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A. An Approach to Integrating a

Non-Probability Sample in the

Population Census. Mathematics 2023,

11, 1782. https://doi.org/

10.3390/math11081782

Academic Editor: Stefano Bonnini

Received: 6 March 2023

Revised: 30 March 2023

Accepted: 4 April 2023

Published: 8 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Approach to Integrating a Non-Probability Sample in the
Population Census
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Abstract: Population censuses are increasingly using administrative information and sampling as
alternatives to collecting detailed data from individuals. Non-probability samples can also be an
additional, relatively inexpensive data source, although they require special treatment. In this paper,
we consider methods for integrating a non-representative volunteer sample into a population census
survey, where the complementary probability sample is drawn from the rest of the population. We
investigate two approaches to correcting non-probability sample selection bias: adjustment using
propensity scores, which models participation in the voluntary sample, and doubly robust estimation,
which has the property of persisting possible misspecification of the latter model. We combine the
estimators of population parameters that correct the selection bias with the estimators based on a
representative union of both samples. Our analysis shows that the availability of detailed auxiliary
information simplifies the applied estimation procedures, which are efficient in the Lithuanian census
survey. Our findings also reveal the biased nature of the non-probability sample. For instance, when
estimating the proportions of professed religions, smaller religious communities exhibit a higher
participation rate than other groups. The combination of estimators corrects such selection bias.
Our methodology for combining the voluntary and probability samples can be applied to other
sample surveys.

Keywords: population census; auxiliary information; missing at random; propensity score adjustment;
inverse probability weighting; semiparametric estimation; doubly robust estimation; variance
estimation; composite estimation

MSC: 62D05

1. Introduction

Population censuses are traditionally understood as large-scale surveys conducted
once every ten years, where all individuals provide their data through census question-
naires. However, such data collections are expensive and require a lot of other resources.
Therefore, new ways of conducting population censuses are being discussed more fre-
quently, particularly as administrative data become more accessible [1–4]. Lithuania is
an example, as Statistics Lithuania (the State Data Agency) has conducted the Population
and Housing Census 2021 primarily based on administrative data from state registers and
information systems.

Unfortunately, certain census variables, such as professed religion or mother tongue,
cannot be derived from administrative sources. For these variables, a sample survey could
be a compromise that supports the idea of optimizing the population census. Probability
sampling methods, along with sample design-based inference, are an accepted approach to
surveying finite populations in many areas of statistics [5], particularly in official statistics.
Probability samples are also being used in censuses, as seen in [6]. On the other hand,
the use of alternative data sources, such as big data or non-probability samples, has
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been studied extensively in recent years since these data are cheaper and much easier to
obtain [7–10]. However, unlike with probability samples, the inclusion mechanisms into
non-probability samples are typically unknown; therefore, inclusion probabilities need to
be estimated to correct the sample selection bias. Even a very large non-probability sample
may lead to worse estimation results than a small probability sample if the sample selection
bias is not taken into account [11]. To our knowledge, non-probability samples have not
yet been directly used in censuses, including contemporary corrections of their biases. We
present the results of our research on the integration of such a non-probability sample in a
population census, which might be useful for other researchers and practitioners working
with censuses and sample surveys.

We considered the sampling framework created in the survey of the Lithuanian census:
firstly, the data were collected through the voluntary (non-probability) sample and then the
probability sample was drawn from the rest of the census population. Our scenario is similar
to the one considered in [12,13] but differs from another one often provided in the literature,
where the study variables were assumed to be unobserved in a probability sample [14,15].
Moreover, we had access to complete auxiliary information from administrative sources
and previous censuses, which may not have always been the case in other surveys. This
enabled us to simplify the estimation procedures used in [14] and apply non-probability
sample integration similar to [12,13].

Our goal is to efficiently combine both the non-probability and probability samples to
estimate the parameters of interest. In Section 2.3.1, we consider a natural post-stratified
generalized regression (calibrated) estimator of population means, as described in [12]. This
estimator is based on the union of the probability and voluntary samples, with inclusion
probabilities initially set to one for units in the latter sample. In Section 2.3.2, we explore
an alternative to the post-stratified estimator, as presented in [14], which is the inverse
probability weighting estimator based on estimated inclusion probabilities (propensity
scores) for the non-probability sample. We adapt the methodology of [14] to our framework
to derive the variance estimation formula for this estimator. Finally, we combine both
estimators in Section 2.3.5 by taking into account their estimated variances. In Section 2.3.4,
we investigate the doubly robust estimator for the non-probability sample, which provides
protection against possible misspecification of the propensity score model [14]. This esti-
mator incorporates model-based prediction estimators for the parameters of interest and
exploits complete auxiliary information. We combine the doubly robust estimator with an
analogous generalized difference estimator from [16], which we describe in Section 2.3.3.
Our aim is to determine which combination works best, at least in our application to the
population census.

