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Abstract. The present paper deals with choosing the input alphabet for the end-to-end synthesizer 

of the Lithuanian language. Tacotron 2 is a state-of-the-art end-to-end speech synthesis model. 

Characters, phonemes or their combinations can be used as an input of the model. The model was 

trained on Lithuanian speech recordings using the following five input alphabets: letters, lowercase 

letters, accented letters, reduced set of accented letters, letters with separate accent marks. 

Acceptability of the synthesized speech was evaluated on the basis of human listeners’ subjective 

judgment. Experimental testing showed that accent marks significantly improved the quality of the 

synthesized speech. Reducing the size of the input alphabet also has a slight positive impact. 

Putting accent marks into the text produced the best results as compared to using the accented 

letters.  

Keywords: neural networks, natural language processing, speech synthesis, Tacotron 2, text 

encoding, Lithuanian language. 

1. Introduction 

Speech synthesis is a process of converting the input text into the corresponding speech, 

also known as text-to-speech (TTS). The history of the Lithuanian TTS dates back 

almost three decades. A detailed overview of the Lithuanian synthesis until 2016 is 

presented in (Kasparaitis, 2016). It includes the first formant synthesizer Apollo 2, the 

concatenative synthesizers Aistis, Aistis 2, Gintaras, Egidius, and finally the unit 

selection synthesizers SINT.AS and LIEPA. In subsequent years, a Statistical Parametric 

Speech Synthesizer (SPSS) was developed, which uses the neural network package 

Merlin (Kasparaitis and Beniušė, 2019). In the above-mentioned works, the main focus 

is on signal formation. For an overview of other aspects related to Lithuanian synthesis, 

such as intonation and sound durations, see (Melnik-Leroy et al., 2022). Lately, end-to-

end Lithuanian synthesizers have started to appear, e.g. (Radzevičius at al., 2021). 

Lithuanian has a very complex stress system, so it is difficult to expect end-to-end 

models to be able to learn it. One solution is to supplement the text with stress 

information, but it is not clear how best to encode it. In this work, the methods of end-to-

end synthesizer input coding will be considered. 
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Chapter 2 reviews how input is encoded in other languages, Chapter 3 describes the 

five alphabets used to encode Lithuanian text, Chapter 4 – data and training conditions, 

Chapter 5 – the evaluation procedure, and Chapter 6 – a discussion of the results. 

2. Related works 

Traditional speech synthesis techniques such as SPSS are composed of several 

independent components (Liu and Zheng, 2019): a text analyser for extracting linguistic 

features such as syntactic and prosodic tags from the text, a duration model for 

predicting the duration of a phoneme, an acoustic model for predicting acoustic features 

such as mel-cepstral coefficients and F0, and a vocoder for generating a waveform from 

acoustic features (Yasuda et al., 2020) (see Fig. 1a). The development of these 

components requires deep knowledge of the domain and is labour intensive. In addition, 

the components are independent, so their errors can accumulate. 

An integrated end-to-end TTS system that can be trained on <text, audio> pairs with 

minimal human annotation has many advantages (Wang et al., 2017). It requires less 

expert work, allows a larger number of attributes to be considered, is more robust. 

Typically, such systems consist of a single neural network, although a separate network 

can be used as a vocoder (see Fig. 1b). Nowadays, end-to-end TTS has demonstrated 

high effectiveness in generating a natural and emotional speech. We chose to use 

Tacotron 2 (Shen et al., 2018), which is a state-of-the-art end-to-end speech synthesis 

model capable to generate speech directly from graphemes or phonemes (Liu and Zheng, 

2019). 

Typically, end-to-end TTS systems use character (Wang et al., 2017) or phoneme 

(Jiang et al., 2019) input representations or their various combinations (Kastner et al., 

2018; Ping et al., 2018). Phoneme inputs are usually preferred over graphemes (Perquin 

et al, 2020); this fact was reported by Fong et al. (2019) and Zhang et al. (2019). On the 

contrary, Yasuda et al. (2020) and Perquin et al. (2020) found that both types of inputs 

led to similar results if certain conditions were met. 
 

