
Rev. Mat. Iberoam. 39 (2023), no. 1, 269–282
DOI 10.4171/RMI/1331

© 2022 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

Minimal Mahler measures for generators of some fields

Arturas Dubickas

Abstract. We prove that for each odd integer d � 3 there are infinitely many number
fields K of degree d such that each generator ˛ of K has Mahler measure greater

than or equal to d�d j�K j
dC1

d.2d�2/ , where �K is the discriminant of the field K.
This, combined with an earlier result of Vaaler and Widmer for composite d , answers
negatively a question of Ruppert raised in 1998 about ‘small’ algebraic generators for
every d � 3. We also show that for each d � 2 and any " > 0, there exist infinitely
many number fields K of degree d such that every algebraic integer generator ˛
of K has Mahler measure greater than .1 � "/j�K j1=d . On the other hand, every
such field K contains an algebraic integer generator ˛ with Mahler measure smaller
that j�K j1=d . This generalizes the corresponding bounds recently established by
Eldredge and Petersen for d D 3.

1. Introduction

Throughout the paper, let K be a number field of degree d � 2, and let OK be its ring of
integers. Set

M.K/ WD inf¹M.˛/ W ˛ 2 K; Q.˛/ D Kº

and
M.OK/ WD inf¹M.˛/ W ˛ 2 OK ; Q.˛/ D Kº;

where M.˛/ D M.f / is the Mahler measure of the minimal polynomial f 2 ZŒx� of ˛.
(Recall that for any f .x/ D a

Qd
iD1.x � ˛i / 2 CŒx�, its Mahler measure is defined by

M.f / WD jaj
Qd
iD1 max¹1; j˛i jº.) Note that the infima in the definitions of M.K/ and

M.OK/ are attained. Indeed, by the inequalities

(1.1) 2�dH.˛/ �M.˛/ � H.˛/
p
d C 1

(see, e.g., [18]), where H.˛/ stands for the naive height (the maximal modulus of the
coefficients of the minimal polynomial f 2 ZŒx� of ˛), there are only finitely many irre-
ducible integer polynomials of degree d whose Mahler measures are bounded above by a
constant.
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Recall that for an algebraic integer ˛, with minimal monic polynomial f 2 ZŒx�, and
K D Q.˛/, we have

(1.2) �.f / D g2�K :

Here,�.f / is the discriminant of the polynomial f ,�K is the discriminant of the fieldK,
and g D ŒOK W ZŒ˛�� is a positive integer which is the index of the Z-module ZŒ˛� in OK
(see, e.g., Proposition 4.4.4 in [4] or Proposition 2.13 in [19]).

In [16], Mahler showed that

j�.f /j � ddM.f /2d�2

for any f 2 CŒx� of degree d . This inequality applied to the minimal polynomial f of
˛ 2 OK satisfying K D Q.˛/ in tandem with (1.2) implies that

(1.3) d�d=.2d�2/ j�K j
1=.2d�2/

�M.OK/:

By a more general result of Silverman (Theorem 2 in [25]), we have

(1.4) d�d=.2d�2/ j�K j
1=.2d�2/

�M.K/:

Clearly, (1.4) implies (1.3) in view of OK � K. Since M.˛/ � 1 for any algebraic num-
ber ˛, the bounds (1.3) and (1.4) are nontrivial for number fields K satisfying

j�K j > d
d :

In [23], Ruppert gave one more proof of the inequality

j�K j
1=.2d�2/

�M.K/;

which is a version of (1.4) with a different constant implied in�. (Here and below, the
constants in � depend on d only.) He also observed that for each d � 2, the exponent
1=.2d � 2/ in the power of j�K j in (1.4) is best possible, namely,

M.K/� j�K j
1=.2d�2/

for infinitely many fields K of degree d . It is easy to see that this holds for K D Q.˛/,
where p and q are primes satisfying p < q < 2p and ˛ D .�q=p/1=d . (See also Propos-
ition 1 in [22] due to Masser.)

