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Abstract: Let θ(t) denote the increment of the argument of the product π−s/2Γ(s/2) along the
segment connecting the points s = 1/2 and s = 1/2 + it, and tn denote the solution of the equation
θ(t) = (n − 1)π, n = 0, 1, . . . . The numbers tn are called the Gram points. In this paper, we
consider the approximation of a collection of analytic functions by shifts in the Riemann zeta-function
(ζ(s+ itα1

k ), . . . , ζ(s+ itαr
k )), k = 0, 1, . . . , where α1, . . . , αr are different positive numbers not exceeding

1. We prove that the set of such shifts approximating a given collection of analytic functions has a
positive lower density. For the proof, a discrete limit theorem on weak convergence of probability
measures in the space of analytic functions is applied.

Keywords: Gram points; joint universality; weak convergence
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1. Introduction

Let s = σ + it be a complex variable, and P be the set of all prime numbers. The Rie-
mann zeta-function is defined, for σ > 1, by

ζ(s) =
∞

∑
m=1

1
ms = ∏

p∈P

(
1− 1

ps

)−1
.

The function ζ(s) with real s was already known to L. Euler. B. Riemann began to study
ζ(s) with complex s and applied it to the investigation of the distribution of prime numbers
in the set N. The function ζ(s) has analytic continuation to the whole complex plane,
except for the point s = 1, which is a simple pole with residue 1. Riemann’s ideas were
successfully realized by J. Hadamard and C.J. de la Valée Poussin at the end of the 19th
century. Riemann proved for ζ(s) the functional equation

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s), s ∈ C, (1)

where Γ(s) denotes the Euler gamma function. Moreover, Riemann stated some hypotheses
on the zero-distribution of the function ζ(s). From Equation (1), it follows that ζ(−2k) = 0,
k ∈ N, and the points s = −2k are called trivial zeros of ζ(s). Moreover, it is known that
the function ζ(s) has infinitely many of the so-called non-trivial zeros that are complex
and lie in the strip {s ∈ C : 0 < σ < 1}. The famous Riemann hypothesis asserts that all
non-trivial zeros of ζ(s) are located on the critical line σ = 1/2. It is known that more than
41 percent of non-trivial zeros in the sense of density lie on the critical line [1]. Recently,
in [2], this was improved to more than 41.7293 percent. There are also other important
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hypotheses on the value distribution of the function ζ(s). For example, by the Lindelöf
hypothesis, for every ε > 0,

ζ

(
1
2
+ it

)
�ε tε, t > t0.

Recall that the notation f �θ g, g > 0, means that there exists a constant c = c(θ) > 0 such
that | f | 6 cg. On the other hand, the theory of the function ζ(s) is sufficiently rich in the
final results. One of them is the universality property discovered by S.M. Voronin [3], which
means that a wide class of analytic functions defined in the strip D = {s ∈ C : 1/2 < σ < 1}
can be approximated by shifts ζ(s + iτ), τ ∈ R. More precisely, we denote by K the class of
compact subsets of the strip D with connected complements, and by H0(K) with K ∈ K the
class of continuous non-vanishing functions on K that are analytic in the interior of K. Then
the improved Voronin universality theorem says [4] that for every K ∈ K, f (s) ∈ H0(K)
and ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ)− f (s)| < ε

}
> 0. (2)

The latter inequality shows that there exists a constant c > 0 such that, for sufficiently
large T, the Lebesgue measure of the set{

τ ∈ [0, T] : sup
s∈K
|ζ(s + iτ)− f (s)| < ε

}

is greater than cT. Thus, there are infinitely many shifts in ζ(s + iτ) approximating a given
function from the class H0(K). Obviously, the above theorem is useful in the approximation
theory of analytic functions, but also has applications in the theory of the function ζ(s)
(functional independence, zero distribution, moment problem); see, for example, [5], [6]
and [7], respectively, and an informative survey paper [8].

The above universality theorem has a discrete version [9]. Denote by #A the cardinality
of set A. Then, for the same K and f (s) as in (2), and every h > 0 and ε > 0,

lim inf
N→∞

1
N + 1

#

{
0 6 k 6 N : sup

s∈K
|ζ(s + ikh)− f (s)| < ε

}
> 0.

