
Citation: Laurinčikas, A. Joint
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Abstract: In this paper, a theorem is obtained on the approximation in short intervals of a collection
of analytic functions by shifts (ζ(s + itα1

k ), . . . , ζ(s + itαr
k )) of the Riemann zeta function. Here, {tk :

k ∈ N} is the sequence of Gram numbers, and α1, . . . , αr are different positive numbers not exceeding
1. It is proved that the above set of shifts in the interval [N, N + M], here M = o(N) as N → ∞, has a
positive lower density. For the proof, a joint limit theorem in short intervals for weakly convergent
probability measures is applied.
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1. Introduction

Let s = σ + it be a complex variable, and P the set of all prime numbers. The Riemann
zeta function ζ(s) is defined, in the half-plane σ > 1, by

ζ(s) =
∞

∑
m=1

1
ms ,

or by the infinite Euler product

ζ(s) = ∏
p∈P

(
1− 1

ps

)−1
,

and has analytic continuation to the whole complex plane, except for a simple pole at the
point s = 1 with residue 1.

The function ζ(s) is a significant analytic object which is used not only in many
branches of mathematics, but also in solving problems in other natural sciences, see, for
example, [1–3]. This is due to deep connections between ζ(s) and objects of arithmetic,
analytic and probabilistic character. It is not surprising that the function ζ(s) has a certain
link to the famous mathematician and philosopher Pythagoras, who was not only a geome-
ter but also the founder of mathematical philosophy. He saw mathematics everywhere,
and said that all things are numbers, and began to use mathematics in astronomy and
even music. Since the function ζ(s) is the main tool for the investigation of numbers, and
has unexpected results even in cosmology and music (tuning problem), the theory of ζ(s)
supports and develops the Pythagorean philosophy. Last time, applications of ζ(s) crossed
the threshold of numbers, and the function ζ(s) became universal among functions. This
paper is devoted to approximation problems of analytic functions by shifts ζ(s + iτ), and
is a continuation of the works in [4,5]. We recall that a possibility of the approximation of
a class of functions by shifts of one and the same function is called universality, and was
found by S.M. Voronin in [6], see also [7,8]. The discrete variant of the Voronin theorem
was proposed by A. Reich in [9]. Let D = {s ∈ C : 1/2 < σ < 1}, and let K stand for the

Axioms 2023, 12, 426. https://doi.org/10.3390/axioms12050426 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12050426
https://doi.org/10.3390/axioms12050426
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-7671-0282
https://doi.org/10.3390/axioms12050426
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12050426?type=check_update&version=1


Axioms 2023, 12, 426 2 of 14

set of compact sets lying in D and having connected complements. Moreover, denote by
H0(K), K ∈ K the set of non-vanishing continuous functions on K ∈ K, which are analytic
inside of K. Let #A stand for the cardinality of the set A, and let N ∈ N0 = N∪ {0}. Then,
the last discrete version of the Voronin universality theorem is the following statement [9].
For all K ∈ K, f (s) ∈ H0(K), and positive h and ε,

lim inf
N→∞

1
N + 1

#

{
0 6 k 6 N : sup

s∈K
| f (s)| − ζ(s + ikh)| < ε

}
> 0.

In [10], we began to consider the joint approximation of analytic functions by shifts
(ζ(s + itα1

k ), . . . , ζ(s + itαr
k )), where {tk} is the sequence of Gram numbers. Let Γ(s) be the

gamma function. Then, the function ζ(s) has the functional equation

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s), s ∈ C.

Let Θ(t), t > 0 be the increment of the argument of the product π−s/2Γ(s/2) along
the segment which connect the points s1 = 1/2 and s2 = 1/2 + it. Since the function Θ(t)
increases and is unbounded from above for t > t∗ = 6.2 . . . , the equation

Θ(t) = π(n− 1), n ∈ N0, (1)

has the unique solution tn for t > t∗. J.P. Gram was the first to consider the points tn in
connection to non-trivial zeros 1/2 + iγn of the function ζ(s) [11], therefore they are called
Gram points. More information on Gram points can be found in [12–14]. Equation (1) is
also considered with arbitrary real τ > 0 in place of n. In this case, we have the Gram
function tτ .

In [10], we obtained a joint universality theorem on the approximation of analytic func-
tions by shifts (ζ(s + itα1

τ ), . . . , ζ(s + itαr
τ )) with different fixed positive numbers α1, . . . , αr.