In [23], Ruppert asked if for every d � 2 there is a constant �.d/ such that for every
number field K of degree d � 2,

(1.5) M.K/ � �.d/ j�K j
1=.2d�2/:

(To be precise, he asked this in terms of the naive height, but the question is the same
by (1.1).) The case d D 2 has been settled by Ruppert himself. He showed that the inequal-
ity M.K/� j�K j1=2 holds for every imaginary quadratic field K, and that

M.K/ �M.OK/� j�K j
1=2
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for every real quadratic field K. Later, in [3] it was shown that the inequalities

1

2
j�K j

1=2
�M.K/ � j�K j

1=2

hold for all real quadratic fields K.
In [23], Ruppert also established the inequality

M.OK/� j�K j
1=2

for all totally real number fields K of prime degree d . Then, in [26], Vaaler and Widmer
proved the inequality

M.K/� j�K j
1=2

for all not totally complex number fields K of degree d , and also for all number fields K
of degree d under assumption of the generalized Riemann hypothesis. In [27], they also
showed that for each composite d there is a constant .d/, which is given explicitly and is
strictly greater than 1=.2d � 2/, such that for each positive number " there exist infinitely
many number fields K of degree d such that

(1.6) M.K/ > j�K j
.d/�":

This answers Ruppert’s question related to �.d/ in (1.5) negatively for each composite d .
For d D 5, the answer is also negative by a combination of the results of Vaaler and
Widmer [27] and Bhargava [2]. (See the end of Section 1 in [27].)

The next theorem implies that the answer to Ruppert’s question is negative for each
prime number d � 3 too.

Theorem 1. Let d � 3 be an odd integer. Then, for infinitely many number fields K of
degree d we have

(1.7) M.K/ � d�d j�K j
dC1

d.2d�2/ :

In particular, Theorem 1 answers Ruppert’s question negatively for d D 3 (as the
authors say in [27] their method sheds no light on the cubic case), gives a much simpler
proof for d D 5 (without involving deep methods of [2]), and, combined with the results
of [27], answers Ruppert’s question negatively for each d � 3.

We remark that for d odd, but not a prime number, the exponent .d/ obtained in [27]
is greater than the exponent .d C 1/=.d.2d � 2// in (1.7), so inequality (1.6) is stronger
than (1.7) for those d . The constant d�d can be improved by a slightly more technical
argument, but this constant is not very important in the estimate (1.7) (the important one
is the exponent of j�K j), so we have chosen it for the sake of simplicity.

The related quantity M.OK/ for cubic fields has been recently investigated, see [8],
by Eldredge and Petersen. In particular, they showed that there are infinitely many cubic
number fields K such that

(1.8)
1

30
j�K j

1=3 < M.OK/ <
4

3
j�K j

1=3:

This implies that the exponent 1=.2d � 2/ of j�K j in (1.3) is not sharp for some cubic
fields (as 1=.2d � 2/ D 1=4 < 1=3 for d D 3). The proof of the lower bound in (1.8)
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is based on application of the so-called Minkowski embedding, which to each ˛ 2 K,
where K is a field with signature .s; t/, assigns the vector�

�1.˛/; : : : ; �s.˛/;<.�sC1.˛//;=.�sC1.˛//; : : : ;<.�sCt .˛//;=.�sCt .˛//
�

in RsC2t D Rd . Here, �1; : : : ; �s are the s real embeddings of K, and �sCj ; �sCj , for
j D 1; : : : ; t , are the t pairs of complex conjugate embeddings. The Euclidean norm of
such vector has been recently investigated in [6] and [7]. In [8], the authors perform the
Gram–Schmidt algorithm to determine an orthogonal basis consisting of certain vectors
of a cubic field K and then derive the lower bound in (1.8) (see Section 3.1 in [8]).

In this paper, by a different method, we generalize the inequalities (1.8) to arbitrary
integer d � 2.

Theorem 2. For each " > 0 and each integer d � 2, there are infinitely many number
fields K of degree d such that

.1 � "/j�K j
1=d < M.OK/ < j�K j

1=d :

This implies that for any d � 3, the exponent 1=.2d � 2/ of j�K j in (1.3) is not sharp
for infinitely many fields of degree d . Note that in the cubic case the constants 1� " and 1
in Theorem 2 are better than those in (1.8) (respectively, 1=30 and 4=3). In terms of [27],
Section 5, our Theorem 2 implies that 1=d is a cluster point of the set° logM.OK/

log j�K j
W ŒK W Q� D d

±
;

which means that for any " > 0 there are infinitely many number fields K of degree d
such that ˇ̌̌ 1

d
�

logM.OK/
log j�K j

ˇ̌̌
< ":

