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Abstract: Let a = {am} and b = {bm} be two periodic sequences of complex numbers, and, addition-
ally, a is multiplicative. In this paper, the joint approximation of a pair of analytic functions by shifts
(ζnT (s + iτ; a), ζnT (s + iτ, α; b)) of absolutely convergent Dirichlet series ζnT (s; a) and ζnT (s, α; b) in-
volving the sequences a and b is considered. Here, nT → ∞ and nT � T2 as T → ∞. The coefficients
of these series tend to am and bm, respectively. It is proved that the set of the above shifts in the
interval [0, T] has a positive density. This generalizes and extends the Mishou joint universality
theorem for the Riemann and Hurwitz zeta-functions.

Keywords: Hurwitz zeta-function; joint universality; periodic Hurwitz zeta-function; periodic zeta-
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1. Introduction

Let a = {am : m ∈ N} and b = {bm : m ∈ N0 = N ∪ {0}} be two periodic sequences
of complex numbers with minimal periods q1 ∈ N and q2 ∈ N0, respectively, 0 < α 6 1
a fixed parameter, and s = σ + it a complex variable. The periodic ζ(s; a) and periodic
Hurwitz ζ(s, α; b) zeta-functions are defined, for σ > 1, by the Dirichlet series

ζ(s; a) =
∞

∑
m=1

am

ms and ζ(s, α; b) =
∞

∑
m=0

bm

(m + α)s .

When am ≡ 1 and bm ≡ 1, the functions ζ(s; a) and ζ(s, α; b) reduce to the classical Riemann
zeta-function ζ(s) and Hurwitz zeta-function ζ(s, α), respectively. In view of the periodicity
of the sequences a and b, for σ > 1, it follows that

ζ(s; a) =
1
qs

1

q1

∑
l=1

alζ

(
s,

l
q1

)
and ζ(s, α; b) =

1
qs

2

q2−1

∑
l=0

blζ

(
s,

l + α

q2

)
.

Thus, the properties of the function ζ(s, α) imply the analytic continuation for the functions
ζ(s; a) and ζ(s, α; b) to the whole complex plane, except the point s = 1 which is a simple
pole with residues

a def
=

1
q1

q1

∑
l=1

al and b def
=

1
q2

q2−1

∑
l=0

bl ,

respectively. If a = 0, then the function ζ(s; a) is entire, and if b = 0, then the function
ζ(s, α; b) is entire.
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Examples of the function ζ(s; a) are Dirichlet L-functions

L(s, χ) =
∞

∑
m=1

χ(m)

ms , σ > 1,

and of the function ζ(s, α; b) they are Lerch zeta-functions

L(λ, α, s) =
∞

∑
m=0

e2πiλm

(m + α)s , σ > 1,

with rational parameter λ.
The analytic properties of the functions ζ(s; a) and ζ(s, α; b), including the univer-

sality property of the approximation of the analytic functions by shifts ζ(s + iτ; a) and
ζ(s + iτ, α; b), τ ∈ R, are closely connected to the sequence a, the sequence b, and parameter
α, respectively.

Let ∆ = {s ∈ C : 1/2 < σ < 1}. Denote by K the class of compact sets of the strip ∆
with connected complements, byH(K) with K ∈ K the class of continuous functions on K
that are analytic in the interior of K, and byH0(K) the subclass ofH(K) of non-vanishing
on K functions. Let MA stand for the Lebesgue measure of a measurable set A ⊂ R.

The first universality results for the function ζ(s; a) were obtained by J. Steuding.
In [1], he proved that if a is not a multiple of the Dirichlet character modulo q1, and am = 0
for (m, q1) > 1, then for K ∈ K, f (s) ∈ H(K) and all ε > 0,

lim inf
T→∞

1
T
M

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ; a)− f (s)| < ε

}
> 0. (1)

Under the above conditions on the sequence a, this sequence is not multiplicative. We
recall that the sequence a is multiplicative, if a1 = 1 and amn = aman for all m, n ∈ N,
(m, n) = 1. The universality of the function ζ(s; a) with multiplicative sequence a was
proved in [2]. In [3], it was obtained that there exists a constant c0 = c0(a) such that, for
K ∈ K, maxs∈K Ims−mins∈K Ims 6 c0, f (s) ∈ H0(K) and ε > 0, equality (1) holds.

The universality properties of the function ζ(s, α) are included in the following the-
orem [4–6]. Suppose that α is transcendental or rational, not equal to 1 or 1/2. Let K ∈ K and
f (s) ∈ H(K). Then, for all ε > 0,

lim inf
T→∞

1
T
M

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ, α)− f (s)| < ε

}
> 0.