The application of the considered estimators to the Lithuanian census survey is elab-
orated on in Section 3. A discussion of the results of the study and some future insights
are reviewed in Section 4. The most relevant conclusions are outlined in Section 5. By
summarizing our findings supported by the analysis of the real census data, it is possible
to benefit from the voluntary sample, especially if the estimators based on it are combined
with those using the probability sample, and good auxiliary information is available.

2. Methods
2.1. Sampling from the Finite Population

We consider any continuous or binary study variable y with the fixed values y1, . . . , yN
in a finite population U = {1, . . . , N} of size N. We estimate the population mean
or proportion

µ =
1
N ∑

k∈U
yk. (1)

To estimate population parameters (1), assume that, at first, a non-probability sample
sA of size nA is obtained from U , and a sample sB of size nB is drawn according to any
probability sampling design without replacement from the rest of the survey population
U\{sA} afterward. We can then interpret that the union of both samples s = sA ∪ sB of size
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n = nA + nB is drawn according to the probability sampling design p(·) with inclusion
into the sample probabilities πk = Pp{k ∈ s} > 0, k ∈ U , where we set πk = 1 if k ∈ sA.
Hereinafter, we use the notation Pp, Ep, and Vp to denote the probability, expectation, and
variance, calculated according to the randomness induced by p(·), respectively. We write
dk = 1/πk to denote the sampling weights.

2.2. Auxiliary Data and Outcome Regression Model

We associate with the unit k ∈ U the values xk of the auxiliary variables x, and
assume that these values are known for all population units. Hence, the complete auxiliary
information is available.

Suppose that the relationship between the variables y and x can be described by a
semiparametric outcome regression model ξ:

Eξ(yk|xk) = m(xk, β) and Vξ(yk|xk) = v2
kσ2, k ∈ U , (2)

where β and σ2 are unknown parameters, vk = v(xk) is a known function of xk, and
m(xk, β) has a known form as well, for example, m(xk, β) = x′kβ. Here, Eξ and Vξ denote
the expectation and variance with respect to the model ξ. We assume (without any loss of
generality) that 1 is the first component of the vector xk for all k ∈ U .

2.3. Estimation of Population Parameters
2.3.1. Post-Stratified Generalized Regression Estimator

Let us consider the combined sample s with the accompanying probability sampling
design p(·). Taking m(xk, β) = x′kβ in (2), we have the linear regression model, which is
used to build the generalized regression estimator [17]

µ̂GR =
1
N ∑

k∈s
dkyk +

(
1
N ∑

k∈U
xk −

1
N ∑

k∈s
dkxk

)′
B̂ (3)

of (1), where

B̂ =

(
∑
k∈s

dkxkx′k
ck

)−1

∑
k∈s

dkxkyk
ck

with positive constants ck, for instance, ck = v2
k . The quantity B̂ estimates the

population characteristic

B =

(
∑

k∈U

xkx′k
ck

)−1

∑
k∈U

xkyk
ck

,

which is, in turn, the generalized least squares estimator of β of the linear regression
model, which is also called the assisting model. Estimator (3) is equivalent to the calibrated
estimator [18]

µ̂GR =
1
N ∑

k∈s
wkyk, (4)

often used in practice, where the calibration weights wk, k ∈ s, are chosen to minimize the
distance function

∑
k∈s

ck(wk − dk)
2

dk

subject to the calibration equations

∑
k∈s

wkxk = ∑
k∈U

xk.

Estimator (3) is approximately design-unbiased, i.e., Ep(µ̂GR) ≈ µ. The generalized
regression estimator (3) is also referred to as the post-stratified estimator in [12], with two
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post-strata, i.e., sA and U\{sA}. The authors of [12] argue that such estimation is efficient if
the non-probability sample sA is very large.

According to [17], a design-consistent estimator of the variance Vp(µ̂GR) is

ψ̂GR =
1

N2 ∑
k∈s

∑
l∈s

(
1− πkπl

πkl

)
(yk − x′kB̂)(yl − x′lB̂)

πkπl
, (5)

where πkl = Pp{k, l ∈ s} > 0 are the second-order inclusions into the sample probabilities.

