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Abstract 

Multidimensional scaling is a technique for representing multidimensional 

data (a set of points in a multidimensional space) in a space of lesser 

dimensionality. The case of the 2–dimensional embedding space is of a 

special interest since 2-dimensional images are well suitable for 

visualization. The quality of visualization is measured by the difference 

between the pair wise distances in the original and embedding spaces defined 

by the STRESS function. The latter should be minimized. This complicated 

(multimodal) minimization problem can be tackled by a hybrid method 

combining a genetic type algorithm with a conjugate gradient descent 

routine. In the present paper a version of conjugate gradient method oriented 

to STRESS minimization is considered. 
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1. Introduction 

Visualization is a technique for the heuristic analysis of 

multidimensional data where multidimensional points are mapped to 2–

dimensional plane preserving the structure of pair wise distances. Such a 

mapping is a special case of multidimensional scaling (MDS). The problem 

of MDS was formulated in (Kruskal, 1964, pp. 1-27) as a problem of 

minimization of STRESS function. The term “multidimensional scaling” was 

accepted by statisticians and users of this technique in social sciences (Mathar, 

1995, p. 44), (Borg, Groenen, 1997). The paper by Sammon (Sammon, 1969, 

pp. 401-409) originated the development of a special version of MDS. The 

subsequent papers on implementation and application of Sammon’s method use 

the term “nonlinear mapping technique”; see e.g. (Dzwinel, 1994, pp. 949-
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959). Applications of Sammon’s method are normally oriented to the problems 

of pattern recognition. Although different aspects of MDS have been 

investigated, crucial implementation difficulties remain not resolved.  

2. Formulation of MDS problem 

Let us give a short formulation of the problem. The matrix 

njiij ,...,1,,   gives the pair wise dissimilarities between n objects, and it 

is symmetric. Dissimilarities are data for MDS; for example, they can be 

obtained experimentally. In case the original data is a set of points in 

multidimensional space R
d
 the dissimilarities are defined as distances in this 

space. The points ,,...,1, niRx m

i   should be found which inter-point 

Euclidean distances fit the given dissimilarities. The embedding Euclidean 

space normally is 2-dimensional (m=2), but other dimensionalities may be also 

interesting for some applications, (m<d). To find the points ix  the STRESS 

function f (X) should be minimized, 

),...,,,...,(,))(()( 12111

2

nmnijij

ji

ij xxxxXXdwXf 


  (1) 

where )(Xd ij  denotes the Euclidean distance between the points ., ji xx  It 

is supposed that the weights are positive: .,...,1,,0 njiwij    

Although the STRESS function is defined by the analytical formula (1), 

which seems rather simple, it normally has many local minima. The 

minimization problem is highly dimensional, with the number of variables 

equal to N=nm. At some points the function f(X) is not differentiable. The 

listed features make minimization of f(X) difficult.  

3. Local minimization 

It is well known (De Leeuw, 1984, pp. 111-113) that f(X) is differentiable 

at a local minimum point, i.e. if X is a local minimizer, then the following 

equalities and inequalities are valid  
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In fact, the more general result may be proven: 

Proposition. Let L(t), -<t<, be a line in 
NR , containing a point at 

which f() is differentiable. Then f() is differentiable at any point L(t*)
NR , 

where t* is the local minimizer of (t)=f(L(t)). 

It follows from the proposition that a local descent trajectory escapes the 

points of non–differentiability of f(). Therefore, a fast local descent method 

may be applied to find a local minimizer of f().It is well known that variable 

metric methods are efficient for local minimization of f(X) in case of not too 

high dimensionality N. For very high dimensionalities a conjugate gradient 

method seems promising. From a theoretical point of view the rate of 

convergence is most important feature of an algorithm. The super linear 

convergence rate of a conjugate gradient method may be proved under mild 

assumptions on an objective function. However, the quadratic convergence is 

proved assuming the norm of Hessian of the objective function be bounded 

from zero. Let us analyze the second directional derivative of f(X) at a local 

minimum point Z  with respect to the direction S: 
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At a local minimum point the inequality 0),0('' S  holds for any S. 

For the directions S corresponding to the translations and rotations of the 

embedding space the inequality is reduced to the equality 0),0('' S . The 

latter equality implies the degeneracy of Hessian. To ensure the quadratic 

convergence of the conjugate gradient method the problem should be 

regularized. A simple regularization via the fixation of several variables to 
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exclude invariance with respect to translations and rotations of the embedding 

space has some serious disadvantages; see e.g. (Žilinskas, 1997, pp. 200-204).. 

The regularization can be achieved also by excluding invariance with respect to 

translations and rotations (in the 2–dimensional case, m=2) introducing the 

equality constraints: 

 


n

i ii

n

i i

n

i i xxxx
1 211 21 1 .0  (2) 

Proposition The Polak – Ribiere conjugate gradient method converges to 

a local minimizer of regularized minimization problem quadratically with 

respect to the number of iterations including 2n-3 exact line searches. 

