,

which finalizes the proof of the remaining case k = 1. Therefore, the proof of Theorem 1
is complete.

For an illustration of the construction process described in the proof of Theorem 1,
take p = 11 and k = 5. First, we need to find r ∈ {2, . . . , 10}, which has order 5. It is easy
to check that r = 3 is one possible choice. Then, we calculate the exponents of ζ mod 11:

a1 ≡ 1, a2 =
32 − 1
3− 1

≡ 4, a3 =
33 − 1
3− 1

≡ 2, a4 =
34 − 1
3− 1

≡ 7.

Thus, α = 1 + ζ1 + ζ4 + ζ2 + ζ7 and β = 11
√

2. It is clear that deg(β) = 11 and by
calculations with SAGE one can verify that

deg(α) = 11− 1 = 10 and deg(αβ) = 10 · 11/5 = 22.
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We recall that examples of this kind cannot be constructed if k = 1. In this case, one
can simply take α = ζ and β = p

√
2, where ζ is a primitive pth root of unity.

4. Proof of Theorem 2

Proof. It is clear that [Q(α) : Q] = m and [Q(β) : Q] = p. Since p - m, it easily follows
that [Q(α, β) : Q] = mp. Let [Q(αβ) : Q] = d. Note that Q(αβ) ⊆ Q(α, β). Hence, d | mp
and therefore,

d = deg(αβ) =
mp
k

(29)

for some positive integer k.
(a) We have that p > 2 is a prime number and f (x) 6= xp + c, where f (x) is the

minimal polynomial of β over Q. We will show that under these conditions

deg(αβ) = deg(α) · deg(β) = mp, (30)

which is equivalent to [Q(αβ) : Q] = mp.
Assume, conversely, that [Q(αβ) : Q] 6= mp. Then, (30) holds for some positive integer

k > 1. If m = 1, then [Q(αβ) : Q] = 1 · p for any prime p, a contradiction. Thus, for the rest
of the proof we assume that m ≥ 2. The relations between the degrees of α, β and αβ are
illustrated below.
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Q(α)
p

Q

m

mp/k

p

Q(αβ)
k Q(α, β)

Q(β)

m

Let α1 = α, α2, . . . , αm be all the distinct conjugates of α overQ and let β1 = β, β2, . . . , βp
be all the distinct conjugates of β over Q. Consider the following list of mp numbers αiβ j
with i ∈ {1, . . . , m} and j ∈ {1, . . . , p}:

α1β1, . . . , α1βp, α2β1, . . . , α2βp, . . . , αmβ1, . . . , αmβp. (31)

Lemma 6 implies that all numbers in (31) are conjugates (not necessarily distinct) of
αβ. Since the degree of αβ is mp/k, it can be easily deduced that each distinct conjugate of
αβ appears exactly k times among the numbers listed in (31). Let

Ai = {αiβ1, . . . , αiβp}, i ∈ {1, . . . , m}. (32)

Clearly, |Ai| = p for all i ∈ {1, . . . , m}, because all p elements in the set Ai are distinct.
Since k ≥ 2, there exists an index i∗ ∈ {2, . . . , m} such that A1 ∩ Ai∗ 6= ∅. Without the
restriction of generality, we may assume that i∗ = 2 and that

α1β1 = α2β2. (33)

Let L denote the Galois closure of Q(α1, β1) over Q and let G := Gal(L/Q) denote
the Galois group of L/Q. Since β1 is of degree p over Q(α1) and the extension L/Q(α1)
is Galois, Cauchy’s theorem implies that there exists an automorphism σ of order p in
G, which fixes α1 and acts as a p-cycle on the conjugates of β1. Hence, σ(α1) = α1 and
σp(β j) = β j for any j ∈ {1, . . . , p}. By applying σp to equality in (33) we obtain α1β1 =
σp(α2) · β2. Therefore, α2β2 = σp(α2)β2 and thus, σp(α2) = α2.