 

 

Figure 1.  a) Traditional SPSS; b) End-to-end Speech Synthesis (adapted from 

https://www.slideshare.net/jyamagis/tutorial-on-endtoend-texttospeech-synthesis-part-1-neural-

waveform-modeling slide 7) 

https://www.slideshare.net/jyamagis/tutorial-on-endtoend-texttospeech-synthesis-part-1-neural-waveform-modeling
https://www.slideshare.net/jyamagis/tutorial-on-endtoend-texttospeech-synthesis-part-1-neural-waveform-modeling
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Attempts have also been made to use richer linguistic information as additional 

inputs for end-to-end based TTS (Yasuda et al., 2020). E.g., Chinese is a tonal language, 

therefore phones with tone (Zhang et al., 2018) or pinyin (the standard system of 

Romanized spelling for transliterating Chinese) with tone (Liu et al., 2020) can be used. 

Japanese is a pitch-accented language, hence phonemes with accentual type were used 

by Yasuda et al. (2019). 

Linguistic information can be used not only as additional inputs but also instead of 

graphemes or phonemes. E.g., Staib et al. (2020) used the following set of 10 

categorical, multi-valued phonological features (PF): consonant/vowel, voicing 

(voiced/unvoiced), vowel frontness, vowel openness, vowel roundedness, stress on 

vowel, consonant place, consonant manner, and diacritic (e.g., nasalized, velarized). The 

tenth feature, “symbol type”, is used to integrate symbols that mark, e.g., silences, the 

end of a sentence, or word boundaries. 

Letters supplemented with PF (i.e., accent marks) were used as an input alphabet in 

the present work. Accent marks in Lithuanian contain three pieces of information: stress 

position, accent type (falling or rising accent) and sometimes indicates whether the 

sound is long or short. The Lithuanian language has a very complicated accentuation 

system. In Lithuanian, there are four stressing paradigms of nouns and adjectives, which 

are formed depending on where the stress is in the stem or in the suffix in the dative and 

accusative case of the plural. However, for other cases, the stress position also depends 

on the inflection. The stress of verbs can be not only in the stem and ending, but also in a 

prefix, e.g., several forms of the word “nešti” (to carry): “nùnešu”, “nunèšiu”, 

“nuneštám”. However, the biggest problem is that many new word forms can be formed 

using prefixes, suffixes, and endings. Fortunately, there exists a well-developed 

dictionary and rule-based text stressing software (Kasparaitis, 2000) that has been 

successfully used for text stressing for many years. It is impossible for a Tacotron 2 

based system to learn the accentuation system of the Lithuanian language from several-

hour recordings. This was proved by Radzevičius et al. (2021): text stressing has a 

positive effect on the results obtained. 

Encoding of accented letters is not unambiguous either. E.g., bytes of UTF-8 

encoded text can be used as was proposed by Li et al. (2019). We used letters with 

diacritics, as well as letters and accents as separate characters. Finally, the size of the 

input alphabet was addressed in this work. Some authors simply concatenate grapheme 

sets when adding a new language to the model without worrying about the size (Zhang et 

al., 2019). We expect the small alphabet to be a better choice. 

 

3. Input representations 

Input alphabets we used are presented in this chapter. We will refer to elements of the 

input alphabet as graphemes primarily to show contrast with phonetic input. A grapheme 

is the smallest unit of text that is passed to a single input of the model. In this work, a 

grapheme usually corresponds to a single letter, a punctuation mark, or an accent mark, 

but may also correspond to a letter and an accent mark, or several letters (such as ⟨ch⟩). 
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3.1. Lithuanian alphabet 

There are 32 uppercase and 32 lowercase letters in Lithuanian. Letters were arranged in 

the following order: vowels, plosives, fricatives, other consonants. In addition, the 

following punctuation marks were added to the alphabet: the dot, the question mark, the 

exclamation mark and the space. All commas, colons and semicolons were replaced with 

a dot in the text, other characters were simply removed. Hence, we get the following set 