Since the analytic expressions of the first and second directional 

derivatives are available, then a high precision line search method based on 

forth degree polynomial interpolation may be easily implemented. 

4. A hybrid method 

Several algorithms of minimization of the STRESS are available. The 

theoretical results of the previous section show that the non–differentiability of 

(1) is not a concern if a local descent method is used. Therefore, a conjugate 

gradient method with regularization of minimization problem is a strong 

competitor for other well known methods. The latter method may successfully 

cope with high dimensionality. Therefore, the real difficulty is caused by the 

multimodality of the STRESS.  

The majorization method, which is especially tailored for MDS, may 

escape some local minima. However, like the other local methods, it provides a 

solution essentially depending on a starting point (Borg, Groenen, 1997). A 

local descent may be extended for multimodal problems using the tunneling 

approach. The possibilities of such an extension for MDS are discussed in 

(Borg, Groenen, 1997). The combination of majorization method with genetic 

algorithm was proposed in (Mathar, 1996, pp. 63-71) where the method of 

Mathar and Žilinskas (Mathar, Žilinskas, 1993, pp. 109-118) was modified 

substituting a variable metric local descent with majorization method. The 

results of limited experimental testing showed that a genetic type approach may 

be promising for global minimization of (1). In the references on “nonlinear 

mapping” various versions of descent are of primary interest. However, 
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combinations of descent with general global search methods, e.g. simulated 

annealing, are claimed promising in (Dzwinel, 1994, pp. 949-959).  

The proposed version of the conjugate gradient algorithm is supposed to 

be combined with a genetic algorithm. A brief description of this genetic 

algorithm is presented below; for more details we refer to (Zilinskas and 

Zilinskas, 2008, pp.429-443). The majority of the authors consider the 

unconstrained minimization of (1). In such a case the same minimum value may 

be obtained at different points on the orbit of local minimizers corresponding to 

invariance of f(X) with respect to translation and rotation of the embedding 

space. Therefore several copies of the same local minimum may be obtained, 

but with very different minimizers. It is difficult to handle such information on 

local minima to perform rational search for a global minimizer. In our conjugate 

gradient algorithm the ortogonalization (2) prevents multiplication of the 

minimizers. The analysis carried out for several sets of data shows that different 

local minimizers are located rather close each to other. Geometrically this 

feature of the STRESS may be explained as a small structural difference 

between the graphs in the 2–dimensional embedding space corresponding to 

different local minimizers of f(X). The geometric interpretation implies a 

hypothesis that graphs corresponding to local minimizers are composed of 

similar semi-optimal sub-graphs.  

In terms of the genetic algorithms different local minima are considered as 

the ideal representatives of different breeds. They are used for crossover. The 

initial population of the size p is generated by means of local descent method 

from the random initial points. The parents are chosen at random with 

uniform distribution. The graph in the embedding space is considered the 

phenotype. The hypothesis is accepted that crossover of chromosomes imply 

the crossover of characteristics of phenotype. The latter is modeled as the 

crossover of the graphs in the embedding space, i.e. some points 
2Rxi  of 

one parent graph and remaining points of the other parent graph are taken to 

compose the descendant graph. The break position is generated randomly 

with uniform distribution in the interval [1, n]. The larger number of points is 

taken from the fittest parent. The mutation is modeled as the random 

summands to the components of graph coordinates; the distribution of the 

random variable is uniform in the interval [-r, r]. Two selection mechanisms 

have been investigated: 1) the descendants survive and the parents die; 2) 

each descendant competes with a randomly chosen individual of current 

population. The number of generations modeled to find the global minimum 

is denoted g. 



8 

 

 

5. Experimental testing 

To assess the efficiency of the regularized conjugate gradient method 

(CG) for local minimization of (1) CG was compared with the known method 

based on majorization approach (MA) (Mathar, pp. 63-71). The convergence of 

MA to local minimum point is proved, e.g. in (Mathar, 1995). Moreover, it may 

be expected that bad local minima will be avoided. Both methods (CG and MA) 

were implemented in MATLAB. Two known sets of data were used. The first 

set, presented in Table 1 a), contains ij  for ten soft drinks whose 

dissimilarities are obtained by means of experimental testing (Borg, Groenen, 

1997). The second set of data corresponding to the proximities of 13 facial 

expressions (Borg, Groenen, 1997) is presented in Table 1 b). 

