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Abstract: Silver nanoparticles (AgNPs) are well known for their unique physical and chemical
properties, which can be incorporated into a wide range of applications. The growing resistance of
microorganisms to antimicrobial compounds promoted the use of AgNPs in antimicrobial therapy.
AgNPs can be obtained using physical and chemical methods, but these technologies are highly un-
friendly to nature and produce large amounts of side compounds (for example, sodium borohydride
and N,N-dimethylformamide). Therefore, alternative technologies are required for obtaining AgNPs.
This report focuses on the biosynthesis of silver nanoparticles through the reduction of Ag+ with the
cell-free secretomes of four Geobacillus bacterial strains, namely, 18, 25, 95, and 612. Only a few studies
that involved Geobacillus bacteria in the synthesis of metal nanoparticles, including AgNPs, have been
reported to date. The silver nanoparticles synthesized through bio-based methods were characterized
using UV–Vis spectroscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS),
and zeta potential measurements. UV–Vis spectroscopy showed a characteristic absorbance peak at
410–425 nm, indicative of AgNPs. SEM analysis confirmed that most nanoparticles were spherical.
DLS analysis showed that the sizes of the obtained AgNPs were widely distributed, with the majority
less than 100 nm in diameter, while the zeta potential values ranged from −25.7 to −31.3 mV and
depended on the Geobacillus spp. strain.

Keywords: AgNPs; Geobacillus bacteria; nitrate reductase

1. Introduction

Different physical, biological, and chemical methods have been used for the synthesis
of metal nanoparticles, including silver nanoparticles. Physical and chemical methods are
typically expensive and harmful to the environment because they produce toxic waste [1].
Biological methods of nanoparticle synthesis, involving microorganisms and plants, are
beneficial because they use non-toxic and environmentally friendly substrates and have
a relatively easier synthesis process [2]. Microorganisms are capable of capturing target
ions from their environment and turning them into elemental metals through enzymatic
reactions [3]. Additionally, biomolecules act as natural stabilizers for nanoparticles, result-
ing in reduced aggregation and improved stability of NPs during the synthesis process if
compared with typically applied chemical methods [4,5].

New methods using microorganisms in the biosynthesis of nanoparticles are expected
to play a key role in many conventional and emerging technologies [6]. Many studies
have shown that microorganisms can produce various inorganic nanoparticles, including
silver nanoparticles (AgNPs), through either intracellular or extracellular processes [7–10].
Extracellular synthesis of AgNPs by microorganisms has more advantages because it is
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easier to control the synthesis environment. Additionally, such a type of synthesis requires
fewer steps if compared with the intracellular synthesis method [11].

Bacteria of the genus Geobacillus are of significant industrial interest owing to their
potential use in biotechnological processes as a source of various thermostable enzymes [12].
There are several reports that suggest the use of Geobacillus bacteria for the synthesis of
metal nanoparticles, including AgNPs [13–16]; however, the choice of strains is still very
limited. It is also suggested that one of the enzymes responsible for the synthesis of AgNPs
is nitrate reductase. However, there are not many data on the nitrate reductases of bacteria
of the genus Geobacillus. At this moment, only sequences of these enzymes and their genes
can be obtained in gene/protein databases, but nitrate reductase enzymes are of increasing
interest to researchers owing to their thermostability, which allows them to remain active at
high temperatures [17]. In addition, Geobacillus bacteria are nonpathogenic microorganisms
and grow in thermophilic conditions, which lowers the risk of microbial contamination
and reduces the steps of AgNPs’ synthesis, as it is not necessary to purify the bacterial
enzymes [15,18]. These properties make AgNPs obtained using bacteria of the genus
Geobacillus potentially useful in both industry and medicine. Thus, this study seeks to
expand the theoretical knowledge as well as the practical availability of the use of Geobacillus
bacteria for AgNP synthesis, as well as to present the biosynthesis of AgNPs using four
new Geobacillus strains. The activity of nitrate reductases in the selected Geobacillus strains
and the influence of NADH on the synthesis of AgNPs are discussed in this work.