Let r be the least positive integer for which σr(α2) = α2. Then, r = 1 or r = p. We will
treat both cases separately.

Let α1 = α, α2, . . . , αm be all the distinct conjugates of α overQ and let β1 = β, β2, . . . , βp
be all the distinct conjugates of β over Q. Consider the following list of mp numbers αiβ j
with i ∈ {1, . . . , m} and j ∈ {1, . . . , p}:

α1β1, . . . , α1βp, α2β1, . . . , α2βp, . . . , αmβ1, . . . , αmβp. (31)

Lemma 6 implies that all numbers in (31) are conjugates (not necessarily distinct) of
αβ. Since the degree of αβ is mp/k, it can be easily deduced that each distinct conjugate of
αβ appears exactly k times among the numbers listed in (31). Let

Ai = {αiβ1, . . . , αiβp}, i ∈ {1, . . . , m}. (32)

Clearly, |Ai| = p for all i ∈ {1, . . . , m}, because all p elements in the set Ai are distinct.
Since k ≥ 2, there exists an index i∗ ∈ {2, . . . , m} such that A1 ∩ Ai∗ 6= ∅. Without the
restriction of generality, we may assume that i∗ = 2 and that

α1β1 = α2β2. (33)

Let L denote the Galois closure of Q(α1, β1) over Q and let G := Gal(L/Q) denote the
Galois group of L/Q. Since β1 is of degree p over Q(α1) and the extension L/Q(α1) is Ga-
lois, Cauchy’s theorem implies that there exists an automorphism σ of order p in G, which
fixes α1 and acts as a p-cycle on the conjugates of β1. Hence, σ(α1) = α1 and σp(β j) = β j
for any j ∈ {1, . . . , p}. By applying σp to equality in (33) we obtain α1β1 = σp(α2) · β2.
Therefore, α2β2 = σp(α2)β2 and thus, σp(α2) = α2.

Let r be the least positive integer for which σr(α2) = α2. Then, r = 1 or r = p. We will
treat both cases separately.
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Case I. First, consider the case r = 1. By multiplying all equalities σu(α1β1) = σu(α2β2),
where u = 1, . . . , p, we obtain

α
p
1 ·

p

∏
j=1

β j = α
p
2 ·

p

∏
j=1

β j.

Since ∏
p
j=1 β j 6= 0, it follows that α

p
1 = α

p
2 . By raising both sides of the equality

in (33) to the pth power, we obtain α
p
1 β

p
1 = α

p
2 β

p
2 and therefore, β

p
1 = β

p
2 . This constitutes a

non-trivial multiplicative relation between the conjugates of β1. Thus, Lemma 8 implies
that the minimal polynomial of β1 is f (x) = xp + c, a contradiction.

Case II. Now we consider the case r = p. Let K denote the Galois closure of Q(α1) over
Q and let σ denote the restriction of σ to K. From the properties of σ, it follows that σ acts as
a product of p-cycles on the conjugates of α1. It is also clear that σ(α1) = α1 and σ(α2) 6= α2.
Without loss of generality, assume that σ represented as a permutation of the conjugates of
α1 contains the following p-cycle: (α2, . . . , αp+1). Clearly, this is possible only if the degree
of α is at least p + 1; i.e., m ≥ p + 1. By multiplying all equalities σu(α1β1) = σu(α2β2),
where u = 1, . . . , p, we obtain

α
p
1 ·

p

∏
j=1

β j = α2α3 · · · αp+1 ·
p

∏
j=1

β j.

Since ∏
p
j=1 β j 6= 0, it follows that

α
p
1 = α2α3 · · · αp+1. (34)

Since p > 2, by applying Lemma 10 to (34) we deduce that

αw
2 α

q
1 = 1 and αl

3αs
1 = 1 (35)

for some integers w > 0, l > 0, q, and s. We will show that (35) implies a non-trivial
multiplicative relation among the conjugates of β1, which, by applying Lemma 8, forces
the minimal polynomial of β1 to be f (x) = xp + c, a contradiction. Throughout, we will
implicitly use the fact that σ(β j) is also a conjugate of β for any j ∈ {1, . . . , p}.