The latter theorem was extended to short intervals in [4]. The paper in [5] is devoted to the
discrete version of the results of [10].

Theorem 1 ([5]). Let α1, . . . , αr be fixed different positive numbers not exceeding 1, and for
j = 1, . . . , r, Kj ∈ K and f j(s) ∈ H0(Kj). Then, for any ε > 0,

lim inf
N→∞

1
N + 1

#

{
0 6 k 6 N : sup

16j6r
sup
s∈Kj

|ζ(s + it
αj
k )− f j(s)| < ε

}
> 0.

Moreover, the lower limit can be replaced by the limit for all but at most countably many ε > 0.

Keeping in mind the effectivization of Theorem 1, we prove in this paper a version of
Theorem 1 in short intervals. Without a loss of generality, we may suppose that α1 < α2 <
· · · < αr. For brevity, we set

Ψα(τ) = (tα
τ)

1/3(log tα
τ)

26/15,

where α = α1. Moreover, we use the notation (tα
N)
′ = (tα

τ)
′
τ=N . The objective of the paper is

to prove that the set of approximating shifts (ζ(s + itα1
k ), . . . , ζ(s + itαr

k )) in Theorem 1 has a
positive lower density for every ε > 0 (and a positive density for all but at most countably
many ε > 0) for k in the interval [Ψα(N)((tα

N)
′)−1, N − 1].

The paper is organized in the following way: In Section 2, some mean square esti-
mates for the function ζ(s) in short intervals are obtained. Section 3 is devoted to a joint
discrete limit theorem in short intervals on weakly convergent probability measures in
r-dimensional space of analytic functions. Finally, in Section 4, we prove the main theorem.
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2. Some Estimates

It is well known that mean square estimates occupy a central place in the proofs of
universality theorems on the approximation of analytic functions by zeta functions. This,
in a more complicated form, also takes place in the case of short intervals. Recall that the
notation x �δ y, x ∈ C, y > 0 means the existence of a constant c = c(δ) > 0 such that
|x| 6 cy.

We start with recalling a mean square estimate for the function ζ(s) in short intervals.

Lemma 1. Suppose that σ ∈ (1/2, 13/22] is fixed, and T1/3(log T)26/15 6 H 6 T. Then,
uniformly in H,

T+H∫
T−H

|ζ(σ + it)|2 dt�σ H.

Proof. Suppose that the exponential pair (κ, λ) and σ are connected by the inequality
1 + λ− κ > 2σ, and T(κ+λ+1)/(κ+1)(log T)(2+κ)/(κ+1) 6 H 6 T. Then, Theorem 7.1 of [15]
asserts that, uniformly in H,

T+H∫
T−H

|ζ(σ + it)|2 dt�σ H.

Therefore, the exponential pair (4/11, 6/11) gives the lemma.

For the proof of a discrete limit theorem for the function ζ(s) twisted by Gram points
in short intervals, we need the corresponding mean square estimate. Unfortunately, we do
not know a discrete version of Lemma 1. Therefore, we will derive the desired estimate
from a continuous one which is contained in the next lemma.

Lemma 2. Suppose that 0 < α 6 1 and σ ∈ (1/2, 13/22] are fixed, Ψα(T)((tα
T)
′)−1 6 H 6 T,

and t ∈ R. Then,
T+H∫

T−H

|ζ(σ + it + itα
τ)|2 dτ �σ H(1 + |t|).

Proof. It is known [12] that, for τ → ∞,

tτ =
2πτ

log τ
(1 + o(1)) (2)

and
t′τ =

2π

log τ
(1 + o(1)). (3)

Thus, since 0 < α 6 1, the function (tα
τ)
′ is decreasing for large τ. Hence,

I =def
T+H∫

T
|ζ(σ + itα

τ + it)|2 dτ =
T+H∫

T

1
(tα

τ)′
|ζ(σ + itα

τ + it)|2 d(tα
τ)

=
T+H∫

T

1
(tα

τ)′
d

(
tα
τ+t∫
T
|ζ(σ + iu)|2 du

)
= 1

(tα
T+H)′

T+H∫
T

d

 tα
T+H+t∫

T
|ζ(σ + iu)|2 du


= 1

(tα
T+H)′

tα
T+H+t∫
tα
ξ+t

|ζ(σ + iu)|2 du 6 1
(tα

2T)
′

tα
T+H+|t|∫
tα
T−|t|

|ζ(σ + iu)|2 du

6 1
(tα

2T)
′

tα
T+H(tα

T)
′+|t|∫

tα
T−H(tα

T)
′−|t|
|ζ(σ + iu)|2 du,

(4)
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where T 6 ξ 6 T + H. In view of the hypotheses for H,

H(tα
T)
′ + |t| > H(tα

T)
′ > Ψα(T).