2. Materials and Methods
2.1. Source of Microorganisms

The Geobacillus strains used in the biogenic synthesis of AgNPs were strains 18, 25, 95,
and 612. These strains were isolated in the Department of Microbiology and Biotechnology,
Institute of Biosciences (former Faculty of Natural Sciences), Life Sciences Center, Vilnius
University (Lithuania), from an oil well. The strain Geobacillus sp. 95 was deposited in the
DSMZ culture collection under the number DSM 104629 [19]. For the primary screening,
Geobacillus spp. strains 19, 76, and 481 were also tested. They were isolated and saved in
the Department of Microbiology and Biotechnology.

2.2. Extracellular Synthesis of Silver Nanoparticles

The synthesis methodology of AgNPs was prepared according to [20–22]. The tested
Geobacillus strains were grown aerobically in 100 mL liquid broth with the following
composition (in g/L): tryptone (Roth, Karlsruhe, Germany), 10; meat extract (Merck,
Rahway, NJ, USA), 5; NaCl (Merck), 5; CaCl2 (Merck), 2.3 mM; and ZnSO4 (Merck),
0.91 µM, in 250 mL Erlenmeyer flasks. The cultures were grown in an orbital shaker (Esco,
Singapore, Singapore) at 55 ◦C with aeration at 180 rpm. After 48 h of incubation, cells
were separated by centrifugation at 16,000× g for 10 min. Cell-free secretomes were used as
material for AgNP synthesis. The secretomes of the target strains were treated with AgNO3
(Roth) solution at final concentrations of 2 mM. The whole mixtures were incubated in
a shaking incubator for 48 h at 55 ◦C and 200 rpm. The secretomes without AgNO3 and
bacterial growth medium supplemented with 2 mM AgNO3 were used as controls. After
48 h of incubation, the mixtures were centrifuged at 3000× g for 10 min to remove media
components. Then, mixtures were centrifuged at 16,000× g for 15 min to collect AgNPs. To
remove unconverted silver ions, the obtained pellets were washed three times with 70%
ethanol and three times with deionized water by centrifugation at 16,000× g for 15 min.

2.3. Nitrate Reductase Assay

After cells of Geobacillus spp. strains 18, 25, 95, and 612 were separated by centrifuga-
tion at 16,000× g for 10 min, the resulting secretomes were used for the nitrate reductase
assay. The nitrate reductase assay was adapted based on Harley [23]. An amount of 2 mL
of a secretome was distributed to each test tube. The activity was measured at temperatures
ranging from 5 to 90 ◦C. Nine control samples were prepared by adding 2 mL of assay
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medium (30 mM KNO3 (Roth) and 5% propanol (Roth) in 0.1 M phosphate buffer pH
7.5) to the secretome and then immediately placing the samples into boiling water for
5 min to inhibit the enzymatic activity. After cooling the samples and adding 2 mL of
N-(1-naphthyl) ethylenediamine dihydrochloride (NEED, 0.02% (w/v) (Roth)) in distilled
water) and 2 mL of sulfanilamide (SA, 1% (w/v) (Roth)) in 25% (v/v) HCl (Roth)), the
control tubes were kept at room temperature until the nitrite concentration was measured.
After adding the assay medium to the tested secretomes, they were incubated in the dark
for 60 min at the tested temperature, before placing the tubes in boiling water for 5 min.
After cooling the samples, 2 mL of SA and 2 mL of NEED were added. Then, samples were
incubated for 20 min at room temperature and the absorbance at 540 nm was measured.
The enzymatic activity was expressed as µmol of nitrite * h−1 * L−1. The nitrite standard
curve was produced by placing different known amounts of potassium nitrite (from 0 to
250 nmol NO2) followed by 5 mL of NEED and SA solutions.

2.4. Characterization of Silver Nanoparticles

The formation of the AgNPs was monitored using UV–Vis spectral analysis. The
spectra of cell-free secretomes treated with 2 mM AgNO3 were measured at 300–600 nm
using an ultraviolet–visible (UV–Vis) spectrophotometer (Ultrospec 5300 pro, Amersham
Biosciences Corp., Piscataway, NJ, USA). The size, distribution, and morphology of the
nanoparticles were further analyzed via scanning electron microscopy (SEM) (Tescan
Vega 3, Brno - Kohoutovice, Czech Republic). Samples for SEM were prepared by drop-
coating the AgNP solution onto an aluminum grid. Before transferring samples to the
microscope, they were dried at 55 ◦C. The zeta potential values of AgNPs were measured
using a Malvern Zetasizer Nano ZS (Malvern Panalytical, Malvern, UK) and recalculated
applying the Smoluchowski model. The AgNP particle size distribution was evaluated
using the dynamic light scattering (DLS) method (ZetaSizer Nano ZS (Malvern Panalytical,
Malvern, UK) equipped with a 4 mW He-Ne laser emitting at a wavelength of 633 nm).
Measurements were performed at 25 ◦C and an angle of 173◦. These parameters were
determined using AgNPs at a concentration of 1 mg/mL in water.