Here N runs over the set of non-negative integers.
Universality theorems for the function ζ(s) also have their joint versions. In this

case, a collection of functions from the class H0(K) is simultaneously approximated by a
collection of different shifts in ζ(s), for example, by (ζ(s + ikh1), . . . , ζ(s + ikhr)), where
h1, . . . , hr satisfy a certain independence condition. In place of traditional shifts ζ(s + iτ)
and ζ(s + ikh), generalized shifts ζ(s + iϕ(τ)) and ζ(s + iϕ1(k)) are possible with certain
functions ϕ(τ) and ϕ1(k).

The function π−s/2Γ(s/2), as the main ingredient of the functional Equation (1), plays
an important role in the theory of ζ(s). This was observed once more by J.-P. Gram in [10].
Denote by θ(t), t > 0, the increment of the argument of the function π−s/2Γ(s/2) along
the segment connecting the points 1/2 and 1/2 + it. The function θ(t) is increasing and
unbounded from above for t > t∗ = 6.289 . . . , therefore, the equation

θ(t) = (n− 1)π, n = 0, 1, . . . , (3)

has the unique solution tn for t > t∗. Gram considered the points tn in connection with
zeros γ̂n of ζ(1/2 + it). He observed that each interval (tn−1, tn], n = 1, . . . , 15, contains
γ̂n such that 1/2 + iγ̂n is a zero of ζ(s), and conjectured that this is impossible for n > 15.
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The Gram conjecture was later confirmed by other authors. Moreover, the Riemann-von
Mangoldt formula

N(T) =
T

2π
log

T
2π
− T

2π
+ O(log T), T → ∞,

where N(T) is the number of zeros of ζ(s) counted the according multiplicities in the
region {s ∈ C : 0 < t < T}, implies that tn ∼ γn as n → ∞, where γn are imaginary
parts of non-trivial zeros of ζ(s). Thus, the sequence {tn} of the Gram points is quite
intriguing. A wide survey of the results on the Gram points is given in [11]. Equation (3)
also offers a unique solution with arbitrary τ > 0 in place of n, and this solution is called
the Gram function.

In [12], a joint universality theorem for the Riemann zeta function with shifts involving
the powers of the Gram function has been obtained.

Theorem 1 ([12]). Suppose that α1, . . . , αr are fixed different positive numbers. For j = 1, . . . , r,
let Kj ∈ K and f j(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

16j6r
sup
s∈Kj

|ζ(s + it
aj
τ )− f j(s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

The aim of this paper is to obtain a discrete version of Theorem 1, i.e., the joint
approximation of analytic functions by using shifts involving the Gram points. It turns out
that the discrete case is more complicated, and we have to add the restriction 0 < αj 6 1,
j = 1, . . . , r.

Theorem 2. Suppose that α1, . . . , αr are different fixed positive numbers not exceeding 1. For
j = 1, . . . , r, let Kj ∈ K and f j(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
N→∞

1
N + 1

#

{
0 6 k 6 N : sup

16j6r
sup
s∈Kj

|ζ(s + it
aj
k )− f j(s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Theorem 2 is weaker than Theorem 1 with respect to numbers α1, . . . , αr. However,
discrete universality theorems are sometimes more convenient for applications because of
the easier detection of approximating shifts. This is our motivation to consider a discrete
version of Theorem 1.

2. Discrete Mean Square Estimates

We start with recalling the Gallagher lemma with discrete and continuous connections
to mean squares of some functions; see, for example, Lemma 1.4 in [13].

Lemma 1. Suppose that T0 > δ > 0, T > δ, T is a finite non-empty set in the interval
[T0 + δ/2, T0 + T − δ/2], and

Nδ(τ) = ∑
t∈T
|t−τ|<δ

1, τ ∈ T .
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Let a complex valued function S(t) be continuous on [T0, T0 + T] and have a continuous derivative
on (T0, T0 + T). Then

∑
t∈T

N−1
δ (t)|S(t)|2 6

1
δ

T0+T∫
T0

|S(t)|2 dt +

 T0+T∫
T0

|S(t)|2 dt
T0+T∫
T0

|S′(t)|2 dt

1/2

.

The next lemma is Lemma 2.2 from [12].

Lemma 2. Suppose that 1/2 < σ < 1 and α > 0 are fixed. Then, for fixed t ∈ R,

T∫
0

|ζ(σ + itα
τ + it)|2 dτ �σ,α T(1 + |t|), T → ∞.

For the Gram function tτ , the following asymptotics is known [11], Lemma 1.1.