Table 1. Data for visualization. 
a) 

 1.27  1.69  2.04  3.09  3.20  2.86  3.17  3.21  2.38 

          1.43  2.35  3.18  3.22  2.56  3.18  3.18  2.31 

                   2.43  3.26  3.27  2.58  3.18  3.18  2.42 

b)                         2.85  2.88  2.59  3.12  3.17  1.94 

                                     1.55  3.12  1.31  1.70  2.85 

0.405                                     3.06  1.64  1.36  2.81 

0.825 0.254                                    3.00  2.95  2.56 

0.557 0.269 0.211                                  1.32  2.91 

0.115 0.267 0.898 0.378                                    2.97 

0.297 0.388 0.927 0.605 0.234 

0.434 0.853 1.187 0.978 0.712 0.136 

0.490 0.131 0.256 0.421 0.590 0.518 0.847 

0.625 0.188 0.074 0.045 0.477 0.545 1.020 0.263 

0.155 0.484 0.925 0.492 0.222 0.417 0.544 0.545 0.710 

0.168 0.581 0.792 0.542 0.434 0.472 0.431 0.379 0.658 0.198 

0.657 0.743 0.830 0.893 0.816 0.466 0.157 0.649 0.977 0.493 0.483 

0.393 0.451 0.847 0.348 0.160 0.489 0.918 0.605 0.655 0.412 0.351 1.265 

To compare the performance of both methods 100 runs have been 

performed with both sets of test data. The starting points were generated 

randomly with uniform distribution in the cube 
N]2.1,2.1[ . Both methods 

used the same random starting point and the same stopping condition: 

001.0||)(||  kXf . The average values of the results are presented in 

Table 2. 
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Table 2. The comparison of performance of CG and MA algorithms 

 STRESS Time (s) Iterations 

CG,  Test 1     13.18 2         36 

MA, Test 1     13.30 5        213 

CG,  Test 2     0.684 2          22 

MA, Test 2     0.684 3          77 

The known best value of the STRESS with the first set of data is 11.746, 

and region of attraction of the corresponding minimizer makes 4% of the 

feasible region. By means of CG a minimizer with the value better than 11.75 

has been found five times, and by means of MA has been found once. 75 times 

the value found by means of CG was better than the value found by means of 

MA.  

The second set of data defines the STRESS function, which is very likely 

unimodal. All 100 runs for both methods stopped in the vicinity of the same 

local minimizer. Average time of minimization of this rather simple function by 

CG is again considerably better than by MA. In all runs a found function value 

was slightly better for CG than for MA. 

Time of local descent to a local minimizer depends on dimensionality of a 

problem and on the stopping condition. The dimensionality of minimization 

problems corresponding to Test 1 and Test 2 is equal to 20 and 26 

correspondingly. The third test problem is 2-dimensional representation of 

vertices of the 5-dimensional cube. The vertices are numbered according their 

digital representation. Since the number of vertices is equal to 32, then the 

dimensionality of the minimization problem is equal to 64. The local descent for 

the problems of such a dimensionality is time consuming. In the Table 3 the 

results of two runs are presented. The results show that the time of local descent 

for 64-dimensional problem is considerably larger than the time for the 20-

dimensional cases. The solution with the prescribed tolerance of gradient norm 

by means of MA was not found.  

Table 3. Dependence on the stopping condition 

    Time (s)  Iterations     Time (s) Iterations 

     =  0.001   =  0.01 

CG      35       73      32      63 

MA    228   1000    228  1000 
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Since the CG has been shown faster than MA, the former was used to 

construct a global search algorithm. The size of population, number of 

generations, crossover method, and mutations intensity has to be chosen 

experimentally. The experiments were performed with the Test 1. Summarizing 

the results, the following parameters may be recommended: p=10, g=3, 

competition selection mechanism, r=0.3. The averaged results of 100 runs for 

Test 1 are the following: the STRESS value equal to 11.77, number of line 

search iterations equal to 812, minimization time equal to 35. Minimal function 

value with accuracy no less than 1% was found 95 times. The average results 

obtained by means of evolutionary algorithm are considerably better than those 

obtained by means of local descent from the random initial points. 

The evolutionary algorithm was applied also to Test 3. The best-found 

value of STRESS function was 141.11, number of line search iterations was 

1470, and solution time was 704. The 2–dimensional image of vertices, 

corresponding to the global minimizer, is presented in Fig.1 a). In Fig.1 b) the 

image corresponding to a local minimizer is presented. Although the difference 

of the STRESS values is insignificant, there are clearly visible differences of the 

images. 

The 2–dimensional images of the results on search process may be useful for 

understanding of character of multimodal objective functions. In Fig.2 the 

images of trajectories of local search from seven random initial points 

(squares) are presented. The function (1) with the data of Test 1 was 

minimized. The picture supports the hypothesis that different local 

minimizers of (1) are close each to other. 
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a) 

 
b) 

 
Fig 1. 2-dimensional image of vertices of 5–dimensional cube:  

a) global minimum - 141.11; b) local minimum - 141.63. 
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Fig 2. Two-dimensional image of descent trajectories in  

20 - dimensional space 

6. Conclusions 

Genetic type global optimization algorithms are prospective to solve a 

difficult global minimization problem of MDS. The latter is useful for 

visualization of information on a global search process.  
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