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1. Introduction

One of the main problems in low-dimensional topology is the celebrated Poincaré conjecture.
A closely related less-known problem is the so-called Universal Covering Conjecture, which states
that universal covering spaces of three-manifolds are simply connected at infinity (for more on this
see e.g. [12, 13]). Another way to put this is that all fundamental groups of 3-manifolds are simply
connected at infinity. This is a topological condition at infinity for non-compact spaces which says that
the infinity of the space is simply connected. More precisely, a non-compact, connected topological
space X is simply connected at infinity (abbr. sci) if for any compact of X there exists a larger compact
such that any loop outside it bounds a disc which sits outside the small compact (for details see [7]).

In terms of Gromov’s theory of random groups [8], there are actually very few finitely presented
groups which are fundamental groups of three-manifolds. Moreover, Davis [5] showed that the simple
connectivity at infinity is indeed a very rare property outside of those three-manifolds groups.

But then, Perelman [11] did not only prove the Poincaré conjecture, he also proved the Thurston
conjecture, namely the geometrization of three-manifolds. And one of the crowning items there, is
the universal covering conjecture, namely the simple connectivity at infinity for fundamental groups
of three-manifolds. This is then really a highly non-trivial fact; actually, even more power of the Ricci
flow is necessary for the geometrization than for the Poincaré conjecture itself.

This is just to explain that the issue of the simple connectivity at infinity is important and difficult.
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But, in this paper, we will consider this topological notion from another viewpoint. Since given
an infinite finitely presented group G, one can construct a compact space XG with G as fundamental
group and a non-compact space, X̃G, on which it acts in a good way (i.e. the universal covering space
of X), one can wonder whether the topological properties of X̃G may be considered as group-theoretical
notions. This is the case for the simple connectivity at infinity, in the sense that if, given G, X̃G is sci,
then for any other compact space X′ with π1X′ = G, then X̃′ will also be sci. Furthermore, being sci is a
quasi-isometry invariant of finitely presented groups [7], following Gromov’s point of view of discrete
groups as geometric objects [8].

In his revolutionary production, Gromov abstracted the classical notion of hyperbolicity and
introduced the celebrated class of hyperbolic groups (see the next section for a definition), as the class
of finitely presented groups which somehow generalizes the class of fundamental groups of compact
Riemannian manifolds with strictly negative sectional curvature [4, 8].

In the present paper we will focus on the behaviour at infinity of sci hyperbolic groups.

Definition 1.1. Let X be a connected, simply connected, non-compact metric space. If X is also simply
connected at infinity (sci), one defines the rate of vanishing of the sci, called also the sci-growth and
denoted by VX(r), as the infimal N(r) with the property that any loop which sits outside the ball B(N(r))
of radius N(r) bounds a 2-disk outside B(r).

It is proved in [7] that the growth of the function VX(r) (i.e. the equivalence class with respect to
the standard equivalence relation for real functions) is a quasi-isometry invariant. In particular, if G
is a finitely presented sci group, then VG = VX̃G

is a quasi-isometry invariant of G, where X̃G is the
universal covering space of a compact simplicial complex XG, with π1(XG) = G. If VG is defined and
linear we say that G has linear sci-growth.

In the next sections we will provide a new, direct and more geometric proof of the following result
(proved in [6] with different techniques):

Theorem 1.1. If G is a sci (simply connected at infinity) hyperbolic group then VG is linear.

2. Preliminary lemmas

Let (X, d) be a geodesic metric space, which in our case will be the Cayley graph of a finitely
generated group G (see [4, 8] and here below). A geodesic triangle is said to be δ-slim if every side of
it is contained in the δ-neighbourhood of the union of its other sides (with δ ∈ R+).