2.5. NADH Assay

In order to determine whether NADH is sufficient for the synthesis of AgNPs, a
mixture of Tris-HCl (pH 8) buffer (AppliChem, Darmstadt, Germany), 2 mM AgNO3, and
0.2 mM NADH (Roth) was prepared. The reaction was carried out for 48 h, after which
UV–Vis analysis was performed in the same manner as described in Section 2.4.

3. Results
3.1. Extracellular Biosynthesis and Characterization of Obtained Silver Nanoparticles

In this study, four Geobacillus spp. strains (18, 25, 95, and 612) were chosen for further
biosynthesis of silver nanoparticles (AgNPs). In the primary screening using a nitrate
reductase assay and secretomes of Geobacillus spp. bacteria, seven strains (18, 19, 25, 76, 95,
481, and 612) were tested; however, strains 19, 76, and 418 did not show nitrate reductase
activity (results not presented). Further experimental data showed that the extracellular
synthesis of AgNPs was successfully induced in the secretomes of Geobacillus strains 18, 25,
95, and 612. After 48 h of treatment with 2 mM aqueous AgNO3 solution at 55 ◦C, the color
shift from light brown to dark brown in the secretomes was detected. This change indicated
the reduction of Ag+ ions and the formation of AgNPs. The synthesized AgNPs were
analyzed using UV–Vis spectroscopy. UV–Vis spectroscopy is a widely used technique for
the structural characterization of AgNPs [14]. After 48 h of exposure to 2 mM AgNO3, the
samples containing Geobacillus spp. cell-free secretomes were analyzed using UV–Vis at
300–600 nm (Figure 1). All four tested samples showed a characteristic AgNP absorbance
peak at 410–425 nm. A color shift from light brown to greenish brown was detected in the
bacterial growth medium (control sample) supplemented with 2 mM AgNO3; however, no
precipitation of aggregates was detected after centrifugation.
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18, 25, 95, and 612 treated with 2 mM AgNO3 after 48 h incubation at 55 ◦C (A). 18—Geobacillus sp.
18; 25—Geobacillus sp. 25; 95—Geobacillus sp. 95; 612—Geobacillus sp. 612. Color change of a reaction
using the Geobacillus sp. 612 secretome (B). R—reaction mix; C—control.

Further SEM analysis (Figure 2) of the AgNPs revealed that the synthesized parti-
cles were spherical. It was also noticed that, during the drying process of the AgNPs,
agglomeration occurred, leading to the formation of distinct nanostructures (Figure 2).
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The size and the size distribution of the obtained AgNPs were evaluated using DLS
analysis. A total of 100 separate measurements were performed for AgNPs obtained using
different Geobacillus spp. strains. The results show that the diameter of the majority of the
particles in the aqueous dispersion was <100 nm (82% of Geobacillus sp. strain 18; 99% of
strain 25; 75% of strain 95; 88% of strain 612). However, the particle size distribution was
relatively wide (please refer to Figure S1 in ESI), and some aggregates were detected. The
results of the distribution sizes allow to assume that the larger particles obtained are most
likely aggregates of smaller AgNPs (this is also shown by the SEM analysis in Figure 2). To
explain the particle aggregation in the dispersions, additional zeta potential measurements
were performed at 25 ◦C applying the Smoluchowski model. The results are summarized
in Table 1.

Table 1. Values of the zeta potential (mV) of AgNPs obtained using secretomes of four different
Geobacillus spp. strains.

Tested Strain of Geobacillus spp. Zeta Potential Values (mV)

18 −26.6 ± 0.5
25 −31.3 ± 0.8
95 −25.7 ± 0.8

612 −27.4 ± 0.6

The results show that the zeta potentials of each AgNP obtained using the four
Geobacillus spp. strains were negative and varied between −25 and −31 mV (Table 1). It is
well established that NPs in aqueous dispersions are stable if the absolute zeta potential
value exceeds 30 mV (ξ > +30 mV or ξ < −30 mV) [24]. The zeta potential results correspond
well with the theory because the AgNPs obtained using the Geobacillus spp. strains with
the highest negative zeta potential value of −31.3 ± 0.8 mV had the lowest number of
aggregates (ca. 1% of all particles) in the aqueous dispersion. For particles obtained using
other Geobacillus spp. strains, the surface charge was less expressed, and electrostatic
repulsion forces between particles were insufficient to ensure efficient stability. In such
cases, a higher number of aggregated particles in the dispersions was detected during the
DLS measurements. For more information, please refer to Figure S1 in ESI.

