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Introduction

Introduction

Research context and motivation

Various microorganisms respond to certain chemicals found in their environment
by migrating towards higher or lower concentrations of the substance. Such directed
movement is called chemotaxis [12], which plays a crucial role in a wide range of
biological phenomena, e.g., within the embryo, chemotaxis affects avian gastrulation
and patterning of the nervous system [11, 31].

Bacterial growth and movement in confined suspensions often results in the
emergence of patterns [3]. The interaction of several active processes in the living
suspensions leads to very complex dynamic systems which are still poorly understo-
od [6].

Recently, the dynamics of Escherichia coli cultures was investigated using bio-
luminescence imaging [34, 36]. Moreover, lux-gene engineered bacteria have been
successfully used to develop whole cell biosensors, which have been successfully used
for the detection of environmental pollutants [13].

Computational modelling can be applied to validate biological results retros-
pectively and to develop new hypothesis. Because such modelling employs nonlinear
equations, the only suitable way to solve them is numerical simulation [32].

Aim and tasks of the research

The aim of this work was to create a flexible computational model for self-
organization of bacteria, which could be successfully used to model results obtained
in physical experiments, and to investigate peculiarities of bacterial population dy-
namics by applying the model. The aim is further divided into the following tasks:

1. Create a flexible computational model suitable for modelling self-organization
of bacterial population using simple enough expressions (following Hillen and
Painter [14], hereinafter referred to as “minimal”).

2. Mathematically model the effect of oxygen on the pattern formation of bacterial
population.

3. Tune up the created model to match results obtained in physical experiments.

4. Generalize the created model for two- and three-dimensional space and analyse
numerical simulation results in one-, two- and three-dimensions.

5. Develop software tools to facilitate the processing and visualization of modelled
results or results produced by luminous bacteria in physical experiments.

6. Using the developed software, investigate the peculiarities and behaviour of
the results modelled and results produced by luminous bacteria in physical
experiments.
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Research methods

The mathematical models presented in this thesis are formulated by nonline-
ar reaction-diffusion partial differential equations. The models were approximated
employing a finite difference technique by applying an explicit computational sche-
me. Software tools implementing computational schemes were developed using Free
Pascal.

Additional software tools were developed to facilitate the processing and visu-
alization of modelled results or results produced by luminous bacteria in physical
experiments. A video game engine was used for 3D visualization. These tools were
used to investigate the peculiarities of the modelled results.

Scientific novelty and results

1. The model (referred to as “minimal”) suitable for modelling pattern formation
in a luminous E. coli colony in pseudo-one dimension along the three-phase
contact line was selected.

2. Mathematical and computational models suitable for modelling pattern forma-
tion in a luminous E. coli colony in two and three dimensions of space were
created. The added equation describing oxygen dynamics ensures that compu-
tationally simulated structures better match results obtained in physical exper-
iments.

3. It was shown that dynamics of bacterial patterns can be computationally simu-
lated with reduced spatial dimensions in a model (by using 1D and 2D models
instead of 3D). Moreover, it was shown that important changes in the patterns
are observed when using models with reduced spatial dimensions and the same
parameter values.

Practical significance of the results

The mathematical models presented and proposed in this thesis are used to mo-
del and investigate results of pattern formation in a luminous E. coli colony obtained
from bioluminescence imaging.

The following software was created:

1. Software implementing mathematical models used to investigate bacterial be-
haviour.

2. Software “E. Coli Image Analysis”1 which facilitates processing, analysis and
comparison of results.

1This software can be found at http://uosis.mif.vu.lt/~zledas/bakt/ImageAnalysis/.
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3. Unity game engine (version 4.6) was adapted to be used for the visualization of
3D modelling results.

The results presented in this thesis were used for reaching the goals of the
project “Self-organization of E. coli and their mutants near three phase contact line”
financed by the Research Council of Lithuania (MIP-001/2014).

Statements promoted to defend

1. The selected model (referred to as “minimal”) is suitable for modelling pattern
formation in a luminous E. coli colony in pseudo-one dimension along the three-
phase contact line.

2. When equation describing oxygen dynamics is added, mathematical and compu-
tational models become suitable for modelling pattern formation in a luminous
E. coli colony in two and three dimensions of space in the case when a vessel
with depth needs to be modelled.

3. Dynamics of bacterial patterns can be computationally simulated with reduced
spatial dimensions in a model (using 1D and 2D models instead of 3D), but
important changes in the patterns are observed when using models with the
same parameter values in different dimensions.

Approbation of the results

The main research results were published in five articles in periodical scientific
publications [A2–A6]. Three of these articles were published in the journals with the
citation index in Thomson Reuters Web of Science database [A2, A5, A6]. The cont-
ribution of the author of the thesis in the published papers covers the development of
numerical models and the software solving these models, digital investigation proces-
ses, analysis of the results and varying in scope text preparation process. Also, part
of the research results were published in peer reviewed conference proceedings [A1].
Contributed talks were given at seven international and national conferences.

1. Previous work

1.1. Mathematical and computational modelling

In the last decades computational modelling became to be intensively used for
modelling physical and biological processes. Such modelling applications aim to
transfer real world processes to abstract mathematical models and using computa-
tional approximations solve them in the end obtaining new knowledge and insights
regarding real world processes [17, 27].
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1 pav. Top view bioluminescent E. coli images of the bacterial cultures in a cylind-
rical vessel (bright color shows higher concentration). The images were captured at
5 (a), 20 (b), 40 (c), 60 (d) min. [36].

These computational simulations help to understand processes, which are very
expensive or next to impossible to replicate in real life.

1.2. Chemotaxis and spatiotemporal patterns

Various microorganisms respond to certain chemicals found in their environment
by migrating towards higher (chemoattraction) or lower (chemorepulsion) concent-
rations of the substance. The directed movement of microorganisms in response to
chemical gradients is called chemotaxis [12]. Chemotaxis plays a crucial role in a wide
range of biological phenomena, e.g., within the embryo: it affects avian gastrulation
and the patterning of the nervous system [11, 31].

Although chemotaxis has been observed in many bacterial species, Escherichia
coli is one of the widely studied examples. E. coli responds to the chemical stimulus
by alternating the rotational direction of their flagella [12, 41]. Usually, microorga-
nisms (including E. coli) not only move towards a chemoattractant, but they also
produce more of the chemoattractant. Because of this, the motile microorganisms
aggregate into local clusters with a high density and hence produce pattern forma-
tion [3, 4, 27].

Recently, the spatiotemporal patterns in the fluid cultures of E. coli have been
observed by employing lux-gene engineered cells and a bioluminescence imaging tech-
nique [34, 36]. However, mechanisms governing the formation of bioluminescence
patterns remain unclear.

Photographs of luminous E. coli taken at different time moments can be seen
in Fig. 1 (taken from the top) [36] and Fig. 2 (taken from the side). Moreover,
the space-time plot of bioluminescent E. coli measured along the contact line of the
cylindrical vessel is presented in Fig. 3 ([35, 36]). It can be seen from these images
that patterns formed by luminous bacteria as well as their dynamics are complex.
The patterns evolve over time – high concentration areas emerge, move and merge.

Over the last two decades, lux-gene engineered bacteria have been used to de-
velop whole cell-based biosensors [10]. A whole-cell biosensor is an analyte probe
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2 pav. Side view bioluminescent E. coli images of the bacterial cultures in a cylindri-
cal glass vessel (bright color shows higher concentration). The images were captured
at two different moments. The author of the images: Dr. Remigijus Šimkus.

3 pav. Space-time plot of bioluminescent E. coli measured along the contact line of
the cylindrical vessel (bright color shows higher concentration) [35, 36].

consisting of a biological element, eg. genetically engineered bacteria, integrated
with an electronic component to yield a measurable signal [24]. Such devices have
been successfully used for the detection of environmental pollutant bioavailability,
various stressors, including dioxins, endocrine-disrupting chemicals, and ionizing ra-
diation [13].

To solve the problems currently limiting the practical use of whole-cell biosen-
sors, the bacterial self-organization within the biosensors has to be comprehensively
investigated.
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1.3. Mathematical modelling of chemotaxis

Starting with the first works of Keller and Segel [18], mathematical modelling
plays a crucial role in understanding the mechanisms of chemotaxis [14]. Different
mathematical models based on advection-reaction-diffusion equations have been de-
veloped for computational modelling of pattern formation in bacterial colonies [3, 4,
6, 22, 25]. The system of coupled nonlinear partial differential equations introduced
by Keller and Segel are still among the most widely used [14, 18, 29].