Given a geodesic triangle ∆ with vertices x, y, z in X, let ∆′ be a Euclidean comparison triangle with
vertices x′, y′, z′ and sides of the same lengths as those of ∆, and let f : ∆ → ∆′ be an identification
map. Suppose that the maximal inscribed circle C in ∆′ meets its sides at c′z ∈ [x′, y′], c′x ∈ [y′, z′] and
c′y ∈ [x′, z′]. There is a unique isometry f∆ of ∆′ into a metric tripod T (i.e. a tree with one vertex w of
degree 3 and three vertices x′′, y′′, z′′ of degree one), such that:

d(w, x′′) = d(x′, c′z) = d(x′, c′y),

d(w, y′′) = d(y′, c′z) = d(y′, c′x),

d(w, z′′) = d(z′, c′x) = d(z′, c′y).

Denote F = f∆ ◦ f : ∆→ T . The triangle ∆ is δ-thin if for all p ∈ T , the diameter diam(F−1(p)) ⩽ δ.
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The group G is δ-hyperbolic, for some real or natural number δ ⩾ 0, if all geodesic triangles in X are
δ-thin (and then, all geodesic triangles are also δ-slim). The group G is hyperbolic if it is δ-hyperbolic
for some δ ⩾ 0. For proofs and details see [4, 8].

Remark 2.1. The notion of hyperbolicity for a group is independent of the choice of the presentation.
It is also clear that if G is δ-hyperbolic, for some δ ⩾ 0, then it is also δ′-hyperbolic, for any δ′ > δ.

We recall that a (discrete) group Γ is finitely generated if there exists a finite set S of generators for
it (so that every element of Γ can be written as a product of powers of some of these generators si ∈ S ),
while it is finitely presented if, in addition, it has a finite number of relations r j ∈ R (words in terms of
the generators, such that, ∀w ∈ Γ, w = 1 if and only if w can be written as a product of conjugates of
these words and their inverses). In such a case one says that Γ has the presentation ⟨S | R⟩.

To any finitely generated group Γ with generating set ⟨S ⟩ one can associate a ‘natural’ metric on
it, called the word metric, by defining the distance (with respect to S ) of two elements a, b of Γ as
dS (a, b) = lS (a−1b), where the length lS (g) of any element g of Γ is the smallest integer n such that
there exists a sequence (s1, s2, · · · , sn) of generators in S for which g = s1s2 . . . sn.

With this metric, we may also associate to Γ a graph, called the Cayley graph, whose vertex set
is identified with the elements of the group, and such that for any g ∈ Γ and s ∈ S , the vertices
corresponding to the elements g and gs are joined by an edge labeled by s.

Whenever the group Γ is finitely presented, one can additionally associate to Γ a 2-dimensional
space too. Let P = ⟨S | R⟩ be a finite presentation for the group Γ. The Cayley 2-complex of the
presentation is a 2-dimensional complex obtained by gluing a disk on all paths of the Cayley graph
labeled by a relator r ∈ R.

Suppose from now on that G is a δ-hyperbolic finitely presented group and X its Cayley graph
associated with a finite presentation P = ⟨S | R⟩ of G.

Let γ : [0,∞)→ X be a geodesic path, either finite or infinite. For any x, y ∈ γ, we denote by [x, y]γ
the subpath of γ that connects x to y.

Bestvina and Mess [1] proved the following:

Proposition 2.1. [1] Let G be a hyperbolic one-ended group. There is a constant c ⩾ 0 so that for all
x ∈ X there exists an infinite geodesic ray starting at the identity of G which passes within c of x.

We say that two geodesic rays are asymptotic if their images in X are at finite Hausdorff distance.
This defines an equivalence relation on the collection of geodesic rays in X. The boundary ∂X of X is
the collection of equivalence classes, under this relation, of geodesic rays in X.

Lemma 2.1. ( [4], III.H, Lemma 3.3) Let γ1, γ2 : [0,∞) → X be two asymptotic, unit speed geodesic
rays. Then:

(1) If γ1(0) = γ2(0), then d(γ1(t), γ2(t)) ⩽ 2δ for all t > 0.
(2) In general, there exist t1, t2 ∈ (0,∞) such that d(γ1(t1 + t), γ2(t2 + t)) ⩽ 5δ for all t ⩾ 0.