Lemma 3. Suppose that tτ , τ > 0, is the unique solution of equation θ(t) = (τ − 1)π such that
the derivative θ′(tτ) > 0, and that τ → ∞. Then

tτ =
2πτ

log τ
(1 + o(1))

and
t′τ =

2π

log τ
(1 + o(1)),

where t′τ = ∂tτ
∂τ .

Lemma 4. Suppose that 1/2 < σ < 1 and α > 0 are fixed. Then, for fixed t ∈ R,

T∫
0

∣∣ζ ′(σ + itα
τ + it)

∣∣2 dτ �σ,α T(1 + |t| log2 |t|).

Proof. For fixed 1/2 < σ < 1, the estimate

T∫
−T

∣∣ζ ′(σ + it)
∣∣2 dt�σ T, T → ∞, (4)

is valid. Let X > log T. Define g(τ) = tα
τ + t. Then, in view of Lemma 3,

Iσ,α(X, t) def
=

2X∫
X

∣∣ζ ′(σ + itα
τ + it)

∣∣2 dτ =

2X∫
X

g′(τ)
g′(τ)

|ζ ′(σ + ig(τ))|2 dτ

�α
(log X)α

Xα−1

g(2X)∫
g(X)

|ζ ′(σ + iu)|2 du.

Therefore, estimate (4) and Lemma 3 imply

Iσ,α(X, t)�σ,α
(log X)α

Xα−1

(
Xα

(log X)α
+ |t|

)
�σ,α X(1 + |t|).
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This shows that
T∫

log T

∣∣ζ ′(σ + itα
τ + it)

∣∣2 dτ �σ,α T(1 + |t|). (5)

It is known (see, for example, [14], p. 55) that, for t > t0 and σ > 0,

ζ ′(σ + it) + ∑
m6t

log m
mσ+it �σ t−σ log t.

Thus, for fixed 1/2 < σ < 1,

ζ ′(σ + it)�σ t1/2 log t, t > t0.

Therefore, Lemma 3 gives

log T∫
0

∣∣ζ ′(σ + itα
τ + it)

∣∣2 dτ �σ (log T)α+2(1 + |t| log2 |t|).

This and (5) prove the lemma.

Now we are ready to estimate mean square of ζ(s) involving the points tα
k .

Lemma 5. Suppose that 1/2 < σ < 1 and 0 < α 6 1 are fixed. Then, for fixed t ∈ R,

N

∑
k=0
|ζ(σ + itα

k + it)|2 �σ,α N(1 + |t| log2 |t|).

Proof. We apply Lemma 1 with δ = 1, T0 = 1, T = N and T = {3/2, 2, 3, . . . , N, N + 1/2}.
Then Nδ(x) = 1, and, by Lemmas 1 and 2,

N

∑
k=2
|ζ(σ + itα

k + it)|2

6

N+1∫
1

|ζ(σ + itα
τ + it)|2 dτ +

 N+1∫
1

|ζ(σ + itα
τ + it)|2 dτ

N+1∫
1

∣∣ζ ′(σ + itα
τ + it)

∣∣2 dτ

1/2

�σ,α N(1 + |t|) + N1/2(1 + |t|)1/2

 N+1∫
1

∣∣ζ ′(σ + itα
τ + it)

∣∣2((tα
τ)
′)2 dτ

1/2

.

Since 0 < α 6 1, the last integral, in view of Lemmas 3 and 4, is estimated as
N(1 + |t| log2 |t|). Thus,

N

∑
k=2
|ζ(σ + itα

k + it)|2 �σ,α N(1 + |t| log2 |t|). (6)

Since ζ(σ + it)�σ 1 + |t|1/6, we have

1

∑
k=0
|ζ(σ + itα

k + it)|2 �σ,α 1 + |t|,

and this together with (6) proves the lemma.
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In the sequel, we will need the approximation of ζ(s + itα
k ) by a certain absolutely

convergent Dirichlet series. Let θ > 1/2 be a fixed number,

vn(m) = exp
{
−
(m

n

)θ
}

, m, n ∈ N,

and

ζn(s) =
∞

∑
m=1

vn(m)

ms .

Since vn(m) with respect to m decreases exponentially, the series for ζn(s) is absolutely
convergent for all s ∈ C.