In fact, the fields K which we consider in Theorems 1 and 2 are the same. So, combining
both theorems for d D 3, we obtain

1

27
j�K j

1=3
�M.K/ �M.OK/ < j�K j

1=3:

Accordingly, 1=3 is a cluster point of the set° logM.K/
log j�K j

W ŒK W Q� D 3
±
:

In the next section we give some results on monogenic fields of the form Q.a1=d /,
where d � 2 is an integer and a runs over the prime numbers. In Section 3 we prove
several auxiliary results, and then complete the proofs of Theorems 1 and 2 in Sections 4
and 5, respectively.

A crucial observation in the proof of Theorem 1 is that, for any algebraic generator ˛
of the fieldK DQ.a1=d / of degree d , either ˛ itself or its reciprocal ˛�1 can be written as
a Q-linear form in 1; a1=d ; : : : ; am=d with m � Œd=2� and a nonzero coefficient for am=d .
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Accordingly, the Mahler measure of M.˛/ (or M.˛�1/ which equals M.˛/) turns out to
be ‘large’ and gives the exponent of j�K j in (1.7) at least

m

d.d � 1/
�

Œd=2�

d.d � 1/
;

which is .d C 1/=.d.2d � 2// for d odd and 1=.2d � 2/ for d even. Thus, our approach
gives no improvement of (1.4) for d even.

2. Monogenic fields of the form Q.a1=d/

Recall that the field K is called monogenic if it contains an algebraic integer ˛ such that
OK D ZŒ˛�. In particular, if for ˛ D a1=d , where a 2 N, with minimal polynomial

f .x/ D xd � a;

the fieldK DQ.˛/DQ.a1=d / is monogenic and OK DZŒ˛� then, by j�.f /j D ddad�1

(see, e.g., Example 1.3.7 in [21]) and (1.2) with g D 1, we must have

(2.1) j�K j D d
dad�1:

We first prove the next lemma.

Lemma 3. For each d � 2, there are infinitely many prime numbers a for which the field
K D Q.a1=d / is monogenic, j�K j D ddad�1, and OK D ZŒa1=d �.

Proof. In Theorem 1.1 of [10], Gassert showed that the field K D Q.a1=d / is monogenic
for d � 2 and squarefree integer a if p2 does not divide ap � a for all primes p divid-
ing d . (As observed in [5], it should be an additional assumption that xd � a is irreducible
over Q.) The same statement asserting that 1; a1=d ; : : : ; a.d�1/=d is an integral basis of K
was also recently proved independently in Corollary 1.3 of [13]. (See also [12, 14, 15] for
some related work.)

In Proposition 2.5 of [10], Gassert also observed that the condition

p2 j .ap � a/

is satisfied only if a belongs to one of p distinct equivalence classes modulo p2, namely,

0; 1; 2p; 3p; : : : ; .p � 1/p:

In particular, for each prime p dividing d and each squarefree integer a > 1 of the
form

(2.2) a D p2uC up;

where u 2 N and up 2 ¹0; 1; : : : ; p2 � 1º satisfies up ¤ ip .mod p2/ for each i D
0; 1; : : : ; p � 1 and, in addition, up ¤ p; 2p; : : : ; .p � 1/p, we have

p2 − .ap � a/:
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Note that there are p2 equivalence classes for possible up , and we remove p C p � 1 D
2p � 1 of them, which is less than p2. Consequently, we can select any of

p2 � .2p � 1/ D .p � 1/2

remaining possibilities in the set ¹0; 1; : : : ; p2 � 1º as up .
Put

Q WD
Y
pjd

p:

Then, by the Chinese remainder theorem, there exists v 2N such that for each aDQ2sCv,
s D 1; 2; : : :, satisfying (2.2) for every prime p j d , we have p2 − .ap � a/. Furthermore,
by the choice of up , we have gcd.p; up/ D 1, and hence

gcd.Q2; v/ D 1:

So, by Dirichlet’s theorem on arithmetic progressions, there are infinitely many prime
numbers a of the form

(2.3) a D Q2s C v;

with s 2 N.
This completes the proof of the lemma for each of those (infinitely many) prime num-

bers a by Theorem 1.1 in [10] or Corollary 1.3 in [13], the irreducibility of xd � a (see,
e.g., [24], p. 92) and (2.1).