Given a class γ(∞) ∈ ∂X of a geodesic ray γ, there is a unit speed geodesic ray starting from the
identity of G which is asymptotic to γ. Thus, we identify ∂X with the collection of asymptotic classes
of unit speed geodesic rays starting at 1 (see [4, 10]). We say that a geodesic ray γ : [0,∞) → X
connects the point γ(0) ∈ X to a point x ∈ ∂X if x is the equivalence class of γ, i.e. x = γ(∞). Let
γ : (−∞,∞) → X be a bi-infinite geodesic in X. We denote by γ− and γ+ the geodesic rays whose
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image is equal to γ restricted to (−∞, 0] and [0,∞) respectively. Moreover, we say that γ connects
two points x, y ∈ ∂X if {x, y} = {γ−(−∞), γ+(∞)}. Notice also that any two distinct points in ∂X are
connected by a bi-infinite geodesic.

All geodesics considered will be assumed to be unit speed geodesics. Let γ1, γ2 : [0,∞) → X be
two geodesic rays starting from the identity. We say that γ1 and γ2 diverge if they are not asymptotic,
i.e. they correspond to different points on ∂X. Moreover, if t0 is the infimal t > 0 such that the distance
from γ1(t) to γ2(t) is greater than δ, then we say that γ1 and γ2 diverge at t0. The continuous function
d(γ1(t), γ2(t)) goes from 0 to∞, therefore d(γ1(t0), γ2(t0)) = δ.

Lemma 2.2. ( [4], III.H, Lemma 3.2) Let γ1, γ2 : [0,∞) → X be two divergent geodesic rays in X,
issued from the identity that correspond to points x, y ∈ ∂X. There is a bi-infinite geodesic γ that joins
x to y and is contained in the δ-neighborhood of γ1 ∪ γ2.

There is a natural topology on X ∪ ∂X making it a compact metrizable space. Let α > 1 and x ∈ X.
We say that a metric dα on ∂X is a visual metric with base point x and visual parameter α if there is
c > 0, the constant of the visual metric, so that:

(1) The metric dα induces the natural boundary topology on ∂X.
(2) For any distinct points x, y ∈ ∂X and any bi-infinite geodesic γ connecting them, we have

1
c
· α−d(γ,x) ⩽ dα(x, y) ⩽ c · α−d(γ,x).

Since (X, d) is a proper δ-hyperbolic space, there is α0 > 1, called the global visual parameter of X,
such that for any base point x0 and any α ∈ (1, α0), the boundary ∂X admits a visual metric dα with
respect to x0 (see [4, 9]).

For the purpose of this paper we will consider a visual metric, d2α , on ∂X with base point the identity
of G and visual parameter 2α ∈ (1, α0) for some appropriate α ∈ R. If c is the constant of this visual
metric, let c1 ∈ R be minimal such that c ⩽ 2c1 . Then, for all x, y ∈ ∂X and any bi-infinite geodesic γ
that connects x and y, we have

2−c1−α·d(1,γ) ⩽ d2α(x, y) ⩽ 2c1−α·d(1,γ).

We say that α and c1 are the 2-visual parameters of the visual metric d2α . For sake of simplicity we
will use from now on d∂X for the aforementioned visual metric d2α on ∂X.

Let x, y ∈ ∂X and t > 0. A t-chain from x to y is a sequence of points l1 = x, l2, . . . , lk = y in ∂X, for
some k > 1, such that, for all i ∈ {1, 2, . . . , k − 1}, d∂X(li, li+1) ⩽ t. The length of a t-chain is the number
of points it consists of.

The crucial point in the proof of Theorem 1.1, is the following result due to Bonk and Kleiner [2]:

Proposition 2.2. [2] Let G be a one-ended hyperbolic group and d∂X a visual metric on ∂X. There
are constants c,K > 0 so that for all x, y ∈ ∂X, t ∈ Z+ there is a 1

2t d(x, y)-chain of length at most ct that
connects x to y and whose diameter is at most Kd∂X(x, y).