Lemma 6. Suppose that 0 < α 6 1 is fixed. Then, for every compact subset K of the strip D,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈K
|ζ(s + itα

k )− ζn(s + itα
k )| = 0.

Proof. For brevity, define

ln(s) =
s
θ

Γ
( s

θ

)
ns.

Then the Mellin formula

1
2πi

b+i∞∫
b−i∞

Γ(s)a−s ds = e−a, a, b > 0,

and the definition of vn(m) lead to the integral representation (see, for example, [4], for
proof of Theorem 5.4.2)

ζn(s) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s + z)ln(z)
dz
z

, s ∈ D.

There exists ε > 0 such that 1/2 + 2ε 6 σ 6 1− ε for all s = σ + it ∈ K. Now, for such ε
and σ, put

θ =
1
2
+ ε, κ = σ− 1

2
− ε > 0.

The integrand in the latter integral, for −κ 6 Rez 6 θ, has simple poles at the points z = 0
and z = 1− s. Therefore, the residue theorem gives

ζn(s)− ζ(s) =
1

2πi

−κ+i∞∫
−κ−i∞

ζ(s + z)ln(z)
dz
z

+
ln(1− s)

1− s
. (7)

Then, by (7), for s ∈ K, we have

ζn(s + itα
k )− ζ(s + itα

k ) =
1

2πi

−κ+i∞∫
−κ−i∞

ζ(s + itα
k + z)ln(z)

dz
z

+
ln(1− s− itα

k )

1− s− itα
k

=
1

2πi

∞∫
−∞

ζ

(
1
2
+ ε + itα

k + it + iv
)

ln(1/2 + ε− σ + iv)
1/2 + ε− σ + iv

dv +
ln(1− s− itα

k )

1− s− itα
k

�
∞∫
−∞

∣∣∣∣ζ(1
2
+ ε + itα

k + iv
)∣∣∣∣ sup

s∈K

∣∣∣∣ ln(1/2 + ε− s + iv)
1/2 + ε− s + iv

∣∣∣∣dv + sup
s∈K

∣∣∣∣ ln(1− s− itα
k )

1− s− itα
k

∣∣∣∣.
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Here we made a shift t + v→ v. Hence,

1
N + 1

N

∑
k=0

sup
s∈K
|ζ(s + itα

k )− ζn(s + itα
k )|

�
∞∫
−∞

(
1

N + 1

N

∑
k=0

∣∣∣∣ζ(1
2
+ ε + itα

k + iv
)∣∣∣∣
)

sup
s∈K

∣∣∣∣ ln(1/2 + ε− s + iv)
1/2 + ε− s + iv

∣∣∣∣dv

+
1

N + 1

N

∑
k=0

sup
s∈K

∣∣∣∣ ln(1− s− itα
k )

1− s− itα
k

∣∣∣∣ def
= I1 + I2. (8)

Lemma 5 shows that

1
N + 1

N

∑
k=0

∣∣∣∣ζ(1
2
+ ε + itα

k + iv
)∣∣∣∣ 6

(
1

N + 1

N

∑
k=0

∣∣∣∣ζ(1
2
+ ε + itα

k + iv
)∣∣∣∣2
)1/2

�ε,α (1 + |v| log2 |v|)1/2 �ε,α 1 + |v| log2 |v|. (9)

For the function Γ(s) the estimate, for large |t|,

Γ(σ + it)� exp{−c|t|}, c > 0, (10)

is valid uniformly in any interval σ1 6 σ 6 σ2, σ1 < σ2. Therefore, for all s ∈ K,

ln(1/2 + ε− σ + iv)
1/2 + ε− σ + iv

�θ n1/2+ε−σ exp
{
− c

θ
|v− t|

}
�θ,K n−ε exp{−c1|v|}, c1 > 0.

This and (9) give the bound

I1 �ε,α,θ,K n−ε

∞∫
−∞

(1 + |v| log2 |v|) exp{−c1|v|}dv�ε,α,θ,K n−ε. (11)

By (10) again, for s ∈ K,

ln(1− s− itα
k )

1− s− itα
k
�θ n1−σ exp

{
− c

θ
|tα

k + t|
}
�θ,K n1/2−2ε exp{−c2tα

k}, c2 > 0.