A containing 68 graphemes: 

 

A = {⟨A⟩, ⟨a⟩, ⟨Ą⟩, ⟨ą⟩, ⟨E⟩, ⟨e⟩, ⟨Ę⟩, ⟨ę⟩, ⟨Ė⟩, ⟨ė⟩, ⟨I⟩, ⟨i⟩, ⟨Į⟩, ⟨į⟩, ⟨Y⟩, ⟨y⟩, ⟨O⟩, ⟨o⟩, 
⟨U⟩, ⟨u⟩, ⟨Ų⟩, ⟨ų⟩, ⟨Ū⟩, ⟨ū⟩, ⟨B⟩, ⟨b⟩, ⟨D⟩, ⟨d⟩, ⟨G⟩, ⟨g⟩, ⟨P⟩, ⟨p⟩, ⟨T⟩, ⟨t⟩, ⟨K⟩, ⟨k⟩, ⟨C⟩, ⟨c⟩, 
⟨Č⟩, ⟨č⟩, ⟨S⟩, ⟨s⟩, ⟨Š⟩, ⟨š⟩, ⟨Z⟩, ⟨z⟩, ⟨Ž⟩, ⟨ž⟩, ⟨F⟩, ⟨f⟩, ⟨H⟩, ⟨h⟩, ⟨J⟩, ⟨j⟩, ⟨L⟩, ⟨l⟩, ⟨M⟩, ⟨m⟩, 
⟨N⟩, ⟨n⟩, ⟨R⟩, ⟨r⟩, ⟨V⟩, ⟨v⟩, ⟨ ⟩, ⟨?⟩, ⟨!⟩, ⟨.⟩}     ( 1 ) 

3.2. Lowercase letters 

Uppercase letters always denote the same sounds as their lowercase counterparts. 

Moreover, only about 2% of the letters in our texts used for training are uppercase. 

Seeking to avoid the shortage of data we decided to replace all uppercase letters with 

lowercase ones in the text and to remove uppercase letters from the alphabet. The 

following set B containing 36 graphemes was obtained: 

 

B = {⟨a⟩, ⟨ą⟩, ⟨e⟩, ⟨ę⟩, ⟨ė⟩, ⟨i⟩, ⟨į⟩, ⟨y⟩, ⟨o⟩, ⟨u⟩, ⟨ų⟩, ⟨ū⟩, ⟨b⟩, ⟨d⟩, ⟨g⟩, ⟨p⟩, ⟨t⟩, ⟨k⟩, ⟨c⟩, 
⟨č⟩, ⟨s⟩, ⟨š⟩, ⟨z⟩, ⟨ž⟩, ⟨f⟩, ⟨h⟩, ⟨j⟩, ⟨l⟩, ⟨m⟩, ⟨n⟩, ⟨r⟩, ⟨v⟩, ⟨ ⟩, ⟨?⟩, ⟨!⟩, ⟨.⟩}  ( 2 ) 

3.3. Accented letters 

There are short and long syllables in Lithuanian. The short syllables can be stressed and 

unstressed, while the long ones can be unstressed, stressed with rising accent and 

stressed with falling accent. The following accent marks will be used respectively: ⟨a`⟩, 
⟨a~⟩, ⟨a^⟩. If the syllable contains a diphthong or a mixed diphthong, the rising accent 

mark is put on the second letter of the diphthong. Accented lowercase letters were added 

to the set B, hence the set C containing 69 graphemes was built: 

 