According to the Keller and Segel approach, the main biological processes can
be described by a system of two conservation equations (t > 0),

∂n

∂t
= ∇ (Dn∇n− h(n, c)n∇c) + f(n, c),

∂c

∂t
= ∇ (Dc∇c) + gp(n, c)n− gd(n, c)c,

(1)

where x and t stand for space and time, n(x, t) is the cell density, c(x, t) is the
chemoattractant concentration, Dn(n) and Dc are the diffusion coefficients, f(n, c)
stands for cell growth and death, h(n, c) stands for the chemotactic sensitivity, gp
and gd describe the production and degradation of the chemoattractant [18].

1.3.1. Cell kinetics

The cell growth f(n, c) is usually assumed to be a logistic function,

f(n, c) = k1n

(
1− n

n0

)
, (2)

where k1 is the constant growth rate of the cell population [4].

1.3.2. Chemoattractant production and consumption

Various chemoattractant production functions have been used in chemotactic
models [14]. Usually, a saturating function of the cell density is used indicating
that, as the cell density increases, the chemoattractant production decreases. The
Michaelis-Menten function is widely used to express the production rate gp [18, 25,
28],

gp(n, c) =
k2

k3 + n
, (3)

and the degradation or consumption gd of the chemoattractant is typically constant,

gd(n, c) = k4. (4)
The values of k2, k3 and k4 are not exactly known yet.
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1.3.3. Chemotactic sensitivity

The function h(n, c) controls the chemotactic response of the cells to the chemo-
attractant. The signal-dependent sensitivity and the density-dependent sensitivity
are the two main kinds of the chemotactic sensitivity h(n, c) [14]. In order to repro-
duce the experimentally observed bands Keller and Segel introduced a chemotactic
(signal-dependent) sensitivity of the following form [19]:

h(n, c) =
k5
c
. (5)

Since the bacterial current flow declines at low chemical concentrations and satura-
tes at high concentrations, Lapidus and Schiller derived the “receptor” chemotactic
(signal-dependent) sensitivity for E. coli [22],

h(n, c) =
k6

(k7 + c)2
. (6)

Assuming that cells carry a certain finite volume, a density-dependent chemo-
tactic sensitivity function as well as a volume-filling model were derived by Hillen
and Painter [30],

h(n, c) = k8

(
1− n

n0

)
. (7)

Another form for the density-dependent chemotactic sensitivity has been introduced
by Velazquez [39],

h(n, c) =
k9

k10 + n
. (8)

In the simplest form, chemotactic sensitivity is assumed to be independent of the
chemoattractant concentration c, and the cell density n, i.e., h(n, c) can be constant,
h(n, c) = k8.

1.3.4. Linear and nonlinear diffusion

Both diffusion coefficients (Dn and Dc) are usually assumed to be constant.
However, the nonlinear cell diffusion depending on the chemoattractant concentration
or/and the cell density is also considered [14]. The nonlinear diffusion of this form
can be used

Dn(n) = Dn

(
n

n0

)m
, (9)

where n0 is the maximal density (or carrying capacity) of the cell population (n <
n0) [20]. At m < 0 the rate of diffusion increases as the cell density increases, while
at m > 0 the rate decreases as the cell density increases. Assuming m = 0 leads to
a constant rate of the cell diffusion.
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1.3.5. Local and non-local gradient

E. coli is able to detect a gradient by sampling the chemoattractant concentra-
tion over the time and adjusting their movement accordingly. As a result, the signal
detected by the cell is non-local and the non-local gradient can be used to model this
behaviour [15],

◦
∇ρ c(x, t) =

n

|Sn−1| ρ

∫
Sn−1

σc(x+ ρσ, t)dσ, (10)

where Sn−1 denotes the (n− 1)-dimentional unit sphere in Rn and ρ is the sampling
radius. When ρ→ 0, this model becomes an ordinary model with local sampling.

1.3.6. Linear and nonlinear gradient

Linear dependency on chemoattractant gradient means that unlimited cell spe-
eds are possible and this is unrealistic. To solve it, the nonlinear gradient function
Fς (such that when ς → 0 becomes a linear gradient) can be used [14].

1.3.7. General and minimal models

Replacing f , gp, gd, Dn and ∇c with the concrete expressions above, and using
the nonlinear gradient function Fς , the governing equations (1) are reduced to a cell
kinetics model with the nonlinear signal kinetics; the nonlinear cell diffusion; the
nonlinear chemotactic sensitivity; the non-local sampling and non-local gradient,

∂n

∂t
= Dn∇

((
n

n0

)m
∇n
)
−

−∇
(
h(n, c)nFς

( ◦
∇ρ c

))
+ k1n

(
1− n

n0

)
,

∂c

∂t
= Dc∆c+

k2n

k3 + n
− k4c, x ∈ (0, l), t > 0,

(11)

where ∆ is the Laplace operator formulated in the one-dimensional Cartesian coor-
dinate system, and l is the length of the contact line, i.e., the circumference of the
vessel. Assuming R as the vessel radius, l = 2πR, x ∈ (0, 2πR).

According to the model classification by Hillen and Painter, the dimensional mo-
del (11) is comprised of the signal-dependent sensitivity (M2); the density-dependent
sensitivity (M3); the non-local sampling (M4); the nonlinear diffusion (M5); the satu-
rating signal production (M6); the nonlinear gradient (M7) and the cell kinetics (M8)
models [14]. On the other hand, when using simple function forms and dropping cell
kinetics, a minimal model M1 is derived [14]:

∂n

∂t
= ∇ (Dn∇n− hn∇c) ,

∂c

∂t
= Dc∆c+ n− c, x ∈ (0, l), t > 0,

(12)
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where h is constant chemotactic sensitivity.

1.3.8. Initial and boundary conditions

Different boundary conditions can be used in the modelling, eg., no-flux [14, 29]
or periodicity [1, 35]. To the system of previously described equations, periodicity
boundary (t > 0)

n(0, t) = n(l, t),
∂n

∂x

∣∣∣
x=0

=
∂n

∂x

∣∣∣
x=l
,

c(0, t) = c(l, t),
∂c

∂x

∣∣∣
x=0

=
∂c

∂x

∣∣∣
x=l
,

(13)

and initial (t = 0) conditions
n(x, 0) = n0x(x), c(x, 0) = 0, x ∈ [0, l], (14)

are added. Here n0x(x) is the initial (t = 0) non uniform bacterial concentration.

1.3.9. General dimensionless model

In order to define the main governing parameters of the mathematical model
(11)-(13), a dimensionless mathematical model has been derived by introducing the
following dimensionless parameters [14, 27, 28]:

u =
n

n0
, v =

k3k4c

k2n0
, t∗ =

k4t

s
, x∗ =

√
k4
Dcs

x, D =
Dn

Dc
,

αu =
k1
k4
, βv =

n0
k3
, ρ∗ =

ρ

l
, χ(u, v) =

k2n0
k3k4Dc

h(n0u, k2n0c/(k3k4)).

(15)

Dropping the asterisks, the dimensionless governing equations become (t > 0)
∂u

∂t
=

∂

∂x

(
Dum

∂u

∂x

)
− ∂

∂x

(
χ(u, v)uFς

( ◦
∇ρ v

))
+

+ sαuu(1− u),

∂v

∂t
=
∂2v

∂x2
+ s

(
u

1 + βvu
− v
)
, x ∈ (0, 1),

(16)

where x and t stand for the dimensionless space and time, respectively; u is the
dimensionless cell density; v is the dimensionless chemoattractant concentration; αu
is the dimensionless growth rate of the cell population; βv stands for the saturating
of the signal production; χ(u, v) is the dimensionless chemotactic sensitivity; and s
stands for the spatial and temporal scale.

Assuming the one-dimensional Cartesian coordinate system the non-local gra-
dient can be described as [14]:

◦
∇ρ v(x, t) =

v(x+ ρ, t)− v(x− ρ, t)
2ρ

. (17)
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The nonlinear gradient in a dimensionless form can be expressed as [14]:

Fς(∇v) =
1

ς
tanh

(
ς∇v
1 + ς

)
, (18)

where ς describes nonlinear gradient strength.

For the dimensionless simulation of the spatiotemporal pattern formation in a
luminous E. coli colony, four forms of the chemotactic sensitivity function χ(u, v)
were used to find out the best fitting pattern for the experimental data [34–36],

χ(u, v) =
χ0

(1 + χαv)2
, (19a)

χ(u, v) = χ0
1 + χβ
v + χβ

, (19b)

χ(u, v) = χ0

(
1− u

χγ

)
, (19c)

χ(u, v) =
χ0

1 + χεu
. (19d)

The first two forms (19a) and (19b) of the function χ(u, v) correspond to the
signal-dependent sensitivity, while the other two (19c) and (19d) – for the density-
dependent sensitivity [14]. Assuming that χα = 0, χβ → ∞, χγ → ∞ or χε = 0 it
leads to a constant form of the chemotactic sensitivity, χ(u, v) = χ0.