Thus, in view of Lemma 3,

I2 �θ,K n1/2−2ε 1
N

N

∑
k=0

exp{−c2tα
k}

�θ,K n1/2−2ε 1
N

N

∑
k=log N

exp
{
−c3

(
k

log k

)α}
+ n1/2−2ε log N

N

�θ,K n1/2−2ε 1
N

exp
{
−c4

(
log N

log log N

)α}
, c3, c4 > 0.

Therefore, (11) and (9) show that

1
N + 1

N

∑
k=0

sup
s∈K
|ζ(s + itα

k )− ζn(s + itα
k )|

�ε,α,θ,K n−ε + n1/2−2ε

(
log N

N
+

1
N

exp
{
−c4

(
log N

log log N

)α})
.

Letting N → ∞, and then n→ ∞, proves the lemma.

Lemma 6 is important for the proof of a discrete limit theorem for ζ(s).
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3. Limit Theorems

Denote by H(D) the space of analytic functions on D endowed with the topology of
uniform convergence on compacta, and put

Hr(D) = H(D)× · · · × H(D)︸ ︷︷ ︸
r

.

Let B(X) be the Borel σ-field of a topological space X. Define the set

Ω = ∏
p∈P

γp,

where γp = {s ∈ C : |s| = 1} for all p ∈ P. The infinite-dimensional torus Ω, with the
product topology and pointwise multiplication, by the classical Tikhonov theorem, is a
compact topological Abelian group. Therefore, on (Ω,B(Ω)), the probability Haar measure
exists. Let

Ωr = Ω1 × · · · ×Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then, again, Ωr is a compact topological Abelian group,
and, on (Ωr,B(Ωr)), the probability Haar measure mH can be defined. This gives the
probability space (Ωr,B(Ωr), mH). Note that mH is the product of the Haar measures mjH
on (Ωj,B(Ωj)), j = 1, . . . , r. Denote by ωj(p) the pth component, p ∈ P, of an element of
ωj ∈ Ωj, j = 1, . . . , r, and by ω = (ω1, . . . , ωr) the elements of Ωr. On the probability space
(Ωr,B(Ωr), mH), define the Hr(D)-valued random element

ζ(s, ω) = (ζ(s, ω1), . . . , ζ(s, ωr)),

where

ζ(s, ωj) = ∏
p∈P

(
1−

ωj(p)
ps

)−1

, j = 1, . . . , r.

Note that the latter products, for almost all ωj ∈ Ωj, are uniformly convergent on a compact
subset of the strip D, see, for example, Theorem 5.1.7 of [4], or Lemma 4 of [15]. Denote by
Pζ the distribution of the random element ζ(s, ω), i.e.,

Pζ(A) = mH

{
ω ∈ Ωr : ζ(s, ω) ∈ A

}
, A ∈ B(Hr(D)).

For brevity, we set α = (α1, . . . , αr), tα
k = (tα1

k , . . . , tαr
k ),

ζ(s + itα
k ) =

(
ζ(s + itα1

k ), . . . , ζ(s + itαr
k )
)
,

and, for A ∈ B(Hr(D), define

PN,α(A) =
1

N + 1
#
{

0 6 k 6 N : ζ(s + itα
k ) ∈ A

}
.

This section is devoted to weak convergence for PN,α as N → ∞.

Theorem 3. Suppose that α1, . . . , αr are different fixed positive numbers not exceeding 1. Then
PN,α converges weakly to Pζ as N → ∞.

We divide the proof of Theorem 3 into lemmas. The first of them deals with probability
measures on (Ωr,B(Ωr)). For A ∈ B(Ωr), define

QN,α(A) =
1

N + 1
#
{

0 6 k 6 N :
(
(p−it

α1
k : p ∈ P), . . . , (p−itαr

k : p ∈ P)
)
∈ A

}
.
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For the proof of weak convergence for QN,α, we will apply a notion of uniform
distribution modulo 1. Recall that a sequence {xk : k ∈ N} ⊂ R is called uniformly
distributed modulo 1 if, for every subinterval (a, b] ⊂ (0, 1],

lim
n→∞

1
n

n

∑
k=1

I(a,b]({xk}) = b− a,

where I(a,b] is the indicator function of (a, b], and {u} denotes the fractional part of u ∈ R.
We will use the Weil criterion on the uniform distribution modulo 1; see, for exam-

ple, [16].

Lemma 7. A sequence {xk : k ∈ N} ⊂ R is uniformly distributed modulo 1 if and only if, for every
m ∈ Z \ {0},

lim
n→∞

1
n

n

∑
k=1

e2πimxk = 0.