With respect to the equalities in (35), Lemma 9 implies that either α1 is a root of unity
or q = ±w and s = ±l. If α1 is a root of unity, then for some positive integer t we have
αt

1 = αt
2. Then, analogous to Case I, we deduce that βt

1 = βt
2. Suppose now instead that α1

is not a root of unity. Then, q = ±w and s = ±l. If q = −w, then αw
1 = αw

2 , which implies
that βw

1 = βw
2 . If w = q and s = −l, then αl

1 = αl
3. By applying σ to the equality in (33) we

obtain α1 · σ(β1) = α3 · σ(β2). Thus, αl
1 · (σ(β1))

l = αl
3 · (σ(β2))

l and consequently

(σ(β1))
l = (σ(β2))

l . (36)

Since σ(β1) 6= σ(β2), the equality in (36) constitutes a non-trivial multiplicative
relation between the conjugates of β1. Finally, if q = w and s = l, then from equalities
(αw

1 αw
2 )

l = 1 and (αl
1αl

3)
w = 1, it follows that αlw

2 = αlw
3 . We also know that

α1β1 = α2β2 and σ(α1β1) = σ(α2β2). (37)

We have σ(α1) = α1 and σ(α2) = α3; thus, by multiplying both equalities in (37) and
raising to the suitable power we obtain

αlw
1 βlw

1 αlw
3 · (σ(β2))

lw = αlw
2 βlw

2 αlw
1 · (σ(β1))

lw.

Hence,
βlw

1 · (σ(β2))
lw = βlw

2 · (σ(β1))
lw. (38)



Mathematics 2023, 11, 1485 11 of 16

Because σ(β1) 6= β1, the equality in (38) constitutes a non-trivial multiplicative relation
between the conjugates of β1.

Analysis of Case I and Case II demonstrates that the assumption of [Q(αβ) : Q] 6= mp
leads to a contradiction. Therefore, [Q(αβ) : Q] = mp; i.e., deg(αβ) = mp, as claimed.

(b) We have that p = 2 and f (x) 6= x2 + cx + c2, where f (x) is the minimal polynomial
of β over Q. We will show that under these conditions deg(αβ) = 2m, which is equivalent
to [Q(αβ) : Q] = 2m. Assume, conversely, that [Q(αβ) : Q] 6= 2m. From (29) it follows
then that

d = [Q(αβ) : Q] = 2m/k, (39)

for some positive integer k > 1. Analogous to part (a) of the proof, we deduce that m ≥ 2
and that all 2m numbers

α1β1, . . . , αmβ1, α1β2, . . . , αmβ2

are conjugates of αβ. Moreover, all m numbers

α1β j, . . . , αmβ j (40)

are distinct for j = 1, 2. Hence, [Q(αβ) : Q] = d ≥ m, which, together with (39), forces
d = m. Therefore, all numbers in (40) for a fixed j correspond to the full set of conjugates of
αβ. By comparing the products of all such numbers with j = 1 and j = 2 we derive that

m

∏
i=1

αi · βm
1 =

m

∏
i=1

αi · βm
2 .

From ∏m
i=1 αi 6= 0 it follows that βm

1 = βm
2 . Hence, β2 = β1ω, where ω is an mth root

of unity. It is well-known that ω is also a primitive nth root of unity for some n | m and that
deg(ω) = φ(n), where φ(n) denotes Euler’s totient function. Since 2 - m; i.e., m is odd, n
must also be odd. Further, β1 is quadratic over Q, hence the splitting field of f (x) is Q(β1).
Consequently, β2/β1 = ω ∈ Q(β) and therefore, Q(ω) ⊆ Q(β). Since [Q(β) : Q] = 2, we
deduce that

deg(ω) = φ(n) = 1 or deg(ω) = φ(n) = 2. (41)