Therefore, by Lemma 1, and if H(tα
T)
′ + |t| 6 tα

T , then, by (4),

I �σ
H(tα

T)
′ + |t|

(tα
2T)
′ �σ,α H +

|t|
(tα

2T)
′ �σ,α H(1 + |t|). (5)

It is well known that, for 1/2 < σ < 1,

T∫
−T

|ζ(σ + it)|2 dt�σ T. (6)

If H(tα
T)
′ + |t| > tα

T , then tα
T + H(tα

T)
′ + |t| < 2(H(tα

T)
′ + |t|), and tα

T − H(tα
T)
′ − |t| >

−2(H(tα
T)
′ + |t|). Thus, by (6), if H(tα

T)
′ + |t| > tα

T , then

I � 1
(tα

2T)
′

2(H(tα
T)
′+|t|)∫

−2(H(tα
T)
′+|t|)

|ζ(σ + iu)|2 du�σ
H(tα

T)
′ + |t|

(tα
2T)
′ �σ,α H(1 + |t|).

This and (5) prove the lemma.

The next lemma (Gallagher lemma) together with Lemma 2 will imply the bound for
the discrete mean square.

Lemma 3 ([16]). Suppose that T1, T2 > η > 0, A is a finite non-empty set in the interval
[T1 + η/2, T1 + T2 − η/2], and

Zη(x) = ∑
t∈A
|t−x|<η

1.

Let a complex valued function F(t) be continuous on [T1, T1 + T2] and have a continuous
derivative on (T1, T1 + T2). Then,

∑
t∈A
Z−1

η (t)|F(t)|2 6
1
η

T1+T2∫
T1

|F(t)|2 dt +

 T1+T2∫
T1

|F(t)|2 dt
T1+T2∫
T1

|F′(t)|2 dt

1/2

.

Unfortunately, an application of Lemma 3 requires the restriction α 6 1.

Lemma 4. Suppose that 0 < α 6 1 and σ ∈ (1/2, 13/22] are fixed, Ψα(N)((tα
N)
′)−1 6 M 6

N − 1, and t ∈ R. Then,

N+M

∑
k=N
|ζ(σ + itα

k + it)|2 �σ,α M(1 + |t|).

Proof. We take in Lemma 3 η = 1, T1 = N − 1, T2 = M + 2 and A = {N, N + 1, . . . , N +
M}. Obviously, Zη(x) = 1. Therefore, an application of Lemma 3 with the function
F(τ) = ζ(σ + itα

τ + it) yields

∑N+M
k=N |ζ(σ + itα

k + it)|2 6
N+M+1∫

N−1
|ζ(σ + itα

τ + it)|2 dτ

+

(
N+M+1∫

N−1
|ζ(σ + itα

τ + it)|2 dτ
N+M+1∫

N−1
|ζ ′(σ + itα

τ + it)|2 dτ

)1/2

.

(7)
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By Lemma 2, we have

N+M+1∫
N−1

|ζ(σ + itα
τ + it)|2 dτ �σ,α M(1 + |t|). (8)

The Cauchy integral formula gives

ζ ′(s + itα
τ + it) =

1
2πi

∫
L

ζ(s + itα
τ + it)

(z− σ)2 dz,

where L is a circle |z− σ| = r lying in the strip 1/2 < σ 6 13/22. Therefore,

|ζ ′(σ + itα
τ + it)|2 �

∫
L

|dz|
|z− σ|4

∫
L

|ζ(σ + itα
τ + it)|2 |dz|.

Hence,

N+M+1∫
N−1

|ζ ′(σ + itα
τ + it)|2 dτ �σ,L

∫
L

|dz|
N+M+1∫
N−1

|ζ(Rez + itα
τ + it + iImz)|2 dτ.