2.3.2. Inverse Probability Weighting Estimator Based on the Propensity Score Model

Let us consider only the non-probability sample sA. The non-probability sample itself
does not represent the target population, and naive estimators based on it are typically
biased [11]. The main obstacle is the unknown selection mechanism for a unit to be included
in the sample.

Let Rk = I(k ∈ sA) be the indicator variable for a unit k ∈ U selected to the sample sA.
The probabilities

πA
k = Eq(Rk | xk, yk) = Pq(Rk = 1 | xk, yk), k ∈ U , (6)

are called the propensity scores, where the subscript q refers to the propensity score
model. Probabilities (6) are analogous to the inclusion into the sample probabilities πk (for
probability samples) since they describe the inclusion into the sample sA. The propensity
scores πA

k , k ∈ sA, need to be estimated before using them to weigh the units of the
non-probability sample.

The following assumptions are considered to simplify the propensity score model [14]:

A1 The indicator Rk and the study variable yk are independent given the covariates xk.
A2 All units have a nonzero propensity score: πA

k > 0 for all k ∈ U .
A3 The indicators Rk and Rl are independent, given xk and xl for k 6= l.

Due to assumption A1, we have πA
k = Pq(Rk = 1 | xk, yk) = Pq(Rk = 1 | xk) for all

k ∈ U , and the selection mechanism is called ignorable. It is similar to the notion of missing
at random (MAR) used in missing data analyses [19].

We model the propensity scores πA
k = Pq(Rk = 1 | xk) parametrically using the inverse

logit function

πA
k = π(xk, θ) =

exp(x′kθ)

1 + exp(x′kθ)
, (7)

where θ is the model parameter with the unknown true value θ0. The propensity score
estimates π̂A

k under the logistic regression model (7) are obtained from the maximum
likelihood estimator π̂A

k = π(xk, θ̂), where θ̂ maximizes the log-likelihood function

l(θ) = ∑
k∈sA

log
{

π(xk, θ)

1− π(xk, θ)

}
+ ∑

k∈U
log{1−π(xk, θ)} = ∑

k∈sA

x′kθ− ∑
k∈U

log{1+ exp(x′kθ)}.

The maximum likelihood estimator θ̂ is found by solving the score equations

U(θ) =
∂

∂θ
l(θ) = ∑

k∈U
{Rk − π(xk, θ)}xk = 0.

A conventional way to do it is to apply the Newton–Raphson iterative procedure.
The estimated propensity scores π̂A

k = π(xk, θ̂), k ∈ sA, are then used to compute the
inverse probability weighting (IPW) estimator [14]

µ̂IPW =
1

N̂A ∑
k∈sA

yk

π̂A
k

, where N̂A = ∑
k∈sA

1
π̂A

k
, (8)
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of the population mean µ. This is the adaptation of the Hájek estimator used for the
probability samples. Estimator (8) can correct the sample selection bias efficiently if the
propensity score model is well-specified.

We construct the estimator of variance Vq(µ̂IPW) using asymptotic properties of esti-
mator (8). Let Uν be a sequence of finite populations of size Nν, indexed by ν. For each Uν,
there is an associated non-probability sample sA,ν of size nA,ν. The population size Nν → ∞
and the sample size nA,ν → ∞ as ν→ ∞. Further, the index ν is suppressed to simplify the
notation. Consider the following regularity conditions [14]:

C1 The population size N and the sample size nA satisfy limN→∞ nA/N = fA ∈ (0, 1).
C2 There exist c1 and c2 such that 0 < c1 < NπA

k /nA ≤ c2 for all units k ∈ U .
C3 The finite population and the propensity scores satisfy N−1 ∑k∈U y2

k = O(1), as well as
N−1 ∑k∈U ‖xk‖3 = O(1), and N−1 ∑k∈U πA

k (1− πA
k )xkx′k is a positive definite matrix.

Proposition 1. Under assumptions A1–A3 and regularity conditions C1–C3, and assuming the
logistic regression model (7) for the propensity scores, estimator (8) is asymptotically unbiased, i.e.,
µ̂IPW − µ = Op(n−1/2

A ), and an asymptotic variance of (8) can be derived as

Vq(µ̂
IPW) = VIPW + o(n−1

A ),

where

VIPW =
1

N2 ∑
k∈U

(1− πA
k )π

A
k

(
yk − µ

πA
k
− b′xk

)2

with πA
k = π(xk, θ0) = exp(x′kθ0)/

(
1 + exp(x′kθ0)

)
and

b′ =

{
∑

k∈U
(1− πA

k )(yk − µ)x′k

}{
∑

k∈U
πA

k (1− πA
k )xkx′k

}−1

.