The boundary conditions (13) transform to the following dimensionless equ-
ations (t > 0):

u(0, t) = u(1, t),
∂u

∂x

∣∣∣
x=0

=
∂u

∂x

∣∣∣
x=1

,

v(0, t) = c(1, t),
∂v

∂x

∣∣∣
x=0

=
∂v

∂x

∣∣∣
x=1

.

(20)

The initial conditions (14) take the following dimensionless form:

u(x, 0) = 1 + ε(x),

v(x, 0) = 0, x ∈ [0, 1],
(21)

where ε(x) is a random spatial perturbation.

1.4. Numerical simulation

Computational methods are the only possible way to solve the complex problems
presented in this thesis as no analytical solution is possible because of the nonlinearity
of the governing equations of the models [27, 32].

One of the widely used methods suitable for the problems encountered in this
thesis is the finite difference method [7, 21, 32]. In case of the finite difference method,

10
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finite differences are used to approximate the derivatives in the mathematical models.
Then a digital simulator must be used to solve the approximated problem.

Various finite difference methods exist, but the most commonly used in the
computational modelling are explicit and various implicit schemes. An explicit finite
difference scheme is obtained by applying left-handed approximation of the first time
derivative. It is simple to implement and has relatively low computational costs,
because it gives value of the solution for the new time step explicitly in terms of
values at the previous time step. This method was used in this thesis.

2. Mathematical modelling of a luminous bacterial
self-organization

Firstly, the bacterial self-organization model suitable for modelling in 1D is
presented in this chapter. Then, the original 2D model with the added oxygen
dynamics equation is proposed [A4–A6]. Finally, generalization of this proposed
model for 2D and 3D dimensions is presented [A2].

2.1. Modelling of a bacterial self-organization along the contact
line

In this work the spatiotemporal pattern formation in the fluid cultures of lu-
minous E. coli placed in a rounded glass container is investigated. The container
is modelled by a right circular cylinder as shown in Fig. 4, where r and h are the
base radius and the height of the cylinder, respectively. For simplicity, it was assu-
med that the fluid fills the container. Assuming the direct proportionality between
bioluminescence and the number of active cells, a bacterial self-organization can be
modelled by the dynamics of the density of bioluminescent cells [35].

r 

z

j 

h

r

4 pav. The principal structure of a rounded container.

Investigating the density of bioluminescent cells in a circular cylinder container,
it is visible that high density areas are concentrated along top contact line [34, 36]. As
a result, it is possible to project density of the top contact line onto 1D spatiotemporal
plot as in Fig. 2.
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Mathematical and computational models suitable for modelling such 1D spa-
tiotemporal plots of E. coli were proposed in [1, 35]. They can be expanded with
additional modifications. The extended mathematical model was described as (11)-
(13), with a corresponding dimensionless model (16), (21), (20).

2.2. Modelling of a bacterial self-organization on the lateral sur-
face

The minimal model (34) determined in this work is adjusted in this section to
be suitable for modelling the lateral surface of the cylinder.

The model is based on the equations where reaction term incorporates the
carrying capacity. By some interpretations [A5] the carrying capacity can be restrai-
ned by the availability of oxygen. Because it is not known how the carrying capacity
is dependent on resource availability, two options are considered:

1. Carrying capacity is not dependent on (O2) concentration.

2. Carrying capacity is linearly dependent on (O2) concentration.

This further outlined model was originally developed by the author of this thesis
with co-authors [A5].

2.2.1. Model with the constant carrying capacity

The processes taking place in a colony of E. coli near the cylinder lateral surface
when it is assumed that there is no relationship between growth and oxygen concent-
ration was described by a system of two equations, which in the dimensionless form
reads [1, 35]

∂u

∂t
= D∆u− χ∇ (u∇v) + sαuu (1− u) ,

∂v

∂t
= ∆v + s

(
u

1 + βvu
− v
)
,

(22)

where ∆ is the Laplace operator in the Decartes coordinate system; x and y stands
for the dimensionless space; t is the dimensionless time; u(x, y, t) denotes the di-
mensionless active cell density; v(x, y, t) denotes the dimensionless chemoattractant
concentration; D describes the cell diffusivity; χ – is the chemotactic sensitivity; αu
– is the dimensionless growth rate of an active cell population; βv – stands for the
saturating signal production; and s stands for the spatial and temporal scale [14, 29].
By complementing the (22) system with initial and boundary conditions (not shown
here) we get the model that can be used to model cells in 2D.
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2.2.2. Model with the resource (oxygen) dependent carrying capacity

Aiming to simulate the patterns, including space-plots near the contact line and
snapshots of the cell density near the inner lateral surface, more comparable to the
patterns observed in the experiments, the two-dimensional model (22) was extended
by introducing the oxygen dynamics equation:

∂u

∂t
= D∆u− χ∇ (u∇v) + sαuu

(
1− u

o

)
,

∂v

∂t
= ∆v + s

(
u

1 + βvu
− v
)
,

∂o

∂t
= Do∆o− sλu,

(23)

where o(x, y, t) is the concentration of oxygen; Do denotes the dimensionless oxygen
diffusivity; λ stands for the dimensionless consumption rate of oxygen; and the me-
aning of the remaining parameters is the same as in (22). By complementing (23)
with initial and boundary conditions we get the model that is suitable for model-
ling the case where oxygen diffuses into the system at the top surface, cells consume
oxygen and in this way their carrying capacity is restrained by availability of oxygen.

2.3. Model generalization to two and three dimensions

In most cases the investigation of dynamics of E. coli cultures are restricted to
one (1D) or two (2D) dimensions in space. Recently, three-dimensional (3D) agg-
regation patterns based on the volume-filling Keller-Segel model have been studied
numerically, and new patterns called P-surfaces, perforated lamellar, completely spe-
cific to 3D have been obtained [33]. The 3D simulation was also applied to investigate
the activity-induced phase separation in concentrated suspensions of active particles,
and important differences between the 2D and 3D cases were found [37].

In the next subsections of this section the generalized 3D model of the bacterial
self-organization suitable for simulating spatiotemporal patterns in the fluid cultures
of luminous E. coli in a rounded container is presented.

Since the simulation based on the 3D model is very time-consuming, therefore
reducing spatial dimensionality in a model for simulating 1D and 2D spatiotemporal
patterns was investigated.

2.3.1. Governing equations

According to the model extension described in Subsection 2.2.2, adding an ad-
ditional equation to dimensional equations (1) and inserting concrete expressions to
the system, leads to the following governing equations of the population kinetics
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2. Mathematical modelling of a luminous bacterial self-organization

model:
∂n

∂t
= Dn∆n−∇ (k1n∇c) + k2n

(
1− n

k3s

)
,

∂c

∂t
= Dc∆c+

k4n

k5 + n
− k6c,

∂s

∂t
= Ds∆s− k7n, x ∈ Ω, t > 0,

(24)

where ∆ is the Laplace operator; x and t stand for space and time, m denotes
dimensionality of the space; s(x, t) is the concentration of a nutrient; Ds is the
diffusion coefficient usually assumed to be constant; k1 is the chemotactic sensitivity;
k2 is the growth rate of the cell population; k3 stands for the cell density under steady-
state conditions; k4 and k5 stand for saturating chemoattractant production; k6 and
k7 are the consumption rates of the chemoattractant and the nutrient, respectively;
the other notations are the same as in the model (1).

Assuming the rounded container as a right circular cylinder, the mathematical
model in the cylinder at the domain Ω can be defined in cylindrical coordinates,

x = (ρ, ϕ, z), Ω = (0, r)× (0, 2π)× (0, h), (25)

where r and h are the base radius and the height of the cylinder Ω as shown in Fig. 4.

2.3.2. Dimensionless model

To reduce the number of the main governing parameters of (24), a dimensionless
model can be derived by setting

u =
n

n0
, v =

k5k6c

k4n0
, o =

k3s

n0
,

t∗ = k6t, ρ∗ =

√
k6
Dc
ρ, ϕ∗ = ϕ, z∗ =

√
k6
Dc
z,

Du =
Dn

Dc
, Do =

Ds

Dc
, χ =

k1k4n0
k5k6Dc

, αu =
k2
k6
, βv =

n0
k5
, γo =

k7k3
k6

,

(26)

where n0 is the cell density under steady state conditions. When modelling the
carrying capacity by a linear function of the nutrient concentration (k3s), the cell
density under steady state conditions is directly proportional to the concentration s0
of the nutrient near the top surface, n0 = k3s0.