3.2. Nitrate Reductase Activity

In the further experiments, the effect of temperature on the activity of nitrate reductases
from all four strains was investigated in more detail (Figure 3). The highest nitrate reductase
activity was observed in Geobacillus sp. 95. The highest nitrate reductase activity was
detected at 55 ◦C, while significantly high activity was detected in the temperature range
of 50–70 ◦C. The nitrate reductase activity in the other three strains, 18, 25, and 612, was
approximately 2–4 times lower. The obtained data confirmed that the optimal temperature
for Geobacillus spp. bacterial nitrate reductases is in the range of 50–60 ◦C, and the enzyme
of strain 95 is characterized by higher activity (Figure 3). In addition, a correlation was
observed between the nitrate reductase activities of the different Geobacillus spp. strains
and the amount of AgNPs formed. Using Geobacillus sp. strain 95 with the highest nitrate
reductase activity yielded about three times more AgNPs than using Geobacillus spp. strains
18 and 25 with the lowest enzyme activity.

Based on the results that the nitrate reductase of Geobacillus sp. strain 95 has the
highest activity, it was hypothesized that the formation time of AgNPs would be shorter
using the secretome of Geobacillus sp. 95 compared with that of the other strains (Figure 4).
For further experiments, Geobacillus sp. strain 612 was chosen as a strain with low nitrate
reductase activity. A visible color change with the secretome of Geobacillus sp. strain 95 was
observed after incubation for 24 h (Figure 4A), while with that of Geobacillus sp. 612, this
was observed after 48 h (Figure 4B).
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UV–Vis analysis was also performed to evaluate the AgNPs obtained using Geobacillus
spp. strains 95 and 612 after 24 h and 48 h (Figure 5). The obtained results confirm the
results of the determination of the color change, as the AgNP-specific peak occurred after
24 h of synthesis with the Geobacillus sp. strain 95 secretome (Figure 5A) and after 48 h of
synthesis with the Geobacillus sp. strain 612 secretome (Figure 5B).

There is evidence in the literature that a mixture of NAD(P)H and AgNO3 is sufficient
for the synthesis of AgNPs, so this study also evaluated the influence of NADH on the
formation of AgNPs without using the source of the nitrate reductase enzyme (Geobacillus
spp. bacterial secretomes). During the spectrophotometric analysis, a slight particle
plasmon resonance (PPR) peak of the NPs was detected (Figure 6). However, the performed
experiment shows that NADH is not sufficient for the synthesis of AgNPs.
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4. Discussion

Silver nanoparticles (AgNPs) are particles that are generally smaller than 100 nm
and contain 20–15,000 silver atoms. They have distinct physical, chemical, and biological
properties compared with their bulk parent materials. Much research and application
attention has been focused on the superior antimicrobial activity of AgNPs, which can
help to reduce the use of various antibiotics. Thus, methods for the cheap, simple, and
eco-friendly production of AgNPs are very important. Biological methods for synthesizing
AgNPs are an alternative to chemical and physical methods. In this paper, the extracellular
synthesis of AgNPs using Geobacillus spp. secretomes was investigated. This is the first
study to comprehensively analyze the potential of bacteria in the genus Geobacillus for the
synthesis of AgNPs. While previous research had explored the use of these bacteria for
AgNP synthesis, this is the first report to thoroughly examine their potential. In this study,
four Geobacillus spp. strains, namely, 18, 25, 95, and 612, were tested more deeply for AgNP
production. All four strains were chosen based on the primary nitrate reductase screening
as nitrate reductases are the main enzymes mediating the biosynthesis of AgNPs from
AgNO3. Moreover, the Geobacillus sp. 95 strain has already been successfully explored as a
source of highly active, thermostable lipolytic enzymes [19]. Thus, this study highlights the
attractiveness of the Geobacillus sp. 95 strain as a promising industrial bacterial strain and
suggests the possibility of applying it for the biosynthesis of AgNPs.