Proof. The proposition is actually the corollary of Theorem 1 in [14] for complete auxiliary
data. An inspection of the proof of the latter theorem leads to simpler assumptions required
for the proposition statement.

Using the asymptotic variance from Proposition 1, the variance of estimator (8) can be
estimated by

V̂IPW =
1

(N̂A)2 ∑
k∈sA

(1− π̂A
k )

(
yk − µ̂IPW

π̂A
k

− b̂′xk

)2

, (9)

where

b̂′ =

{
∑

k∈sA

(
1

π̂A
k
− 1

)
(yk − µ̂IPW)x′k

}{
∑

k∈U
π̂A

k (1− π̂A
k )xkx′k

}−1

,

given the non-probability sample sA.

2.3.3. Generalized Difference Estimator

Consider the combined sample s together with the sampling design p(·). If the
outcome regression model (2) is not assumed to be linear, one can apply the generalized
difference estimator [16]

µ̂GD =
1
N

(
∑
k∈s

dk(yk −m(xk, β̂)) + ∑
k∈U

m(xk, β̂)

)
(10)

to estimate the population mean µ. The estimator exploits the available complete auxiliary
data. Here, β̂ can be the quasi-maximum likelihood estimator of the regression parameter
β based on the dataset {(yk, xk), k ∈ s} by [20].
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A design-consistent estimator of the variance Vp(µ̂GD) is provided in [16] as

ψ̂GD =
1

N2 ∑
k∈s

∑
l∈s

(
1− πkπl

πkl

)
(yk −m(xk, β̂))(yl −m(xl , β̂))

πkπl
. (11)

2.3.4. Doubly Robust Estimator

Let us use only the non-probability sample sA. A drawback of the IPW estimator (8)
may be its sensitivity to a misspecified model for the propensity scores, especially if some
units have very small values in π̂A

k [10]. The efficiency and robustness of the IPW estimator
can be improved by incorporating outcome regression model (2), also called the prediction
model. The doubly robust (DR) estimator for the mean µ is [14]

µ̂DR =
1

N̂A ∑
k∈sA

yk −m(xk, β̂)

π̂A
k

+
1
N ∑

k∈U
m(xk, β̂). (12)

Due to the so-called model transportability implied by the assumption A1 [21], model (2),
fitted using standard methods based on the dataset {(yk, xk), k ∈ sA}, can be applied to
compute the predicted values m(xk, β̂) for all k ∈ U used in (12). A doubly robust estimator
(12) is an analog of the generalized difference estimator (10).

We turn to the estimation of variance Vq(µ̂DR). Let β0 be the unknown true value of
parameter β in the prediction model. Consider additional regularity conditions imposed
on the mean function m(x, β) as given in [14]:

C4 For each x, ∂m(x, β)/∂β is continuous in β and |∂m(x, β)/∂β| ≤ h(x, β) for β in the
neighborhood of β0, and N−1 ∑k∈U h(xk, β0) = O(1).

C5 For each x, ∂2m(x, β)/∂β∂β′ is continuous in β and maxi,j |∂2m(x, β)/∂βi∂β j| ≤ k(x, β)

for β in the neighborhood of β0, and N−1 ∑k∈U k(xk, β0) = O(1).

Proposition 2. Estimator (12) is doubly robust in the sense that it is a consistent estimator of the
mean µ if either the propensity score model or the prediction model is correctly specified. Under
assumptions A1–A3 and regularity conditions C1–C5, and assuming correctly specified logistic
regression model (7) for the propensity scores, an asymptotic variance of (12) can be derived as

Vq(µ̂
DR) = VDR + o(n−1

A ),

where

VDR =
1

N2 ∑
k∈U

(1− πA
k )π

A
k

(
yk −m(xk, β0)− hN

πA
k

− b′DRxk

)2

(13)

with πA
k = π(xk, θ0) = exp(x′kθ0)/

(
1 + exp(x′kθ0)

)
and

b′DR =

{
∑

k∈U
(1− πA

k )(yk −m(xk, β0)− hN)x′k

}{
∑

k∈U
πA

k (1− πA
k )xkx′k

}−1

,

hN =
1
N ∑

k∈U
(yk −m(xk, β0)).