In [1], Bardestani showed that for each prime number d there are ‘many’ prime
numbers a (with lower density at least 1 � 1=d among all primes) for which the field
K D Q.a1=d / is monogenic. In this context, Lemma 3 implies the following generaliza-
tion of the main result of [1].

Corollary 4. For each d � 2, we have

lim inf
x!1

#¹p � x W Q.p1=d / is monogenicº
�.x/

�
'.rad.d//

rad.d/
;

where p denotes the prime numbers, �.x/ is the prime counting function, ' is the Euler
totient function, and rad.d/ stands for the radical of d .i.e., the product of its distinct
prime divisors/.

Proof. Set Q D rad.d/ and write each prime number a greater than Q2 in the form

a D Q2s C w;

where s D 1; 2; : : : and w 2 ¹0; 1; : : : ; Q2 � 1º. Clearly, there are '.Q2/ choices for w.
By the construction of v as in (2.3) and Lemma 3, there are at least

Q
pjd .p � 1/

2 choices
for w when for the corresponding prime number a the field Q.a1=d / is monogenic. SinceQ

pjd .p � 1/
2

'.Q2/
D

Q
pjd .p � 1/

2

Q
Q
pjd .p � 1/

D

Q
pjd .p � 1/

Q
D
'.Q/

Q
D
'.rad.d//

rad.d/
;

we get the inequality for the lower density as claimed.
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3. Auxiliary results

The following lemma will be used in proving an upper bound for M.OK/ in Theorem 2.

Lemma 5. For each d � 2 and each sufficiently large a 2 N, which is not a pth power
of an integer for some prime number p dividing d , the number

(3.1) ˛ WD a1=d � ba1=d c

is an algebraic integer of degree d and has Mahler measure less than da.d�1/=d .

Proof. Set t WD ba1=d c. The minimal polynomial of a1=d D ˛ C t over Q is

f .x/ D xd � a:

Indeed, f .a1=d / D 0 and f is irreducible by Capelli’s theorem (see, e.g., [24], p. 92).
Thus, ˛ D a1=d � t is an algebraic integer of degree d over Q, and the d conjugates of ˛
over Q are

j̨ D a
1=d e2�i.j�1/=d � t;

where j D 1; : : : ; d .
Note that ˛ D ˛1 2 .0; 1/, and j˛2j; : : : ; j˛d j > 1 for each sufficiently large a. Hence,

in view of 0 < t < a1=d , we obtain

M.˛/ D

dY
jD2

j j̨ j D

d�1Y
jD1

ˇ̌
a1=d e2�ij=d � t

ˇ̌
D
ja � td j

ja1=d � t j

D a.d�1/=d C a.d�2/=d t C � � � C td�1 < da.d�1/=d ;

which completes the proof of the lemma.

We also record the following simple inequality.

Lemma 6. For any real numbers y1; : : : ; yk � 1 we have

y1 C � � � C yk � k � 1C y1 � � �yk :

Proof. Set zj WD yj � 1 for j D 1; : : : ; k. Then, zj � 0 for each j . From the inequality

.1C z1/ � � � .1C zk/ � 1C z1 C � � � C zk

we derive that y1 � � �yk D .1C z1/ � � � .1C zk/ is greater than or equal to 1C z1 C � � � C
zk D y1 C � � � C yk � k C 1, which is the inequality of the lemma.

The next lemma will be used in the proof of Theorem 1 and in the proof of the lower
bound for M.OK/ in Theorem 2.

Lemma 7. Let d � 3, m 2 ¹1; 2; : : : ; d � 1º, � D e2�i=d and F D Q.�/. Then, for any
integers k1; : : : ; kmC1 satisfying 1 � k1 < � � � < kmC1 � d , the linear system

(3.2) X1 �
.k1�1/j C � � � CXmC1 �

.kmC1�1/j D ıj ; j D 0; : : : ; m;
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where ı0D � � � D ım�1D 0 and ımD 1, has a unique nonzero solutionX1; : : : ;XmC1 2F .
Moreover, we have dmXj 2 OF and

jXj j �
1�

2 sin.�
d
/
�m

for j D 1; : : : ; mC 1.

