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Abstract. In [5], it was proved that a collection consisting from Dirichlet L-functions
and periodic Hurwitz zeta-functions is universal in the sense that the shifts of those
functions approximate simultaneously a given collection of analytic functions. In the
paper, we prove theorems on the universality of composite functions of the above
collection.
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1 Introduction

In [16], Voronin discovered the universality property of the Riemann zeta-
function ζ(s), s = σ + it, on the approximation of analytic functions from a
wide class by shifts ζ(s+ iτ), τ ∈ R. At the moment, it is known that the ma-
jority of zeta and L-functions are universal in the above sense. Also, some zeta
and L-functions are jointly universal: their shifts approximate simultaneously
a given collection of analytic functions. A series of works are devoted to mixed
joint universality when a collection of analytic functions are approximated si-
multaneously by shifts of zeta-functions with Euler product and without Euler
product. The first result in this direction belongs to H. Mishou who proved [14]
the joint universality of the function ζ(s) and the Hurwitz zeta-function ζ(s, α)
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with transcendental parameter α. This result has been generalized in [6] for
a periodic zeta and a periodic Hurwitz zeta-functions. In [7], the mixed joint
universality has been obtained for a wide collection consisting from periodic
zeta and periodic Hurwitz zeta-functions. We remind that the periodic Hur-
witz zeta-function ζ(s, α; a), where α, 0 < α ≤ 1, is a fixed parameter and
a = {am : m ∈ N0 = N ∪ {0}} is a periodic sequence of complex numbers, is a
generalization of the classical Hurwitz zeta-function ζ(s, α) when am ≡ 1, and
is defined, for σ > 1, by the series

ζ(s, α; a) =
∞∑
m=0

am
(m+ α)s

,

and by analytic continuation elsewhere. In [2], the mixed joint universality for
a system of functions

ζ(s), ζ(s, α1, a11), . . . , ζ(s, α1, a1l1), . . . , ζ(s, αr, ar1), . . . , ζ(s, αr, arlr )

has been considered. In a series of papers [11,12,15], the Riemann zeta-function
has been replaced by zeta-functions of certain cusp forms. In [5], in place of
the function ζ(s) a collection of Dirichlet L-functions L(s, χ) has been put. We
will state the latter result.

Let D = {s ∈ C : 1
2 < σ < 1}. Denote by K the class of compact

subsets of the strip D with connected complements, and by H0(K) and H(K),
K ∈ K, the classes of continuous non-vanishing and continuous on K functions,
respectively, which are analytic in the interior of K. Let measA be the Lebesgue
measure of a measurable set A ⊂ R. Suppose that ajl = {amjl : m ∈ N0}
is a periodic sequence of complex numbers with minimal period kjl ∈ N, j =
1, . . . , r, l = 1, . . . , lj . Let kj be the least common multiple of the periods
kj1, . . . , kjlj , and

Aj =


a1j1 a1j2 . . . a1jlj
a2j1 a2j2 . . . a2jlj
. . . . . . . . . . . .
akjj1 akjj2 . . . akjjlj

 , j = 1, . . . , r.

Then, in [5], the following theorem has been proved.

Theorem 1. Suppose that χ1, . . . , χd are pairwise non-equivalent Dirichlet
characters, the numbers α1, . . . , αr are algebraically independent over the field
of rational numbers Q, and that rank(Aj) = lj, j = 1, . . . , r. For j = 1, . . . , d,
let Kj ∈ K and fj ∈ H0(Kj), and, for j = 1, . . . , r, l = 1, . . . , lj, let Kjl ∈ K
and fjl ∈ H(Kjl). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤d
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε

}
> 0.
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Denote by H(D) the space of analytic on D functions equipped with the
topology of uniform convergence on compacta. In [8] and [10], the Voronin
theorem has been generalized for F (ζ(s)) with certain operators F : H(D)→
H(D), in [9], the universality of F (ζ(s), ζ(s, α)) has been studied with operators
F : H2(D)→ H(D). The papers [3] and [4] are devoted to the universality of
the functions F (L(s, χ1), . . . , L(s, χr1), ζ(s, α1), . . . , ζ(s, αr2)) for some opera-
tors F : Hr1+r2(D)→ H(D). The aim of the present paper is the universality
of composite functions of a collection of L and zeta-functions in Theorem 1,
i.e., we consider the universality of the functions

F
(
L(s, χ1), . . . , L(s, χd), ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . ,

ζ(s, αr; ar1), . . . , ζ(s, αr; arlr )
)

for some operators F .
First we deal with approximation of functions from the class H(K), K ∈ K.

Let, for brevity, v = d+ l1 + · · ·+ lr. We say that the operator F : Hv(D)→
H(D) belongs to the class Lip(β1, . . . , βv), β1 > 0, . . . , βv > 0, if the following
hypotheses are satisfied:

1◦ For every polynomial p = p(s) and all sets K1, . . . ,Kd ∈ K, there exists
an element g = (g1, . . . , gd, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ F−1{p} ⊂ Hv(D)
such that gj 6= 0 on Kj , j = 1, . . . , d;

2◦ For all K ∈ K, there exist a constant c > 0 and sets K1, . . . ,Kv ∈ K
such that, for all (gj1, . . . , gjv) ∈ Hv(D), j = 1, 2,

sup
s∈K
|F (g11(s), . . . , g1v(s))− F (g21(s), . . . , g2v(s))|

≤ c sup
1≤j≤v

sup
s∈Kj

|g1j(s)− g2j(s)|βj .

Theorem 2. Suppose that χ1, . . . , χd are pairwise non-equivalent Dirichlet
characters, the numbers α1, . . . , αr are algebraically independent over the field
of rational numbers Q, rank(Aj)=lj, j=1, . . . , r, and that F∈Lip(β1, . . . , βv).
Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣F (L(s+ iτ, χ1), . . . , L(s+ iτ, χd),

ζ(s+ iτ, α1; a11), . . . , ζ(s+ iτ, α1; a1l1), . . . , ζ(s+ iτ, αr; ar1), . . . ,

ζ(s+ iτ, αr; arlr )
)
− f(s)

∣∣ < ε
}
> 0.

We give an example of the operator F ∈ Lip(β1, . . . , βv). Let, for (g1, . . . , gd,
g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hv(D),

F (g1, . . . , gd, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) = c1g
(n1)
1 + · · ·+ cdg

(nd)
d

+ c11g
(n11)
11 + · · ·+ c1l1g

(n1l1
)

1l1
+ · · ·+ cr1g

(nr1)
r1 + · · ·+ crlrg

(nrlr )
rlr

,

where c1, . . . , cd, c11, . . . , c1l1 , . . . , cr1, . . . , crlr ∈ C \ {0}, n1, . . . , nd, n11, . . . ,
n1l1 , . . . , nr1, . . . , nrlr ∈ N, and f (n) denotes the nth derivative of f . It is not
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difficult to see that, for each polynomial p = p(s) and all sets K1, . . . ,Kd ∈ K,
there exists an element g ∈ F−1{p} such that gj(s) 6= 0 on Kj , j = 1, . . . , d.
For example, if

p(s) = aks
k + ak−1s

k−1 + · · ·+ a0, ak 6= 0,

we can take g = (1, . . . , 1, 1, . . . , 1, 1 . . . , grlr ), where

grlr (s) =
1

crlr

(
ans

k+nrlr

(k + 1) · · · (k + nrlr )
+ · · ·+ a0s

nrlr

1 · · ·nrlr

)
.

Thus, hypothesis 1◦ of the class Lip(β1, . . . , βv) is satisfied.
Hypothesis 2◦ of the class Lip(β1, . . . , βv) follows from the Cauchy integral

formula. We write F in a more convenient form

F (g1, . . . , gv) =

v∑
j=1

cjg
(nj)
j .