Thus, in view of (8),

N+M+1∫
N−1

|ζ ′(σ + itα
τ + it)|2 dτ �L,σ,α M(1 + |t|).

The latter estimate, and (7) and (8) prove the lemma.

Now we are ready to approximate ζ(s + itα
k ) by an absolutely convergent Dirichlet

series. Let κ > 1/2 be a fixed number, and

vn(m; κ) = exp
{
−
(m

n

)κ}
, m, n ∈ N.

Then the series

ζn(s) =
∞

∑
m=1

vn(m; κ)

ms

is absolutely convergent for σ > σ0 with arbitrary finite σ0.

Lemma 5. Suppose that K ⊂ D is a compact set, and Ψα(N)((tα
N)
′)−1 6 M 6 N − 1. Then,

lim
n→∞

lim sup
N→∞

1
M + 1

N+M

∑
k=N

sup
s∈K
|ζ(s + itα

k )− ζn(s + itα
k )| = 0.

Proof. The Mellin formula

1
2πi

b+i∞∫
b−i∞

Γ(s)a−s ds = e−a, a, b > 0,

implies the integral representation, see, for example, [17],

ζn(s) =
1

2πi

κ+i∞∫
κ−i∞

ζ(s + z)ln(z, κ)dz, (9)
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where ln(z; κ) = 1/κΓ(z/κ)nz. There exists 0 < δ 6 1/11 such that 1/2 + 2δ 6 σ 6 1− δ
for s = σ + it ∈ K. The integrand in (9) has simple poles at z = 0 and z = 1− s. Therefore,
taking κ = 1/2 + δ and κ1 = 1/2 + δ− σ < 0, we find by the residue theorem

ζn(s)− ζ(s) =
1

2πi

κ1+i∞∫
κ1−i∞

ζ(s + z)ln(z; κ)dz + ln(1− s; κ).

Thus, for all s ∈ K,

ζn(s + itα
k )− ζ(s + itα

k )

=
1

2πi

∞∫
−∞

ζ

(
1
2
+ δ + it + itα

k + iτ
)

ln

(
1
2
+ δ− σ + iτ; κ

)
dτ + ln(1− s− itα

k ; κ)

�
∞∫
−∞

∣∣∣∣ζ(1
2
+ δ + itα

k + iτ
)∣∣∣∣ sup

s∈K

∣∣∣∣ln(1
2
+ δ− s + iτ; κ

)∣∣∣∣dτ + sup
s∈K
|ln(1− s− itα

k ; κ)|

in virtue of a shift t + τ → τ. Hence,

1
M + 1

N+M

∑
k=N

sup
s∈K
|ζn(s + itα

k )− ζ(s + itα
k )|

�
∞∫
−∞

(
1

M + 1

N+M

∑
k=N

∣∣∣∣ζ(1
2
+ δ + itα

k + iτ
)∣∣∣∣
)

sup
s∈K

∣∣∣∣ln(1
2
+ δ− s + iτ; κ

)∣∣∣∣dτ (10)

+
1

M + 1

N+M

∑
k=N

sup
s∈K
|ln(1− s− itα

k ; κ)| def
= S1 + S2.

In view of Lemma 4,

1
M+1 ∑N+M

k=N

∣∣∣ζ( 1
2 + δ + itα

k + iτ
)∣∣∣ 6

(
1

M+1 ∑N+M
k=N

∣∣∣ζ( 1
2 + δ + itα

k + iτ
)∣∣∣2)1/2

�δ,α (1 + |τ|)1/2.
(11)

It is well known that, for large |t|, the estimate

Γ(σ + it)� exp{−c|t|} (12)

with c > 0, uniformly in σ in any interval [σ1, σ2], σ1 < σ2, is valid. Therefore, for all s ∈ K,

ln

(
1
2
+ δ− s + iτ

)
�κ n1/2+δ−σ exp

{
− c

κ
|τ − t|

}
�κ,K n−δ exp{−c1|τ|}

with c1 > 0. Thus, by (11),

S1 �δ,α,κ,K n−δ

∞∫
−∞

(1 + |τ|)1/2 exp{−c1|τ|}dτ �δ,α,κ,K n−δ. (13)

To estimate S2, we observe that (12), for all s ∈ K, implies the bound

ln(1− s− itα
k )�κ n1−σ exp

{
− c

κ
|tα

k + t|
}
�κ,K n1/2−2δ exp{−c2tα

k}
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with c2 > 0. Hence, in view of (2),