The next lemma gives sufficient conditions for uniform distribution modulo 1; see,
for example, [16], Theorem 3.5.

Lemma 8. Let g(u) be a function defined for u > 1 that is l-times differentiable for u > u0.
If g(l)(u) tends monotonically to zero as u → ∞ and if limu→∞ u|g(l)(u)| = +∞, then the
sequence {g(k) : k ∈ N} is uniformly distributed modulo 1.

Lemma 9. Suppose that α1, . . . , αr are different fixed positive numbers not exceeding 1. Then QN,α
converges weakly to the Haar measure mH as N → ∞.

Proof. We apply the Fourier transform method. Denote by gN,α(k1, . . . , kr), kj = (k jp :
k jp ∈ Z, p ∈ P), j = 1, . . . , r, the Fourier transform of QN,α, i.e.,

gN,α(k1, . . . , kr) =
∫

Ωr

r

∏
j=1

∏
p∈P

∗
ω

kjp
j (p)dQN,α,

where the sign “ ∗ ” means that only a finite number of integers k jp are distinct from zero.
The definition of QN,α gives

gN,α(k1, . . . , kr) =
1

N + 1

N

∑
k=0

r

∏
j=1

∏
p∈P

∗ p−ikjpt
αj
k

=
1

N + 1

N

∑
k=0

exp

{
−i

r

∑
j=1

t
αj
k ∑

p∈P

∗ k jp log p

}
. (12)

Obviously,
gN,α(0, . . . , 0) = 1, (13)

where 0 = (k jp : k jp = 0, p ∈ P). Thus, it remains to consider the case (k1, . . . , kr) 6=
(0, . . . , 0). In this case, there exists j ∈ {1, . . . , r} such that

aj
def
= ∑

p∈P

∗ k jp log p 6= 0

because the set of logarithms of all prime numbers is linearly independent over the field of
rational numbers. Without a loss of generality, we suppose that α1 < · · · < αr, and j0 =
max{j 6 r : aj 6= 0}. Then

bα(τ)
def
=

r

∑
j=1

ajt
αj
τ =

j0

∑
j=1

ajt
αj
τ .
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Thus, by Lemma 3,

b′α(τ) =

(
j0

∑
j=1

ajt
αj
τ

)′
= aj0 αj0 t

αj0−1
τ t′τ(1 + o(1)) = 2πaj0 αj0

(2πτ)αj0−1

(log τ)αj0
(1 + o(1))

as τ → ∞. This shows that b′α(τ) tends monotonically to zero as τ → ∞, and

lim
τ→∞

τ|b′α(τ)| = ∞.

Therefore, Lemma 8 implies that the sequence

xk
def
=

{
− 1

2π
bα(k)

}
is uniformly distributed modulo 1. Hence, by Lemma 7 and (12)

gN,α(k1, . . . , kr) =
1

N + 1

N

∑
k=0

exp{−ibα(k)} =
1

N + 1

N

∑
k=0

e−2πixk = o(1)

as N → ∞. This and (13) show that

lim
N→∞

gN,α(k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) 6= (0, . . . , 0).

Since the right-hand side of the latter equality is the Fourier transform of the measure mH ,
the lemma is proven.

Let
ζn(s + itα

k ) =
(
ζn(s + itα1

k ), . . . , ζn(s + itαr
k )
)
.

The next step of the proof of Theorem 3 is a limit lemma for

PN,n,α(A)
def
=

1
N + 1

#
{

0 6 k 6 N : ζn(s + itα
k ) ∈ A

}
, A ∈ B(Hr(D)).

Before that, we recall one assertion on the preservation of weak convergence under certain
mappings. Let X1 and X2 be two spaces, and h : X1 → X2 a (B(X1),B(X2))-measurable
mapping, i.e., for every A ∈ B(X2),

h−1 A ∈ B(X1).

Then every probability measure P on (X1,B(X1)) defines the unique probability measure
Ph−1 by

Ph−1(A) = P(h−1 A), A ∈ B(X2).

It is well known that every continuous mapping h is (B(X1),B(X2))-measurable, and the
following useful statement is valid; see, for example, [17], Theorem 5.1.

Lemma 10. Suppose that Pn, n ∈ N, and P are probability measures on (X1,B(X1)), h : X1 →
X2 a continuous mapping, and Pn converges weakly to P as n→ ∞. Then Pnh−1 converges weakly
to Ph−1 as n→ ∞.

