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Let PDðℝÞ be the family of continuous positive definite functions on ℝ. For an integer n > 1, a f ∈ PDðℝÞ is called n-divisible if
there is g ∈ PDðℝÞ such that gn = f . Some properties of infinite-divisible and n-divisible functions may differ in essence. Indeed, if
f is infinite-divisible, then for each integer n > 1, there is an unique g such that gn = f , but there is a n-divisible f such that the
factor g in gn = f is generally not unique. In this paper, we discuss about how rich can be the class fg ∈ PDðℝÞ: gn = f g for
n-divisible f ∈ PDðℝÞ and obtain precise estimate for the cardinality of this class.

1. Introduction

We start with some notations and definitions. Let ℤ, ℕ, ℝ,
and ℂ be the families of integers, non-negative integers, real,
and complex numbers, respectively. In the sequel, MðℝÞ
denotes the Banach algebra of bounded regular complex-
valued Borel measures on ℝ with the convolution as multi-
plication. MðℝÞ is equipped with the usual total variation
norm kμk of μ ∈MðℝÞ. The Fourier-Stieltjes transform of
μ ∈MðℝÞ is given by

bμ xð Þ =
ð
ℝ
e−ixtdμ tð Þ: ð1Þ

A function f : ℝ⟶ℂ is said to be positive definite if

〠
m

j,k=1
f xj − xk
À Á

cj�ck ≥ 0, ð2Þ

for each m ∈ℕ and all c1,⋯, cm ∈ℂ, x1,⋯, xm ∈ℝ. Any
such a function satisfies

f −xð Þ = �f xð Þ, ð3Þ

for all x ∈ℝ.
Positive definite functions on groups have a long history

and have many applications in probability theory and areas

such as stochastic processes [1], harmonic analysis [2],
potential theory [3], and spectral theory [4]. See [5] for other
applications and details. The analysis of the properties of
positive definite functions has vast literature, and the above
list is only a small sample.

We will denote by PDðℝÞ the family of continuous
nontrivial (≡0) positive definite functions on ℝ. Note that
if positive definite f is continuous in a neighborhood of
the origin, then it is uniformly continuous in ℝ (see, e.g.,
[4, Corollary 1.4.10]). Bochner’s theorem gives a description
of f ∈ PDðℝÞ in terms of the Fourier transform. Namely,
according to this theorem (see, e.g., [6], p. 71]), a continuous
function f : ℝ⟶ℂ is positive definite if and only if there
exists a nonnegative μf ∈MðℝÞ such that f ðxÞ =cμf ðxÞ, x ∈
ℝ. This statement implies, in particular, that

f xð Þj j ≤ f 0ð Þ = μf




 


, ð4Þ

for all x ∈ℝ. If, in addition, positive μf ∈MðℝÞ satisfies
kμf k = 1, then on the language of probability theory, such

a μf and the function f ðxÞ =cμf ð−xÞ, x ∈ℝ, are called a
probability measure and its characteristic function, respec-
tively (see, e.g., [7, 8], p.p. 8-9]).

Recall that in the probability theory a random variable ξ
is called n-divisible for certain n ∈ℕ, n > 1, if there exist
independent and identically distributed random variables
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ξ1,⋯, ξn such that ξ1 +⋯ + ξn has the sane distribution as ξ.
In terms of the characteristic function f of a real-valued ran-
dom variable, this means that f is n-divisible if there exists
g ∈ PDðℝÞ such that

f xð Þ = gn xð Þ, ð5Þ

for all x ∈ℝ. Next, f ∈ PDðℝÞ is said to be infinite-divisible if
it is n-divisible for each n ∈ℕ, n ≥ 2.

In the sequel, PDnðℝÞ and PD∞ðℝÞ denotes the families
of n-divisible and infinite divisible functions in PDðℝÞ,
respectively. An early overview over divisibility of distribu-
tions is given in [9]. Until very recently, the vast majority
of divisible positive definite functions or divisible distribu-
tions considered in the literature are also infinite-divisible.
Important applications of n-divisibility is in modelling, for
example, bug populations in entomology [10] or in financial
aspects of various insurance models [11, 12].

The motivation for our investigation are the following:
(i) partly from the fact that properties of functions in
PD∞ðℝÞ has rich literature (see, e.g., [9, 13, 14]), but the
n-divisible functions have been studied much less; and (ii)
partly from the fact that some properties of functions from
PD∞ðℝÞ and from PDnðℝÞ may differ in essence. One of
those properties is the following: if f ∈ PD∞ðℝÞ, then for
each n ∈ℕ, n > 1, there is an unique g ∈ PDðℝÞ such that
gn = f , but there is n-divisible f such that the factor g in
gn = f is generally not unique. In this paper, we study the fol-
lowing problems: (i) how rich can be the class fg ∈ PDðℝÞ:
gn = f g; and (ii) what properties of f determine the size of
fg ∈ PDðℝÞ: gn = f g. We present several precise estimates
for the cardinality of this class. Also, the main results are
validated via illustrative examples.

More precise, for n ∈ℕ, n > 1 and f ∈ PDnðℝÞ, we wish
to study the family

Dn fð Þ = g ∈ PD ℝð Þ: gn = ff g ð6Þ

and the quantity card ðDnð f ÞÞ, i.e., the cardinality of Dnð f Þ.
Note that there exists f ∈ PDnðℝÞ \ PD∞ðℝÞ such that the
factor g in Equation (5) will generally be not unique. It turns
out that card ðDnð f ÞÞ depends on n and in some way also
depends on the geometric structure of the zeros set Nf =
fx ∈ℝ : f ðxÞ = 0g of f ∈ PDnðℝÞ (see our Theorem 1 below).
The essential support Sf of f ∈ PDðℝÞ is defined by Sf =
ℝ \Nf . Combining Equation (3) with Equation (4), gives

0 ∈ Sf and − Sf = Sf : ð7Þ

Since functions f ∈ PDðℝÞ are continuous on ℝ, it fol-
lows that Sf is an open subset of ℝ. Therefore, Sf can be
represented as a finite or infinite but countable Sf =

S
j∈ΣEj,

where fEjgj∈Σ is the family of all open connected compo-

nents of Sf . In the sequel, comp ðSf Þ denotes the cardinality
of Σ. According to relations (7), we see that either there is
an k ∈ℕ such that comp ðSf Þ = 2k − 1 or comp ðSf Þ =∞.

Theorem 1. Let n ∈ℕ, n ≥ 2, and let f ∈ PDnðℝÞ. Assume
that

comp Sf
À Á

= 2k − 1, ð8Þ

for some k ∈ℕ. Then

card Dn fð Þð Þ ≤ nk−1: ð9Þ

The following theorem shows that the estimate (9) is
accurate.

Theorem 2. For each n ∈ℕ, n ≥ 2, each k ∈ℕ, and any open
subset E of ℝ which satisfies

0 ∈ E,−E = E and comp Eð Þ = 2k − 1, ð10Þ

there exists f ∈ PDnðℝÞ, such that Sf = E and

card Dn fð Þð Þ = nk−1: ð11Þ

We will present two examples of f ∈ PDnðℝÞ such that
Equation (11) is satisfied. In order to make the examples
easier to understand, we will consider only small values of
k. For α > 0, set

Λα xð Þ = max 1 − xj j ; 0f gð Þα, ð12Þ

x ∈ℝ. Note that Λα ∈ PDðℝÞ if and only if α ≥ 1 (see, e.g.,
[15, 16, p. 282]). We start with the case where Sf is a
bounded subset of ℝ.

Example 3. For n ∈ℕ, n > 1, let

f1 xð Þ =Λn xð Þ + 1
23n Λ1 x − π − 1ð Þ +Λ1 x − 2π + 1ð Þð Þn½

+ Λ1 x + π + 1ð Þ +Λ1 x + 2π − 1ð Þð Þn�
+ 1
24n Λ1 x − 11ð Þ +Λ1 x − 12ð Þ +Λ1 x − 13ð Þðð½

+Λ1 x − 14ð ÞÞn + Λ1 x + 11ð Þ +Λ1 x + 12ð Þð
+Λ1 x + 13ð Þ +Λ1 x + 14ð ÞÞn�:

ð13Þ

Then comp ðSf1Þ = 5, since

Sf1 = −15,−10ð Þ ∪ −2π,−πð Þ ∪ −1, 1ð Þ ∪ π, 2πð Þ ∪ 10, 15ð Þ:
ð14Þ

Moreover, f1 ∈ PDnðℝÞ and

card Dn f1ð Þð Þ = n5: ð15Þ

Now let us give an example of f ∈ PDnðℝÞ such that Sf
has unbounded components.
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Example 4. For any a > 15 and n ∈ℕ, n > 1, let

f2 xð Þ = f1 xð Þ + 1
22n 〠

∞

r=1

1
2r Λ1 x − a − rð Þ

 !n

+ 〠
∞

r=1

1
2r Λ1 x + a + rð Þ

 !n

,
ð16Þ

where f1 was defined by Equation (13). Then comp ðSf2Þ = 7,
since

Sf2 = −∞,−að Þ ∪ −15,−10ð Þ ∪ −2π,−πð Þ ∪ −1, 1ð Þ
∪ π, 2πð Þ ∪ 10, 15ð Þ ∪ a,∞ð Þ:

ð17Þ

Moreover, f2 ∈ PDnðℝÞ and

card Dn f2ð Þð Þ = n7: ð18Þ

Theorem 5. Suppose that an open subset E of ℝ satisfies

0 ∈ E,−E = E and comp Eð Þ =∞: ð19Þ

Let fEjg j∈Σ be the family of open connected components

of E. Assume that there is σ > 0 such that

inf
j∈Σ

sup
a,b∈Ej

a − bj j
 !

= 2σ: ð20Þ

Then, for any n ∈ℕ, n ≥ 2, there exists f ∈ PDnðℝÞ such
that Sf = E and

card Dn fð Þð Þ =∞: ð21Þ

2. Preliminaries and Proofs

If ν, μ ∈MðℝÞ, then the convolution ν ∗ μ is defined by

ν ∗ μ Eð Þ =
ð
ℝ
ν E − xð Þ dμ xð Þ ð22Þ

for each Borel subset E of ℝ. Note that

dν ∗ μ = bν · bμ: ð23Þ

In particular, for any n ∈ℕ,

dμ∗nð Þ = bμð Þn, ð24Þ

where the convolution power μ∗n is defined as the n-fold
iteration of the convolution of μ with itself.

The Lebesgue space L1ðℝÞ can be identified with the
closed ideal in MðℝÞ of measures absolutely continuous

with respect to the Lebesgue measure dx on ℝ. Namely, if
φ ∈ L1ðℝÞ, then φ is associated with the measure

μφ Eð Þ =
ð
E
φ tð Þ dt ð25Þ

for each Borel subset E of ℝ. Hence bφðxÞ = Ðℝ e−itxφðtÞ dt.
In particular, if μ = φðtÞdt, where φ ∈ L1ðℝÞ and φ is such
that kφkL1ðℝÞ = 1 and φ ≥ 0 on ℝ, then φ is called the proba-
bility density function of μ, or the probability density for
short.

We define the inverse Fourier transform by

ψ̆ tð Þ = 1
2π

ð
ℝ
e−it xψ xð Þ dx, ð26Þ

t ∈ℝ. Then the inversion formula dðψ̆Þ = ψ holds for
suitable ψ ∈ L1ðℝÞ.

Proof of Theorem 1. The conditions (7) and (8) imply that
there exists a sequence of real numbers

0 < b0 < a1 < b1 < a2 < b2 <⋯ < ak−1 < bk−1, ð27Þ

such that

Sf =
[− k−1ð Þ

j=−1
Ej

 ![
E0
[ [k−1

j=1
Ej

 !
, ð28Þ

where E0 = ð−b0, b0Þ, Ej = ðaj, bjÞ, and E−j = −Ej = ð−bj,−ajÞ
for j = 1, 2,⋯, k − 1. Note that in Equation (27) also might
be bk−1 = +∞. Let g ∈Dnð f Þ. Then it is immediate that Sf =
Sg and

g xð Þj jn = f xð Þj j ð29Þ

for all x ∈ Sf . Fix any Ej ⊂ Sf in Equation (28). Since Ej is an
open connected component of Sf , we have there are two
continuous functions uf ,j, ug,j : Ej ⟶ ð−π, π� such that

f xð Þ = f xð Þj jeiuf , j xð Þ and g xð Þ = g xð Þj jeiug, j xð Þ ð30Þ

for all x ∈ Ej. Using the identity g
n = f , it follows from Equa-

tions (29) and (30) that, for each for j ∈ f−ðk − 1Þ,⋯, k − 1g,
there exists some integer mj in f0,⋯, n − 1g such that

n · ug,j xð Þ = uf ,j xð Þ + 2πmj ð31Þ
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for all x ∈ Ej. Therefore, for any x ∈ Sf , we have

g xð Þ = 〠
k−1

j=− k−1ð Þ
g xð Þj jχEj

xð Þeiug, j

= 〠
k−1

j=− k−1ð Þ
f xð Þj j1/n+ χEj

xð Þe iuf , j+2πmjð Þ/n,
ð32Þ

where χEj
is the indicator function of the set Ej and j f ðxÞj1/n+

denotes the positive nth root of positive number j f ðxÞj,
x ∈ Sf . We claim that m0 = 0. Indeed, Equation (4) implies
that f ð0Þ and gð0Þ are positive numbers. Then Equation
(30) implies that uf ,0ð0Þ = ug,0ð0Þ = 0. Combining this with
Equation (31), yields the claim. Next, applying the property
Equation ((3)()), we get that m−j = −mj for all j ∈ f0, 1,⋯,
k − 1g. Therefore, we conclude from Equation (32) that

g xð Þ = f xð Þj j1/n+ χE0
xð Þ + 〠

k−1

j=1
f xð Þj j1/n+

Á χEj
−xð Þe− iuf , j xð Þ+2πmjð Þ/n + χEj

xð Þe iuf , j xð Þ+2πmjð Þ/n� �
,

ð33Þ

for all x ∈ Sg. Finally, keeping in mind that each mj, j = 1,
2,⋯, k − 1, may take any value in f0, 1,⋯, n − 1g, we
obtain from Equation (33) the estimate Equation (9). The-
orem 1 is proved.

Remark 6. Of course, we are not claiming that each of nk−1th
possible functions in Equation (33) belongs to PDðℝÞ.

Remark 7. In the proof of Theorem 1 we concerned with the
so-called problem of phase retrieval (see the equality Equa-
tion (29)), i.e., the problem of the recovery of a measure μ
given the amplitude j f j of its Fourier transform f = bμ . This
problem is well known in various fields of science and engi-
neering, including crystallography, nuclear magnetic reso-
nance and optics (see, for example, survey [17]).

Proof of Theorem 2. Note that as in the proof of Theorem 1,
in light of Equation (10), we see that there exists a sequence
of real numbers Equation (27) such that

E =
[− k−1ð Þ

j=−1
Ej

 ![
E0
[ [k−1

j=1
Ej

 !
: ð34Þ

Let us split our proof into two cases. First we consider the
case when all Ej in Equation (34) are finite intervals. Denote
by 2σ the minimal length of Ej, j = −ðk − 1Þ,⋯, k − 1, i.e.,

2σ =min 2b0 ; min
1≤j≤k−1

bj − aj
À Á� �

: ð35Þ

Let φ ∈ PDðℝÞ. Assume, in addition, that φ is real-valued
on ℝ and

Sφ = −σ, σð Þ: ð36Þ

For example, we can take φðxÞ =Λαðx/σÞ, where the
truncated power function Λα was defined by Equation
(11). Next, for each j ∈ f1, 2,⋯, k − 1g, we take any sequence
of real numbers fτj,sgmðjÞ

s=1 such that

aj + σ = τj,1 < τj,2 <⋯ < τj,m = bj − σ: ð37Þ

In addition, we assume that

τj, s+1ð Þ − τj,s < 2σ ð38Þ

for all s = 1,⋯,mðjÞ. Then we define the function

uj xð Þ = 〠
m jð Þ

s=1
φ x − τj,s
À Á

, ð39Þ

x ∈ℝ. Now Equations (37) and (38) imply that uj is sup-
ported on ½aj, bj� = �Ej and Suj

= Ej. Since φ ∈ PDðℝÞ is real-
valued on ℝ and satisfies Equation (36), we conclude that
φ is even and positive on Sφ. Therefore, the function Equa-
tion (39) and the function

uj −xð Þ = 〠
m jð Þ

s=1
φ x + τj,s
À Á ð40Þ

are strictly positive on Ej and on E−j = −Ej, respectively.
Let us define the function u0 such that it is supported on

½−b0, b0� = �E0 and Su0 = E0. To this end, we take any sequence
fθigri=0 of real numbers such that

−b0 + σ = θr <⋯θ1 < θ0 = 0, ð41Þ

θi − θi+1 < 2σ, ð42Þ
for i = 0,⋯, l − 1. Next, for an arbitrary sequence of positive
numbers fωigli=0, we define

u0 xð Þ = 〠
l

i=0
ωi φ x − θið Þ + φ x + θið Þð Þ, ð43Þ

x ∈ℝ. Of course, Equations (41) and (42) imply that u0 is
supported on ½−b0, b0� = �E0 and Su0 = E0.

Finally, given any fixed sequence of positive numbers
fαjgk−1j=1 , we set

u xð Þ = u0 xð Þ + 〠
k−1

j=1
αj uj xð Þ + uj −xð ÞÀ Á

, ð44Þ

x ∈ℝ: ð45Þ
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We claim that u ∈ PDðℝÞ and Su = E. First, as real-valued
function φ ∈ PDðℝÞ satisfies Equation (36), it follows from
Equations (34)–(38) and from Equations (41)–(42) that u
is continuous on ℝ and

Su =
[k
j=−k

Ej = E: ð46Þ

Second, since u is continuous and compactly supported,
it follows that u ∈ L1ðℝÞ. Therefore, the inverse Fourier
transform of u is well-defined. Hence

ŭ tð Þ = ŭ0 tð Þ + 〠
k−1

j=1
αjφ̆ tð Þ 〠

m jð Þ

s=1
2 cos τj,s · t

À Á !

= 2φ̆ tð Þ 〠
l

i=0
ωi cos θi · tð Þ + 〠

k−1

j=1
αj 〠

m jð Þ

s=1
cos τj,s · t
À Á !" #

= 2φ̆ tð Þ ω0 + 〠
l

i=1
ωi cos θi · tð Þ + 〠

k−1

j=1
αj 〠

m jð Þ

s=1
cos τ j,s · t
À Á !" #

:

ð47Þ

Let us fix the previously chosen positive numbers ω1,⋯,
ωk and α1,⋯, αk−1. Then we increase if necessary, the value
of ω0 in such a way that

ω0 > 〠
l

i=1
ωi + 〠

k−1

j=1
αjmj: ð48Þ

Bochner’s theorem shows that φ̆ðtÞ ≥ 0 for all t ∈ℝ, since
φ ∈ PDðℝÞ. Combining Equation (36) with (48), we see that ŭ
is nonnegative on ℝ and ŭ ≢ 0. In addition, we conclude (see,
e.g., [15, p. 409]) that ŭ ∈ L1ðℝÞ. Thus, applying the Fourier
transform to ŭ and using again Bohner’s theorem, we see that
u is continuous nontrivial positive definite, i.e., u ∈ PDðℝÞ.
This proves our claim.

Define

f xð Þ = un0 xð Þ + 〠
k−1

j=1
αnj unj xð Þ + unj −xð Þ
� �

, ð49Þ

x ∈ℝ. We claim that f satisfies the hypotheses of Theorem 2.
Let us first prove that f ∈ PDðℝÞ. Indeed, from Equation
(27) we see that the essential support Su of u, defined by
Equation (44) can be represented as the union

Sk−1
j=−ðk−1ÞEj

of a family of pairwise disjoint sets Ej = Suj
, j = −ðk − 1Þ⋯ ,

k − 1. Therefore,

un xð Þ = un0 xð Þ + 〠
k−1

j=1
αnj unj xð Þ + unj −xð Þ
� �

, ð50Þ

x ∈ℝ. We have already proven that u ∈ PDðℝÞ. On the other
hand, it is well known that for each n ∈ℕ and any ζ ∈ PDðℝÞ,
it follows that ζn ∈ PDðℝÞ. Thus, un ∈ PDðℝÞ. Combining

this fact with Equation (41), we conclude that f ∈ PDðℝÞ
and Sf = Su =

Sk−1
j=−ðk−1ÞEj = E.

Second, we will prove that the function f defined by
Equation (50) has the property Equation (11). To this end,
let ℤn denote the group ℤn =ℤ/nℤ ≅ f0, 1,⋯, n − 1g. Given
Λ = ðp1, p2,⋯, pk−1Þ ∈ℤk−1

n , define

gΛ xð Þ = u0 xð Þ + 〠
k−1

j=1
αj ei2πpj/nuj xð Þ + e−i2πpj/nuj −xð Þ
� �

,

ð51Þ

x ∈ℝ. We claim that gΛ ∈Dnð f Þ. By the same argument as
before for the function u defined by Equation (44), we see
that gΛ ∈ L1ðℝÞ. Therefore, ğΛ is well-defined and

ğΛ tð Þ = 2φ̆ tð Þ ω0 + 〠
l

i=1
ωi cos θi · tð Þ

"

+ 〠
k−1

j=1
αj 〠

m jð Þ

s=1
cos τj,s · t +

2πpj
n

� � !#
,

ð52Þ

t ∈ℝ. Now using Equation (48), we get that ğΛðtÞ ≥ 0 for
all t ∈ℝ and ğΛ ≢ 0. Hence, by Bochner’s theorem it follows
that gΛ ∈ PDðℝÞ. Next,

gn
Λ xð Þ = un0 xð Þ + 〠

k−1

j=1
αnj ei2πpj/nuj xð Þ
� �n

+ e−i2πpj/nuj −xð Þ
� �n� �

= un0 xð Þ + 〠
k−1

j=1
αnj uj xð Þn + uj −xð ÞnÀ Á

,

ð53Þ

x ∈ℝ. Combining this representation with Equations (49)
and (50), we see that gΛ ∈Dnð f Þ, which yields our claim.

Finally, again using the fact that SgΛ is the union of a
family of pairwise disjoint sets Suj

, j = −ðk − 1Þ,⋯, k − 1,
we conclude from Equation (51) that gΛ ≡ gΛ1

for some

Λ,Λ1 ∈ℤ
k−1
n , if and only if Λ =Λ1. This proves Equation

(11) in the case where each Ej in Equation (33) is a finite
interval.

Now we consider the second case with bk−1 =∞, i.e., if in
Equation (33) we have Ek−1 = ðak−1,∞Þ. Using the same
φ ∈ PD satisfying Equation (36), we define the functions
u0 and uj, j = −ðk − 2Þ,⋯, − 1, 1,⋯, k − 2 by Equations
(43) and (39)–(40), respectively. For j = k − 1, let us take
an arbitrary sequence of positive numbers fγrg∞r=1 such
that

〠
∞

r=1
γr = 1: ð54Þ
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Then we define

uk−1 xð Þ = 〠
∞

r=1
γrφ x − ak − rσð Þ, ð55Þ

x ∈ℝ. Obviously, supp ðuk−1Þ = �Ek1 and Suk−1 = Ek−1. Next,
for the function u, defined by Equation (44), it follows
from Equation (47) that

ŭ tð Þ = 2φ̆ tð Þ ω0 + 〠
l

i=1
ωi cos θi · tð Þ + 〠

k−2

j=1
αj 〠

m jð Þ

s=1
cos τj,s · t
À Á !"

+ αk−1 〠
∞

r=1
γr cos ak−1 + rσð Þtð Þ

#
:

ð56Þ

Again, for fixed positive numbers ω1,⋯ωk, α1,⋯, αk−1,
and γ1, γ2,⋯, we take the value of ω0 in such a way that

ω0 > 〠
l

i=1
ωi + 〠

k−2

j=1
αjmj + αk−1: ð57Þ

Combining Equation (36) with Equation (57), we con-
clude from Equation (56) that u is nonnegative on ℝ and
u≡0. Thus, u ∈ PDðℝÞ. Finally, we claim that the function
f defined by Equation (49) also satisfies the hypotheses of
Theorem 2 in our case with Ek−1 = ðak−1,∞Þ. The proof of
this claim is exactly the same as that of the first case.
Therefore, we skip the details of this proof. Theorem 2 is
proved.

Proof of Example 3.We claim that there are u0, u1, u2 and α1,
α2 such that the function in Equation (13) coincides with the
function defined by Equation (50). Indeed, set φ =Λ1, j = 3,
m1 = 2, m2 = 4 and

τ11 = π + 1, τ12 = 2π − 1, τ21 = 11, τ22 = 12, τ23 = 13, τ24 = 14:
ð58Þ

Since σ defined by Equation (35) is equal now to 1, then
τjs defined above satisfies Equations (37) and (38). Next, set

v1 xð Þ =Λ1 x − π − 1ð Þ +Λ1 x − 2π + 1ð Þ,
v2 xð Þ =Λ1 x − 11ð Þ +Λ1 x − 12ð Þ +Λ1 x − 13ð Þ +Λ1 x − 14ð Þ:

ð59Þ

For v0 =Λ1, α1 = 1/8 and α2 = 1/16, let v be given by

v xð Þ =Λ1 xð Þ + 1
8 v1 xð Þ + v1 −xð Þð Þ + 1

16 v2 xð Þ + v2 −xð Þð Þ:
ð60Þ

It is easily seen that Λ1, v1 and v2 are supported on a
family of pairwise disjoint sets. Therefore,

vn xð Þ =Λn xð Þ + 1
8 vn1 xð Þ + vn1 −xð Þð Þ + 1

16 vn2 xð Þ + vn2 −xð Þð Þ,
ð61Þ

since Λn
1 =Λn. Next

Svn = Sv = −15,−10ð Þ ∪ −2π,−πð Þ ∪ −1, 1ð Þ ∪ π, 2πð Þ ∪ 10, 15ð Þ:
ð62Þ

The function vn coincides with the function in Equation
(13) and is defined by the same rules as in Equation (50).
Our claim is proved.

Now, it is enough to show that v ∈ PDðℝÞ. Indeed,

v̆ tð Þ = 2Λ̆1 tð Þ 1 + 〠
2

j=1
αj 〠

m jð Þ

s=1
cos τjs · t
À Á !" #

= 2Λ̆1 tð Þ 1 + 1
8 cos τ11tð Þ + cos τ12tð Þð Þ

�
+ 1
16 cos τ21tð Þ + cos τ22tð Þ + cos τ23tð Þ + cos τ24tð Þð Þ

�
≥ Λ̆1 tð Þ ≥ 0

ð63Þ

for all t ∈ℝ, since Λ1 ∈ PDðℝÞ. Therefore, Bochner’s theo-
rem shows that v ∈ PDðℝÞ.

By repeating the finally part of the proof of Theorem 2,
we complete the proof of Example 3.

Proof of Example 4. This example concerns the case that was
considered in the second part of the proof of Theorem 2, i.e.,
when Sf contains two unbounded components ð−∞, − aÞ
and ða,∞Þ. Also, as in the proof of Theorem 2, is enough
to show that Equations (54) and (57) are satisfied. Indeed,
Equation (54) is clear, since γr = 1/2r , r = 1, 2,⋯. We con-
clude from Equations (13) and (16) that

k = 4, σ = 1, m1 = 2, m2 = 4, ω0 = 1,

ω1 = 0, α1 =
1
8 , α1 =

1
16 and α3 =

1
4 :

ð64Þ

Therefore, a simple calculation shows that Equation (57)
is also satisfied. This completes the proof.

Proof of Theorem 5. We will prove this theorem using essen-
tial the same techniques as in the proof of Theorem 2.
Therefore, we sketch the proof only. From Equations (19)
and (20) we have that there exits an infinite sequence

0 < b0 < a1 < b1 < a2 < b2 <⋯ <∞ ð65Þ
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such that

E =
[
j∈ℤ

Ej, ð66Þ

where E0 = ð−b0, b0Þ and Ej = ðaj, bjÞ = −E−j for each j ∈ℕ.
Moreover, from Equation (20) we see that

min 2b0 ; infj∈ℕ
bj − aj
À Á� �

= 2σ > 0: ð67Þ

Let φ ∈ PDðℝÞ be the same function satisfying Equation
(36). For j = 0 and for j ∈ℕ, we define the functions u0 and
uj by Equations (39) and (43)., respectively. Note that the

sequences fτjsg
mðjÞ
s=1 and fθigli=0 satisfy Equations (37)–(38)

and (40)–(42), respectively. For any j ∈ℕ, let us define

αj =
1

2jm jð Þ Ej

�� �� , ð68Þ

where jEjj is the length of Ej, i.e., jEjj = sup fja − bj: a, b ∈
Ejg. Note that the condition (20) guarantees that fαjgj∈ℕ is

a well-defined sequence of positive numbers. Set

u xð Þ = u0 xð Þ + 〠
j∈ℕ

αj uj xð Þ + uj −xð ÞÀ Á
, ð69Þ

x ∈ℝ. Combining Equations (4), (39), and (43) with (68), we
get

u xð Þj j ≤ 2φ 0ð Þ 〠
l

i=0
ωi

 !
IE0

xð Þ + 〠
j∈ℕ

1
2j Ej

�� �� IEj
xð Þ

 !" #
ð70Þ

for any x ∈ℝ. Here, IDðxÞ denotes the indicator function of a
subset D ⊂ℝ. Hence,

φk kL1 ℝð Þ ≤ 2φ 0ð Þ 2b0 〠
l

i=0
ωi + 1

" #
: ð71Þ

Therefore, φ ∈ L1ðℝÞ and

u tð Þ = 2φ tð Þ ω0 + 〠
l

i=1
ωi cos θi · tð Þ

"

+ 〠
j∈ℕ

αj 〠
m jð Þ

s=1
cos τjs · t
� � !#

:

ð72Þ

Again, for fixed positive numbers ω1,⋯ωk, we take the
value of ω0 in such a way that

ω0 > 〠
l

i=1
ωi +

1
2σ : ð73Þ

Combining this condition with Equation (67) and Equa-
tion (68), we conclude that the function ŭ in Equation (61) is
nonnegative on ℝ and ŭ ≢ 0. Thus, u ∈ PDðℝÞ. Define

f xð Þ = un0 xð Þ + 〠
j∈ℕ

αnj unj xð Þ + unj −xð Þ
� �

, ð74Þ

x ∈ℝ. Next, for Λ = ðp1, p2,⋯Þ ∈ℤ∞, set

gΛ xð Þ = u0 xð Þ + 〠
j∈ℕ

αj ei2πpj/nuj xð Þ + e−i2πpj/nuj −xð Þ
� �

, ð75Þ

x ∈ℝ. We claim that: (i) f ∈ PDðℝÞ, (ii) E defined by
Equation (66) satisfies Equations (19) and (20), and (iii)
gΛ ∈Dnð f Þ. The proofs of these claims is exactly the same
as in the case of functions f and gΛ defined by Equations
(49) and (51), respectively.

Finally, again using the fact that Sf = Su and therefore,
SgΛ = Su are the unit of a family of pairwise disjoint sets Suj

,

j ∈ℤ, where u−jðxÞ = ujð−xÞ, j ∈ℕ, we see from Equation
(75) that gΛ ≡ gΛ1

for some Λ,Λ1 ∈ℤ
∞, if and only if Λ =

Λ1. This proves Equation (21) and therefore completes the
proof our theorem.

3. Conclusion

We study the n-divisible functions in PDðℝÞ, where PDðℝÞ
denotes the family of continuous positive definite functions
on the real line ℝ. While there is rich literature on infinite-
divisible functions in PDðℝÞ, for an integer n > 1, properties
of n-divisible functions from PDðℝÞ have been studied
much less. Surprisingly, it appears that some properties of
infinite-divisible and n-divisible functions f ∈ PDðℝÞ may
differ in essence. In this paper, we examine one such prop-
erty, which has not yet been discussed in detail in the litera-
ture. More precisely, if f ∈ PDðℝÞ is infinite-divisible, then it
is well-known that, for each integer n > 1, there is an unique
g ∈ PDðℝÞ, such that gn = f . On the other hand, there is
n-divisible f such that the factor g in gn = f is generally
not unique. For n-divisible f ∈ PDðℝÞ, we study the fol-
lowing questions: (i) how rich can be the class Dnð f Þ =
fg ∈ PDðℝÞ: gn = f g; and (ii) what properties of f deter-
mine the size of Dnð f Þ. We present several precise
estimates for the cardinality of Dnð f Þ. Also, the main
results are validated via illustrative examples.
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