Remark 2.2. Proposition 2.2 actually states that ∂X is linearly connected and derives from a result of
Bowditch, Svenson and Swarup [3, 14, 15] which states that ∂X has no global cut points.
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When X is the Cayley complex of a group G associated with a finite presentation P = ⟨S | R⟩, we
will only consider geodesics within the Cayley graph, namely the 1-skeleton X(1) of X. Notice that
while the Cayley complex may change when adding words equal to the identity to the relators in P,
the Cayley graph remains unchanged.

The following lemmas and propositions will also be used in the proof of Theorem 1.1:

Lemma 2.3. Let G be a δ-hyperbolic group, X its Cayley complex associated with a presentation of G
that contains as relators all words of length less than 8δ which are equal to the identity in G. Suppose
that n > 0 and ∆ is a geodesic triangle in X outside the ball B(n + 1.5δ). If one side of ∆ has length
less than δ, then ∆ can be filled outside B(n) in X.

Proof. Let α, β, γ be the sides of the geodesic triangle ∆ and x = α ∩ γ, y = β ∩ γ, z = α ∩ β its
vertices. We may assume that the lengths of its sides satisfy ℓ(γ) ⩽ ℓ(α) ⩽ ℓ(β). Also, we remark that,
since the triangle ∆ is δ-slim and ℓ(γ) < δ, for any x′ ∈ α, y′ ∈ β with d(x′, z) = d(y′, z) we have that
d(x′, y′) ⩽ 3δ. For any i = 1, . . . , ℓ(α) we consider a geodesic segment wi that connects α(i) to β(i) and
define the polygon Ri to be one with sides [α(i − 1), α(i)]α, wi, [β(i − 1), β(i)]β and wi−1, where w0 is
trivially the point z. Each Ri is outside B(n) and corresponds to a word in G of length less than 8δwhich
is equal to the identity. Thus, Ri can be filled by a disc Di in X outside the ball B(n). If ℓ(α) = ℓ(β),
let Rℓ(α)+1 = ∅, otherwise let Rℓ(α)+1 be the remaining triangle with sides wℓ(α), γ, [β(ℓ(α)), y]β. Then,
Rℓ(α)+1 corresponds to a word in G of length less than 8δ which is equal to the identity and thus can be
filled by a disc Dℓ(α)+1 outside the ball B(n). Therefore, the triangle ∆ can be filled outside the ball B(n)

by the simplicial disc D =
ℓ(α)+1⋃

i=1
Di. □

Lemma 2.4. Let G be a finitely presented group, X(1) its Cayley graph, x ∈ X(1) a vertex and β a
geodesic ray in X(1) starting from the identity. Let z ∈ β with d(z, x) = d(β, x). For any y ∈ β with
d(y, 1) ≥ d(z, 1), if η is a geodesic from x to y, then,

d(1, η) ⩾ d(x, 1) − d(x, β).

Proof. We have d(y, z) = d(y, 1)−d(z, 1), and by the triangle inequality ℓ(η) ⩽ d(x, z)+d(y, 1)−d(z, 1).
Let v be a point on η which is closest to 1. The triangle inequalities applied in the triangles of vertices
1, x, v and 1, y, v give ℓ(η) ≥ d(x, 1)+d(y, 1)−2d(1, v). Therefore, 2d(η, 1) ≥ d(x, 1)−d(x, z)+d(z, 1) ≥
2d(x, 1) − 2d(x, z). □

Proposition 2.3. If γ1 and γ2 are two geodesic rays issued from 1 which diverge at t0 then there is a
bi-infinite geodesic γ, that connects γ1(∞) to γ2(∞) and

t0 − 2.5δ ≤ d(1, γ) ≤ t0 + δ.