The universality of ζ(s, α) with algebraic irrational α remains an open problem up
to our days. A certain approximation to this problem is given in [7], and see also [8].
The best result in this direction was obtained in [9]. The universality property of the
function ζ(s, α; b) was first studied in [10], and similar theorems to those for ζ(s, α) with
transcendental and algebraic irrational α were obtained in [11] and [12]. The case of rational
α is studied in [13]. In this case, some hypotheses for the sequence b are also involved.

The aim of this paper is the joint universality of certain Dirichlet series connected
to the functions ζ(s; a) and ζ(s, α; b). Recall that the first joint universality theorem for
the functions ζ(s) and ζ(s, α) with transcendental α was obtained by H. Mishou in [14].
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Suppose that K1, K2 ∈ K and f1(s) ∈ H0(K1), f2(s) ∈ H(K2). Then, he proved that, for all
ε > 0,

lim inf
T→∞

1
T
M

{
τ ∈ [0, T] : sup

s∈K1

|ζ(s + iτ)− f1(s)| < ε,

sup
s∈K2

|ζ(s + iτ, α)− f2(s)| < ε

}
> 0.

A similar result for the functions ζ(s; a) and ζ(s, α; b) was given in [15]. The approximation
problem of a pair of analytic functions by shifts (ζ(s + iτ; a), ζ(s + iτ, α; b)) with algebraic
irrational α was considered in [16]. More general joint universality results for periodic and
periodic Hurwitz zeta-functions can be found in [17–20]. A weighted generalization of the
Mishou theorem was obtained in [21].

The abovementioned universality results are of a continuous type because τ in shifts
takes arbitrary real values. Moreover, there are results of a discrete type when τ takes
values in a certain discrete set, see, for example, [22–30].

Let θ > 1/2 be a fixed number, u > 0, and

vu(m; θ) = exp
{
−
(m

u

)θ
}

, vu(m, α; θ) = exp

{
−
(

m + α

u

)θ
}

.

Define the series

ζu(s; a) =
∞

∑
m=1

amvu(m; θ)

ms , ζu(s, α; b) =
∞

∑
m=0

bmvu(m, α; θ)

(m + α)s .

Then, the latter series are absolutely convergent for σ > 1/2. Really, in view of the
exponential decreasing of vu(m; θ) and vu(m, α; θ), these series are absolutely convergent
for σ > σ0 for all finite σ0. We will consider the approximation of pairs of analytic functions
by shifts (ζnT (s + iτ; a), ζnT (s + iτ, α; b)), where nT → ∞ as T → ∞. For the statement of a
theorem, we need some definitions. Denote by η the unit circle on the complex plane, and
by B(X ) the Borel σ-field of the space X . Define two tori

Ω1 = ∏
p∈P

ηp and Ω2 = ∏
m∈N0

ηm,

where ηp = η for all p ∈ P (P is the set of all prime numbers), and ηm = η for all m ∈ N0.
With the product topology and pointwise multiplication, the tori Ω1 and Ω2 are compact
topological Abelian groups. Therefore, by the Tikhonov theorem [31],

Ω = Ω1 ×Ω2

also is a compact topological group. Thus, on (Ω,B(Ω)), we can define the probability
Haar measure µH , and we have the probability space (Ω,B(Ω), µH). Denote by ω(p) the
pth component of an element ω1 ∈ Ω1, p ∈ P, and by ω2(m) the mth component of an
element ω2 ∈ Ω2, m ∈ N0. Extend the functions ω1(p) to the set N by the formula

ω1(m) = ∏
pl |m

pl+1-m

ωl
1(p), m ∈ N.

Denote byH(∆) the space of analytic functions on ∆ equipped with the topology of uniform
convergence on compact sets, let H2(∆) = H(∆)×H(∆), and, on the probability space
(Ω,B(Ω), µH), define theH2(∆)-valued random element

ζ(s, α, ω1, ω2; a, b) = (ζ(s, ω1; a), ζ(s, α, ω2; b)),
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where

ζ(s, ω1; a) =
∞

∑
m=1

amω1(m)

ms and ζ(s, α, ω2; b) =
∞

∑
m=0

bmω2(m)

(m + α)s .

Note that the latter series are uniformly convergent on compact subsets of the strip ∆ for
almost all ω1 and ω2 with respect to the Haar measures µ1H on (Ω1,B(Ω1)) and µ2H on
(Ω2,B(Ω2)), respectively. The notation x �ξ y, y > 0, means that there exists a constant
c = c(ξ) > 0 such that |x| 6 cy.