Proof. The proposition follows from Theorem 2 of [14] for the complete auxiliary data.

Remark 1. Regularity conditions C4–C5 are redundant for the linear outcome regression model.
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Using asymptotic variance (13), a simple plug-in variance estimator for doubly robust
estimator (12) is

V̂DR =
1

(N̂A)2 ∑
k∈sA

(1− π̂A
k )

(
yk −m(xk, β̂)− ĥN

π̂A
k

− b̂′DRxk

)2

, (14)

where

b̂′DR =

{
∑

k∈sA

(
1

π̂A
k
− 1

)
(yk −m(xk, β̂)− ĥN)x′k

}{
∑

k∈U
π̂A

k (1− π̂A
k )xkx′k

}−1

,

ĥN =
1

N̂A ∑
k∈sA

yk −m(xk, β̂)

π̂A
k

,

given the non-probability sample sA.

2.3.5. Composite Estimators

We linearly combine design-based post-stratified estimators (3) and (10) based on the
combined sample s with, correspondingly, model-based IPW and DR estimators supported
only by the non-probability sample sA. We consider two composite estimators

µ̂C1 = λ̂1µ̂GR + (1− λ̂1)µ̂
IPW with λ̂1 =

V̂IPW

ψ̂GR + V̂IPW
(15)

and

µ̂C2 = λ̂2µ̂GD + (1− λ̂2)µ̂
DR with λ̂2 =

V̂DR

ψ̂GD + V̂DR
(16)

of population mean (1). Similar combinations are investigated in [13]. Here, the quantities
λ̂1 and λ̂2 estimate optimal coefficients of the combinations, ignoring covariance terms
since the estimators we combine, in principle, do not have common sources of randomness.
Compositions (15) and (16) give more weight to the estimators with smaller variances. The
respective variance estimators are

V̂C1 = λ̂1ψ̂GR (17)

and
V̂C2 = λ̂2ψ̂GD. (18)

The interpretation of variance estimators (17) and (18) is that the variances of the design-
based estimators may be reduced by the factors λ̂1 and λ̂2, respectively.

3. Application to the Survey of the Lithuanian Census
3.1. Motivation

In 2020, the COVID-19 pandemic highlighted the need to promptly produce statistical
information from national statistical institutions. This led Statistics Lithuania (the State
Data Agency) to take on a new role as the governing organization for state data, forming a
unified database of the main state registers and information systems with a vast amount
of data that are ready to be used for statistical purposes. Therefore, Statistics Lithuania
was able to carry out the following 2021 census based on administrative data from these
registers and information systems: residents, real estate, address registers, and the State
Social Insurance Fund Board (Sodra) database, among others.

However, as some variables of interest could not be obtained from any administrative
source, a statistical survey for such data collection had to be launched. Hence, a statistical
survey on population by ethnicity, native language, and religion was conducted in 2021. It
aimed to evaluate population proportions for the following variables: religion professed
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(16 categories), mother tongue (more than 12 categories), knowledge of other languages
(16 languages), and ethnicity. For the latter variable, mass imputation was used since
relevant information was known from the Ethnicity Register for approximately 87% of
the census population. The research was conducted to achieve the objective of efficiently
estimating these proportions by exploiting complete data from the previous censuses and
other auxiliary information.

3.2. Sample Selection

The survey sample s ⊂ U was drawn and consisted of three parts, s = sA ∪ sO ∪ sB:

(i) At first, a voluntary online survey was carried out from 15 January to 28 February,
2021, which allowed for the collection of statistical data from approximately 2% of
the census population (about 54,000 respondents), resulting in the non-probability
sample sA.

(ii) After the end of the online survey, a sampling frame for probability sampling was
constructed. It excluded certain addresses, e.g., if at least one individual from the
address participated in the online survey, if it was an institution, if more than 15
individuals were permanent residents, among other rules. These units, which were
not included in the sampling frame, comprised the part sO of the sample s.

(iii) Lastly, the probability sample sB was drawn from the sampling frame U\{sA ∪ sO},
which was divided into H = 113 strata according to the municipality intersected with
the area of residence, i.e., urban or rural. The number of addresses sampled from a
particular stratum was proportional to the size of the stratum, resulting in around
40,000 addresses sampled from the Population Register in total; approximately 6%
of the census population was interviewed through the telephone survey (about
171,000 respondents).