S2 �κ,K n1/2−2δ 1
M + 1

N+M

∑
k=N

exp{−c2tα
k} �κ,K n1/2−2δ

N+M

∑
k=N

exp
{
−c3

(
k

log k

)α}
�θ,K n1/2−2ε exp

{
−c4

(
N

log N

)α}
with positive c3 and c4. This, (13) and (10) show that

1
M + 1

N+M

∑
k=N

sup
s∈K
|ζ(s + itα

k )− ζn(s + itα
k )| �δ,α,κ,K n−δ + n1/2−2δ exp

{
−c4

(
N

log N

)α}
.

Now, taking N → ∞, and then n→ ∞, we obtain the equality of the lemma.

3. Weak Convergence

Let X be a certain topological space with the Borel σ-field B(X ), and P and Pn, n ∈ N,
probability measures on (X ,B(X )). By the definition, Pn converges weakly to P as n→ ∞,

(Pn
W−−−→

n→∞
P) if

lim
n→∞

∫
X

g dPn =
∫
X

g dP

for every real bounded continuous function g on X . In this section, we will obtain the weak
convergence for some measures in the space of analytic functions. Denote by H(D) the
space of analytic on D functions endowed with the topology of uniform convergence on
compacta, and set

Hr(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸
r

.

For A ∈ B(Hr(D)), define

PN,M,α(A) =
1

M + 1
#
{

N 6 k 6 N + M : ζ(s + itα
k ) ∈ A

}
,

where α = (α1, . . . , αr), tα
k = (tα1

k , . . . , tαr
k ), and

ζ(s + itα
k ) = (ζ(s + itα1

k ), . . . , ζ(s + itαr
k )).

We consider the weak convergence of PN,M,α as N → ∞, where M = o(N).
For the definition of the limit measure, we need some notation. Define the

Cartesian product
Ω = ∏

p∈P
{s ∈ C : |s| = 1}.

The infinite-dimensional torus Ω equipped with the product topology and operation
of pointwise multiplication becomes a compact topological Abelian group; therefore,

Ωr = Ω1 × · · · ×Ωr

where Ωj = Ω for j = 1, . . . , r, again is a compact topological group. Hence, the probability
Haar measure µH on the space (Ωr,B(Ωr)) exits, and we arrive to the probability space
(Ωr,B(Ωr), µH). For j = 1, . . . , r, let ωj = {ωj(p) : p ∈ P} ∈ Ωj and ω = (ω1, . . . , ωr)
be the element of Ωr. Now, on the above probability space, define the Hr(D)-valued
random element

ζ(s, ω) =

(
∏
p∈P

(
1− ω1(p)

ps

)−1

, . . . , ∏
p∈P

(
1− ωr(p)

ps

)−1
)

.
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The latter infinite products, for almost all ωj, converge uniformly on compact sets of
the strip D [17]. Let

Pζ(A) = µH

{
ω ∈ Ωr : ζ(s, ω) ∈ A

}
, A ∈ B(Ωr),

i.e., Pζ is the distribution of ζ(s, ω). Now we state a limit theorem for PN,M,α.

Theorem 2. Suppose that 0 < α1 < · · · < αr 6 1, and Ψα(N)((tα
N)
′)−1 6 M 6 N − 1. Then,

PN,M,α
W−−−→

N→∞
Pζ .

Before the proof of Theorem 2, we prove several separate lemmas. First of them is
devoted to the space Ωr. For A ∈ B(Ωr), set

QN,M,α(A) =
1

M + 1
#
{

N 6 k 6 N + M :
((

p−it
α1
k : p ∈ P

)
, . . . ,

(
p−itαr

k : p ∈ P
))
∈ A

}
.

Lemma 6. Suppose that 0 < α1 < · · · < αr 6 1, and Ψα(N)((tα
N)
′)−1 6 M 6 N − 1. Then

QN,M,α
W−−−→

N→∞
µH .