Let K ∈ K, and K ⊂ G ⊂ K1, where G is an open set and K1 ∈ K. Moreover,
let L be a simple closed contour lying in K1 \ G and containing inside the
K. Then the Cauchy integral formula shows that, for (gj1, . . . , gjv) ∈ Hv(D),
j = 1, 2, and s ∈ K,∣∣F (g11(s), . . . , g1v(s))−F (g21(s), . . . , g2v(s))

∣∣=∣∣∣∣ v∑
j=1

cj
nj !

2πi

∫
L

g1j(z)−g2j(z)
(z − s)nj+1

dz

∣∣∣∣
≤

v∑
j=1

|cj |Cj sup
s∈L
|g1j(s)− g2j(s)| ≤ c sup

1≤j≤v
sup
s∈K1

|g1j(s)− g2j(s)|

with some constants Cj > 0, j = 1, . . . , v, and c > 0. Thus we have that
F ∈ Lip(1, . . . , 1), and in this case, K1 = · · · = Kv = K1.

Now we give some other classes of operators F . Let

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0} .

Moreover, v1 =
∑r
j=1 lj .

Theorem 3. Suppose that the characters χ1, . . . , χd, the numbers α1, . . . , αr
and the sequences ajl, j = 1, . . . , r, l = 1, . . . , lj, satisfy the hypotheses of
Theorem 2, and that F : Hv(D)→ H(D) be a continuous operator such that,
for every open set G ⊂ H(D), the set (F−1G) ∩ (Sd ×Hv1(D)) is not empty.
Let K ∈ K and f(s) ∈ H(K). Then the assertion of Theorem 2 is true.

We note that the hypothesis (F−1G) ∩ (Sd ×Hv1(D)) 6= ∅ for every open
set G ⊂ H(D) is general but sufficiently complicated. Obviously, it is satisfied
if every g ∈ H(D) has a preimage in the set Sd ×Hv1(D). On the other hand,
Theorem 3 implies the following modification of Theorem 2.

Theorem 4. Suppose that the characters χ1, . . . , χd, the numbers α1, . . . , αr
and the sequences ajl, j = 1, . . . , r, l = 1, . . . , lj, satisfy the hypotheses of
Theorem 2, and that F : Hv(D) → H(D) is a continuous operator such that,
for every polynomial p = p(s), the set (F−1{p})∩ (Sd×Hv1(D)) is not empty.
Let K ∈ K and f(s) ∈ H(K). Then the assertion of Theorem 2 is true.
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Clearly, hypothesis 2◦ of the class Lip(β1, . . . , βv) implies the continuity of
F . However, hypothesis 1◦ is weaker than the requirement (F−1{p}) ∩ (Sd ×
Hv1(D)) 6= ∅.

Non-vanishing of the polynomial p(s) in a bounded region can be controlled
by its constant term. Therefore, sometimes it is more convenient to consider
operators F on the space Hv(DV , D) = Hd(DV )×Hv1(D), where, for V > 0,
DV = {s ∈ C : 1

2 < σ < 1, |t| < V }. Analogically, let

SV = {g ∈ H(DV ) : g(s) 6= 0 or g(s) ≡ 0} .

Then we have the following result.

Theorem 5. Suppose that the characters χ1, . . . , χd, the numbers α1, . . . , αr
and the sequences ajl, j = 1, . . . , r, l = 1, . . . , lj, satisfy the hypotheses of
Theorem 2, K ∈ K, f(s) ∈ H(K) and V > 0 is such that K ⊂ DV . Let
F : Hv(DV , D) → H(DV ) be a continuous operator such that, for every
polynomial p = p(s), the set (F−1{p}) ∩ (SdV × Hv1(D)) is not empty. Then
the assertion of Theorem 2 is true.

For example, Theorem 5 can be applied for the operator

F (g1, . . . , gv) = c1g
(n1)
1 + · · ·+ cdg

(nd)
d , n1, . . . , nd ∈ N.

Now we consider approximation of analytic functions from the image of the
set Sd ×Hv1(S) of the operator F : Hv(D)→ H(D).