Dropping the asterisks, the dimensionless governing equations then become

∂u

∂t
= Du∆u− χ∇ (u∇v) + αuu

(
1− u

o

)
,

∂v

∂t
= ∆v +

u

1 + βvu
− v,

∂o

∂t
= Do∆o− γou, (ρ, ϕ, z) ∈ (0, R)× (0, 2π)× (0, H), t > 0.

(27)
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2. Mathematical modelling of a luminous bacterial self-organization

where u is the dimensionless cell density; v is the dimensionless chemoattractant
concentration; o is the dimensionless concentration of the nutrient; αu is the dimen-
sionless growth rate of the cell population; βv stands for saturating of the signal
production; γo is dimensionless consumption rate of the nutrient; R and H are the
relative radius and height of the cylinder: R = r

√
k6/Dc, H = h

√
k6/Dc.

2.3.3. Population dynamics near the top surface

The bacterial self-organization near the inner top surface of a rounded con-
tainer can be modelled by applying the common 3D mathematical model (24) as
well as the corresponding dimensionless model (27) However, transient computatio-
nal simulations based on 3D mathematical models are extremely time and resource
consuming. The dimension reduction is a widely used approach to increase efficiency
of the numerical simulation [38].

When modelling the bacterial self-organization near the top surface of a right
circular container, the mathematical model can be defined in the polar coordinates
on a 2D domain – a circle [A1]. Due to a constant concentration of the nutrient near
the top surface, the dynamics of the nutrient concentration can be ignored.

Due to modelling the carrying capacity by a linear function of the nutrient con-
centration (k3s in (24)) and the assumption n0 = k3s0, the term k2n(1− n/(k3s)) of
the logistic cell growth is reduced to k2n(1− n/n0), while the corresponding dimen-
sionless term αuu(1 − u/o) approaches αuu(1 − u). The dynamics of the bacterial
population near the top surface of a right circular container can be described by the
following governing equations formulated in polar coordinates:

∂u

∂t
= Du∆u− χ∇ (u∇v) + αuu (1− u) ,

∂v

∂t
= ∆v +

u

1 + βvu
− v, (ρ, ϕ) ∈ (0, R)× (0, 2π), t > 0,

(28)

where ∆ is the Laplace operator in the polar coordinates ρ and ϕ, u and v are
functions of the two parameters ρ and ϕ.

2.3.4. Population dynamics near the three-phase contact line

When observing the patterns of inhomogeneous bioluminescence in small cy-
lindrical containers, the bioluminescence images of bacterial cultures showed an ac-
cumulation of luminous bacteria near the three-phase contact line Fig. 1 and Fig. 2,
and [34, 36]. Such dynamics of the bacterial population near the three-phase contact
line can be modelled also by applying the common 3D mathematical model (27) (as-
suming ρ = R, z = H) as well as the 2D mathematical model (28) (assuming ρ = R).
However, the dimension of these models could be reduce to one.

The dynamics of the bacterial population near the circumference of the top
surface of right circular cylinder can be approximated by the following governing
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2. Mathematical modelling of a luminous bacterial self-organization

equations formulated in one polar coordinate ϕ,

∂u

∂t
= Du

1

R2

∂2u

∂ϕ2
− χ 1

R2

∂

∂ϕ

(
u
∂v

∂ϕ

)
+ αuu (1− u) ,

∂v

∂t
=

1

R2

∂2v

∂ϕ2
+

u

1 + βvu
− v, ϕ ∈ (0, 2π), t > 0,

(29)

where u and v are functions of one space parameter ϕ and one time parameter t.

The 1D mathematical model (29) can be reformulated by replacing the azimuth
parameter ϕ with the longitudinal parameter x by applying x = ϕR,

∂u

∂t
= Du

∂2u

∂x2
− χ ∂

∂x

(
u
∂v

∂x

)
+ αuu (1− u) ,

∂v

∂t
=
∂2v

∂x2
+

u

1 + βvu
− v, x ∈ (0, L), t > 0,

(30)

where u and v are functions of one parameter x. L is the dimensionless length of the
contact line, i.e. the circumference of the vessel (a circle), L = 2πR = 2πr

√
k6/Dc,

where r is dimensional radius of the base of the cylinder as shown in Fig. 4.

The mathematical model (30) has been successfully used to study the bacterial
self-organization of luminous E. coli along the contact line of a circular container [1,
9, 35]. Here this model was shown to be a very special case of the common 3D
mathematical model (27).

2.3.5. Population dynamics near the lateral surface

The dynamics of the bacterial population near the lateral surface can be modeled
by applying the common 3D model (27) (assuming ρ = R). The radial transport of
cells, chemoattractant and nutrient can be ignored because of the zero flux condition
at the lateral surface (ρ = R in the model (27)).

The dynamics of the bacterial population near the lateral surface of a cylinder
can approximately be described using equations (27) and by replacing parameter ρ
with a constant R and assuming that functions u, v and o have only two parameters
ϕ and z. Since the lateral surface of a right circular cylinder is a rectangle, the
corresponding mathematical model could be defined in the Cartesian coordinates
system.

The bacterial self-organization near the lateral surface can be defined in the
Cartesian system in the same manner as (27) with the adjusted domain and Laplace
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operator,
∂u

∂t
= Du

(
∂2u

∂x2
+
∂2u

∂z2

)
− χ

(
∂

∂x

(
u
∂v

∂x

)
+

∂

∂z

(
u
∂v

∂z

))
+ αuu

(
1− u

o

)
,

∂v

∂t
=
∂2v

∂x2
+
∂2v

∂z2
+

(
u

1 + βvu
− v
)
,

∂o

∂t
= Do

(
∂2o

∂x2
+
∂2o

∂z2

)
− γou, (x, z) ∈ (0, L)× (0, H), t > 0.

(31)

where u, v and o are the functions of the parameters x and z; L is the dimensionless
circumference of the cylinder base and H is the dimensionless height of the cylinder:
L = 2πR = 2πr

√
k6/Dc, H = h

√
k6/Dc.

A 2D model (23) that was described in Subsection 2.2 used the dimensionless
space and time scaling parameter s. This parameter is used by some authors [25]
and not used by others [14]. It is worth mentioning that the s parameter can be
introduced to the equations described in this section by applying transformation:

t∗ =
t

s
, ρ∗ =

ρ√
s
, z∗ =

z√
s
, (32)

Here it was shown that the 2D model described in Subsection 2.2 matches the
model (31) described in this subsection and is a special case of the common 3D
mathematical model (27).

3. Solving the mathematical models and additional
software tools

Software for the computational model of the bacterial self-organization and
methods employed for reducing the time needed for computational modelling is pre-
sented in the first part of this chapter. Then, additional software for processing of
experimental data and visualizing 3D modelling results is described.

3.1. Software for the computational model of the bacterial self-
organization

Computational methods are the only possible way to solve the complex problems
presented in this thesis as no analytical solution is possible because of the nonlinearity
of the governing equations of the models [27, 32]. Therefore, computational model
was derived from the presented models by using a finite difference technique and
applying the explicit computational scheme [7, 21, 32].

A software tool implementing computational schemes was developed using Free
Pascal [23]. It allows choosing a desired model from the predefined 1D, 2D and 3D
model set with the desired initial conditions and other model parameters.
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3. Solving the mathematical models and additional software tools

3.2. Reducing the time needed for computational modelling

Computational modelling in 2D and 3D can take a long time (from a dozen of
minutes to a few days) so it is important to explore options for reducing this time.
By employing two methods described further, the time required for modelling in 3D
using the model (27) was reduced from 8.9 to 3.2 days.

When modelling computationally, the grid with mesh points distributed with
constant step sizes along all space dimensions is usually used [32]. The investigated
2D polar (28) and 3D (27) models in ϕ dimension use step size hϕ which tends to
decrease when approaching the centre of the circle. Using this property it is possible
to use variable step size hϕ. The optimisation was implemented in the software
employed for computational modelling to use a bigger step size when approaching the
centre of the circle. Such optimisation yielded in a reduced number of computational
operations by 31.25%, which in turn reduced the duration of the modelling by a
similar amount.

Another way to reduce the duration of the modelling is to employ various pa-
rallel algorithms [8, 40]. It is not so difficult to parallelize explicit finite difference
scheme calculations by dividing the space domain into sections and solving those
sections separately for each time step. Threads were used to implement such paral-
lelization [8] in the calculations of previously described software. Barriers were used
to synchronise the threads [40].