The primary method used for the detection of AgNPs is the change in the medium color
after cell-free secretome incubation with AgNO3 [14]. These changes were detected with
2 mM AgNO3 in the case of using all four strains of Geobacillus spp. cell-free secretomes. The
color change from light brown to dark brown is caused by the excitation of surface plasmon
vibrations in the AgNPs [25–28]. The surface plasmon resonance of AgNPs depends on
their shape, size, and dielectric environment [29] and, in this study, the resonance peaks
were observed in the 410–425 nm range, which was confirmed to be the surface plasmon
resonance band of AgNPs [26,30]. A similar absorbance maximum was detected for AgNPs
produced using a cell-free extract of Geobacillus stearothermophilus [15]. According to Fayaz
et al. (2011), the obtained AgNPs were spherical, with a diameter of 5–35 nm, as determined
using TEM photographs. The SEM analysis of our study also showed that the form of
the obtained AgNPs was spherical, but the particle size distribution was wider (with the
majority of AgNPs being <100 nm in size). Moreover, we used DLS analysis, which is
a more accurate method for determining the particle size in aqueous dispersions. It is
worth noting that the size and morphology of AgNPs can be controlled through various
parameters (e.g., temperature) if needed [5]. Further research is needed to optimize the
AgNP synthesis conditions so that the sizes of the obtained AgNPs using Geobacillus spp.
bacteria are not so different. This could be achieved, for example, by determining the time
point at which AgNPs are formed using different Geobacillus spp. bacterial strains. This
is important because, to use these AgNPs in practice, such a wide distribution of particle
sizes can lead to non-uniform antimicrobial properties.

It was found that the zeta potentials of the obtained AgNPs were negative, with values
ranging from −25 to −31 mV. This is not uncommon, and there are many examples in
the literature where negative zeta potential values of AgNPs obtained through biological
synthesis have been reported [31–33]. The negative zeta potential values may be due to
the binding of microorganisms or nutrient media elements, such as proteins and amino
acids from the secretome, to the surface of the obtained AgNPs. It is worth noting that the
zeta potential is an important parameter that provides information about the stability of
the obtained particles, particularly in aqueous dispersions. It has been established that,
if the absolute zeta potential value exceeds 30 mV (ξ > +30 mV or ξ < −30 mV), then the
formed colloids will be stable in aqueous dispersions, that is, they will not agglomerate [24].
According to the currently available data, the obtained AgNPs are stable for at least 45 days
at room temperature. It is worth noting that, because the zeta potential of AgNPs obtained
using Geobacillus spp. bacteria is around −30 mV, particle aggregation can occur, resulting
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in a wide distribution of particle sizes. Further studies are needed to determine the stability
of the resulting AgNPs over a longer period of time.

Bacteria of other genera can also be used for the synthesis of AgNPs. The most
analyzed bacteria belong to the genera Pseudomonas and Bacillus [34,35]. However, the
bacteria of these genera are mesophilic; thus, although this could reduce synthesis costs
(i.e., lower temperatures would be used), it also increases the risk that the obtained AgNPs
will be contaminated with mesophilic microorganisms, which may produce unwanted
products and/or be pathogens. To date, the production of AgNPs using thermophilic
Thermus thermophilus [36], a Bacillus sp. isolated from a hot spring [37], and the thermophilic
mold Sporotrichum thermophile [38] has been reported. The use of thermophilic bacteria
such as Geobacillus for AgNP synthesis can help to protect the AgNP synthesis process from
contamination and to decrease the amount of other microbiological by-products. Therefore,
AgNPs synthesized using thermophilic bacteria could be applied not only in industry, but
also in medicine.

AgNPs have a broad application range. They are used for the production of steriliz-
ing material in consumable and medical products, including textiles, food storage bags,
refrigerator surfaces, and personal care products. It was estimated that the global market
of AgNPs reached a value of USD 2052.10 million in 2021, which is projected to reach USD
6.6 billion by 2030, exhibiting a growth rate (CAGR) of 15.6% from 2021 to 2030. AgNPs
can be used in the formulation of surface cleaners, toys, textiles, air and water disinfection,
antimicrobial catheters, antimicrobial gels, antimicrobial paints, food packaging supplies,
clinical clothing, and so on [39]. AgNP incorporation in nanoscale sensors can offer faster
response times and lower detection limits [40]. It has also been proposed to use AgNPs
as an adjuvant in the manufacturing of vaccines [41], and it has been shown that AgNPs
have both anti-angiogenic and anti-cancer properties [42]. There is a huge market in which
AgNPs are needed. Thus, the testing of antimicrobial activity and the introduction of
AgNPs produced using the secretomes of Geobacillus spp. strains 18, 25, 95, and 612 in
sterilizing material or medical products are tasks for further research.