C = {⟨a⟩, ⟨a`⟩, ⟨a~⟩, ⟨a^⟩, ⟨ą⟩, ⟨ą~⟩, ⟨ą^⟩, ⟨e⟩, ⟨e`⟩, ⟨e~⟩, ⟨e^⟩, ⟨ę⟩, ⟨ę~⟩, ⟨ę^⟩, ⟨ė⟩, ⟨ė~⟩, 
⟨ė^⟩, ⟨i⟩, ⟨i`⟩, ⟨i~⟩, ⟨i^⟩, ⟨į⟩, ⟨į~⟩, ⟨į^⟩, ⟨y⟩, ⟨y~⟩, ⟨y^⟩, ⟨o⟩, ⟨o`⟩, ⟨o~⟩, ⟨o^⟩, ⟨u⟩, ⟨u`⟩, ⟨u~⟩, 
⟨u^⟩, ⟨ų⟩, ⟨ų~⟩, ⟨ų^⟩, ⟨ū⟩, ⟨ū~⟩, ⟨ū^⟩, ⟨b⟩, ⟨d⟩, ⟨g⟩, ⟨p⟩, ⟨t⟩, ⟨k⟩, ⟨c⟩, ⟨č⟩, ⟨s⟩, ⟨š⟩, ⟨z⟩, ⟨ž⟩, 
⟨f⟩, ⟨h⟩, ⟨j⟩, ⟨l⟩, ⟨l~⟩, ⟨m⟩, ⟨m~⟩, ⟨n⟩, ⟨n~⟩, ⟨r⟩, ⟨r~⟩, ⟨v⟩, ⟨ ⟩, ⟨?⟩, ⟨!⟩, ⟨.⟩}  ( 3 ) 

3.4. Reduced set of accented letters 

The input alphabet was reduced based on the assumption that all letters denoting the 

same phoneme should be represented by the same grapheme. There are several letters in 

Lithuanian that always denote the same phoneme and different letters are used for 

historical rather than phonological reasons, namely ⟨į⟩ and ⟨y⟩, ⟨ų⟩ and ⟨ū⟩. Some letters 

denote the same phoneme only in stressed long syllables, e.g., ⟨a~⟩ and ⟨ą~⟩, ⟨e~⟩ and 

⟨ę~⟩. In Lithuanian the voiced affricates are denoted with pairs of letters ⟨d⟩⟨z⟩ and 

⟨d⟩⟨ž⟩ whereas the unvoiced ones are specified with the single letter ⟨c⟩ and ⟨č⟩, 
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respectively. We replaced unvoiced affricates with the following pairs of the letters ⟨t⟩⟨s⟩ 
and ⟨t⟩⟨š⟩. The new grapheme ⟨ch⟩ was introduced. A full list of replacements: ⟨į⟩ → ⟨y⟩, 
⟨į~⟩ → ⟨y~⟩, ⟨į^⟩ → ⟨y^⟩, ⟨ų⟩ → ⟨ū⟩, ⟨ų~⟩ → ⟨ū~⟩, ⟨ų^⟩ → ⟨ū^⟩, ⟨c⟩ → ⟨t⟩⟨s⟩, 
⟨č⟩ → ⟨t⟩⟨š⟩, ⟨ą~⟩ → ⟨a~⟩, ⟨ą^⟩ → ⟨a^⟩, ⟨ę~⟩ → ⟨e~⟩, ⟨ę^⟩ → ⟨e^⟩, ⟨i^⟩ → ⟨i`⟩, 
⟨u^⟩ → ⟨u`⟩. The reduced set D containing 56 graphemes looks as follows: 

 

D = {⟨a⟩, ⟨a`⟩, ⟨a~⟩, ⟨a^⟩, ⟨ą⟩, ⟨e⟩, ⟨e`⟩, ⟨e~⟩, ⟨e^⟩, ⟨ę⟩, ⟨ė⟩, ⟨ė~⟩, ⟨ė^⟩, ⟨i⟩, ⟨i`⟩, ⟨i~⟩, 
⟨y⟩, ⟨y~⟩, ⟨y^⟩, ⟨o⟩, ⟨o`⟩, ⟨o~⟩, ⟨o^⟩, ⟨u⟩, ⟨u`⟩, ⟨u~⟩, ⟨ū⟩, ⟨ū~⟩, ⟨ū^⟩, ⟨b⟩, ⟨d⟩, ⟨g⟩, ⟨p⟩, ⟨t⟩, 
⟨k⟩, ⟨s⟩, ⟨š⟩, ⟨z⟩, ⟨ž⟩, ⟨f⟩, ⟨h⟩, ⟨ch⟩, ⟨j⟩, ⟨l⟩, ⟨l~⟩, ⟨m⟩, ⟨m~⟩, ⟨n⟩, ⟨n~⟩, ⟨r⟩, ⟨r~⟩, ⟨v⟩, ⟨ ⟩, ⟨?⟩, 
⟨!⟩, ⟨.⟩}         ( 4 ) 