Theoretically it is possible to reduce the duration of the process by half when
using two threads instead of one, but an acceleration of 1.56-1.64 was achieved in
real calculations. This is due to the fact that not all operations were parallelized.
The highest acceleration of 1.91 was achieved for 3D model using four threads.

3.3. Additional software for the processing of experimental data
and visualizing 3D modelling results

A software called “E. Coli Image Analysis”2 with two main functions was de-
veloped:

1. To load animated images, mark the places of the vessels and extract pseudo-one
dimensional spatiotemporal plots from the loaded 2D images (Fig. 5, left).

2. To load pseudo-one dimensional spatiotemporal plots and to isolate and count
high concentration areas (Fig. 5, right). This function uses signal processing
techniques to extract brighter areas in the images. This function can be used on
simulated as well as on real experiment data to have a kind of objective pattern
similarity measure.

2This software can be found at http://uosis.mif.vu.lt/~zledas/bakt/ImageAnalysis/.
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4. Investigation of the peculiarities of modelled results and comparison with results obtained in physical experiments

5 pav. Left: pseudo-one dimensional spatiotemporal plot extraction from 2D photos.
Right: Isolating and counting high concentration areas in a pseudo-one dimensional
plot.

Lazarus integrated development environment [5] and Free Pascal were used to develop
this software.

Additionally, as the real-time visualization of changing in time 3D modelling
results would be very convenient, the Unity game engine (version 4.6) [2] was adapted
to be used for the visualization of such results (first two images of Fig. 11).

4. Investigation of the peculiarities of modelled results
and comparison with results obtained in physical
experiments

In the first sections of this chapter, variations of the model are investigated in
order to determine an appropriate minimal model [A1, A3]. Then, oxygen dynamics
is added to the model and its influence on bacterial patterns is explored [A4–A6].
Finally, model generalization to two and three dimensions is investigated [A2].

4.1. Modelling of bacterial self-organization in a circular contai-
ner along the contact line

The aim of the work presented in this section was to improve the already existing
computational model by introducing additional modifications, specifically the nonli-
near diffusion of cells, the non-local sampling, several kinds of chemotactic sensitivity
and nonlinear gradient [14].
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6 pav. Simulated space-time plots of the dimensionless cell density u (a) as well as
the chemoattractant concentration v (b). Values of the parameters are as defined in
(33).

4.1.1. Numerical simulation

The digital simulator described in Section 3.1 was used. By varying the model
parameters the simulation results were analyzed with a special emphasis on achieving
a spatiotemporal pattern similar to the experimentally obtained shown in Fig. 3.
Fig. 6 shows the results of the informal pattern fitting, where Fig. 6a and Fig. 6b
present the simulated space-time plots of the dimensionless cell density u and the
chemoattractant concentration v, respectively.

Regular oscillations as well as chaotic fluctuations similar to the experimental
ones were computationally simulated. Assuming the constant form of the chemotac-
tic sensitivity (χ(u, v) = χ0) and a simple gradient, the dynamics of the bacterial
population was simulated at the following values of the model parameters [35]:

D = 0.1, χ0 = 6.2, ρ = 0, αu = 1,

βv = 0.73, s = 625, m = 0.
(33)

A spatially-varying random perturbation ε(x) of the dimensionless cell density
u with an average of 1 and a standard deviation of 0.1 was applied to the initial
distribution of bacteria.

Due to a relatively great number of model parameters, there is no guarantee that
the values (33) mostly approach the pattern shown in Fig. 3. Similar patterns were
achieved at different values of the model parameters. An increase in one parameter
can be often compensated by decreasing or increasing another one. Because of this,
it is important to investigate the influence of the model parameters on the pattern
formation and to develop a mathematical model containing a minimal number of
parameters [1, 14, 29].
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4.1.2. Results of numerical simulation and discussion

By varying the input parameters the output results were analyzed with a spe-
cial emphasis on the influence of chemotactic sensitivity, a non-local gradient and
diffusion nonlinearity on the spatiotemporal pattern formation in the luminous E.
coli colony. Fig. 6a shows the spatiotemporal pattern for the constant form of the
chemotactic sensitivity (χ(u, v) = χ0) applying a simple gradient (ς →∞ and ρ→ 0)
and the linear diffusion (m = 0).

The effects of the different chemotactic sensitivity functions were investigated
assuming the linear diffusion (m = 0) and a simple gradient (ς →∞ and ρ→ 0). The
non-local gradient and the nonlinear diffusion were analyzed separately and together
assuming constant chemotactic sensitivity and the linear gradient (χ(u, v) = χ0 and
ς →∞). The nonlinear gradient and the nonlinear diffusion were analyzed separately
and together assuming the constant chemotactic sensitivity and the local gradient
(χ(u, v) = χ0 and ρ→ 0).

Signal-dependent sensitivity was computationally modelled by two forms of
the chemotactic sensitivity function χ(u, v): (19a) and (19b). The spatiotemporal
patterns of the dimensionless cell density u were simulated at very different values
of χα and χβ.

Assuming χα = 0 or χβ → ∞, leads to a signal-independence, i.e., a constant
form, of the chemotactic sensitivity, χ(u, v) = χ0. The results of the multiple simu-
lations showed that the simulated patterns differ from the experimental ones when
increasing the χα-parameter or decreasing the χβ-parameter. Because of this, there
is no practical reason for applying a non-constant form of the signal-dependent sen-
sitivity and it can be ignored when modelling the pattern formation in a luminous
E. coli colony.

Two forms, (19c) and (19d), of chemotactic sensitivity function χ(u, v) were
employed for the computational modelling of the density-dependent chemotactic sen-
sitivity. The spatiotemporal patterns of the cell density u were simulated at various
values of χγ ir χε.

Assuming χγ → ∞ or χε = 0, leads to a density-independence, i.e., a constant
form, of chemotactic sensitivity, χ(u, v) = χ0. Multiple simulation showed that
the simulated patterns differ from the experimental ones when decreasing the χγ-
parameter or increasing the χε-parameter.

Because of this, there is no practical reason for the application of a non-constant
form of the density-dependent sensitivity when modelling the pattern formation in a
colony of luminous E. coli and a simple constant form (χ(u, v) = χ0) of chemotactic
sensitivity can be successfully applied to modelling the formation of the biolumines-
cence patterns in a colony of luminous E. coli.

The non-local sampling was modelled by using non-local gradient (17). The
constant chemotactic sensitivity (χ(u, v) = χ0) was used in these simulations. The
spatiotemporal patterns of the dimensionless cell density u were simulated at various
values of the effective sampling radius ρ.
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4. Investigation of the peculiarities of modelled results and comparison with results obtained in physical experiments

Assuming ρ = 0, leads to a model with the local sampling and the simple
gradient, the operator

◦
∇ρ approaches ∇. The computational results showed that the

simulated patterns get dissimilar from the experimental ones when increasing the
ρ-parameter. It was seen from the results that merging of different “branches” in the
pattern is almost gone and this merging behaviour is essential to get patterns similar
to experimental ones. Because of this, there is no practical reason to apply the non-
local gradient to modelling the formation of the patterns in a colony of luminous E.
coli.

The nonlinear diffusion was modelled by using the following form of the dif-
fusion function D(u) = um [20]. Chemotactic sensitivity was assumed to be constant
(χ(u, v) = χ0) in these simulations. The spatiotemporal patterns of the dimensionless
cell density u were simulated at various values of m-parameter.

Assuming m = 0, leads to a model with linear diffusion. The results of the
simulations at different m values show that patterns tend to drift away from the
experimental ones when increasing (m → ∞) or decreasing (m → −∞) the m-
parameter. Some simulated patterns contain fewer mergers of different “branches”
(as a result of m� 0), and others exhibit the “branch” movements that are distorted
compared to the experimentally observed ones (as a result of m � 0). Therefore,
there is no need to use the nonlinear diffusion for modelling the pattern formation
in a colony of luminous E. coli.

The nonlinear gradient was modeled by using (18). Chemotactic sensitivity
was assumed to be constant (χ(u, v) = χ0) in these simulations. The spatiotemporal
patterns of the dimensionless cell density u were simulated at various values of the
ς-parameter.

Assuming ς → 0, leads to a model with a linear gradient. The results of the
simulations at different ς values show that patterns tend to drift away from the
experimental ones when increasing the ς-parameter. The simulated patterns contain
considerably fewer mergers of different “branches” or none at all. Therefore, there is
no need to use a nonlinear gradient for modelling the pattern formation in a colony
of luminous E. coli.