The exact mechanism of AgNP formation using biological systems is still a matter of
debate. Some scientific groups claim that nitrate reductase is the main enzyme involved
in the reduction of Ag+ and the subsequent formation of AgNPs [25,43,44], while others
claim that the reduction of Ag+ occurs independently of nitrate reductase, involving only
NAD(P)H [45,46]. In this study, we demonstrated that NADH alone is not sufficient for
the efficient synthesis of AgNPs. Similar results were reported in a study by Li et al.
(2012) [3], who found that NADH alone does not produce AgNPs. When nitrate reductase
is also involved in the synthesis, the yield of AgNPs is higher than when only NADH
is used, which suggests that both components are important for the synthesis of AgNPs
using Geobacillus spp. bacterial secretomes. In this study, the nitrate reductase activity in
Geobacillus bacteria was analyzed for the first time, although several genes are available
in databases. The majority of research on bacterial nitrate reductase production for use in
AgNP biosynthesis focuses on E. coli [47–49], Bacillus [32,43,44,50], and Pseudomonas [51,52].

Bacterial nitrate reductases can be classified into three distinct types—periplasmic ni-
trate reductase (Nap), respiratory nitrate reductase (Nar), and assimilatory nitrate reductase
(Nas)—based on their cellular location, operon organization, and active site structure [53].
Geobacillus nitrate reductases belong to Nar and are composed of three different subunits,
namely, α (narG), β (narH), and γ (narI), having properties of metal-binding regions and
domains. The narI gene has been identified to encode the Geobacillus nitrate reductase
molybdenum cofactor assembly chaperone, suggesting that molybdenum is important for
nitrate reductase functionality. To the best of our knowledge, this is all of the available
information about Geobacillus nitrate reductases. However, for computational profiling
experiments of nitrate reductase from Bacillus clausii, Mukherjee and co-authors [43] used
the catalytic NarG subunit as a representative of the whole nitrate reductase. Thus, it is
possible to clone and perform gene and protein engineering experiments of only NarG to
improve nitrate reductase activity and increase the AgNP production rate. Both fundamen-
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tal experiments related to the functionality of nitrate reductase from Geobacillus bacteria
and the prospect of their application are important objects for further research.

In addition to NP synthesis, other areas of application of nitrate reductases are being
investigated. With increasing urbanization and rapid population growth, environmen-
tal pollution with heavy metals is a major concern that is directly related to increasing
industrialization [54]. Heavy metals are dangerous because they are not biodegradable
and are accumulating in the food chain and endangering all living organisms [55]. To
remove heavy metals from the environment, chemical precipitation, evaporation, elec-
trochemical treatment, and other methods are used [56], but these methods are not very
efficient and consume a lot of chemical compounds and energy [57]. As an alternative,
bioremediation methods have been developed, which are more economical and environ-
mentally friendly [58]. One such method is MICP, which involves the precipitation of
calcium carbonates by microbial cells and their biochemical activities. MICP occurs under
different environmental conditions through various metabolic pathways, including nitrate
reduction, which has sparked interest in nitrate reductases [59,60]. As it was demonstrated
that Geobacillus spp. bacterial secretomes can be used for the synthesis of AgNPs, and their
nitrate reductases are active over a wide range of temperatures, further studies are needed
to determine whether Geobacillus spp. bacterial nitrate reductases could be applied not only
to the synthesis of AgNPs, but also to bioremediation.

5. Conclusions

This research emphasizes the use of secretomes from Geobacillus spp. bacteria as a
safe, straightforward, environmentally friendly, and effective method for synthesizing
silver nanoparticles. The resulting silver nanoparticles are safe to use and have a range of
potential applications, including in the fields of medicine, electronics, and material science.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/nano13040702/s1, Figure S1: Size distribution of AgNPs obtained using
four Geobacillus spp. bacteria strains. Number refers to the respective Geobacillus spp. strain number.
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