 

3.5. Separate accent marks 

Finally, we decided to treat accent marks as separate graphemes. This seems somewhat 

irrational because inserting an accent mark shifts all the letters forward from their 

positions; however, it enables us to have an alphabet of minimal size. The set E 

containing 39 graphemes is as follows: 

 

E = {⟨a⟩, ⟨ą⟩, ⟨e⟩, ⟨ę⟩, ⟨ė⟩, ⟨i⟩, ⟨į⟩, ⟨y⟩, ⟨o⟩, ⟨u⟩, ⟨ų⟩, ⟨ū⟩, ⟨b⟩, ⟨d⟩, ⟨g⟩, ⟨p⟩, ⟨t⟩, ⟨k⟩, ⟨c⟩, 
⟨č⟩, ⟨s⟩, ⟨š⟩, ⟨z⟩, ⟨ž⟩, ⟨f⟩, ⟨h⟩, ⟨j⟩, ⟨l⟩, ⟨m⟩, ⟨n⟩, ⟨r⟩, ⟨v⟩, ⟨~⟩, ⟨^⟩, ⟨`⟩, ⟨ ⟩, ⟨?⟩, ⟨!⟩, ⟨.⟩}
         ( 5 ) 

 

Everything mentioned above is summarized in Table 1. 

 

Table 1. Summary of the input sets 

Set Uppercase 

letters 

Separate accent 

marks 

Accented letters Reduced set of 

accented letters 

A + – – – 

B – – – – 

C – – + – 

D – – + + 

E – + – – 

 

Sample sentence written using all five input sets is given in Table 2. Accent marks 

are put above the letter where they are treated as a single grapheme. 

Table 2. Sample sentence written using input sets A-E 

Set Sample sentence 

A Lietuvos Respublikos įstatymai. 

B lietuvos respublikos įstatymai. 

C lietuvõs respùblikos įstãtymai. 

D lietuvõs respùblikos ystãtymai. 

E lietuvo~s respu`blikos įsta~tymai. 
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4. Data and training conditions 

Data for training were taken from the project LIEPA (Laurinčiukaitė et al., 2018). One 

of the aims of project LIEPA was to create speech corpora for development of speech 

recognition and synthesis. Databases of four voice talents (two male and two female) 

were created for speech synthesis. We chose the single young female voice for our 

experiments because it has the highest pitch, making it easier to detect audible speech 

distortions. Data were recorded in a professional studio and down-sampled to 16 kHz 16 

bit mono. The total duration of the recordings was over 3.5 hours containing 5,034 

phrases, more than 200,000 characters. The texts representing the recordings already 

contained accent marks, so no extra effort was required to create the input sets C-E, 

whereas the accent marks were simply removed when the input sets A and B were 

created. The texts did not require any preprocessing or data cleaning. Data were prepared 

according to the LJSpeech format (Ito and Johnson, 2017), i.e., a pipe-delimited two 

column text file with the name of a sound file and the text representing the sound. See 

Fig. 2. 

 

 
 

Figure 2.  The piece of sample input file in LJSpeech format encoded using set E. 