From the simulations with the non-local gradient and the nonlinear diffusion it
was seen that the increasing the non-local gradient parameter ρ has a visually oppo-
site effect to the increasing nonlinear diffusion parameter m. A similar observation
was made regarding the nonlinear gradient and the nonlinear diffusion – it was seen
that the increase of the nonlocal gradient parameter ς has visually opposite effect to
the increasing nonlinear diffusion parameter m.

As a result, additional numerical experiments were carried out to determine how
these combinations affect the pattern formation. Experiments did not confirm that
the models with the non-local sampling and the nonlinear diffusion or the nonlinear
gradient and the nonlinear diffusion are capable to produce a result that better
matches the experimentally observed one. Because of this, there is no practical need
to apply these modifications for the computational modelling of the pattern formation
in a colony of luminous E. coli.
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4.1.3. A minimal model suitable for the modelling of bacterial
self-organization in 1D

In the previous subsections it was shown that the pattern formation along the
contact line in a cellular population can be modelled at the following values of the
model parameters: m = 0, χα = 0, χβ → ∞, χγ → ∞, χε = 0, ς → 0. Assuming
these values leads to a reduction of the governing equations (16) to the following
form:

∂u

∂t
= D

∂2u

∂x2
− χ0

∂

∂x

(
u
∂v

∂x

)
+ sαuu(1− u),

∂v

∂t
=
∂2v

∂x2
+ s

(
u

1 + βvu
− v
)
,

x ∈ (0, 1), t > 0.

(34)

According to the classification of the chemotaxis models introduced by Hillen
and Painter [14], the minimal model (34) is a combination of two models: the nonli-
near signal kinetics model M6 and the cell kinetics model M8. This combination of
the models has comprehensively been analyzed by Maini and others [25, 27, 28].

4.2. Modelling of the population dynamics near the lateral sur-
face of a cylinder

The 2D model suitable for modelling bacterial population dynamics near the
lateral surface will be investigated in this section.

4.2.1. The case of the constant carrying capacity

The length of the lateral surface of the cylinder assumed to be 1 and h = 0.3
because of the same proportions used in real world experiments. Time was T = 0.7.
Other parameter values were the same or similar to the ones used previously (33) [1,
35]:

D = 0.04, χ = 8.3, αu = 1, βv = 0.73,

s = 600, h = 0.3, T = 0.7.
(35)

Mathematically, the simulations of quasi-one dimensional patterns of biolumi-
nescence, which are seen from above by the two-dimensional model (22) imply the
summation of luminous cells along the y coordinate. However, real suspension is
turbid and inhomogeneous. It is clear that the detected light intensity depends on
the depth of the layer from which the bioluminescence originates. The qualitati-
ve incorporation of this dependence was provided by assuming that the biolumi-
nescence is proportional to the number of active cells which are above the level of
y = h−h0, 0 < h0 <= h, where h0 is the thickness of the experimentally “detectable”
layer.
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7 pav. Space-time plots of the cell density u1D calculated along the three-phase
contact line using (35) parameter values, and three heights of the detectable biolu-
minescence: h0 = h (a), h0 = 0, 5h (b) ir h0 = 0, 1h (c).

To simulate the spatiotemporal patterns seen from above (Fig. 2 and Fig. 3) by
applying the two-dimensional model (22), the density of active cells was integrated
over the detectable layer of the culture and then averaged,

u1D(x, t) =
1

h0

∫ h

h−h0
u(x, y, t) dy, x ∈ [0, 1], t ∈ [0, T ]. (36)

Examples of the simulated spatiotemporal patterns are shown in Fig. 7. The
density u1D(x, t) of the cells was calculated for different depths h0 of the integration
layer. As one can see from Fig. 3 and Fig. 7, the two-dimensional model based on
(22) simulates quite well the pattern formation along the three-phase contact line
when the thin detectable layer is assumed (h0 → 0) (Fig. 7c). The patterns obtained
when integrating over the entire depth (Fig. 7a) are rather different from the pattern
seen in the experiment (Fig. 3). It should also be noted that the decrease in the
depth of the detectable layer (h0 → 0) implies the one-dimensional modelling of the
pattern formation.

The dynamics of the number of aggregates formed in a spatiotemporal pattern
is one of the most important characteristics of the patterns representing the self-
organization of a bacterial population [29]. Two average numbers µx and µt of agg-
regates and the corresponding standard deviations σx and σt were calculated along
the three-phase contact line and during the population evolution, respectively. The
software tool described in Section 3.3 was used to make calculations.

These averaged µx and µt values with the corresponding σx and σt values were
used to compare the similarity of two or more patterns. These values for the relevant
images are summarized in Table 1.

By applying the two-dimensional model (22) the active cell densities along the
wall of a tube were calculated. A typical example of simulated lateral patterns of
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1 lentelė The average numbers µx and µt of aggregates and the corresponding
standard deviations σx and σt calculated for the spatiotemporal patterns depicted in
the relevant figures.

Figure µx σx µt σt

Fig. 3 5.98 0.91 10.08 1.80
Fig. 7a 10.64 1.98 31.30 4.02
Fig. 7b 8.38 1.62 25.82 3.74
Fig. 7c 7.02 1.09 19.58 3.46
Fig. 9a 6.59 0.92 10.00 1.54
Fig. 9b 6.57 0.92 9.96 1.56
Fig. 9c 6.64 0.99 9.83 1.65
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8 pav. Snapshots of the cell density u (a) and the chemoattractant concentration v
(c) on the inner lateral surface of the tube and the profile of the vertical distribution
of cells (b) at t = 0.4. Model (22) used with parameters as in (35).

the cell density u(x, y, t) and the chemoattractant concentration v(x, y, t) as well as
the corresponding vertical profile is shown in Fig. 8.

The simulated vertical distribution of active cells (Fig. 8b) shows two noticeable
peaks: one near the top surface and another one near the bottom surface. Two peaks
in the vertical cell distribution were also observed experimentally: one at the contact
line level, while the other is about 1.5 mm below the contact line [A5]. The position of
the simulated peak next to the contact line level differs essentially from that observed
experimentally.
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9 pav. Space-time plots of the cell density u1D along the three-phase contact line
simulated by using (36) at the following dimensionless parameters: o0 = 1.0, Do =
0.12, λ = 0.048 and other parameters as in (35), and three heights of the detectable
bioluminescence: h0 = h (a), h0 = 0, 5h (b) ir h0 = 0, 1h (c).
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10 pav. Snapshots of the cell density u (a) and the chemoattractant concentration
v (c) and oxygen o (d) on the inner lateral surface of the tube and the profile of
the vertical distribution of cells (b) at t = 0.4. Model used: (23) with the same
parameters as in Figure 9.

4.2.2. The case of the resource (oxygen) dependent carrying capacity

The extended model (23) with the introduced oxygen dynamics equation was
used for numerical simulations with these additional parameter values: oxygen con-
centration o0 = 1.0, oxygen diffusivity Do = 0.12 and oxygen consumption rate
λ = 0.048. Obtained simulated patterns can be seen in Fig. 9 and Fig. 10.

As one can see from Fig. 9, the two dimensional model based on the governing
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equations (23) can be used for the simulation of the pattern formation along the three-
phase contact line assuming different thickness of the experimentally detectable layer.
The patterns simulated at different values of the height h0 are almost identical – only
the intensity of the bioluminescence is different. These patterns compare well to the
experimentally observed ones when compared subjectively and objectively (according
to the values in Table 1).

The simulated 2D plots are also better suited for modelling of experimentally
observed ones as peaks of vertical distribution of active cells (Fig. 10b) are at similar
depths as experimentally observed.

4.3. Model generalization to two and three dimensions

The aim of this section was to investigate the 3D model of the bacterial self-
organization. Since the simulation based on the 3D model is very time-consuming,
therefore reducing spatial dimensionality in a model for simulating 1D and 2D spa-
tiotemporal patterns was investigated.

4.3.1. Numerical simulation

The created mathematical model (24) as well as the corresponding dimensionless
model (27) were defined as the initial boundary value problems based on a system
of nonlinear partial differential equations.

Four special cases were analysed:

1. The 3D model (27).

2. The two-dimensional-in-space of the top surface (2D polar) model (28).

3. The one-dimensional-in-space of the top contact line (1D) model (30).

4. The two-dimensional-in-space of the lateral surface (2D Cartesian coordinates)
model (31).

The digital simulator described in Section 3.1 was used.

To simulate spatiotemporal patterns of the quasi-one-dimensional cell density
in a vessel near the three-phase contact line by applying the 2D and 3D models, the
density u of cells was integrated over the thin range close to the three-phase contact
line and then averaged.
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11 pav. Visualization of arbitrary frames at u concentrations obtained by 3D simu-
lation at two time moments: 65 and 329. The snapshot of the experimental culture
is shown for comparison [A2].