From (41), it easily follows that n ∈ {1, 2, 3, 4, 6}. However, n is odd, whence n = 1
or n = 3. If n = 1, then ω = 1 and β1 = β2, a contradiction. If n = 3, then ω is a 3rd

root of unity. Thus, ω3 = 1, 1 + ω + ω2 = 0, and 3 | m. From Vieta’s formulas we obtain
β2

1ω ∈ Q and β1(1 + ω) ∈ Q. Thus, β1(1 + ω) = −β1ω2 ∈ Q and (β2
1ω)(β1ω2) = β3

1 ∈ Q.
Set q := β3

1. Then, β1 is a root of h(x) = x3 − q. It is clear that h(x) = x3 − q is reducible if
and only if q = c3 for some c ∈ Q. Hence, h(x) = x3 − c3 and the minimal polynomial of
β1 is f (x) = x2 + cx + c2, a contradiction.

5. Proofs of Theorem 3 and Corollary 1

Proof of Theorem 3. We continue to use the same notation as in the proof of Theorem 2.
(a) We have that p > 2 is a prime number and p− 1 - m. We will show that under

these conditions
deg(αβ) = deg(α) · deg(β) = mp,

which is equivalent to [Q(αβ) : Q] = mp.
Assume, conversely, that [Q(αβ) : Q] 6= mp. Thus, [Q(αβ) : Q] = mp/k for some

positive integer k > 1. Let f (x) be the minimal polynomial of β over Q. If f (x) 6= xp + c,
then Theorem 2 implies that [Q(αβ) : Q] = mp, a contradiction. Thus, for the rest of the
proof we assume that f (x) = xp + c. Consider the sets Ai, which were defined in (32). By
the same arguments as in the proof of Theorem 2, we deduce that there exists an index
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i∗ ∈ {2, . . . , m} such that A1 ∩Ai∗ 6= ∅. Without loss of generality, we may suppose that
α1β1 = α2β2. Since the minimal polynomial of β1 is f (x) = xp + c, we have

α2

α1
=

β1

β2
= ζ, (42)

where ζ denotes a primitive pth root of unity. Hence, α2 = α1ζ and therefore,

α1(β jζ) = α2β j

for any j ∈ {1, . . . , p}. Observe that the sets {β1, . . . , βp} and {β1ζ, . . . , βpζ} coincide, as
they both represent all p roots of f (x). Therefore, |A1 ∩A2| = p and thus A1 = A2. It is
also clear that α

p
1 = α

p
2 . Since i∗ = 2 was chosen arbitrarily, we conclude that ifA1 ∩Ai 6= ∅,

then A1 = Ai and α
p
1 = α

p
i . Recall that α1β1 appears exactly k times among the numbers

listed in (31) and that for each i ∈ {1, . . . , m}, all p conjugates of α1β1 belonging to Ai are
distinct. Thus,

k ≤ m. (43)

From the last arguments it also follows that there are exactly k indices in the set
{1, . . . , m}, say, 1, 2, . . . , k such that

A1 = A2 = . . . = Ak and α
p
1 = α

p
2 = . . . = α

p
k . (44)

From (44) it is clear that for each i ∈ {2, . . . , k} we have

αi = α1ζwi , (45)

where wi ∈ {∈ 1, . . . , p − 1}. Since all conjugates of α1 are distinct, from (44) it also
follows that

k ≤ p. (46)

Moreover, if k < m, then for any i ∈ {1, . . . , m} \ {1, . . . , k} we obtain

A1 ∩Ai = ∅ and α
p
1 6= α

p
i , (47)

as otherwise we would obtain a contradiction to the relations derived in (44). Recall that K
denotes the Galois closure of Q(α1) over Q. Let G′ := Gal(K/Q) and let Ω = {α1, . . . , αm}.
Thus, G′ acts transitively on Ω. Put

B = {α1, . . . , αk}. (48)

As a consequence of the relations in (44) and (47), it follows that for any automorphism
λ ∈ G′ we have

λ(B) = B or λ(B) ∩ B = ∅. (49)

Therefore, the set Γ = {λ(B) : λ ∈ G′} constitutes a system of blocks for G′ and
also forms a partition of Ω. Since |B| = k and |Ω| = m, we deduce that k | m. Since it was
assumed that p - m, we obtain that p - k. In view of (46), the last statement implies that

k < p. (50)

Next, we prove the lemma, which will allow us to finalize the proof of part (a) and
will also be essential in the proof of part (b).