Let, for m ∈ N,
ωj(m) = ∏

pl |m
pl+1-m

ωl
j(p), j = 1, . . . , r,
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and
ζn(s, ω) = (ζn(s, ω1), . . . , ζn(s, ωr)),

where

ζn(s, ωj) =
∞

∑
m=1

ωj(m)vn(m)

ms , j = 1, . . . , r.

Since |ωj(m)| = 1, the latter series are absolutely convergent for σ > σ0 with arbitrary
finite σ0.

Consider the mapping hn : Ωr → Hr(D) given by

hn(ω) = ζn(s, ω).

Let Vn = mHh−1
n . Then the following statement is valid.

Lemma 11. Suppose that α1, . . . , αr are different fixed positive numbers. Then PN,n,α converges
weakly to Vn as N → ∞.

Proof. By the definition of hn, we have

hn

(
(p−it

α1
k : p ∈ P), . . . , (p−itαr

k : p ∈ P)
)
= ζn(s + itα

k ).

Therefore, for A ∈ B(Hr(D)),

PN,n,α(A) =
1

N + 1
#
{

0 6 k 6 N :
(
(p−it

α1
k : p ∈ P), . . . , (p−itαr

k : p ∈ P)
)
∈ h−1

n A
}

= QN,α(h−1 A) = QN,αh−1(A).

Thus,
PN,n,α = QN,αh−1

n . (14)

Since the series for ζn(s, ωj), j = 1, . . . , r, are absolutely convergent, the mapping hn is
continuous. Therefore, (14) and Lemmas 9 and 10 prove the lemma.

The measure Vn appears in all joint limit theorems for ζ(s) and other Dirichlet series.
The following lemma is known; see, for example, the proof of Theorem 5.4 in [12].

Lemma 12. Vn converges weakly to Pζ as n→ ∞.

Recall one lemma on convergence in distribution ( D−→) of random elements; see,
for example, Theorem 4.2 of [17].

Lemma 13. Suppose that the space (X, d) is separable, and the X-valued random elements Yn and
Xkn, k, n ∈ N, are defined on the same probability space with measure µ. Moreover,

Xkn
D−−−→

n→∞
Xk,

Xk
D−−−→

k→∞
X,

and, for every ε > 0,
lim
k→∞

lim sup
n→∞

µ{d(Xkn, Yn) > ε} = 0.

Then
Yn

D−−−→
n→∞

X.
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Proof of Theorem 3. Let θN be a random variable defined on a certain probability space
with measure µ and having a distribution

µ{θN = k} = 1
N + 1

, k = 0, 1, . . . , N.

Define two Hr(D)-valued random elements

XN,n,α = XN,n,α(s) = ζn(s + itα
θN
)

and
XN,α = XN,α(s) = ζ(s + itα

θN
),

and denote by Xn the Hr(D)-valued random element with distribution Vn. Then the
assertion of Lemma 12 can be written in the form

Xn
D−−−→

n→∞
Pζ , (15)

and, in view of Lemma 11,
XN,n,α

D−−−→
N→∞

Xn. (16)

Next we need a metric in the space Hr(D). Suppose that {Kl : l ∈ N} ⊂ D is a
sequence of embedded compact subsets such that

D =
∞⋃

l=1

Kl ,

and every compact set K ⊂ D lies in some Kl . Such a sequence exists, for example, we can
take a sequence of closed rectangles. Then setting

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(D),

gives a metric in H(D) inducing the topology of uniform convergence on compacta, and

ρ(g
1
, g

2
) = max

16j6r
ρ(g1j, g2j), g

k
= (gk1, . . . , gkr) ∈ Hr(D), k = 1, 2,

defines a metric in Hr(D) inducing the product topology.
Now, Lemma 6, together with definitions of the metrics ρ and ρ, yields the equality

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

ρ
(

ζ(s + itα
k ), ζn(s + itα

k )
)
= 0.

Therefore, the definitions of random elements XN,α and XN,n,α show that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
{

ρ(XN,α, XN,n,α) > ε
}

6 lim
n→∞

lim sup
N→∞

1
ε(N + 1)

N

∑
k=0

ρ(ζ(s + itα
k ), ζn(s + itα

k )) = 0.