4.3.2. Results of numerical simulation and discussion

Fig. 12 shows the spatiotemporal patterns of the quasi-one-dimensional cell
density simulated by four versions of the model, while Fig. 11 demonstrates a visu-
alization of the arbitrary frames of the cell density when simulating in 3D with the
following values of the model parameters:

Du = 0.1, Do = 0.2, χ = 8.3, αu = 1, βv = 0.73,

γo = 0.025, R = 5, H = 10, δ = 0.075, T = 400.
(37)

It can be seen from Fig. 11 that the cell density u inside the rounded container
forms foam-like structures similar to the experimentally observed structures [A5, 36].
The simulation results also show (Fig. 12) that the basic spatiotemporal patterns are
preserved when the model dimension is reduced: merging and emerging dynamics
are present in all four simulations of the pattern formation near the three-phase
contact line. On the other hand, the simulated spatiotemporal patterns are not
very similar to one another, though the values of the model parameters were the
same. The difference in the simulated spatiotemporal patterns could be explained by
assumptions used for the reduction of the dimensionality, a relatively large domain
size and the sensitivity to the initial conditions.

Since the dimensionless diffusion coefficient Du and the chemotactic sensitivity
χ are the main parameters controlling the mass transport in the 1D model (30),
the sensitivity of the spatiotemporal pattern formation to the model parameters Du

and χ was investigated and showed that the modelling error which rose when model
dimensionality was reduced can be at least partially compensated by adjusting the
values of the Du and/or χ-parameters.

4.4. Dimensional parameters and their suitability

Taking into account the transformation of the variables ((26) and (32)), the
values of the dimensional parameters can be determined.
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12 pav. Spatiotemporal plots of the dimensionless cell density u for four analysed
cases: 1D model (a), 2D model in Cartesian coordinates (b), 2D polar model (c) and
3D model (d). The values of the parameters are as defined in (37).

Analyzing (35) and assuming the length of the contact line (l = 2πR, where
R ≈ 0.3 cm is the radius) and the duration (Te = 1.5 × 104 s = 250 min) of
the physical experiment corresponds to the dimensionless length (L = 1) and the
duration (T = 0.7), used in the numerical experiments (8), it is possible to calculate
other parameter values.

The dimensional diffusion coefficients of the: chemoattractant (Dc = (l/L)2 ×
(T/Te) ≈ 1.66×10−4 cm2s−1), the cells (Dn = DuDc = 0.04Dc ≈ 6.63×10−6cm2s−1)
and oxygen (Ds = DoDc = 0.12Dc ≈ 1.99 × 10−5cm2s−1). The corresponding
estimations of the diffusion coefficients can be found in the literature [3, 16]: Dc ≈
10−5 cm2s−1, Dn ≈ 6 × 10−6 cm2s−1 and Ds ≈ 2.0 × 10−5 cm2s−1. The possible
interpretation of a very large value of the diffusion coefficient of the attractant is
presented in [A5].

The dimensional cell growth rate of cells in the model is 0.028 s−1, which means
that the cell division period equals to ln(2)/0.028 ≈ 25 s. The value of the cell
division period differs from the typical numerical value of the cell doubling time
(about 104 s) about four times, can be explained by the metabolic flexibility of E.
coli [35].

The dimensional consumption rate of oxygen equals to about 2.8×106 molecules
per active cell per second and is typical of the metabolically active bacteria in a
nutrient rich media [26].
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Publications on the thesis topic

Conclusions

1. Constant chemotactic sensitivity, local sampling, linear gradient and linear dif-
fusion of cells can be successfully used to model the pattern formation in a
luminous E. coli colony. The effect of the non-local sampling can be partly
compensated by using the nonlinear diffusion of cells. Similarly, the effect of
the nonlinear gradient can also be partly compensated by using the nonlinear
diffusion of cells. Because of this, the selected minimal model is suitable for mo-
delling pattern formation in a luminous E. coli colony in pseudo-one dimension
along the three-phase contact line.

2. The proposed novel mathematical and computational models with the added
equation describing oxygen dynamics become more suitable for modelling a
pattern formation in a luminous E. coli colony in two and three dimensions
of space while considering a vessel with depth compared to analogous models
without oxygen dynamics equation.

3. Although a rounded container is best represented by the 3D model, due to
the accumulation of luminous cells near the three-phase contact line, the exper-
imental spatiotemporal patterns of the bioluminescence can also be qualitatively
simulated by using 1D and 2D models. Nevertheless, important differences in
the shape of the patterns are observed between the 1D, 2D and 3D cases when
the same values of the model parameters are used in the simulations. Very
similar spatiotemporal patterns of the bioluminescence can be simulated using
mathematical models of different dimensionality by adjusting the values of the
model parameters, particularly of the dimensionless diffusion coefficient and/or
chemotactic sensitivity.
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KOMPIUTERINIS ŠVYTINČIŲJŲ BAKTERIJŲ
STRUKTŪROS FORMAVIMOSI TIRPALE MODE-
LIAVIMAS

Tyrimų sritis ir problemos aktualumas

Įvairūs mikroorganizmai reaguoja į cheminę aplinką. Jie gali jausti įvairias
chemines medžiagas ir judėti link arba nuo jų. Toks kryptingas mikroorganizmų
judėjimas, priklausantis nuo cheminių gradientų, vadinamas chemotaksiu [12]. Šis
procesas yra svarbus ir mikroskopinėms bakterijoms, ir dideliems žinduoliams – dau-
gelio organizmų išlikimas priklauso nuo jų gebėjimo judėti sudėtingomis sąlygomis,
nes toks judėjimas daro įtaką daugeliui elgsenos aspektų, pavyzdžiui, maisto šaltinių
paieškai, plėšrūnų išvengimui ar poros pritraukimui [14]. Nors chemotaksis pasireiš-
kia daugelyje bakterijų, Escherichia coli (žarninė lazdelė) yra viena iš daugiausia
tyrinėjamų. Matuodamos per tam tikrą laiką pajaustą vidutinį chemoatraktanto
kiekį, bakterijos, tokios kaip E. coli, gali valdyti tiesaus judėjimo ir sukimosi fazių
kaitą ir taip judėti pageidaujama kryptimi.

E. coli ir daugelis kitų bakterijų pasižymi tuo, kad esant tam tikroms sąlygoms
formuoja įvairius struktūrizuotus raštus [3, 27], t. y. bakterijų populiacija terpėje
pasiskirsto netolygiai. Pastaraisiais metais buvo stebėtos nedidelėje su oru besilie-
čiančioje talpoje patalpintų švytinčiųjų lux genais žymėtų E. coli bakterijų bėgant
laikui besikeičiančios erdvinės struktūros [36]. Tačiau kokie tiksliai dėsniai nusako
šių struktūrų susidarymą bei kitimą, vis dar nėra aišku.

Per paskutinius keliolika metų ši bakterijų savybė buvo pradėta naudoti konst-
ruojant efektyvius visos ląstelės (angl. whole-cell) liuminescencinius biojutiklius,
kurie gali būti taikomi, pavyzdžiui, aplinkoje esantiems teršalams aptikti [13]. Dėl
to svarbu aiškintis ir tirti bakterijų judėjimą ir struktūrų susidarymą lemiančius bei
valdančius veiksnius.

Matematinių modelių taikymas leidžia patvirtinti biologinių stebėjimų rezulta-
tus retrospektyviai bei kurti naujas hipotezes. Tačiau modeliai dažnai būna sudėtin-
gi, t. y. nagrinėjamos lygtys yra netiesinės, tad iš esmės vienintelis tinkamas būdas
jas išspręsti yra naudojant skaitinius metodus [32].

Darbo tikslas ir uždaviniai

Darbo tikslas – sudaryti lankstų bakterijų populiacijos struktūros formavimosi
kompiuterinį modelį, tinkamai aprašantį realių eksperimentų rezultatus ir, taikant
sudarytą modelį, ištirti bakterijų populiacijos struktūros dinamikos dėsningumus.

Disertacijos tikslui įgyvendinti buvo suformuluotos tokios užduotys:
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1. Sudaryti kuo paprastesniais reiškiniais užrašomą, bet pakankamai lankstų bak-
terijų populiacijos struktūros formavimosi kompiuterinį modelį (remiantis Hil-
len ir Painter [14], toliau darbe vadinamas „minimaliu“).