Proof. Fix any k1 < � � � < kmC1 satisfying the assumptions of the lemma. The .mC 1/ �
.mC 1/ determinant k�.kl�1/j k, where l D 1; : : : ; mC 1 and j D 0; : : : ; m, is the Van-
dermonde determinant, so it is nonzero. Consequently, by Cramer’s rule, the linear sys-
tem (3.2) has a unique solutionX1; : : : ;XmC1, whereXj 2 F for each j D 1; : : : ; mC 1.
Evidently, in view of ım D 1, at least one Xj is nonzero.

In fact, setting

g.x/ WD .x � �k1�1/.x � �k2�1/ � � � .x � �kmC1�1/;

we can express Xj explicitly by the formula

Xj D
1

g0.�kj�1/
D

1Q
s¤j .�

kj�1 � �ks�1/

(see, for instance, Problem 67 in Chapter 6 of [20]). Hence, as �d D 1, each Xj can be
written as �c , with c 2 ¹0; : : : ; d � 1º, multiplied by a product of m factors of the form
.�b � 1/�1, with not necessarily distinct b 2 ¹1; : : : ; d � 1º. Note that �b � 1 is a root of

.x C 1/d � 1

x
D xd�1 C

�
d

1

�
xd�2 C

�
d

2

�
xd�3 C � � � C

�
d

2

�
x C d:

Consequently, d.�b � 1/�1 2OF , which implies dmXj 2OF for each j D 1; : : : ;mC 1.
Also, j�b � 1j D 2 sin.�b

d
/ � 2 sin.�

d
/, which yields the upper bound on jXj j as claimed.

Finally, by Theorem 10.2 in [9], the following is true.

Lemma 8. If ˛ is an algebraic number of degree d with conjugates ˛1; : : : ; ˛d , and
T 2 N is the leading coefficient of its minimal polynomial in ZŒx�, then T

Q
j2I j̨ is an

algebraic integer for each I � ¹1; : : : ; dº.

4. Proof of Theorem 1

Let d � 3 be an odd integer. Consider the fieldK DQ.a1=d /, where a is one of the prime
numbers satisfying the conditions of Lemma 3. (Corollary 4 implies that there are ‘many’
such prime numbers a in terms of density.) In view of (2.1), we have

j�K j
dC1

d.2d�2/ D d
dC1
2d�2 a

dC1
2d ;

so for the proof of (1.7) it suffices to show that

(4.1) M.˛/ � d�dC
dC1
2d�2 a

dC1
2d

for any ˛ 2 K of degree d .
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Write

(4.2) ˛ D b0 C b1a
1=d
C � � � C bma

m=d ;

where m 2 ¹1; : : : ; d � 1º, b0; : : : ; bm 2 Q and bm ¤ 0. Without loss of generality we
may assume that

(4.3) m �
d C 1

2
�

Indeed, in the case m < .d C 1/=2 we have m � .d � 1/=2. So, using M.˛/ DM.˛�1/,
we can simply replace ˛ by its reciprocal

˛�1 D c0 C c1a
1=d
C � � � C cs a

s=d ;

where s 2 ¹1; : : : ; d � 1º, c0; : : : ; cs 2 Q, cs ¤ 0 and s � .d C 1/=2. To see this, just
observe that, by the linear independence of 1; a1=d ; : : : ; a.d�1/=d over Q, from

0 D ˛˛�1 � 1 D b0 c0 � 1C .b0 c1 C b1 c0/a
1=d
C � � � C bm cs a

.mCs/=d

and bm cs ¤ 0, it follows that mC s � d . Hence,

s � d �m � d �
d � 1

2
D
d C 1

2
�

Assume that the leading coefficient of the minimal polynomial of ˛ (in ZŒx�) defined
in (4.2) with m satisfying (4.3) is T 2 N. The d distinct conjugates of ˛ are of the form

(4.4) j̨ D

mX
kD0

bk a
k=d �.j�1/k ; j D 1; : : : ; d;

where � D e2�i=d . Select X1; : : : ; XmC1 2 F as in Lemma 7 applied to

.k1; k2; : : : ; kmC1/ D .1; 2; : : : ; mC 1/:

Then, by (3.2) and (4.4), it follows that

X1˛1 C � � � CXmC1˛mC1 D bma
m=d :