Proof. From Lemma 2.2, we have that there is a bi-infinite geodesic, γ, that joins γ1(∞) to γ2(∞)
and is contained in the δ-neighborhood of γ1, γ2. This implies that the ideal triangle, ∆, of vertices
1, γ1(∞), γ2(∞) is δ-slim. Suppose that w ∈ γ with d(w, 1) = d(γ, 1). For any t < d(w, 1) − δ,
we obviously have that d(γ1(t), γ), d(γ2(t), γ) > δ. The ideal triangle ∆ being δ-thin, it follows that
d(γ1(t), γ2(t)) ≤ δ. This yields that t0 ≥ d(1,w) − δ, which establishes the right hand side inequality.

Now, suppose that d(1,w) < t0 − δ. We set γ− = [w, γ1(∞)]γ and γ+ = [w, γ2(∞)]γ. There are
w1 ∈ γ

−, w2 ∈ γ
+ so that d(w1, 1), d(w2, 1) = t0. It follows that w ∈ [w1,w2]γ, and therefore,
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d(1,w) ≥ t0 −
d(w1,w2)

2
. (2.1)

Since d(1,w) < t0 − δ, it follows from (2.1) that d(w1,w2) > δ. The fact that ∆ is δ-slim further
implies that there are u, z ∈ γ1 ∪ γ2 such that d(w1, u), d(w2, z) ≤ δ. By the triangle inequality in the
triangles of vertices 1, u,w1 and 1, z,w2 we derive that t0−δ ≤ d(1, u) ≤ t0+δ and t0−δ ≤ d(1, z) ≤ t0+δ.
We distinguish two cases for u, z: either they belong to the same geodesic ray or to different ones.

In the first case, without loss of generality we assume that u, z ∈ γ1, so there are t1, t2 so that
u = γ1(t1) and z = γ1(t2). Hence, |t1 − t2| ≤ 2δ and the triangle inequality shows that d(w1,w2) ≤
d(w1, u) + d(u, z) + d(z,w2) ≤ 4δ.

In the second case, without loss of generality we assume that u ∈ γ1, z ∈ γ2, so there are t1, t2

so that u = γ1(t1) and z = γ2(t2). Hence |t0 − t1|, |t0 − t2| ≤ δ and the triangle inequality shows that
d(w1,w2) ≤ d(w1, u) + d(u, γ1(t0)) + d(γ1(t0), γ2(t0)) + d(γ2(t0), z) + d(z,w2) ≤ 5δ.

Hence, in any case, d(w1,w2) ≤ 5δ. Equation (2.1) then yields that d(1,w) ≥ t0 − 2.5δ, so our left
hand side inequality follows. □

Proposition 2.4. Let γ1 and γ2 be two geodesic rays issued from 1 which diverge at t0. If t ≥ 0 such
that d(γ1(t), γ2(t)) < δ, then,

t ≤ (t0 + 3.5δ).

Proof. Assume that d(γ1(t), γ2(t)) < δ for some t > t0 + δ, else there is nothing to prove. From
Proposition 2.3, we have that there is a bi-infinite geodesic γ, contained in the δ-neighborhood of γ1∪γ2

and such that d(1, γ) ≤ t0 + δ, so d(1, γ) < t. As in the previous proof, if w ∈ γ with d(1,w) = d(1, γ),
then there are w1,w2 ∈ γ such that d(w1, 1), d(w2, 1) = t, w ∈ [w1,w2]γ, and therefore,

d(1,w) ≥ t −
d(w1,w2)

2
. (2.2)

Again, the fact that the ideal triangle ∆ of vertices 1, γ1(∞), γ2(∞) is δ-slim, further implies that
there are u, z ∈ γ1 ∪ γ2 such that d(w1, u), d(w2, z) ≤ δ. By the triangle inequality in the triangles of
vertices 1, u,w1 and 1, z,w2 we derive that t − δ ≤ d(1, u) ≤ t + δ and t − δ ≤ d(1, z) ≤ t + δ. We
distinguish two cases for u, z, either they belong to the same geodesic ray or to different ones.