2. Matematiškai modeliuoti deguonies poveikį bakterijų populiacijos struktūros
formavimuisi.

3. Modelį suderinti su realių eksperimentų rezultatais.

4. Bakterijų populiacijos struktūros formavimosi modelį pritaikyti dvimatei ir tri-
matei erdvėms bei gauti ir išanalizuoti skaitinio modeliavimo rezultatus vien-
matėje, dvimatėje bei trimatėje erdvėse.

5. Sukurti įrankius (programinę įrangą), palengvinančius švytinčiųjų bakterijų
vaizdų apdorojimą, jų struktūros analizę bei vizualizavimą.

6. Naudojant sukurtą programinę įrangą, išanalizuoti modeliuotų bei eksperimen-
tinių struktūrų savybes ir elgseną.

Tyrimo metodai

Šiame darbe formuluojami matematiniai modeliai paremti netiesinių diferen-
cialinių lygčių dalinėmis išvestinėmis sistemomis, aprašančiomis bakterijų, chemoat-
raktanto bei deguonies koncentracijų dinamiką. Lygčių sistemos buvo sprendžiamos
skaitiniais metodais. Panaudotas išreikštinių baigtinių skirtumų metodas, įgyvendin-
tas Free Pascal programavimo kalba. Modeliai buvo formuluojami vienmatėje (1D),
dvimatėje (2D) ir trimatėje (3D) erdvėse.

Taip pat buvo sukurti programiniai įrankiai, palengvinantys švytinčiųjų bakte-
rijų vaizdų apdorojimą, jų struktūros analizę bei vizualizavimą. Įgyvendinant apdo-
rojimo ir analizės įrankių funkcijas, buvo naudojami skaitmeninių vaizdų apdorojimo
metodai, siekiant patogiai vizualizuoti 3D erdvėje, buvo panaudotos kompiuterinių
žaidimų variklio funkcijos.

Sukurti įrankiai panaudoti modeliams ir parinktiems parametrams patvirtinti
pagal realių eksperimentų duomenis, lyginant bakterijų kolonijų formuojamų darinių
skaičius bei jų kaitą.

Darbo mokslinis naujumas

1. Parinktas minimalus modelis, tinkantis E. coli formuojamoms švytinčiosioms
struktūroms modeliuoti pseudovienoje dimensijoje prie mėgintuvėlyje esančio
skysčio trijų fazių (kietas paviršius-oras-skystis) kontakto linijos.

2. Sudarytas matematinis ir kompiuterinis modeliai, tinkantys modeliuoti E. coli
formuojamas švytinčiąsias struktūras dviejų ir trijų dimensijų srityse. Į mo-
delį įtraukta deguonies koncentracijos dinamiką aprašanti lygtis užtikrina, kad
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gautos modeliuotos struktūros geriau atitinka matomas realių eksperimentų
vaizduose.

3. Nustatyta, kad kintantys erdvėje ir laike struktūrų vaizdai gali būti kokybiškai
modeliuojami naudojant mažiau dimensijų (t. y. imant 1D ir 2D modelius),
tačiau kartu parodyta, kad atsiranda svarbių raštų skirtumų imant tas pačias
parametrų reikšmes skirtingų dimensijų modeliuose.

Darbo rezultatų praktinė reikšmė

Šiame darbe pristatomi matematiniai modeliai yra taikomi aprašyti realiuose
eksperimentuose fiksuojamus švytinčiųjų E. coli bakterijų formuojamus vaizdus. To-
kių matematinių modelių kompiuterinis įgyvendinimas padeda analizuoti bakterijų
elgsenos subtilybes, kurių neįmanoma arba yra ypač sunku aiškintis kitaip.

Darbo metu buvo sukurta programinė įranga:

1. Matematinius modelius įgyvendinanti programinė įranga, skirta bakterijų elg-
senai tirti.

2. „E. Coli Image Analysis“ programinė įranga3, skirta modeliuotų ir realių eks-
perimentų vaizdų apdorojimui, analizei ir palyginimui.

3. 3D modeliavimo rezultatams vizualizuoti pritaikytas kompiuterinių žaidimų va-
riklis Unity (versija 4.6).

Disertacijos rengimo metu gauti rezultatai buvo panaudoti įgyvendinant moks-
linį projektą, „E. coli ir jos mutantų saviorganizacija prie trijų fazių kontakto linijos“
finansuojamą Lietuvos mokslo tarybos (MIP-001/2014).

Ginamieji teiginiai

1. Parinktas minimalus modelis yra tinkamas E. coli formuojamoms švytinčio-
sioms struktūroms modeliuoti pseudovienoje dimensijoje prie mėgintuvėlyje
esančio skysčio trijų fazių (kietas paviršius-oras-skystis) kontakto linijos.

2. Įtraukus deguonies koncentracijos dinamiką aprašančią lygtį sudarytas mate-
matinis ir kompiuterinis modeliai yra tinkami modeliuoti E. coli formuojamas
švytinčiąsias struktūras dviejų ir trijų dimensijų erdvėse, kai modeliuojama vi-
same mėgintuvėlyje esančiame skystyje.

3. Kintantys erdvėje ir laike bakterijų formuojamų struktūrų vaizdai gali būti ko-
kybiškai modeliuojami naudojant modelius, turinčius mažiau dimensijų, tačiau
tada atsiranda svarbių raštų skirtumų naudojant tas pačias parametrų reikšmes
skirtingų dimensijų modeliuose.

3Ją galima rasti adresu: http://uosis.mif.vu.lt/~zledas/bakt/ImageAnalysis/.
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Darbo rezultatų aprobavimas

Pagrindiniai tyrimų rezultatai buvo publikuoti 5 straipsniuose periodiniuose
mokslo leidiniuose [A2–A6]. Trys iš jų [A2, A5, A6] yra publikuoti referuojamuose ir
turinčiuose citavimo rodiklį Thomson Reuters (ISI) duomenų bazėje Web of Science
žurnaluose. Šios disertacijos autorius dalyvavo visuose publikacijų rengimo etapuose,
bet daugiausiai prisidėjo prie skaitinio modelio rengimo ir skaitinių skaičiavimų re-
zultatų gavimo bei apdorojimo. Taip pat dalis mokslinių rezultatų buvo publikuota
recenzuojamame mokslinės konferencijos leidinyje [A1]. Tyrimų rezultatai pristatyti
ir aptarti 7 nacionalinėse ir tarptautinėse konferencijose.

Bendrosios išvados

1. Konstantinė chemotaktinio jautrio funkcija, vietinis jautris, tiesinis gradientas ir
tiesinė difuzija gali būti sėkmingai taikomi švytinčiųjų E. coli bakterijų kolonijos
formuojamiems raštams modeliuoti. Nevietinio gradiento įtaka bakterijų for-
muojamiems raštams gali būti iš dalies kompensuota įtraukus netiesinę ląstelių
difuziją. Panašiai netiesinio gradiento poveikis gali būti iš dalies kompensuoja-
mas įtraukiant netiesinę ląstelių difuziją. Atsižvelgiant į tai, parinktas modelis,
darbe vadinamas minimaliu, yra tinkamas švytinčiųjų E. coli bakterijų formuo-
jamoms struktūroms modeliuoti pseudovienoje dimensijoje prie mėgintuvėlyje
esančio skysčio trijų fazių (kietas paviršius-oras-skystis) kontakto linijos.

2. Pasiūlyti nauji matematinis ir kompiuterinis modeliai, kuriuose atsižvelgiama
į deguonies koncentracijos dinamiką, yra tinkamesni švytinčiųjų E. coli bak-
terijų formuojamoms struktūroms modeliuoti dviejų ir trijų dimensijų erdvėse,
kai atsižvelgiama į bakterijų judėjimą per visą mėgintuvėlio gylį, palyginti su
analogiškais modeliais be deguonies dinamiką aprašančios lygties.

3. Bakterijų populiacijos dinamikai cilindro formos mėgintuvėlyje esančiame skys-
tyje modeliuoti geriausiai tinka 3D modelis. Vis dėlto didesnės bakterijų kon-
centracijos formuojasi palei viršutinio cilindro paviršiaus kraštą, dėl to kintantys
erdvėje ir laike raštai gali būti kokybiškai modeliuojami naudojant 1D ir 2D mo-
delius. Tačiau atsiranda svarbių raštų skirtumų taikant 1D, 2D ir 3D modelius
su tomis pačiomis parametrų reikšmėmis. Labai panašūs erdvėje ir laike kin-
tantys švytinčiųjų bakterijų formuojami raštai gali būti modeliuojami taikant
skirtingų dimensijų modelius ir pritaikant dalies parametrų reikšmes, konkrečiai
bedimensį bakterijų difuzijos koeficientą ir (arba) chemotaktinį jautrį.
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