The working sampling design p(·) is characterized by the inclusion probabilities:
πk = 1 if k ∈ sA ∪ sO, and

πk ≈
mkn′h

N′h
if k ∈ sB,

where N′h denotes the size of the hth stratum, n′h is the number of addresses selected, and
mk is the number of individuals in the corresponding address. The sample part sO is treated
as a separate post-stratum.

3.3. Imputation of Missing Values

The response rate in the probability sample sB reached approximately 88%. Missing
values in the whole sample s were filled in using three imputation methods: historical,
deductive, and k-nearest neighbor.

Missing values were first filled in using historical information from the 2011 and 2001
censuses consecutively, as variables of interest were fully known for the populations of
those censuses. The remaining missing values accounted for 2.3% of the sample.

Additional sociodemographic characteristics of previous and current censuses, such
as age, gender, marital status, household structure, country of birth, citizenship, education,
and employment status, were used for further deductive imputation. For instance, if the
same religion was observed for each household member except one, the corresponding
religion was imputed where missing. After the deductive imputation, only 0.3% of the
sample remained with missing values.

Eventually, the remaining missing values in the sample were filled in by applying the
k-nearest neighbor method [22].

3.4. Application to Religion Proportions

We focus on the non-probability sample integration for the estimation of religion
proportions as the results are similar for every proportion of interest.
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When we obtained the non-probability sample from the online survey, the question
arose if the collected data could be used for estimation. We first checked the representa-
tiveness of the voluntary sample using sociodemographic characteristics known for the
entire 2021 census population. A comparison of some proportions of sociodemographic
characteristics between the voluntary sample and the whole population showed the biased
nature of the non-probability sample. The results provided in Table 1 suggest that people
with higher education, as well as those who are employed and married, tend to participate
in such online surveys. Another interesting observation made was the willingness of some
ethnic communities to participate in the online survey and represent their community. For
instance, Polish people in Lithuania accounted for 35% of the voluntary sample but only
about 7% of the whole population.

Table 1. Comparison of proportions of some sociodemographic characteristics in the voluntary
sample and the whole population.

Voluntary Sample Population Difference in %

Ethnicity Pole 0.35 0.07 441
Education higher 0.48 0.20 134
County Vilnius 0.64 0.29 121
Employment employed 0.63 0.45 41
Age group ≥30, <50 0.37 0.27 37
Marital status married 0.52 0.42 25
Gender male 0.41 0.46 −11
Ethnicity Lithuanian 0.56 0.85 −34
Education (lower) secondary 0.24 0.37 −35
Education primary 0.09 0.20 −55

Additionally, we compared the religion proportions of 2011 religion in the 2021 census
population for the online survey respondents and the entire population; see Table 2. It
was observed that the representatives of smaller religious communities were more likely
to participate in the survey. For instance, the proportion of the Karaites religious com-
munity in the voluntary sample was 1307% larger than the corresponding proportion in
the population.

Table 2. Comparison of religion proportions in the voluntary sample and the whole population.

Voluntary Sample Population Difference in %

Karaites 0.00130 0.00009 1307
New Apostolic Church 0.00161 0.00014 1049
Evangelical Reformed Believers 0.00833 0.00207 302
Other 0.01596 0.00514 211
Pentecostalists 0.00198 0.00067 194
Greek Catholics (Uniats) 0.00048 0.00021 131
Evangelical Lutherans 0.01311 0.00585 124
Judaists 0.00074 0.00035 112
Baptists and Free Churches 0.00083 0.00048 74
Sunni Muslims 0.00130 0.00085 52
Not indicated 0.07621 0.10090 −24
Seventh Day Adventist Church 0.00026 0.00032 −20
None 0.07580 0.06424 18
Old Believers 0.00615 0.00683 −10
Orthodox 0.04047 0.03787 7
Roman Catholics 0.75548 0.77398 −2

The sociodemographic variables of Table 1 and the religion variables of Table 2 contain
information that can explain the chance of being selected in the voluntary sample. Hence,
these variables were used as covariates in the propensity score model.
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To estimate the religion proportions in the 2021 census population, we first considered
the post-stratified generalized regression and generalized difference estimators given by (3)
and (10), respectively. The calibrated weights in (4) were calculated by taking such auxiliary
information as binary variables on age groups, gender, and religions professed in 2011
intersected with counties in the calibration equations, while the same auxiliary variables
as in the propensity score model were used for estimator (10). Comparing the results of
the post-stratified calibrated estimator with the proportions of the previous censuses in
Table 3 (and based on external evaluations), the estimator µ̂GR tends to underestimate
smaller religious communities due to the lack of data. On the other hand, the generalized
difference estimator µ̂GD seems to produce slightly higher estimates for the majority of
these smaller religions.