Lemma 11. Let p > 2 be a prime number and let m be a positive integer such that p - m. Suppose
that α, β are algebraic numbers such that [Q(α) : Q] = m and [Q(β) : Q] = p. Finally, let ζ be a
primitive pth root of unity. If [Q(αβ) : Q] 6= mp, then Q(ζ) ⊆ Q(α).
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Proof. Let s be the degree of ζ over Q(α1). If s = 1, then there is nothing to prove. Suppose
that s > 1. Then there exists an automorphism τ of K that fixes the subfield Q(α1) and
sends ζ to ζu for some u ∈ {2, . . . , p− 1}. Since τ(α1) = α1, from (48) and (49) it follows
that τ(B) = B. In view of (44) and (45), we must have that

B = {α1, α2, . . . , αk} = {α1, α1ζw2 , . . . , α1ζwk}
= τ(B) = {α1, α1ζuw2 , . . . , α1ζuwk}, (51)

where 1 ≤ wi 6= wj ≤ p− 1 and 2 ≤ i 6= j ≤ k. Therefore,

{w2, . . . , wk} = {uw2, . . . , uwk} mod p. (52)

The sum of all elements in both sets of (52) is the same mod p, hence

(u− 1)(w2 + . . . + wk) ≡ 0 mod p. (53)

Since u 6= 1 it follows that

(w2 + . . . + wk) ≡ 0 mod p. (54)

If k < m, then there exists a conjugate of α, say αk+1, which does not belong to block B.
Thus, we can choose an automorphism φ of K, which sends α1 to αk+1. Clearly, φ(ζ) = ζ l

for some positive integer l. Then

φ(B) = {αk+1, αk+1ζ lw2 , . . . , αk+1ζ lwk}. (55)

As a result of (54) we have that

lw2 + . . . + lwk = l(w2 + . . . + wk) ≡ 0 mod p. (56)

Observe that φ(α2) = φ(α1ζw2) = αk+1ζ lw2 is also a conjugate of α1. Hence, there
exists an automorphism ψ of K, which sends α1 to αk+1ζ lw2 . Clearly, ψ(ζ) = ζr for some
positive integer r. Then

ψ(B) = {αk+1ζ lw2 , αk+1ζ lw2 ζrw2 , . . . , αk+1ζ lw2 ζrwk}
= {αk+1ζ lw2 , αk+1ζ lw2+rw2 , . . . , αk+1ζ lw2+rwk}.

(57)

Since φ(B) = ψ(B), we must have

0 ≡ l(w2 + . . . + wk) ≡ lw2 + (lw2 + rw2) + . . . + (lw2 + rwk)

≡ klw2 + r(w2 + . . . + wk)

≡ klw2 mod p,

(58)

a contradiction, since neither of k, l, w2 can be congruent to 0 mod p. Therefore, if k < m,
then the degree of ζ over Q(α) must be equal to 1; i.e., Q(ζ) ⊆ Q(α).

However, if k ≥ m, then we must have m = k due to (43). In this case

α1 · · · αk = α1 · α1ζw2 · · · α1ζwk ∈ Q. (59)

From (54) being applied to (59) we obtain that

αk
1 ∈ Q. (60)

Thus, xk − αk
1 is the minimal polynomial of α1 over Q. However, it follows then that

αk
1 = αk

2 = (α1ζw2)k = αk
1ζkw2 , (61)
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which implies that kw2 ≡ 0 mod p, a contradiction. Therefore, we conclude that the degree
of ζ over Q(α) must be equal to 1; i.e., Q(ζ) ⊆ Q(α).