Proof. On groups, it is convenient to apply the Fourier transform method. Let
FN,M,α(k1, . . . , kr), kj = (k jp : k jp ∈ Z, p ∈ P), j = 1, . . . , r, be the Fourier transform
of QN,M,α. It is well known that

FN,M,α(k1, . . . , kr) =
∫

Ωr

r

∏
j=1

∏
p∈P

∗
ω

kjp
j (p)dQN,M,α,

where the star “ ∗ ” shows that only a finite number of integers k jp are distinct from zero.
Thus, the definition of QN,M,α implies

FN,M,α(k1, . . . , kr) = 1
M+1 ∑N+M

k=N ∏r
j=1 ∏p∈P

∗ p−ikjpt
αj
k

= 1
M+1 ∑N+M

k=N exp
{
−i ∑r

j=1 t
αj
k ∑p∈P

∗ k jp log p
}

.
(14)

Clearly,
FN,M,α(0, . . . , 0) = 1, (15)

where 0 = (0, . . . , 0, . . . ).
Now suppose that (k1, . . . , kr) 6= (0, . . . , 0). Then there exists at least one j ∈ {1, . . . , r},

such that kj 6= 0. Since the set {log p : p ∈ P} is linearly independent over the field of
rational numbers,

aj
def
= ∑

p∈P

∗ k jp log p 6= 0

for such j. Let j0 be the largest of j with aj 6= 0. Hence,

Aα(τ)
def
=

r

∑
j=1

ajt
αj
τ =

j0

∑
j=1

ajt
αj
τ ,

and

A′α(τ) = ∑
j0
j=1 aj(t

αj
τ )′ = ∑

j0
j=1 ajαjt

αj−1
τ t′τ(1 + o(1))

= 2πaj0 αj0
(2πτ)

αj0
−1

(log τ)αj0
(1 + o(1)), τ → ∞,

(16)
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in view of (2) and (3). For the estimation the sum (14), we apply a representation of
trigonometric sums by integrals, see, for example, [18]. Suppose that the real-valued
function g(x) has a monotonic derivative on [a, b], such that |g′(x)| 6 ξ < 1. Then,

∑
a6m6b

e2πig(m) =

b∫
a

e2πig(x) dx + O
(

1
1− ξ

)
. (17)

Relation (16) shows that the function Aα(τ), for sufficiently large N, satisfies the above
requirements on [N, N + M]. Thus, by (14) and (17),

FN,M,α(k1, . . . , kr) =
1

M + 1

N+M∫
N

exp{−iAα(τ)}dτ + O
(

1
(M + 1)(1− δN)

)
, (18)

with

δN = 4πaj0 αj0
(2πN)αj0−1

(log N)αj0
.

Moreover, by the mean value theorem and (16),

N+M∫
N

cos(Aα(τ))dτ =

N+M∫
N

1
A′α(τ)

cos(Aα(τ))dAα(τ)�α (A′α(N + M))

�α
(log(N + M))αj0

(N + M)αj0−1

and
N+M∫
N

sin(Aα(τ))dτ �α
(log(N + M))αj0

(N + M)αj0−1

Therefore, by (18), for sufficiently large N,

FN,M,α(k1, . . . , kr)�α
1
M

N1−αj0 (log N)αj0 �α
1
M

N1−α1 log N. (19)

By the hypotheses for M and (2) and (3),

M�α Nα1/3+1−α

(
log

N
log N

)26/15
(log N)−α/3+α �α N1−(2α/3)(log N)b, b > 0.

Hence, in view of (19),

FN,M,α(k1, . . . , kr)�α N−α/3(log N)1−b.

This, together with (15), shows that

lim
N→∞

FN,M,α(k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) 6= (0, . . . , 0),

and the lemma is proved because the right-hand side of the latter equality is the Fourier
transform of the measure µH .

Lemma 6 implies the weak convergence for

PN,M,n,α(A) =
1

M + 1
#
{

N 6 k 6 N + M : ζn(s + itα
k ) ∈ A

}
, A ∈ B(Hr(D)),
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as N → ∞, where
ζn(s + itα

k ) = (ζn(s + itα1
k ), . . . , ζn(s + itαr

k )).

Define the mapping un : Ωr → Hr(D) by

un(ω) = ζn(s, ω)

with
ζn(s, ω) = (ζn(s, ω1), . . . , ζ(s, ωr))

and

ζn(s, ωj) =
∞

∑
m=1

ωj(m)vn(m; κ)

ms , j = 1, . . . , r.

Then the measure µH on (Ωr,B(Ωr)) defines the unique probability measure Un =
µHu−1

n on (Hr(D),B(Hr(D))), where

µHu−1
n (A) = µH(u−1

n A), A ∈ B(Hr(D)).

Lemma 7. Under hypotheses of Lemma 6, PN,M,n,α
W−−−→

N→∞
Un.

Proof. Since the series for ζn(s, ωj) converges absolutely for σ > 1/2, the mapping un is
continuous. Moreover,

un

((
p−it

α1
k : p ∈ P

)
, . . . ,

(
p−itαr

k : p ∈ P
))

= ζn(s + itα
k ).

Therefore,

PN,M,n,α(A)

=
1

M + 1
#
{

N 6 k 6 N + M :
((

p−it
α1
k : p ∈ P

)
, . . . ,

(
p−itαr

k : p ∈ P
))
∈ u−1

n A
}

= QN,M,α(u−1
n A), A ∈ B(Hr(D)).

Thus, we have
PN,M,n,α = QN,M,αu−1

n .

The latter equality, Lemma 6, the continuity of un and the well-known property of
preservation of the weak convergence, see, for example, Theorem 2.7 of [19], prove the
lemma.

The weak convergence of the measure Un is very important for that of PN,M,α. The
following statement is true:

Lemma 8 ([10]). The relation Un
W−−−→

n→∞
Pζ holds.

To prove Theorem 2, we need one statement on convergence in distribution of random
elements. Let Xn, n ∈ N, and X be X -valued random elements. Recall that Xn as n → ∞
converges to X in distribution (Xn

D−−−→
n→∞

X) if the distribution of Xn converges weakly to
the distribution of X.

Lemma 9 ([19]). Suppose that the space (X , d) is separable, and the X -valued random elements
Xmn and Yn, m, n ∈ N are defined on the same probability space (Ω̂,B(Ω̂), P). If

Xmn
D−−−→

n→∞
Xm, Xm

D−−−→
m→∞

X,
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and for every δ > 0,
lim

m→∞
lim sup

n→∞
µ{d(Xmn, Yn) > δ} = 0,

then also Yn
D−−−→

n→∞
X.

Before the proof of Theorem 2, recall the metric in the space Hr(D). There exists a
sequence {Kl : l ∈ N} ⊂ D of embedded compact subsets such that the union of the sets Kl
is the region D, and, for every compact set K ⊂ D, there exists Kl , K ⊂ Kl . Taking

d(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(D),

gives a metric inH(D) inducing the topology of uniform convergence on compacta. Then,

d(g
1
, g

2
) = max

16j6r
d(g1j, g2j), g

k
= (gk1, . . . , gkr) ∈ Hr(D), k = 1, 2,

is a metric inHr(D) which induces its product topology.

Proof of Theorem 2. Denote by Xn theHr(D)-valued random element with distribution
Un. Then, by Lemma 8, we have

Xn
D−−−→

n→∞
Pζ . (20)

Let ξN,M be a random variable on a certain probability space with measure P with the
distribution

P{ξN,M = k} = 1
M + 1

, k = N, . . . , N + M.

Define twoHr(D)-valued random elements

XN,M,n,α = XN,M,n,α(s) = ζn(s + itα
ξN,M

)

and
XN,M,α = XN,M,α(s) = ζ(s + itα

ξN,M
).

Lemma 7 implies the relation

XN,M,n,α
D−−−→

N→∞
Xn. (21)

From the definitions of the metrics d and d, and Lemma 5, it follows that

lim
n→∞

lim sup
N→∞

1
M + 1

N+M

∑
k=N

ρ
(

ζ(s + itα
k ), ζn(s + itα

k )
)
= 0.

Therefore, the definitions of XN,M,n,α and XN,M,α, together with Chebyshev’s type
inequality, give, for every δ > 0,

lim
n→∞

lim sup
N→∞

µ
{

d(XN,M,α, XN,M,n,α) > δ
}

= lim
n→∞

lim sup
N→∞

1
M + 1

#
{

N 6 k 6 N + M : d(ζ(s + itα
k ), ζn(s + itα

k )) > δ
}

6
1

(M + 1)δ

N+M

∑
k=N

d(ζ(s + itα
k ), ζn(s + itα

k )) = 0.
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This, (20) and (21) show that all hypotheses of Lemma 9 are satisfied. Thus,

XN,M,α
D−−−→

N→∞
Pζ ,

and the theorem is proved.