Table 3. Religion proportions in 2001, 2011, and 2021 census populations.

µ(2001) µ(2011) µ̂GR µ̂GD

Roman Catholics 0.78391 0.77233 0.73664 0.74101
Not indicated 0.05671 0.10112 0.15701 0.15025
None 0.09696 0.06146 0.05408 0.05477
Orthodox 0.04150 0.04113 0.03433 0.03482
Old Believers 0.00806 0.00767 0.00434 0.00419
Evangelical Lutherans 0.00565 0.00604 0.00389 0.00398
Other 0.00282 0.00493 0.00566 0.00625
Evangelical Reformed Believers 0.00208 0.00221 0.00122 0.00126
Pentecostalists 0.00037 0.00061 0.00117 0.00158
Sunni Muslims 0.00075 0.00089 0.00058 0.00064
Baptists and Free Churches 0.00034 0.00044 0.00017 0.00016
Judaists 0.00039 0.00040 0.00025 0.00029
Greek Catholics (Uniats) 0.00010 0.00023 0.00030 0.00038
Seventh Day Adventist Church 0.00016 0.00030 0.00014 0.00013
New Apostolic Church 0.00012 0.00014 0.00015 0.00020
Karaites 0.00008 0.00010 0.00008 0.00010

As we observed relatively more representatives of minor religions in the voluntary
sample (see Table 2), we expected smaller variances of the estimators based only on this
non-probability sample with a condition that a selection bias is properly corrected. The IPW
estimator is designed to correct such bias by incorporating the propensity scores evaluated
using the auxiliary variables of Tables 1 and 2.

We integrated the non-probability sample through the combination µ̂C1 of the post-
stratified generalized regression (calibrated) and IPW estimators. According to Table 4,
it seems that the first composite estimator corrected the underestimation. Alternatively,
we considered the combination µ̂C2 of the generalized difference estimator with its analog
DR estimator based on the auxiliary variables of Tables 1 and 2. The second composite
estimator seems to have produced even higher estimates for smaller religious communities;
however, it also came with larger variances (see Table 5).

Nevertheless, as the calibrated and generalized difference estimators seemed to evalu-
ate larger proportions of interest accurately, they were used in compositions (15) and (16)
with weights equal to 1. That is, for religions None, Not indicated, and Roman Catholics,
the proportions were evaluated using only the design-based calibrated or generalized
difference estimators.
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Table 4. Religion proportion estimates in 2021 census population.

µ̂GR µ̂C1 µ̂GD µ̂C2

Roman Catholics 0.73664 0.73349 0.74101 0.73811
Not indicated 0.15701 0.15452 0.15025 0.14832
None 0.05408 0.05319 0.05477 0.05401
Orthodox 0.03433 0.03804 0.03482 0.03592
Old Believers 0.00434 0.00503 0.00419 0.00486
Evangelical Lutherans 0.00389 0.00460 0.00398 0.00475
Other 0.00566 0.00636 0.00625 0.00709
Evangelical Reformed Believers 0.00122 0.00151 0.00126 0.00175
Pentecostalists 0.00117 0.00126 0.00158 0.00191
Sunni Muslims 0.00058 0.00069 0.00064 0.00094
Baptists and Free Churches 0.00017 0.00024 0.00016 0.00037
Judaists 0.00025 0.00031 0.00029 0.00051
Greek Catholics (Uniats) 0.00030 0.00034 0.00038 0.00060
Seventh Day Adventist Church 0.00014 0.00017 0.00013 0.00031
New Apostolic Church 0.00015 0.00017 0.00020 0.00035
Karaites 0.00008 0.00009 0.00010 0.00022

Table 5 provides comparisons of the relative percent difference between (i) the smoothed
version of variance estimator (5) and variance estimator (17), (ii) the smoothed version
of variance estimator (11) and variance estimator (18), and (iii) variance estimators (17)
and (18). We used smoothed variances ψ̂GRs and ψ̂GDs instead of ψ̂GR and ψ̂GD in com-
positions (15) and (16), respectively, due to the estimation of very small proportions. For
the smoothing of variance (5), similarly as in [23], we assumed that Vp(µ̂GR) ≈ KÑγ,
with Ñ as the sum of values of 2011 variable of interest in the 2021 census population.
Parameters K > 0 and γ ∈ R were evaluated through a log–log regression, using the data
pairs (ψ̂GR, Ñ) calculated from all categories of the variable of interest. The smoothing of
variance (11) was performed analogously.