By Lemma 7, we have dmXj 2 OF for j D 1; : : : ; mC 1. Also, T j̨ is an algebraic
integer for every j by Lemma 8. Thus, each product dmTXj j̨ is an algebraic integer,
and so must be their sum

(4.5) dmT .X1˛1 C � � � CXmC1˛mC1/ D d
mT bma

m=d :

We claim that dmT bm is a nonzero integer. Indeed, we know that this is a nonzero
rational number, say dmT bm D D0=D, where D0 2 Z, D 2 N and gcd.D0; D/ D 1.
Assume that D > 1. Then, as D0am=d=D and a.d�m/=d both are algebraic integers, so is
their product D0a=D. But a is a prime, so D D a is the only possibility. However, then
D0a

m=d=D D D0a
.m�d/=d is not an algebraic integer, sincem� d < 0 and a is a prime

number which does not divide D0, a contradiction.
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Consequently, using the upper bound on jXj j from Lemma 7 and (4.5), we get

am=d � dmT jbmja
m=d
�
.mC 1/dmT max1�j�mC1 j j̨ j�

2 sin.�
d
/
�m ;

which implies

(4.6) M.˛/ D T

dY
jD1

max.1; j j̨ j/ � T max
1�j�mC1

j j̨ j �

�
2 sin.�

d
/
�m
am=d

.mC 1/dm
�

Recall that m � .d C 1/=2 by (4.3) and m � d � 1. Clearly, if m > .d C 1/=2,
then (4.6) immediately implies (4.1) for each sufficiently large a. Assume that m D
.d C 1/=2. Then, (4.6) becomes

M.˛/ �

�
2 sin.�

d
/
� dC1

2 a
dC1
2d

dC3
2
d
dC1
2

�

Now, in order to complete the proof of (4.1) for m D .d C 1/=2, it remains to verify that

(4.7)

�
2 sin.�

d
/
� dC1

2

dC3
2
d
dC1
2

� d�dC
dC1
2d�2

for d � 3 odd. Indeed, for each d � 7 we have�
2 sin.�

d
/
� dC1

2

dC3
2
d
dC1
2

�

�
2 sin.�

d
/
� dC1

2

d
dC3
2

>

�
4
d

� dC1
2

d
dC3
2

D
2dC1

ddC2
> d�dC

dC1
2d�2 :

For d D 3 and d D 5, the inequality (4.7) is verified directly. (In fact, for d D 3 we have
equality in (4.7).)

5. Proof of Theorem 2

Consider the field K D Q.a1=d /, where d � 2 and a is one of sufficiently large prime
numbers satisfying the conditions of Lemma 3. Then, by Lemma 5, the Mahler measure of
˛ 2OK of degree d defined as in (3.1) is less than da.d�1/=d . Since da.d�1/=d D j�K j1=d ,
this yields M.˛/ < j�K j1=d , and hence

M.OK/ < j�K j
1=d

for each of those fields K.
To prove the desired lower bound on M.OK/ in Theorem 2, we assume that the num-

ber ˛ 2 OK is of degree d . Then, due to the fact that the fieldK DQ.a1=d / is monogenic
and OK D ZŒa1=d �, we can write

(5.1) ˛ D a0 C a1a
1=d
C � � � C ama

m=d ;
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where m 2 ¹1; : : : ; d � 1º, a0; a1; : : : ; am 2 Z and am ¤ 0. Accordingly, the d distinct
conjugates of ˛ over Q can be written as

(5.2) j̨ D

mX
kD0

ak a
k=d �.j�1/k ; j D 1; : : : ; d;

with � D e2�i=d .
Fix any " in the interval .0; 1/ and recall that a is one of the sufficiently large prime

numbers satisfying the conditions of Lemma 3. In all what follows we will consider three
cases, m D d � 1, m 2 ¹2; : : : ; d � 2º, m D 1, and show that in each of these cases the
inequality

(5.3) M.˛/ > .1 � "/da.d�1/=d D .1 � "/ j�K j
1=d

holds for all ˛ as defined in (5.1).
We first examine the case m D d � 1. From (5.2) it follows that

˛1 C �˛2 C � � � C �
d�1˛d D

dX
jD1

�j�1
d�1X
kD0

aka
k=d �.j�1/k D

d�1X
kD0

aka
k=d

dX
jD1

�.j�1/.kC1/:

Note that the sum
Pd
jD1 �

.j�1/.kC1/ equals d for kD d � 1, while for k 2 ¹0;1; : : : ;d � 2º
it vanishes:

dX
jD1

�.j�1/.kC1/ D
1 � �d.kC1/

1 � �kC1
D 0:

Consequently,
˛1 C � ˛2 C � � � C �

d�1˛d D dad�1a
.d�1/=d ;

and hence

da.d�1/=d � d jad�1ja
.d�1/=d

D

ˇ̌̌ dX
jD1

j̨ �
j�1

ˇ̌̌
�

dX
jD1

j j̨ j:

Suppose there are k indices j 2 ¹1; : : : ; dº for which j j̨ j � 1. Then, k � 1 and the
product of those j j̨ j is M.˛/. Estimating the sum of those j j̨ j by k � 1CM.˛/ (see
Lemma 6) and each of the d � k remaining j j̨ j by 1, we derive that

da.d�1/=d �

dX
jD1

j j̨ j � k � 1CM.˛/C d � k D d � 1CM.˛/:

This yields
M.˛/ � da.d�1/=d � d C 1;

which implies (5.3) for each sufficiently large a.
We now turn to the case when 2 � m � d � 2 (which occurs only for d � 4). We

claim that then there is a constant C.d/ that depends on d only such that at most m of the
conjugates of ˛ lie in the disc

(5.4) jzj < C.d/am=d :
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Indeed, suppose ˛k1 ; : : : ; ˛kmC1 , where 1 � k1 < � � � < kmC1 � d , all lie in jzj <
C.d/am=d . Select X1; : : : ;XmC1 2 F as in Lemma 7. Then, by (3.2) and (5.2), it follows
that

X1˛k1 C � � � CXmC1˛kmC1 D ama
m=d :

From jamj � 1 and Lemma 7 we derive that at least one of the numbers j˛k1 j; : : : ; j˛kmC1 j
is greater than or equal to

am=d

.mC 1/max1�j�mC1 jXj j
�

�
2 sin.�

d
/
�m
am=d

.mC 1/
�

This proves (5.4) with the constant

C.d/ D max
2�m�d�2

�
2 sin.�

d
/
�m

.mC 1/
:

Now, by (5.4), at least d �m conjugates of ˛ have absolute values at least C.d/am=d .
Consequently,

M.˛/ � C.d/d�ma.d�m/m=d ;

which implies (5.3) in view of .d �m/m > d � 1.
It remains to investigate the case m D 1. Fix ı 2 .0; 1/ satisfying

(5.5) .1 � ı/d�1 D 1 � "

and put

(5.6) � WD 2ı sin
��
d

�
:

Without loss of generality we may assume that

(5.7) j j̨ j < �a
1=d

for some j 2 ¹1; : : : ; dº. Indeed, otherwise j j̨ j � �a1=d for all j , which impliesM.˛/ �
�da, which is better than (5.3) for each sufficiently large a.

Using (5.2) with m D 1, for any

k 2 J WD ¹1; : : : ; dº n ¹j º

we obtain
j̨ � ˛k D a1a

1=d .�j�1 � �k�1/:

Combining this with (5.6), (5.7) and ja1j � 1 we deduce that

2ı sin
��
d

�
a1=d C j˛kj > j j̨ � ˛kj � 2

ˇ̌̌
sin
��.j � k/

d

�ˇ̌̌
a1=d :

Since

sin
��
d

�
�

ˇ̌̌
sin
��.j � k/

d

�ˇ̌̌
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for k 2 J , this further implies

j˛kj > 2.1 � ı/
ˇ̌̌
sin
��.j � k/

d

�ˇ̌̌
a1=d

for each of those k. Consequently,

M.˛/ �
Y
k2J

j j̨ j > 2
d�1.1 � ı/d�1a.d�1/=d

Y
k2J

ˇ̌̌
sin
��.j � k/

d

�ˇ̌̌
:

Observe that

Y
k2J

ˇ̌̌
sin
��.j � k/

d

�ˇ̌̌
D

d�1Y
kD1

sin
��k
d

�
D

d

2d�1
;

where the last identity can be found, e.g., in 1.392 of [11], p. 41. (See also [17] for its
several proofs.) Therefore,

M.˛/ > .1 � ı/d�1da.d�1/=d ;

which yields (5.3) by (5.5).
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