4. Main Theorem

The main result of the paper is the following theorem:

Theorem 3. Suppose that α1, . . . , αr are different fixed positive numbers not exceeding 1, and
Ψα(N)((tα

N)
′)−1 6 M 6 N − 1. For j = 1, . . . , r, let Kj ∈ K and f j(s) ∈ H0(Kj). Then, for

every ε > 0,

lim inf
N→∞

1
M + 1

#

{
N 6 k 6 N + M : sup

16j6r
sup
s∈Kj

|ζ(s + it
αj
k )− f j(s)| < ε

}
> 0.

Moreover, the lower limit can be replaced by the limit for all but at most countably many ε > 0.

Theorem 3 easily follows from Theorem 2 and the Mergelyan theorem on the approxi-
mation of analytic functions by polynomials [20].

Let P be a probability measure on (X ,B(X )), and the space X is separable. Recall
that the support of the measure P is a minimal closed set SP ⊂ X such that P(SP) = 1. The
set SP consists of all x ∈ X such that, for every open neighbourhood G of x, the inequality
P(G) > 0 is satisfied. Let S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}, and

Sr = S× · · · × S︸ ︷︷ ︸
r

.

Lemma 10 ([10]). The support of the measure Pζ is the set Sr.

Proof of Theorem 3. By the Mergelyan theorem, there exist polynomials q1(s), . . . , qr(s)
such that

sup
16j6r

sup
s∈Kj

∣∣∣ f j(s)− eqj(s)
∣∣∣ < ε

2
. (22)

Consider the set

Gε =

{
g1, . . . , gr ∈ H(D) : sup

16j6r
sup
s∈Kj

∣∣∣gj(s)− eqj(s)
∣∣∣ < ε

2

}
.

In view of Lemma 10, (eq1(s), . . . , eqr(s)) is an element of the support of the measure Pζ .
Therefore, Gε is an open neighbourhood of an element of the support, hence, we have

Pζ(Gε) > 0. (23)

From this, using Theorem 2 and the equivalent of weak convergence in terms of open
sets, see, for example, Theorem 2.1 of [19], we find

lim inf
N→∞

PN,M,α(Gε) > Pζ(Gε) > 0.

This, the definitions of PN,M,α and Gε, and inequality (22) prove the first assertion of
the theorem.
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To prove the second assertion of the theorem, define one more set

Ĝε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

16j6r
sup
s∈Kj

∣∣gj(s)− f j(s)
∣∣ < ε

}
.

Then the boundaries ∂Ĝε1 and ∂Ĝε2 do not intersect for different positive ε1 and ε2.
Hence, the set Ĝε is a continuity set of the measure Pζ , i.e., Pζ(∂Ĝε) = 0, for all but at most
countably many ε > 0. Therefore, by Theorem 2 and the equivalent of weak convergence
in terms of continuity set, see, for example, Theorem 2.1 of [19], we have

lim
N→∞

PN,M,α(Ĝε) = Pζ(Ĝε) (24)

for all but at most countably many ε > 0. In view of (22), the inclusion Gε ⊂ Ĝε holds.
Therefore, by (23), the inequality Pζ(Ĝε) > 0 is valid. This, (24) and the definitions of PN,M,α

and Ĝε prove the second assertion of the theorem.

Theorem 3 is stronger than Theorem 1 because the numbers k for which (ζ(s +
itα1

k ), . . . , ζ(s + itαr
k )) has the approximating property of analytic functions lie in the in-

terval of length M, which may be taken M = o(N) as N → ∞.

5. Conclusions

Let {tn} be a sequence of Gram points, and 0 < α1 < · · · < αr 6 1 fixed numbers. In
this paper, it is obtained that the interval [Ψα1(N)((tα1

N )′)−1, N − 1] with
Ψα1(N) = (tα1

N )1/3(log tα1
N )26/15 contains infinitely many k ∈ N, such that the shifts

(ζ(s + itα1
k ), . . . , ζ(s + itαr

k )) approximate every collection ( f1(s), . . . , fr(s)) of analytics in
{s ∈ C : 1/2 < σ < 1} non-vanishing functions.

The problems for future studies are the following:
1◦ To remove the requirement αr 6 1;
2◦ To decrease the lower bound for Ψα1(N).
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