 

Tacotron 2 (Shen et al., 2018) together with the vocoder WaveGlow (Prenger et al., 

2018) is a state-of-the-art end-to-end speech synthesis model. Tacotron 2 is a recurrent 

sequence-to-sequence feature prediction network which can be trained to predict a 

sequence of mel spectrogram frames from an input character sequence. I.e., the neural 

network is initialized with random numbers, the text is converted to an internal encoding 

and propagated forward through the network, the result is compared with the target 

result, the error is calculated and propagated back through the neural network to adjust 

the weights of the network. By repeating this process many times with all the available 

examples, the network weights converge to values that can predict the spectrum from the 

text. 

WaveGlow is a flow-based network which generates time-domain waveform samples 

from mel-spectrograms. The WaveGlow network training procedure is analogous. 

Package Tacotron 2 from https://github.com/NVIDIA/tacotron2/ and package 

WaveGlow from https://github.com/NVIDIA/waveglow/ were used. Seeking to speed up 

training with the help of GPU, both packages and all the scripts were moved to cloud-

based platform “Google Colaboratory” (https://colab.research.google.com/). 
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The Tacotron 2 model was trained on all data we had (5,034 phrases) using all five 

input sets A-E, resulting in five trained models. Training was stopped after 300,000 steps 

(approximately 168 hours) for each model. For more details see (Antanavičius, 2021). 

5. Evaluation procedure 

To evaluate the acceptability of the synthesized speech, human listeners were involved. 

It was decided not to use physical metrics for assessment, which, while useful in some 

cases, should not be considered as substitutes for listener tests (Schmidt-Nielsen, 1995). 

The evaluation procedure was divided into two sessions, 27 listeners participated in the 

first session and 31 participants took part in the second session. Listeners were divided 

into 4 groups: 6, 5, 8, 8 listeners in the first session and 8, 8, 7, 8 in the second one. 

A total of 80 short meaningful sentences containing only common Lithuanian words 

(no names or international words) were used in the evaluation. The length of a sentence 

was 4-7 words, the average sentence length was 5.5 words. These sentences were not 

used in model training. 

Test sentences were encoded using input sets A-E, then they were converted to audio 

recordings using trained models. Because the sets C-E use accented text, an automatic 

accentuation algorithm (Kasparaitis, 2000) was used for this purpose. Sample test 

sentences encoded using set E see in Fig. 3. 

 

 
 

Figure 3.  Sample test sentences encoded using set E. 

 

The pair comparison test (Schmidt-Nielsen, 1995) was performed, i.e., the pair of the 

sounds obtained by synthesizing the same sentence with two different trained models 

was presented to the listener. The latter had to choose the most appropriate answer: 

 The first sound is much better than the second one; 

 The first sound is slightly better than the second one; 

 Both sounds are of the same quality; 

 The second sound is slightly better than the first one; 

 The second sound is much better than the first one. 

An online form with GUI elements was developed for this purpose (accessible at 

https://danieliusa.github.io/lit-tacotron2/, last accessed on November 18, 2022). The 

form looks like a list of tasks with two player pictograms on the left-hand side (see 

Fig. 4) and five radio buttons on the right-hand side (see Fig. 5). Later, the answers 

https://danieliusa.github.io/lit-tacotron2/
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obtained were converted into numerical form, i.e., the values -2, -1, 0, 1, 2, respectively. 

These numerical values were used to calculate the mean and standard error of the 

responses (see Table 5). One of the possible interpretations of the obtained averages 

could be as follows: if the obtained average is close to the value -2 – First much better, if 

it is close to -1 – First slightly better, if it is close to 0 – Same quality etc. 

 

 
 

Figure 4.  Left-hand side of the evaluation form. 

 

 
 

Figure 5.  Right-hand side of the evaluation form. 

 

The evaluation procedure was divided into two sessions. During the first session two 

experiments were performed: the models trained with the input sets A and B were 

compared, then the models trained with the sets C and D were compared. On the basis of 

the results of the first session, two more experiments were carried out during the second 

session: a comparison of B and D, and a comparison of D and E. 