Theorem 6. Suppose that the characters χ1, . . . , χd, the numbers α1, . . . , αr
and the sequences ajl, j = 1, . . . , r, l = 1, . . . , lj, satisfy the hypotheses of
Theorem 2, and that F : Hv(D) → H(D) is a continuous operator. Let
K ⊂ D be a compact subset, and f(s) ∈ F (Sd ×Hv1(D)). Then the assertion
of Theorem 2 is true.

It is not easy to describe the set F (Sd ×Hv1(D)). The next theorem is an
example with sufficiently simple set contained in F (Sd ×Hv1(D)).

Suppose that a1, . . . , ak ∈ C are pairwise different numbers, and

Hk(D) =
{
g ∈ H(D) : (g(s)− aj)−1 ∈ H(D), j = 1, . . . , k

}
.

Theorem 7. Suppose that the characters χ1, . . . , χd, the numbers α1, . . . , αr
and the sequences ajl, j = 1, . . . , r, l = 1, . . . , lj, satisfy the hypotheses of
Theorem 2, and that F : Hv(D) → H(D) is a continuous operator such that
F (Sd×Hv1(D)) ⊃ Hk(D). For k = 1, let K ∈ K, f(s) ∈ H(K) and f(s) 6= a1
on K. For k ≥ 2, let K ⊂ D be an arbitrary compact subset, and f(s) ∈ Hk(D).
Then the assertion of Theorem 2 is true.

For example, let k = 2 and a1 = 1, a2 = −1. Then Theorem 7 implies the
universality of the function

sin
(
L(s, χ1) + · · ·+ L(s, χd) + ζ(s, α1; a11) + · · ·+ ζ(s, α1; a1l1) + · · ·

+ζ(s, αr; ar1) + · · ·+ ζ(s, αr; arlr )
)
.

Math. Model. Anal., 21(1):35–46, 2016.
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For this, it suffices to consider the equation

eiΣ(s) − e−iΣ(s)

2i
= f, f ∈ H(D), a1 = 1, a2 = −1,

where Σ(s) is the sum under the sign of sin.

2 Proof of Theorem 2

Theorem 2 is a result of Theorem 1, properties of the class Lip(β1, . . . , βv)
and of the Mergelyan theorem on the approximation of analytic functions by
polynomials. We state this theorem in the form of the next lemma.

Lemma 1. Suppose that K ⊂ C is a compact subset with connected comple-
ment, and f(s) is a continuous function on K which is analytic in the interior
of K. Then, for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε.

Proof of the lemma can be found in [13] and [17].
Proof of Theorem 2. Lemma 1 implies the existence of the polynomial

p = p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (2.1)

Using hypothesis 1◦ of the class Lip(β1, . . . , βv), we have that, for all sets
K1, . . . ,Kd ∈ K, there exists an element (g1, . . . , gd, g11, . . . , g1l1 , . . . , gr1, . . . ,
grlr ) ∈ F−1{p} such that gj(s) 6= 0 on Kj , j = 1, . . . , d. Suppose that τ ∈ R
satisfies the inequalities

sup
1≤j≤d

sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < c−
1
β

(ε
4

) 1
β

, (2.2)

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

||ζ(s+ iτ, αj ; ajl)− fjl(s)| < c−
1
β

(ε
4

) 1
β

, (2.3)

where the sets K1, . . . ,Kd,K11, . . . ,K1l1 , . . . ,Kr1, . . . ,Krlr ∈ K correspond the
set K in hypothesis 2◦ of the class Lip(β1, . . . , βv), and β = min1≤j≤v βj ,
with notation K1l = Kd+l, j = 1, . . . , l1, . . . , Krl = Kd+l1+···+lr−1+l, l =
1, . . . , lr. Then, in view of Theorem 1, the set of τ satisfying inequalities (2.2)
and (2.3) has a positive lower density. Moreover, hypothesis 2◦ of the class
Lip(β1, . . . , βv) shows that, for such τ ,

sup
s∈K
|F (L(s+ iτ, χ, α, a))− p(s) ≤ sup

1≤j≤d
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)|βj

+ c sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)|βjl ≤ 2cc−
β
β

(ε
4

) β
β

=
ε

2
. (2.4)
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Here χ = (χ1, . . . , χd), α = (α1, . . . , αr), a = (a11, . . . , a1,l1 , . . . , ar1, . . . ,
arlr ) and

L(s+ iτ, χ, α, a) =
(
L(s, χ1), . . . , L(s, χd), ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . ,

ζ(s, αr; ar1), . . . , ζ(s, αr; arlr )
)
,

and β1l = βd+l, l = 1, . . . , l1, . . . , βrl = βd+l1+···+lr−1+l, l = 1, . . . , lr. Thus,
by the above remark,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣F (L(s+ iτ, χ, α, a)
)
− p(s)

∣∣ < ε

2

}
> 0.

Combining this with inequality (2.1) proves the theorem.

3 Elements of probability theory

For the proof of Theorems 3 – 7, we apply a probabilistic approach based
on limit theorems for weakly convergent probability measures in the space of
analytic functions. We start with a limit theorem for L(s+ iτ, χ, α, a) obtained
in [5], Theorem 2.

Denote by B(X) the Borel σ-field of the space X. Let γ = {s ∈ C : |s| = 1}
be the unit circle on the complex plane, and

Ω =
∏
p∈P

γp, Ω̂ =
∏
m∈N0

γm,

where P is the set of all prime numbers, and γp = γ for all p ∈ P and γm = γ

for all m ∈ N0. In view of the classical Tikhonov theorem, the tori Ω and Ω̂
with the product topology and pointwise multiplication are compact topological
Abelian groups. Moreover, let

Ω = Ω × Ω̂1 × · · · × Ω̂r,

where Ω̂j = Ω̂ for all j = 1, . . . , r. Then again Ω is a compact topological
Abelian group. This leads to the probability space (Ω,B(Ω),mH), where mH

is the probability Haar measure on (Ω,B(Ω)). Denote by ω(p) the projection
of the element ω ∈ Ω to the coordinate space γp, p ∈ P, and by ω̂j(m) the

projection of an element ω̂j ∈ Ω̂j to the coordinate space γm, m ∈ N0, j =
1, . . . , r. Let pk‖m mean that pk | m but pk+1 - m. Extend the function ω(p)
to the set N by taking

ω(m) =
∏
pk‖m

ωk(m), m ∈ N.

Denote by ω = (ω, ω̂1, . . . , ω̂r) the elements of Ω, and, on the probability space
(Ω,B(Ω),mH), define the Hv(D)-valued random element L(s, χ, α, ω, a) by the
formula

L(s, χ, α, ω, a) =
(
L(s, ω, χ1), . . . , L(s, ω, χd), ζ(s, α1, ω1; a11), . . . ,

ζ(s, α1, ω1; a1l1), . . . , ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
,

Math. Model. Anal., 21(1):35–46, 2016.
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where

L(s, ω, χj) =

∞∑
m=1

χj(m)ω(m)

ms
, j = 1, . . . , d,

and

ζ(s, αj , ωj ; ajl) =

∞∑
m=1

amjlωj(m)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj .

We note that the latter series are uniformly convergent on compact subsets of
D for almost all ω ∈ Ω. Moreover, for almost ω ∈ Ω, L(s, ω, χj) can be written
in the form

L(s, ω, χj) =
∏
p

(
1− χj(p)ω(p)

ps

)−1
.

Denote by PL the distribution of the random element L(s, χ, α, ω, a), i.e., the
probability measure

PL(A) = mH

(
ω ∈ Ω : L(s, χ, α, ω, a) ∈ A

)
, A ∈ B(Hv(D)).

Then we have the following limit theorem [5].

Lemma 2. Suppose that the numbers α1, . . . , αr are algebraically independent
over Q. Then

PT (A)
def
=

1

T
meas

{
τ ∈ [0, T ] : L(s+ iτ, χ, α, a) ∈ A

}
, A ∈ B(Hv(D))

converges weakly to PL as T →∞.

For the proof a limit theorem for composite function F (L(s, χ, α, a)), we
will apply an assertion on the preservation of the weak convergence under
mappings. Let X1 and X2 be two metric spaces, and let u : X1 → X2 be a
(B(X1),B(X2))-measurable mapping, i.e.,

u−1B(X2) ⊂ B(X1).

Then every probability measure P on (X1,B(X1)) induces the unique proba-
bility measure Pu−1 on (X2,B(X2)) defined by

Pu−1(A) = P (u−1A), A ∈ B(X2).

It is well known that the continuity of u implies its (B(X1),B(X2))-measura-
bility.

Lemma 3. Suppose that Pn converges weakly to P as n → ∞, and that the
mapping u : X1 → X2 is continuous. Then Pnu

−1 converges weakly to Pu−1

as n→∞.

Proof of the lemma is given in [1].
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Lemma 4. Suppose that the numbers α1, . . . , αr are algebraically independent
over Q and that the operator F : Hv(D)→ H(D) is continuous. Then

PT,F (A)
def
=

1

T
meas

{
τ ∈ [0, T ] : F (L(s+ iτ, χ, α, a)) ∈ A

}
, A ∈ B(Hv(D)),

converges weakly to PLF
−1 as T →∞.

Proof. The lemma is an immediate consequence of Lemmas 2 and 3. ut

For the proof of universality theorems for F (L(s+ iτ, χ, α, a)), we also need

the explicit form of the support of the measure PLF
−1. We apply a result of [5]

on the support of the measure PL.

Lemma 5. Suppose that χ1, . . . , χd are pairwise non-equivalent Dirichlet cha-
racters, the numbers α1, . . . , αr are algebraically independent over Q, and that
rank(Aj) = lj, j = 1, . . . , r. Then the support of PL is the set Sd ×Hv1(D).

Lemma 6. Suppose that the hypotheses of Lemma 5 are satisfied, and that the
operator F : Hv(D) → H(D) is continuous. Then the support of PLF

−1 is
the closure of the set F (Sd ×Hv1(D)).

Proof. Let g be an arbitrary element of the set F (Sd ×Hv1(D)), and G be
any open neighbourhood of g. Then F−1G is an open neighbourhood of a
certain element of the set Sd × Hv1(D). Therefore, Lemma 5 and properties
of a support imply that PL(F−1G) > 0, hence, PLF

−1(G) > 0. Moreover, in
virtue of Lemma 5 again,

PLF
−1(F (Sd ×Hv1(D))) = PL(Sd ×Hv1(D)) = 1.

Since the support of PLF
−1 is a closed set, from this the lemma follows. ut

We also need one equivalent of the weak convergence of probability mea-
sures.

Lemma 7. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then,
Pn, as n→∞, converges weakly to P if and only if, for every open set G ⊂ X,

lim inf
n→∞

Pn(G) ≥ P (G).

The lemma is a part of Theorem 2.1 from [1].

4 Proofs of other universality theorems

Proof of Theorem 3. It is not difficult to see that, under hypotheses of The-
orem 3, the support of the measure PLF

−1 is the whole of H(D). Indeed, if
(F−1G) ∩ (Sd × Hv1(D)) 6= ∅ for every open set G ⊂ H(D), then we have
that, for every element g ∈ H(D) and its open neighbourhood G, there exists
an element of the set F (Sd ×Hv1(D)) which belongs to the set G. This shows
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that the set F (Sd ×Hv1(D)) is dense in H(D). Since, by Lemma 6, the sup-
port of PLF

−1 is the closure of F (Sd ×Hv1(D)), from this we obtain that the
support of PLF

−1 is the whole of H(D).
In view of Lemma 1, there exists a polynomial p(s) satisfying inequality

(2.1). Define the set

G =

{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

Obviously, G is an open neighbourhood of p(s) which is an element of the
support of PLF

−1. Therefore, PLF
−1(G) > 0, and Lemmas 4 and 7 imply the

inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : F (L(s+ iτ, χ, α, a)) ∈ G

}
> 0,

or, by definition of G,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|F (L(s+ iτ, χ, α, a))− p(s)| < ε

2

}
> 0.

Combining this with (2.1) gives the assertion of the theorem.
Proof of Theorem 4. Let {Kl : l ∈ N} ⊂ D be the sequence of compact

subsets such that Kl ⊂ Kl+1 for all l ∈ N,

D =
∞
∪
l=1

Kl,

and, for every compact subset K ⊂ D, there exists Kl such that K ⊂ Kl. For
g1, g2 ∈ H(D), define

ρ(g1, g2) =

∞∑
l=1

2−l
sups∈Kl |g1(s)− g2(s)|

1 + sups∈Kl |g1(s)− g2(s)|
.

Then ρ is a metric on H(D) which induces its topology of uniform convergence
on compacta. Moreover, from the definition of ρ we have that the function g2
approximates g1 with suitable accuracy if g2 approximate g1 uniformly on Kl

for sufficiently large l. Obviously, we may choose the sets Kl with connected
complements, for example, we can take the closed rectangles. Thus, in H(D),
we can limit ourselves by approximation of functions on compact subsets with
connected complements.

We will show that the hypotheses of the theorem imply those of Theorem 3.
Let G ⊂ H(D) be an arbitrary non-empty open set. Then, in view of Lemma 1
and the above remark on approximation in H(D), there exists a polynomial
p(s) ∈ G. Therefore, the hypothesis (F−1{p}) ∩ (Sd × Hv1(D)) 6= ∅ implies
that of Theorem 3 that the set (F−1G) ∩ (Sd ×Hv1(D)) is non-empty. Thus,
Theorem 4 is a corollary of Theorem 3.

Proof of Theorem 5. We apply the arguments used in the proof of Theorem 3
with obvious modifications.
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Proof of Theorem 6. Since f(s) ∈ F (Sd×Hv1(D)), it follows from Lemma 6
that f(s) is an element of the support of the measure PLF

−1. Hence, PLF
−1(G)

> 0 for

G =

{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

}
.

Therefore, the theorem is a consequence of Lemmas 4 and 7.
Proof of Theorem 7. First suppose that k = 1. By Lemma 1, there exists a

polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

4
. (4.1)

Since f(s) 6= a1 on K, then also p(s) 6= a1 on K if ε > 0 is rather small.
Therefore, on K we can define a continuous branch of the logarithm log(p(s)−
a1) which will be an analytic function in the interior of K. Again by Lemma 1,
we can find a polynomial q(s) such that

sup
s∈K

∣∣∣p(s)− a1 − eq(s)∣∣∣ < ε

4
. (4.2)

Let, for brevity, ga1(s) = a1+eq(s). Then, clearly, ga1(s) ∈ H(D), and ga1(s) 6=
a1 on D. Thus, ga1(s) ∈ H1(D). In view of Lemma 6, the support of the
measure PLF

−1 contains the closure of the set H1(D). Therefore, the function
ga1(s) is an element of the support of the measure PLF

−1. Hence, PLF
−1(G) >

0, where

G =

{
g ∈ H(D) : sup

s∈K
|g(s)− ga1(s)| < ε

2

}
.

This together with Lemmas 4 and 7 shows that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|F (L(s+iτ, χ, α, a))−ga1(s)| < ε

2

}
>0. (4.3)

Inequalities (4.1) and (4.2) imply that

sup
s∈K
|f(s)− ga1(s)| < ε

2
.

This and (4.3) yield the assertion of the theorem in the case k = 1.
The case k ≥ 2 is contained in Theorem 6.
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[8] A. Laurinčikas. Universality of the Riemann zeta-function. Journal of Number
Theory, 130(10):2323–2331, 2010. http://dx.doi.org/10.1016/j.jnt.2010.04.007.
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