In the first case, without loss of generality we assume that u, z ∈ γ1, so there are t1, t2 so that
u = γ1(t1) and z = γ1(t2). Hence, |t1 − t2| ≤ 2δ and the triangle inequality shows that d(w1,w2) ≤
d(w1, u) + d(u, z) + d(z,w2) ≤ 4δ.

In the second case, without loss of generality we assume that u ∈ γ1, z ∈ γ2, so there are t1, t2

so that u = γ1(t1) and z = γ2(t2). Hence, |t − t1|, |t − t2| ≤ δ and the triangle inequality shows that
d(w1,w2) ≤ d(w1, u) + d(u, γ1(t0)) + d(γ1(t0), γ2(t0)) + d(γ2(t0), z) + d(z,w2) ≤ 5δ.

In any case, d(w1,w2) ≤ 5δ. Equation (2.2) then yields that d(1,w) ≥ t − 2.5δ, so our inequality
follows. □

Corollary 2.1. Let γ1 and γ2 be two geodesic rays issued from 1 which diverge at t0. If for p ∈ γ1,
q ∈ γ2 we have that d(p, q) < δ2 , then p, q ∈ B(t0 + 3.5δ).

Proof. Let t1, t2 ≥ 0 with p = γ1(t1) and q = γ2(t2). Since d(p, q) < δ2 , we get that |t1 − t2| <
δ
2 and the

triangular inequality in the triangle of vertices p, q, γ2(t1) gives
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d(γ1(t1), γ2(t1)) ≤ d(p, q) + d(q, γ2(t1)) ≤ δ.

Therefore, Proposition 2.4 gives that t1 ≤ t0 + 3.5δ. Similarly, we derive that the same holds for t2. □

3. Proof of Theorem 1.1

Let us consider first the case when G is a one-ended, sci hyperbolic group. If c1 is the constant
obtained in Proposition 2.1 we can assume that X is δ-hyperbolic and δ ∈ N with δ > 4c1 + 2.

We consider a visual metric on ∂X, denoted again by d∂X, with base point the identity of G and 2-
visual parameters α, c, for appropriate α, c ∈ R. Suppose that c2, K are the constants of Proposition 2.2,
we can further assume that δ > 2c+log K

α
.

Without loss of generality we can also assume that the Cayley complex X is associated with a
presentation of G that contains as relators all words of length less that 8δ which are equal to the
identity in G.

Let n ∈ N, with n > 13δ. We will show that every loop f outside B(n + 13δ) is null homotopic
outside B(n). Since G is sci, there is M > 0 so that every loop outside B(M) is null homotopic outside
B(n). Thus, it is enough to consider the case when f is inside B(M) and consequently that M > n+13δ.

Let p, q be two vertices on f , with d(p, q) = 1. There are unit speed geodesic rays, γ1, γ2 issued
from the identity which pass within c1 of p, q, respectively. Denote by x, y the corresponding points
on ∂X. Also, we denote by p′ a closest point on γ1 to p and q′ a closest point on γ2 to q.

Case 1. Suppose that x , y, and so γ1, γ2 diverge.

Lemma 3.1. There exist a bi-infinite geodesic γ that connects x to y and

d(1, γ) > (n + 6.75δ).

Proof. Suppose that γ1 and γ2 diverge at t0. As d(p, p′) ≤ c1 and d(q, q′) ≤ c1 we have d(p′, q′) ≤
2c1 + 1 < δ

2 . Then, according to Corollary 2.1 we should have d(p′, 1) ≤ t0 + 3.5δ. But, d(1, p′) ≥
d(1, p) − c1 > n + 12.75δ, so t0 > n + 9.25δ. Proposition 2.3 then gives us that there is a bi-infinite
geodesic γ joining x and y that verifies the desired inequality. □

Therefore, we have
d∂X(x, y) ⩽ 2c−α·d(1,γ) < 2c−α·(n+6.75δ).