As many as 20 pairs of synthesized sentences were used in each experiment. The 

pairs were formed so that each model was presented in the first and second place exactly 

10 times. The relationship between the sentences, listener groups and experiments is 

summarized in Table 3. 
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Table 3. Relationship between the sentences, listener groups and experiments 

Sentences Group of listeners 

1 2 3 4 

1-20 A & B D & E B & D C & D 

21-40 C & D A & B D & E B & D 

41-60 B & D C & D A & B D & E 

61-80 D & E B & D C & D A & B 

 

Answers obtained are presented in Table 4. Answers of the last (most interesting) 

experiment (where sets D and E were compared) are visualized in Fig. 6. 

 

Table 4. Answers obtained in the experiments 

Experiment First  

much  

better 

First 

slightly 

better 

Same 

quality 

Second 

slightly 

better 

Second 

much  

better 

A & B 82 94 154 120 130 

C & D 41 94 267 117 61 

B & D 42 88 120 148 262 

D & E 35 74 327 152 72 

 

 

 
 

Figure 6.  Number of responses in the experiment with the sets D and E. 
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6. Results 

The mean value and the standard error were calculated for all listeners and all sentences. 

The results obtained are presented in Table 5. The winners are written in bold. 

Table 5. Experimental results of relative subjective acceptability 

Experiment Description Acceptability 

A & B All letters vs. Lowercase letters 0.21 ± 0.06 

C & D Accented letters vs. Reduced set of accented letters 0.11 ± 0.04 

B & D Lowercase letters vs. Reduced set of accented letters 0.76 ± 0.05 

D & E Reduced set of accented letters vs. Separate accent 

marks 

0.23 ± 0.04 

 

From Table 5, we can see that in the experiment with sets A and B, slightly better 

results were obtained using only lowercase letters. This is what was expected, because 

uppercase and lowercase letters always denote the same sounds. The difference is small, 

as the capitalization of the text makes up only a small percentage. 

When using full and reduced sets of accented letters (C and D), slightly better results 

were obtained with reduced set because, as before, only letters denoting the same sounds 

were removed, and these letters make up a small fraction. From these two results, it can 

be summarized that replacing letters denoting the same sound by one letter and thus 

reducing the alphabet improves the results. 

Comparing the sets of unaccented and accented letters (B and D), significantly better 

results were obtained using accented letters. This is because about 97 percent of the 

words are stressed correctly using accented letters, and only about 80 percent using non-

accented letters, i.e., the neural network has been able to learn about 80 percent of word 

stress from plain text, and this percentage can be slightly improved by increasing the 

training data, but it still lags far behind the stress algorithm we developed. The 

percentage estimates provided are only approximate, as it is difficult to determine 

accurately from the hearing whether the word is stressed correctly. 

Finally, a reduced set of accented letters and a set with separate accent marks (D and 

E) were compared. The set with separate accent marks gave slightly better results. It was 

a surprise to us. Let's take two words that are pronounced very similarly, only the place 

of the stress is different, for example, let's take the nominative and instrumental case of 

the word “parama” (support) and encode them using sets D and E: 

Set D: 

paramà 

pãrama 

Set E: 

parama` 

pa~rama 

Using the set D, two letters have changed. Using the set E, the letters are the same, 

but all the letters except the first two have shifted, so different letters will be fed to the 

last five neural network inputs. We expected this would be a problem for the neural 

network, but it turns out that the neural network is capable of learning this. 
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7. Conclusions 
 

The Tacotron 2 model was trained on Lithuanian speech data encoded with five 

different input alphabets. Acceptability testing by human listeners was performed. The 

main conclusion is that although the Tacotron 2 model can partially learn the 

complicated Lithuanian accentuation system from several hours of recordings and plain 

text, and increasing the amount of training data would increase that part even more, but 

putting accent marks to the text significantly improves the quality of the synthesized 

speech, so it seems like a more promising method. Reducing the size of the input 

alphabet also has a slight positive impact. Finally, putting accent marks into the text 

produced the best results as compared to using the accented letters. 
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