Table 5. Comparison of the relative difference (in %): (i) (ψ̂GRs − V̂C1)/V̂C1, (ii) (ψ̂GDs − V̂C2)/V̂C2,
(iii) (V̂C1 − V̂C2)/V̂C2.

(i) (ii) (iii)

New Apostolic Church 1 6 −88
Karaites 4 43 −88
Greek Catholics (Uniats) 2 16 −84
Seventh Day Adventist Church 4 22 −79
Judaists 6 35 −76
Pentecostalists 1 3 −73
Baptists and Free Churches 9 42 −71
Sunni Muslims 6 20 −65
Evangelical Reformed Believers 6 12 −46
Other 2 2 −14
Evangelical Lutherans 7 7 −7
Old Believers 19 22 4
Orthodox 18 9 146
None 0 0 261
Not indicated 0 0 366
Roman Catholics 0 0 1389

The compositions given by (15) and (16) assign more weight to estimators with
a smaller variance. The first two numerical columns in Table 5, which correspond to
cases (i)–(ii), provide an indication of how much composite estimators can improve the
estimation accuracy of the calibrated and generalized difference estimators, respectively.
The last column of the table includes the relative percent differences between the variance
estimates of composite estimators µ̂C1 and µ̂C2. The first composite estimator gives more
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satisfactory results for the proportions of smaller religious communities. However, the
second composite estimator seems to correct the estimation accuracy of proportions of
larger religious groups.

4. Discussion

The generalized regression and generalized difference estimators considered here are
traditional model-assisted estimators based on the union of the non-probability and proba-
bility samples, together with the probability sampling design p(·). Since the selection bias
is corrected through the known inclusion probabilities, the application of these estimators
may lead to valid design-based inferences. However, the latter estimators incorporate
unweighted units of the non-probability sample, which does not add more efficiency unless
the size of the non-probability sample is of the same magnitude as the population size [12].
In the application to the Lithuanian census, the voluntary sample covers about 2% of the
population, and such a contribution is too small.

Meanwhile, IPW and DR estimators exploit the non-probability sample in a more
advanced way, i.e., through the propensity score and prediction models, and we may
benefit from combining them with traditional design-based estimators. There are various
ways to combine different data sources and estimators [24]; however, we choose to optimize
the linear combinations of estimators by taking into account their estimated variances. This
approach appears to be efficient in the application when estimating smaller population
proportions that require larger sample sizes. Indeed, the first composite estimator improves
the estimation accuracy for proportions of smaller religious communities as the estimated
variances of the composition are smaller than the estimated variances of the generalized
regression estimator by up to 19%. Alternatively, we consider the combination of the
generalized difference estimator with the DR estimator as it allows us to better leverage the
available complete auxiliary data through the prediction model. Surprisingly, while this
composite estimator improves the estimation accuracy for proportions of larger religious
communities, it does not give satisfactory results for smaller religions.

In the application, the detailed data available from administrative registers and pre-
vious complete censuses allowed us to efficiently apply the model-based IPW and DR
estimators integrating the non-probability sample. In regard to future censuses, it is worth
considering the possibility of collecting much larger non-probability samples by promoting
voluntary participation more.

Our study is based on a strong MAR assumption for the variable of interest in the
propensity score model. Although the analysis of the Lithuanian census data allowed us
to identify variables that clearly explain voluntary survey participation (and, thus, the
propensity score model may be specified quite well), this assumption might be relaxed in
future research. In this way, future investigations could explore data integration under the
assumption of the non-ignorable selection mechanism.

5. Conclusions

The non-probability and probability samples can be combined into a single sample
and used in design-based post-stratified estimators of parameters. This approach is a safe
but inefficient way to exploit the non-probability sample.

The post-stratified estimators are, therefore, linearly combined with the model-based
estimators based only on the non-probability sample. By applying the estimated opti-
mal combinations to the Lithuanian census survey, there is a significant improvement in
estimating the population proportions.

The success of integrating a voluntary sample into a census survey depends on
the availability of proper auxiliary information, such as complete data from previous
censuses. In the future, such information could be obtained by collecting much larger
non-probability samples. In addition, it would then be possible to forego the selection of a
probability sample.
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Applications such as ours may be more efficient if the MAR assumption for the
propensity score model is abandoned. This would lead to more complex estimation
procedures that can be explored in the future.
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