This equality and relations (15) and (16) allow applying Lemma 13 for the random elements
XN,α, XN,n,α and Xn. Thus, we obtain the relation

XN,α
D−−−→

N→∞
Pζ ,
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and the theorem is proven.

4. Proof of Theorem 2

Before the proof of Theorem 2, we recall two equivalents of weak convergence of
probability measures; see, for example, [17]. Recall that A is a continuity set of the measure
P if P(∂A) = 0, where ∂A is the boundary of A.

Lemma 14. Suppose that Pn, n ∈ N, and P are probability measures on (X,B(X)). Then the
following statements are equivalent:

1◦ Pn converges weakly to P as n→ ∞;
2◦ For every open set G ⊂ X,

lim inf
n→∞

Pn(G) > P(G);

3◦ For every continuity set A of P,

lim
n→∞

Pn(A) = P(A).

One of the ingredients of the proof of Theorem 2 is the Mergelyan theorem on approxi-
mation of analytic functions by polynomials, see [18].

Lemma 15. Suppose that K ⊂ C is a compact set with connected complements, and f (s) is a
continuous function on K and analytic in the interior of K. Then, for every ε > 0, there exists a
polynomial p(s) such that

sup
s∈K
|g(s)− p(s)| < ε.

Recall that the support of the measure Pζ is a minimal closed set SP ⊂ Hr(D) such
that Pζ(SPζ

) = 1. The set SPζ
consists of all elements g ∈ Hr(D) such that, for every open

neighborhood G of g, the inequality Pζ(G) > 0 is satisfied.
Let S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}. The following lemma is well known; see,

for example, [12], Lemma 6.8.

Lemma 16. The support of the measure Pζ is the set Sr.

Proof of Theorem 2. By Lemma 15, there exist polynomials p1(s), . . . , pr(s) such that

sup
16j6r

sup
s∈Kj

∣∣∣ f j(s)− epj(s)
∣∣∣ < ε

2
. (17)

The latter inequality is a simple application of Lemma 15 for log f (s); the details can
be found in [19], proof of Theorem 2. Let

Gε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

16j6r
sup
s∈Kj

∣∣∣gj(s)− epj(s)
∣∣∣ < ε

2

}
.

Then, in view of Lemma 16, the set Gε is an open neighborhood of an element
(ep1(s), . . . , epr(s)) of the support of the measure Pζ . Therefore,

Pζ(Gε) > 0. (18)

Hence, Theorem 3, and 1◦ and 2◦ of Lemma 14 imply

lim inf
N→∞

PN,α(Gε) > Pζ(Gε) > 0.
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This inequality, (17) and the definitions of PN,α and Gε prove the first assertion of the the-
orem.

Let

Ĝε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

16j6r
sup
s∈K

∣∣gj(s)− f j(s)
∣∣ < ε

}
.

Then (17) implies the inclusion Gε ⊂ Ĝε. Thus, by (18),

Pζ(Ĝε) > 0. (19)

Moreover, the boundaries ∂Ĝε1 and ∂Ĝε2 do not intersect for different positive ε1 and
ε2. From this, it follows that the set Ĝε is a continuity set of the measure Pζ for all but at
most countably many ε > 0. Therefore, Theorem 3, 1◦ and 3◦ of Lemma 14, and (19) give
the inequality

lim
N→∞

PN,α(Ĝε) > Pζ(Ĝε) > 0

for all but at most countably many ε > 0. This proves the second assertion of the
theorem.

5. Conclusions

Let {tk} be a sequence of Gram points, ζ(s) be the Riemann zeta function, for j =
1, . . . , r, 0 < αj 6 1, αj 6= αk for j 6= k, Kj compact subset of the strip D with connected
complement, and f j(s) be a continuous non-vanishing function on Kj and analytic in the
interior of Kj. In this paper, it is obtained that, for every ε > 0,

lim inf
N→∞

1
N + 1

#

{
0 6 k 6 N : sup

16j6r
sup
s∈Kj

|ζ(s + it
aj
k )− f j(s)| < ε

}
> 0,

and that the limit

lim
N→∞

1
N + 1

#

{
0 6 k 6 N : sup

16j6r
sup
s∈Kj

|ζ(s + it
aj
k )− f j(s)| < ε

}

exists and is positive for all but at most countably many ε > 0.
Problem. Does the above theorem remain valid without a restriction 0 < αj 6 1,

j = 1, . . . , r?
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