Theorem 1. Suppose that the sequence a is multiplicative, α is transcendental, and nT → ∞ and
nT � T2 as T → ∞. Let K1, K2 ∈ K, and f1(s) ∈ H0(K1), f2(s) ∈ H(K2). Then, the limit

lim
T→∞

1
T
M

{
τ ∈ [0, T] : sup

s∈K1

|ζnT (s + iτ; a)− f1(s)| < ε1,

sup
s∈K2

|ζnT (s + iτ, α; b)− f2(s)| < ε2

}
= µH

{
(ω1, ω2) ∈ Ω : sup

s∈K1

|ζ(s, ω1; a)− f1(s)| < ε1,

sup
s∈K2

|ζ(s, α, ω2; b)− f2(s)| < ε2

}
exists and is positive for all but at most countably many ε1 > 0 and ε2 > 0.

The first result on the approximation of the analytic functions by shifts of the absolutely
convergent Dirichlet series was obtained in [32] and generalized in [33]. Discrete versions
of the latter results are given in [34] and [35].

Theorem 1 extends the previous results on the universality of the Dirichlet series
involving periodic sequences in two directions. Firstly, Theorem 1 is a joint universality
on the simultaneous approximation of a pair of analytic functions. Secondly, the analytic
functions are approximated by shifts of absolutely convergent series. This moment is a
certain advantage in the estimation of approximated functions.

2. Approximation in the Mean

Recall the metric in the space H2(∆). There exists a sequence of compact sets {Kl : l ∈
N} ⊂ ∆ satisfying the requirements:

1. ∆ is the union of the sets Kl ;
2. Kl ⊂ Kl+1 for all l ∈ N;
3. For every compact set K ⊂ ∆, there exists Kl such that K ⊂ Kl .

Then,

ρ(F1, F2) =
∞

∑
l=1

2−l
sups∈Kl

|F1(s)− F2(s)|
1 + sups∈Kl

|F1(s)− F2(s)|
, F1, F2 ∈ H(∆),

is a metric in H(∆) inducing its topology of uniform convergence on compacta. Putting,
for F1 = (F11, F12), F2 = (F21, F22) ∈ H2(∆),

ρ2(F1, F2) = max
j=1,2

ρ(F1j, F2j)

gives a metric inH2(∆) inducing the product topology.

Lemma 1. Suppose that nT → ∞ and nT � T2 as T → ∞. Let

ζ(s, α; a, b) = (ζ(s; a), ζ(s, α; b))
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and
ζnT

(s, α; a, b) = (ζnT (s; a), ζnT (s, α; b)).

Then,

lim
T→∞

1
T

∫ T

0
ρ2

(
ζ(s + iτ, α; a, b), ζnT

(s + iτ, α; a, b)
)

dτ = 0.

Proof. By the definition of the metric ρ2, it suffices to show that

lim
T→∞

1
T

∫ T

0
ρ(ζ(s + iτ; a), ζnT (s + iτ; a))dτ = 0

and

lim
T→∞

1
T

∫ T

0
ρ(ζ(s + iτ, α; b), ζnT (s + iτ, α; b))dτ = 0.

The first of these equalities follows from Lemma 2 of [33] which states that, for every
compact set K ⊂ ∆,

lim
T→∞

1
T

∫ T

0
sup
s∈K
|ζ(s + iτ; a)− ζnT (s + iτ; a)|dτ = 0,

and from the definition of the metric ρ. The second equality is obtained similarly using the
representation

ζnT (s, α; b) =
1

2πi

∫ θ+i∞

θ−i∞
ζ(s + z, α; b)lnT (z; θ)dz,

where s ∈ ∆, Γ(s) is the Euler gamma-function, and

lnT (s; θ) =
1
θ

Γ
( s

θ

)
ns

T .

3. Limit Theorem

We will apply a limit theorem in the spaceH2(∆) obtained in [15]. For A ∈ B(H2(∆)),
define

PT,α,a,b(A) =
1
T
M
{

τ ∈ [0, T] : ζ(s + iτ, α; a, b) ∈ A
}

.

Moreover, let Pζ,α,a,b be the distribution of the random element ζ(s + iτ, α, ω1, ω2; a, b), i.e.,

Pζ,α,a,b(A) = µH{(ω1, ω2) ∈ Ω : ζ(s + iτ, α, ω1, ω2; a, b) ∈ A}.

Lemma 2. Suppose that the sequence a is multiplicative and the parameter α is transcendental.
Then, PT,α,a,b converges weakly to Pζ,α,a,b as T → ∞. Moreover, the support of the measure Pζ,α,a,b
is the set

{g ∈ H(∆) : either g(s) 6= 0 on ∆, or g(s) ