
Modern Stochastics: Theory and Applications 3 (2016) 165–179
DOI: 10.15559/16-VMSTA60

Randomly stopped sums with consistently
varying distributions
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Abstract Let {ξ1, ξ2, . . .} be a sequence of independent random variables, and η be a count-
ing random variable independent of this sequence. We consider conditions for {ξ1, ξ2, . . .} and
η under which the distribution function of the random sum Sη = ξ1 + ξ2 + · · · + ξη belongs
to the class of consistently varying distributions. In our consideration, the random variables
{ξ1, ξ2, . . .} are not necessarily identically distributed.
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1 Introduction

Let {ξ1, ξ2, . . .} be a sequence of independent random variables (r.v.s) with distribu-
tion functions (d.f.s) {Fξ1 , Fξ2, . . .}, and let η be a counting r.v., that is, an integer-
valued, nonnegative, and nondegenerate at zero r.v. In addition, suppose that the r.v. η
and r.v.s {ξ1, ξ2, . . .} are independent. Let S0 = 0, Sn = ξ1 + ξ2 + · · · + ξn for n ∈ N,
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and let

Sη =
η∑

k=1

ξk

be the randomly stopped sum of r.v.s {ξ1, ξ2, . . .}.
We are interested in conditions under which the d.f. of Sη,

FSη(x) = P(Sη � x) =
∞∑

n=0

P(η = n)P(Sn � x), (1)

belongs to the class of consistently varying distributions.
Throughout this paper, f (x)= o(g(x)) means that limx→∞ f (x)/g(x) = 0, and

f (x) ∼ g(x) means that limx→∞ f (x)/g(x) = 1 for two vanishing (at infinity)
functions f and g. Also, we denote the support of a counting r.v. η by

supp(η) := {
n ∈ N0 : P(η = n) > 0

}
.

Before discussing the properties of FSη , we recall the definitions of some classes
of heavy-tailed d.f.s, where F(x) = 1 − F(x) for all real x and a d.f. F .

• A d.f. F is heavy-tailed (F ∈ H) if for every fixed δ > 0,

lim
x→∞ F(x)eδx = ∞.

• A d.f. F is long-tailed (F ∈ L) if for every y (equivalently, for some y > 0),

F(x + y) ∼ F(x).

• A d.f. F has a dominatedly varying tail (F ∈ D) if for every fixed y ∈ (0, 1)

(equivalently, for some y ∈ (0, 1)),

lim sup
x→∞

F(xy)

F (x)
< ∞.

• A d.f. F has a consistently varying tail (F ∈ C) if

lim
y↑1

lim sup
x→∞

F(xy)

F (x)
= 1.

• A d.f. F has a regularly varying tail (F ∈ R) if

lim
x→∞

F(xy)

F (x)
= y−α

for some α � 0 and any fixed y > 0.
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Fig. 1. Classes of heavy-tailed distributions.

• A d.f. F supported on the interval [0,∞) is subexponential (F ∈ S) if

lim
x→∞

F ∗ F(x)

F (x)
= 2. (2)

If a d.f. G is supported on R, then we suppose that G is subexponential (G ∈ S)

if the d.f. F(x) = G(x)1[0,∞)(x) satisfies relation (2).

It is known (see, e.g., [4, 11, 13], and Chapters 1.4 and A3 in [8]) that these classes
satisfy the following inclusions:

R ⊂ C ⊂ L ∩ D ⊂ S ⊂ L ⊂ H, D ⊂ H.

These inclusions are depicted in Fig. 1 with the class C highlighted.
There exist many results on sufficient or necessary and sufficient conditions in

order that the d.f. of the randomly stopped sum (1) belongs to some heavy-tailed
distribution class. Here we present a few known results concerning the belonging of
the d.f. FSη to some class. The first result on subexponential distributions was proved
by Embrechts and Goldie (see Theorem 4.2 in [9]) and Cline (see Theorem 2.13
in [5]).

Theorem 1. Let {ξ1, ξ2, . . .} be independent copies of a nonnegative r.v. ξ with subex-
ponential d.f. Fξ . Let η be a counting r.v. independent of {ξ1, ξ2, . . .}. If E(1 + δ)η <

∞ for some δ > 0, then the d.f. FSη ∈ S .

Similar results for the class D can be found in Leipus and Šiaulys [14]. We present
the statement of Theorem 5 from this work.

Theorem 2. Let {ξ1, ξ2, . . .} be i.i.d. nonnegative r.v.s with common d.f. Fξ ∈ D and
finite mean Eξ . Let η be a counting r.v. independent of {ξ1, ξ2, . . .} with d.f. Fη and
finite mean Eη. Then d.f. FSη ∈ D iff min{Fξ , Fη} ∈ D.

We recall only that the d.f. F belongs to the class D if and only if the upper
Matuszewska index J+

F < ∞, where, by definition,

J+
F = − lim

y→∞
1

log y
log

(
lim inf
x→∞

F(xy)

F (x)

)
.

The random convolution closure for the class L was considered, for instance, in
[1, 14, 16, 17]. We now present a particular statement of Theorem 1.1 from [17].
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Theorem 3. Let {ξ1, ξ2, . . .} be independent r.v.s, and η be a counting r.v. independent
of {ξ1, ξ2, . . .} with d.f. Fη. Then the d.f. FSη ∈ L if the following five conditions are
satisfied:

(i) P(η � κ) > 0 for some κ ∈ N;

(ii) for all k � κ , the d.f. FSk
of the sum Sk is long tailed;

(iii) sup
k�1

sup
x∈R

(FSk
(x) − FSk

(x − 1))
√

k < ∞;

(iv) lim sup
z→∞

sup
k�κ

sup
x�k(z−1)+z

F Sk
(x − 1)

F Sk
(x)

= 1;

(v) Fη(ax) = o(
√

x FSκ (x)) for each a > 0.

We observe that the case of identically distributed r.v.s is considered in Theo-
rems 1 and 2. In Theorem 3, r.v.s {ξ1, ξ2, . . .} are independent but not necessarily
identically distributed. A similar result for r.v.s having d.f.s with dominatedly vary-
ing tails can be found in [6].

Theorem 4 ([6], Theorem 2.1). Let r.v.s {ξ1, ξ2, . . .} be nonnegative independent,
not necessarily identically distributed, and η be a counting r.v. independent of {ξ1,

ξ2, . . .}. Then the d.f FSη belongs to the class D if the following three conditions are
satisfied:

(i) Fξκ ∈ D for some κ ∈ supp(η),

(ii) lim sup
x→∞

sup
n�κ

1

nF ξκ (x)

n∑
i=1

Fξi
(x) < ∞,

(iii) Eηp+1 < ∞ for some p > J+
Fξκ

.

In this work, we consider randomly stopped sums of independent and not neces-
sarily identically distributed r.v.s. As noted before, we restrict ourselves on the class
C. If r.v.s {ξ1, ξ2, . . .} are not identically distributed, then different collections of con-
ditions on {ξ1, ξ2, . . .} and η imply that FSη ∈ C. We suppose that some r.v.s from
{ξ1, ξ2, . . .} have distributions belonging to the class C, and we find minimal condi-
tions on {ξ1, ξ2, . . .} and η for the distribution of the randomly stopped sum Sη to
remain in the same class. It should be noted that we use the methods developed in [6]
and [7].

The rest of the paper is organized as follows. In Section 2, we present our main
results together with two examples of randomly stopped sums Sη with d.f.s having
consistently varying tails. Section 3 is a collection of auxiliary lemmas, and the proofs
of the main results are presented in Section 4.
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2 Main results

In this section, we present three statements in which we describe the belonging of a
randomly stopped sum to the class C. In the conditions of Theorem 5, the counting r.v.
η has a finite support. Theorem 6 describes the situation where no moment conditions
on the r.v.s {ξ1, ξ2, . . .} are required, but there is strict requirement for η. Theorem 7
deals with the opposite case: the r.v.s {ξ1, ξ2, . . .} should have finite means, whereas
the requirement for η is weaker. It should be noted that the case of real-valued r.v.s
{ξ1, ξ2, . . .} is considered in Theorems 5 and 6, whereas Theorem 7 deals with non-
negative r.v.s.

Theorem 5. Let {ξ1, ξ2, . . . , ξD}, D ∈ N, be independent real-valued r.v.s, and η be
a counting r.v. independent of {ξ1, ξ2, . . . , ξD}. Then the d.f. FSη belongs to the class
C if the following conditions are satisfied:

(a) P(η � D) = 1,

(b) Fξ1 ∈ C,

(c) for each k = 2, . . . , D, either Fξk
∈ C or Fξk

(x)= o(F ξ1(x)).

Theorem 6. Let {ξ1, ξ2, . . .} be independent real-valued r.v.s, and η be a counting r.v.
independent of {ξ1, ξ2, . . .}. Then the d.f. FSη belongs to the class C if the following
conditions are satisfied:

(a) Fξ1 ∈ C,

(b) for each k � 2, either Fξk
∈ C or Fξk

(x)= o(F ξ1(x)),

(c) lim sup
x→∞

sup
n�1

1

nF ξ1(x)

n∑
i=1

Fξi
(x) < ∞,

(d) Eηp+1 < ∞ for some p > J+
Fξ1

.

When {ξ1, ξ2, . . .} are identically distributed with common d.f. Fξ ∈ C, conditions
(a), (b), and (c) of Theorem 6 are satisfied obviously. Hence, we have the following
corollary.

Corollary 1 (See also Theorem 3.4 in [3]). Let {ξ1, ξ2, . . .} be i.i.d. real-valued r.v.s
with d.f. Fξ ∈ C, and η be a counting r.v. independent of {ξ1, ξ2, . . .}. Then the d.f.
FSη belongs to the class C if Eηp+1 < ∞ for some p > J+

Fξ
.

Theorem 7. Let {ξ1, ξ2, . . .} be independent nonnegative r.v.s, and η be a counting
r.v. independent of {ξ1, ξ2, . . .}. Then the d.f. FSη belongs to the class C if the following
conditions are satisfied:

(a) Fξ1 ∈ C,

(b) for each k � 2, either Fξk
∈ C or Fξk

(x)= o(F ξ1(x)),

(c) Eξ1 < ∞,
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(d) Fη(x) = o(F ξ1(x)),

(e) lim sup
x→∞

sup
n�1

1

nF ξ1(x)

n∑
i=1

Fξi
(x) < ∞,

(f) lim sup
u→∞

sup
n�1

1

n

n∑
k=1

Eξk�u

Eξk = 0.

Similarly to Corollary 1, we can formulate the following statement. We note that,
in the i.i.d. case, conditions (a), (b), (e), and (f) of Theorem 7 are satisfied.

Corollary 2. Let {ξ1, ξ2, . . .} be i.i.d. nonnegative r.v.s with common d.f. Fξ ∈ C, and
η be a counting r.v. independent of {ξ1, ξ2, . . .}. Then the d.f. FSη belongs to the class

C under the following two conditions: Eξ < ∞ and Fη(x)= o(F ξ (x)).

Further in this section, we present two examples of r.v.s {ξ1, ξ2, . . .} and η for
which the random sum FSη has a consistently varying tail.

Example 1. Let {ξ1, ξ2, . . .} be independent r.v.s such that ξk are exponentially dis-
tributed for all even k, that is,

Fξk
(x) = e−x, x � 0, k ∈ {2, 4, 6, . . .},

whereas, for each odd k, ξk is a copy of the r.v.

(1 + U) 2G ,

where U and G are independent r.v.s, U is uniformly distributed on the interval [0, 1],
and G is geometrically distributed with parameter q ∈ (0, 1), that is,

P(G = l) = (1 − q) ql, l = 0, 1, . . . .

In addition, let η be a counting r.v. independent of {ξ1, ξ2, . . .} and distributed accord-
ing to the Poisson law.

Theorem 6 implies that the d.f. of the randomly stopped sum Sη belongs to the
class C because:

(a) Fξ1 ∈ C due to considerations in pp. 122–123 of [2],

(b) Fξk
∈ C for k ∈ {3, 5, . . .}, and Fξk

(x)= o(F ξ1(x)) for k ∈ {2, 4, 6, . . .},

(c) lim sup
x→∞

sup
n�1

1

nF ξ1(x)

n∑
i=1

Fξi
(x) � 1,

(d) all moments of the r.v. η are finite.

Note that ξ1 does not satisfy condition (c) of Theorem 7 in the case q � 1/2.
Hence, Example 1 describes the situation where Theorem 6 should be used instead of
Theorem 7.
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Example 2. Let {ξ1, ξ2, . . .} be independent r.v.s such that ξk are distributed accord-
ing to the Pareto law (with tail index α = 2) for all odd k, and ξk are exponentially
distributed (with parameter equal to 1) for all even k, that is,

Fξk
(x) = 1

x2
, x � 1, k ∈ {1, 3, 5, . . .},

F ξk
(x) = e−x, x � 0, k ∈ {2, 4, 6, . . .}.

In addition, let η be a counting r.v independent of {ξ1, ξ2, . . .} that has the Zeta distri-
bution with parameter 4, that is,

P(η = m) = 1

ζ(4)

1

(m + 1)4
, m ∈ N0,

where ζ denotes the Riemann zeta function.

Theorem 7 implies that the d.f. of the randomly stopped sum Sη belongs to the
class C because:

(a) Fξ1 ∈ C,

(b) Fξk
∈ C for k ∈ {3, 5, . . .}, and Fξk

(x)= o(F ξ1(x)) for k ∈ {2, 4, 6, . . .},
(c) Eξ1 = 2,

(d) Fη(x) = o(F ξ1(x)),

(e) lim sup
x→∞

sup
n�1

1

nF ξ1(x)

n∑
i=1

Fξi
(x) � 1,

(f) max
k∈N

Eξk = 2.

Regarding condition (d), it should be noted that the Zeta distribution with param-
eter 4 is a discrete version of Pareto distribution with tail index 3.

Note that η does not satisfy the condition (d) of Theorem 6 because J+
Fξ1

= 2

and Eη3 = ∞. Hence, Example 2 describes the situation where Theorem 7 should be
used instead of Theorem 6.

3 Auxiliary lemmas

This section deals with several auxiliary lemmas. The first lemma is Theorem 3.1 in
[3] (see also Theorem 2.1 in [15]).

Lemma 1. Let {X1, X2, . . . Xn} be independent real-valued r.v.s. If FXk
∈ C for each

k ∈ {1, 2, . . . , n}, then

P

( n∑
i=1

Xi > x

)
∼

n∑
i=1

FXi
(x).
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The following statement about nonnegative subexponential distributions was proved
in Proposition 1 of [10] and later generalized to a wider distribution class in Corollary
3.19 of [12].

Lemma 2. Let {X1, X2, . . . Xn} be independent real-valued r.v.s. Assume that
FXi

/F (x) →
x→∞ bi for some subexponential d.f. F and some constants bi � 0, i ∈

{1, 2, . . . n}. Then
FX1 ∗ FX2 ∗ · · · ∗ FXn(x)

F (x)
→

x→∞

n∑
i=1

bi.

In the next lemma, we show in which cases the convolution FX1 ∗FX2 ∗ · · · ∗FXn

belongs to the class C.

Lemma 3. Let {X1, X2, . . . , Xn}, n ∈ N, be independent real-valued r.v.s. Then the
d.f. FΣn of the sum Σn = X1 + X2 + · · · + Xn belongs to the class C if the following
conditions are satisfied:

(a) FX1 ∈ C,

(b) for each k = 2, . . . , n, either FXk
∈ C or FXk

(x)= o(FX1(x)).

Proof. Evidently, we can suppose that n � 2. We split our proof into two parts.
First part. Suppose that FXk

∈ C for all k ∈ {1, 2, . . . , n}. In such a case, the
lemma follows from Lemma 1 and the inequality

a1 + a2 + · · · + am

b1 + b2 + · · · + bm

� max

{
a1

b1
,
a2

b2
, . . . ,

am

bm

}
(3)

for ai � 0 and bi > 0, i = 1, 2, . . . , m.
Namely, using the relation of Lemma 1 and estimate (3), we get that

lim sup
x→∞

FΣn(xy)

FΣn(x)
= lim sup

x→∞

∑n
k=1 FXk

(xy)∑n
k=1 FXk

(x)

� max
1�k�n

lim sup
x→∞

FXk
(xy)

FXk
(x)

for arbitrary y ∈ (0, 1).
Since FXk

∈ C for each k, the last estimate implies that the d.f. FΣn has a consis-
tently varying tail, as desired.

Second part. Now suppose that FXk
/∈ C for some of indexes k ∈ {2, 3, . . . , n}.

By the conditions of the lemma we have that FXk
(x) = o(FX1(x)) for such k. Let

K ⊂ {2, 3, . . . , n} be the subset of indexes k such that

FXk
/∈ C and FXk

(x) = o
(
FX1(x)

)
.

By Lemma 2,
FΣ̂n

(x) ∼ FX1(x),

where
Σ̂n = X1 +

∑
k∈K

Xk.
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Hence,

lim sup
x→∞

FΣ̂n
(xy)

F Σ̂n
(x)

= lim sup
x→∞

FX1(xy)

FX1(x)
(4)

for every y ∈ (0, 1).
Equality (4) implies immediately that the d.f. FΣ̂n

belongs to the class C. There-
fore, the d.f. FΣn also belongs to the class C according to the first part of the proof
because

Σn = Σ̂n +
∑
k /∈K

Xk

and FXk
∈ C for each k /∈ K. The lemma is proved.

The following two statements about dominatedly varying distributions are
Lemma 3.2 and Lemma 3.3 in [6]. Since any consistently varying distribution is also
dominatingly varying, these statements will be useful in the proofs of our main results
concerning the class C.

Lemma 4. Let {X1, X2, . . .} be independent real-valued r.v.s, and FXν ∈ D for some
ν � 1. Suppose, in addition, that

lim sup
x→∞

sup
n�ν

1

nFXν (x)

n∑
i=1

FXi
(x) < ∞.

Then, for each p > J+
FXν

, there exists a positive constant c1 such that

FSn(x) � c1n
p+1FXν (x) (5)

for all n � ν and x � 0.

In fact, Lemma 4 is proved in [6] for nonnegative r.v.s. However, the lemma re-
mains valid for real-valued r.v.s. To see this, it suffices to observe that P(X1 + X2 +
· · · + Xn > x) � P(X+

1 + X+
2 · · · + X+

n > x) and P(Xk > x) = P(X+
k > x), where

n ∈ N, k ∈ {1, 2, . . . , n}, x � 0, and a+ denotes the positive part of a.

Lemma 5. Let {X1, X2, . . .} be independent real-valued r.v.s, and FXν ∈ D for some
ν � 1. Let, in addition,

lim
u→∞ sup

n�ν

1

n

n∑
k=1

E
(|Xk|1{Xk�−u}

) = 0,

lim sup
x→∞

sup
n�ν

1

nFXν (x)

n∑
i=1

FXi
(x) < ∞,

and EXk = EX+
k −EX−

k = 0 for k ∈ N. Then, for each γ > 0, there exists a positive
constant c2 = c2(γ ) such that

P(Sn > x) � c2nFXν (x)

for all x � γ n and all n � ν.
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4 Proofs of the main results

Proof of Theorem 5. It suffices to prove that

lim sup
y↑1

lim sup
x→∞

FSη(xy)

FSη(x)
� 1. (6)

According to estimate (3), for x > 0 and y ∈ (0, 1), we have

FSη(xy)

FSη(x)
=

∑D
n=1

n∈supp(η)

P(Sn > xy)P(η = n)

∑D
n=1

n∈supp(η)

P(Sn > x)P(η = n)
� max

1�n�D
n∈supp(η)

P(Sn > xy)

P(Sn > x)
.

Hence, by Lemma 3,

lim sup
y↑1

lim sup
x→∞

FSη(xy)

F Sη(x)
� lim sup

y↑1
lim sup
x→∞

max
1�n�D

n∈supp(η)

F Sn(xy)

FSn(x)

� max
1�n�D

n∈supp(η)

lim sup
y↑1

lim sup
x→∞

FSn(xy)

FSn(x)
= 1,

which implies the desired estimate (6). The theorem is proved.

Proof of Theorem 6. As in Theorem 5, it suffices to prove inequality (6). For all
K ∈ N and x > 0, we have

P(Sη > x) =
( K∑

n=1

+
∞∑

n=K+1

)
P(Sn > x)P(η = n).

Therefore, for x > 0 and y ∈ (0, 1), we have

P(Sη > xy)

P(Sη > x)
=

∑K
n=1 P(Sn > xy)P(η = n)

P(Sη > x)

+
∑∞

n=K+1 P(Sn > xy)P(η = n)

P(Sη > x)

=: J1 + J2. (7)

The random variable η is not degenerate at zero, so there exists a ∈ N such that
P(η = a) > 0. If K � a, then using inequality (3), we get

J1 �

∑K
n=1

n∈supp(η)

P(Sn > xy)P(η = n)

∑K
n=1

n∈supp(η)

P(Sn > x)P(η = n)
� max

1�n�K
n∈supp(η)

P(Sn > xy)

P(Sn > x)
.

Similarly as in the proof of Theorem 5, it follows that

lim sup
y↑1

lim sup
x→∞

J1 � max
1�n�K
n∈supp(η)

lim sup
y↑1

lim sup
x→∞

FSn(xy)

FSn(x)
= 1. (8)
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Since C ⊂ D, we can use Lemma 4 for the numerator of J2 to obtain

∞∑
n=K+1

P(Sn > xy)P(η = n) � c3Fξ1(xy)

∞∑
n=K+1

np+1
P(η = n)

with some positive constant c3. For the denominator of J2, we have that

P(Sη > x) =
∞∑

n=1

P(Sn > x)P(η = n)

� P(Sa > x)P(η = a).

The conditions of the theorem imply that

Sa = ξ1 +
∑
k∈Ka

ξk +
∑
k /∈Ka

ξk,

where Ka = {k ∈ {2, . . . , a} : Fξk
/∈ C, F ξk

(x) = o( F ξ1(x))}.
By Lemma 2

F Ŝa
(x)/F ξ1(x) →

x→∞ 1,

where FŜa
is the d.f. of the sum

Ŝa = ξ1 +
∑
k∈Ka

ξk

In addition, by Lemma 3 we have that the d.f. FŜa
belongs to the class C.

If k /∈ Ka , then Fξk
∈ C by the conditions of the theorem. This fact and Lemma 1

imply that

lim inf
x→∞

P(Sa > x)

F ξ1(x)
� 1 +

∑
k /∈Ka

lim inf
x→∞

Fξk
(x)

F ξ1(x)
.

Hence,

P(Sη > x) � 1

2
Fξ1(x)P(η = a) (9)

for x sufficiently large. Therefore,

lim sup
y↑1

lim sup
x→∞

J2

� 2 c3

P(η = a)

(
lim sup

y↑1
lim sup
x→∞

Fξ1(xy)

F ξ1(x)

) ∞∑
n=K+1

np+1
P(η = n). (10)

Estimates (7), (8), and (10) imply that

lim sup
y↑1

lim sup
x→∞

P(Sη > xy)

P(Sη > x)
� 1 + 2 c3

P(η = a)
Eηp+11{η>K}

for arbitrary K � a.
Letting K tend to infinity, we get the desired estimate (6) due to condition (d).

The theorem is proved.
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Proof of Theorem 7. Once again, it suffices to prove inequality (6).
By condition (e) we have that there exist two positive constants c4 and c5 such

that
n∑

i=1

Fξi
(x) � c5nF ξ1(x), x � c4, n ∈ N.

Therefore,

ESn =
n∑

j=1

Eξj =
n∑

j=1

( ∫ c4

0
+

∫ ∞

c4

)
Fξj

(u)du � c4n + c5nEξ1 =: c6n (11)

for a positive constant c6 and all n ∈ N.
If K ∈ N and x > 4Kc6, then we have

P(Sη > x) = P(Sη > x, η � K)

+ P

(
Sη > x,K < η � x

4c6

)

+ P

(
Sη > x, η >

x

4c6

)
.

Therefore,

P(Sη > xy)

P(Sη > x)
= P(Sη > xy, η � K)

P(Sη > x)

+ P
(
Sη > xy,K < η � xy

4c6

)
P(Sη > x)

+ P
(
Sη > xy, η >

xy
4c6

)
P(Sη > x)

=: I1 + I2 + I3 (12)

if xy > 4Kc6, x > 0, and y ∈ (0, 1).
The random variable η is not degenerate at zero, so P(η = a) > 0 for some

a ∈ N. If K � a, then
lim sup

y↑1
lim sup
x→∞

I1 � 1 (13)

similarly to estimate (8) in Theorem 6.
For the numerator of I2, we have

I2,1 := P

(
Sη > xy,K < η � xy

4c6

)

=
∑

K<n� xy
4c6

P

( n∑
i=1

(ξi − Eξi) > xy −
n∑

j=1

Eξj

)
P(η = n)

�
∑

K<n� xy
4c6

P

( n∑
i=1

(ξi − Eξi) >
3

4
xy

)
P(η = n) (14)

by inequality (11).
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The random variables ξ1 −Eξ1, ξ2 −Eξ2, . . . satisfy the conditions of Lemma 5.
Namely, E(ξk − Eξk) = 0 for k ∈ N and Fξ1−Eξ1 ∈ C ⊂ D obviously. In addition,

lim sup
x→∞

sup
n�1

1

nP(ξ1 − Eξ1 > x)

n∑
k=1

P(ξi − Eξi > x) < ∞

by conditions (a), (c) and (e). Finally,

lim sup
u→∞

sup
n�1

1

n

n∑
k=1

E(|ξk − Eξk|1{ξk−Eξk�−u})

= lim sup
u→∞

sup
n�1

1

n

n∑
k=1

E
(
(Eξk − ξk)1{ξk−Eξk�−u}

)

� lim sup
u→∞

sup
n�1

1

n

∑
1�k�n
Eξk�u

Eξk = 0

because of condition (f). So, applying the estimate of Lemma 5 to (14), we get

I2,1 � c7

∑
K<n� xy

4c6

nF ξ1

(
3

4
xy + Eξ1

)
P(η = n)

� c7Fξ1

( 3

4
xy

)
Eη1{η>K}

with a positive constant c7. For the denominator of I2, we can use the inequality

P(Sη > x) =
∞∑

n=1

P(Sn > x)P(η = n)

�
∞∑

n=1

P(ξ1 > x)P(η = n)

� Fξ1(x)P(η = a) (15)

since the r.v.s {ξ1, ξ2, . . .} are nonnegative by assumption. Hence,

I2 � c7

P(η = a)
Eη1{η>K}

Fξ1

( 3
4xy

)
Fξ1(x)

.

If y ∈ (1/2, 1), then the last estimate implies that

lim sup
x→∞

I2 � c7

P(η = a)
Eη1{η>K} lim sup

x→∞
Fξ1

( 3
8x

)
Fξ1(x)

� c8Eη1{η>K} (16)

with some positive constant c8 because Fξ1 ∈ C ⊂ D.
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Using inequality (15) again, we obtain

I3 �
P
(
η >

xy
4c6

)
P(Sη > x)

� 1

P(η = a)

F η

( xy
4c6

)
Fξ1

( xy
4c6

) Fξ1

( xy
4c6

)
Fξ1(x)

.

Therefore, for y ∈ (1/2, 1), we get

lim sup
x→∞

I3 � 1

P(η = a)
lim sup
x→∞

Fη

( xy
4c6

)
Fξ1

( xy
4c6

) lim sup
x→∞

Fξ1

( xy
4c6

)
Fξ1(x)

= 0 (17)

by condition (d).
Estimates (12), (13), (16), and (17) imply that

lim sup
y↑1

lim sup
x→∞

P(Sη > xy)

P(Sη > x)
� 1 + c8Eη1{η>K}

for K � a.
Letting K tend to infinity, we get the desired estimate (6) because Eη < ∞ by

conditions (c) and (d). The theorem is proved.
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