Lemma 3.2. There are k > 0 and a sequence of points (w1, . . . ,wk) which are interpolated by the path
W(p, q) with the following properties:

(1) W(p, q) ⊂ X − B(M + δ);
(2) w1 ∈ γ1, wk ∈ γ2;
(3) For all i ∈ {1, . . . k}, d(wi,wi+1) < δ;
(4) For all i ∈ {1, . . . k}, if ηi is a geodesic path from p to wi, then d(1, ηi) > n + 1.75δ.

Proof. Let
T = min{t ∈ Z+; t > (M − 3.75δ − n)α + 2c}.

We recall that c2, K are the constants of Proposition 2.2, and so there is a 1
2T d∂X(x, y)-chain L = {l1 =

x, . . . , lk = y} in ∂X of length k = c2
T that joins x to y and diam(L) ≤ Kd∂X(x, y). This means that for

all i = 1, . . . , k − 1, we have
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0 < d∂X(li, li+1) ≤
1
2T d∂X(x, y) < 2c−α·(n+6.75δ)−T .

Moreover, if Li is a bi-infinite geodesic in X that connects the points li and li+1, then,

d∂X(li, li+1) ≥ 2−c−α·d(1,Li).

The last two inequalities and the choice of T imply that

d(1, Li) >
α(n + 6.75δ) + T − 2c

α
> M + 3δ. (3.1)

Now, for all i = 1, . . . , k let βi be a geodesic ray joining 1 to li and let wi be a point of βi at distance
M + 2δ from 1. Without loss of generality we can assume that β1 = γ1 and βk = γ2, respectively.

We claim that relation (3.1) implies that βi and βi+1 diverge outside B(M + 2δ). In fact, if βi and
βi+1 diverged at t0,i ≤ M + 2δ, then Proposition 2.3 would provide us a geodesic Li connecting li and
li+1 such that d(1, Li) ≤ M + 3δ, therefore contradicting (3.1). This claim implies that d(wi,wi+1) ≤ δ
and thus we can join wi and wi+1 with a geodesic path w(i, i + 1) lying outside B(M + δ). We then set

W(p, q) to be the union of these paths: W(p, q) =
k−1⋃
i=1

w(i, i + 1).

From Proposition 2.2, we have that d∂X(x, li) ≤ Kd∂X(x, y). Hence, if Ei is a bi-infinite geodesic
joining x and li, as before, we get

2−c−αd(1,Ei) ≤ d∂X(x, li) ≤ 2log K+c−α·(n+6.75δ),

so that, since δ > 2c+log K
α

,
d(1, Ei) ≥ (n + 5.75δ).

We conclude as before, using Proposition 2.3, that γ1 and βi diverge outside the ball B(n + 4.75δ). Let
then p′′ ∈ γ1 and zi ∈ βi be points at distance n + 4.75δ from 1. The divergence condition implies that
d(p′′, zi) ≤ δ. On the other hand the triangle inequality:

d(p, zi) ≤ d(p, p′) + d(p′, p′′) + d(p′′, zi)

implies that
d(p, βi) ≤ d(p, zi) ≤ d(p′, 1) − n − 2.75δ ≤ d(1, p) − (n + 1.75δ).

Suppose that ηi is a geodesic path from p to wi. Then Lemma 2.4 yields us

d(1, ηi) > d(p, 1) − d(p, βi) ≥ n + 1.75δ,

and this ends the proof of our lemma. □

Let P, Q be geodesic paths that join p to p′ and q to q′ respectively. We set Φ(p, q) to be the
following closed loop:

Φ(p, q) = P ∪ [p′,w1]γ1 ∪W(p, q) ∪ [wk, q′]γ2 ∪ Q−1 ∪ [p, q]−1
f .

Lemma 3.3. The loop Φ(p, q) is null homotopic outside B(n).
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Proof. Let Σ = {s1 = q′, . . . , sk′ = wk} be a set of points on [wk, q′]−1
γ2

, such that for all i = 1, . . . , k′ − 1
we have d(si, si+1) < δ. For any i = 1, . . . , k′ − 1, let ∆i be a geodesic triangle of vertices p, si, si+1 and
such that one of its sides is [si, si+1]γ2 . Also, let ∆0 be a geodesic triangle of vertices p, q and q′ and
such that two of its sides are [p, q] f and Q. From Lemma 2.4 it follows that, if S i is a geodesic path
from p to si, then,

d(S i, 1) ⩾ d(p, 1) − d(p, γ2) > n + 12δ.

Therefore, d(∆i, 1) > n + 12δ, and so, from Lemma 2.3 it follows that it can be filled by a disc outside
B(n + 10.5δ).

We proceed similarly to join p to the points wi on W(p, q). Specifically, from the properties of
the path W(p, q) we get that the corresponding triangles are outside the ball B(n + 1.75δ) and from
Lemma 2.3 we get that these triangles can be filled outside B(n + 0.25δ).

The union, D(p, q), of all the fillings (Van Kampen diagrams) of the triangles we have considered,
fills Φ(p, q) outside B(n), as wanted. □

Case 2. Suppose that x = y, and so γ1 and γ2 are asymptotic.
By Lemma 2.1 we have that there are t1, t2 > 0 so that γ1([t1,∞]) and γ2([t2,∞]) travel within

5δ of each other. For i = 1, 2, there are wi ∈ γi([ti,∞]) with d(w1, 1), d(w2, 1) > M + 10δ and
d(w1,w2) ≤ 5δ. Let W(p, q) to be a geodesic path that joins them, so that its length is at most 5δ and
W(p, q) ⊂ X \ B(M + 7.5δ). We can now proceed as for Case 1 and show that the corresponding loop
Φ(p, q) can be filled outside B(n).

To sum up, we have considered two cases: x = y and x , y. But the strategy for both cases has
been the same. We started with two points p, q on f at distance d(p, q) = 1 and created a closed loop
Φ(p, q) one part of which is [p, q] f and another is a path, W(p, q), that is outside B(M + δ). We proved
that the closed loop Φ(p, q) can be filled by a disk D(p, q) outside B(n). Moreover, the paths W(p, q)
can be chosen in a way such that their union, over all points p, q of distance 1 on f , creates a closed
loop f1 outside B(M + δ):

f1 =
⋃
p,q∈ f

d(p,q)=1

W(p, q).

Since G is simply connected at infinity, the closed loop f1 can be filled by a disk A1 outside B(n).
On the other hand, we can also fill the ring between f and f1 with the following simplicial disc A2

outside B(n):
A2 =

⋃
p,q∈ f

d(p,q)=1

D(p, q).

Thus, the loop f is filled by A1 ∪ A2 outside B(n) too.
In conclusion, for all n > 12δ, any loop outside B(n + 13δ) is null homotopic outside B(n), and

therefore the group G has linear sci-growth.
If G is not one-ended, we can do the same work for each connected component of X \ B(n + 13δ).

4. Conclusions

In this paper we continued the exploration of the metric measurement of the notion of simple
connectivity at infinity. This belongs to a very general research field, namely the study of topological
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invariants of discrete groups, which is not as developed and exploited as that of invariants of a
geometric nature, and there are still many deep open questions to be studied. First of all, even if
randomly any finitely presented group is hyperbolic (and hence, if sci, with a linear sci-growth), it is
probable that there exists at least one sci group with a super-linear sci-growth, and this would be an
interesting strange example of a discrete group with an exotic behaviour at infinity. On the other hand,
if one could prove that all finitely presented sci groups have a linear sci-growth, this would be a very
fascinating result, because it would provide a typical example of rigidity due to the presence of a group
action, since one can easily construct examples of open sci manifolds with a non-linear sci growth.
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