To finish the proof of part (a) it is enough to observe that if [Q(αβ) : Q] 6= mp,
then Lemma 11 implies that Q(ζ) ⊆ Q(α). Thus, from the tower law it follows that
[Q(ζ) : Q] = p− 1 divides [Q(α) : Q] = m, a contradiction. Therefore, [Q(αβ) : Q] = mp,
which implies that deg(αβ) = deg(α) · deg(β) = mp. The proof is complete.

(b) First, we prove the conditional part of the statement; namely, that deg(αβ) = mp/k,
where k is a divisor of p − 1. If k = 1, there is nothing to prove. Thus, for the rest of
the proof we assume that k > 1; i.e., deg(αβ) = mp/k 6= mp, which is equivalent to
[Q(αβ) : Q] 6= mp. Lemma 11 implies that Q(ζ) ⊆ Q(α) and thus, p− 1 | m. Let

m = (p− 1)t, (62)

where t is some positive integer. From the tower law it follows that

[Q(α, ζ) : Q(ζ)] =
[Q(α, ζ) : Q]

[Q(ζ) : Q]
=

t(p− 1)
(p− 1)

= t; (63)

i.e., α is of degree t over Q(ζ).
Consider the group action of G′ on Ω. For any subgroup H′ of G′, let αH′ denote the

orbit of α under H′; i.e., αH′ = {µ(α) : µ ∈ H′}. Consider the subgroup H := Gal(K :
Q(ζ)) of G′ corresponding to the fixed subfield Q(ζ) of K. From (63) we deduce that
|αH | = t. Moreover, as Q(ζ)/Q is a normal extension, H is a normal subgroup of G′. Hence,
Lemma 1 implies that all orbits of H have equal cardinality; namely,

|αH
i | = t for all i ∈ {1, . . . , m}. (64)

It follows that in total H has m/t = p− 1 orbits. Next, we will show that if

(αi)
p = (αj)

p (65)

for some two distinct conjugates of α1, then αi and αj lie in two different orbits under H.
Assume, conversely, that αi and αj lie in the same orbit under H. Then, there exists an

automorphism µ ∈ H such that µ(αj) = αi and µ(ζ) = ζ. It is also clear that αi = αjζ
w for

some w ∈ {1, . . . , p− 1}. Thus

µ(αi) = µ(αjζ
w) = αiζ

w

µ2(αi) = µ(αiζ
w) = µ(αjζ

2w) = αiζ
2w

...

µp−1(αi) = µ(αiζ
(p−2)w) = µ(αjζ

(p−1)w) = αiζ
(p−1)w

µp(αi) = µ(αiζ
(p−1)w) = µ(αjζ

pw) = αi.

(66)

From the equalities in (66), we see that µ(αi), . . . , µp−1(αi), αi correspond to p distinct
conjugates of α1 satisfying

(µ(αi))
p = . . . = (µp−1(αi))

p = α
p
i . (67)

By choosing any automorphism in G′, which maps αi to α1, and applying it to the
equalities in (67), we obtain p distinct conjugates, whose pth powers are equal to α

p
1 . In

view of (44) and (47), the total number of such conjugates is equal to k, hence p ≤ k.
However, this is a contradiction to (50), where we have proved that k < p. Therefore, if
(αi)

p = (αj)
p, i 6= j, then αi and αj lie in two different orbits under H.
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Recall that Γ = {λ(B) : λ ∈ G′} forms a system of blocks for G′, where B was defined
in (48). Consider the group action of G′ on Γ. We claim that |BH | = t. Indeed, since α1 ∈ B,
we obtain that |BH | ≤ t due to (64). If |BH | < t, then we can find two automorphisms
µ′, µ′′ ∈ H such that

µ′(α1) 6= µ′′(α1) and µ′(B) = µ′′(B). (68)

Suppose that µ′(α1) = α′ and µ′′(α1) = α′′, where α′ 6= α′′. Let µ′−1(α′′) = αi, where
µ′−1 is the inverse of µ′. Clearly, i 6= 1. By applying µ′−1 to the equalities in (68), we
deduce that α1, αi ∈ B. Thus, i ∈ {1, . . . , k} and in view of (44) this implies that α

p
1 = α

p
i .

Consequently, µ′(αp
1 ) = µ′(αp

i ) and hence, (α′)p = (α′′)p. Therefore, from the arguments
following (65), we deduce that α′ and α′′ belong to different orbits under H. However,
µ′′µ′−1(α′) = µ′′(α1) = α′′. Since µ′′µ′−1 ∈ H, it follows that α′ and α′′ belong to the same
orbit under H, a contradiction. Hence, |BH | = t and since H is normal in G′, we conclude
that each orbit of H has cardinality equal to t. Recalling from (62) that m = (p− 1)t, and
using the fact that |Γ| = m/k, we deduce that the total number of orbits in H is equal to

m/k
t

=
(p− 1)t/k

t
=

p− 1
k

.

Thus, k | p− 1, as claimed.
To prove the existence part of the statement, recall from Theorem 1 that for any divisor

k of p− 1 there exist algebraic numbers α′ and β′ such that deg(α′) = p− 1, deg(β′) = p,
and deg(α′β′) = (p − 1)p/k. Then, Lemma 7 implies that for any positive integer v
there exist algebraic numbers α and β such that deg(α) = v(p − 1), deg(β) = p, and
deg(αβ) = v(p− 1)p/k. Set v := m/(p− 1) and the proof is complete.

(c) From the proof of part (b) of Theorem 2, we know that if deg(αβ) 6= 2m, then 3 | m.
Hence, if 3 - m, then we must have deg(αβ) = 2m.

(d) In the proof of part (b) of Theorem 2, we have already deduced that deg(αβ) = vm,
where v ∈ {1, 2}. It remains to show that both values of v are attainable. By Theorem 2, if the
minimal polynomial of β over Q is not of the form f (x) = x2 + cx + c2, then deg(αβ) = 2m.
However, take c = 1 in the expression of f (x). Then the roots of f (x) are ω and ω2, where
ω is a primitive 3rd root of unity. Set β := ω and α := m

√
2. Consider the polynomial

h(x) = xm − 2. It is well-known that h(x) is irreducible over Q. Since 3 | m, αβ is also a root
of h(x). Therefore,

deg(α) = m, deg(β) = 2 and deg(αβ) = m.

This completes the proof.

Proof of Corollary 1. From the arguments in the proof of Lemma 7, it follows that the
triplet (a, p, c) is product-feasible if and only if there exist algebraic numbers α and β such
that deg(α) = a, deg(β) = p, and deg(αβ) = c. Hence, the proof follows directly from
Theorem 3, by setting a := m and c := deg(αβ)

Proof of Corollary 2. Since a < 7, it is clear that 7 - a. If a ∈ {1, 2, 3, 4, 5}, then part (a) of
Corollary 1 implies that the triplet (a, 13, c) is product-feasible if and only if c = 7a. If a = 6,
then part (b) of Corollary 1 implies that the triplet (6, 13, c) is product-feasible if and only if
c = 6 · 7/k, where k is a divisor of 7− 1 = 6. Hence, k ∈ {1, 2, 3, 6}. Since k = 1 corresponds
to c = 6 · 7, we conclude that the triplet (a, 7, c), where a < 7, is product-feasible if and only
if c = 7a or a = 6 and c = 6 · 7/k with k ∈ {2, 3, 6}.

Note that Corollary 1 cannot be applied in the search for product-feasible triplets
(a, 7, c) if a = 7, because in that case 7 | a. However, all triplets of the form (7, 7, c) can be
determined using the results in [19].
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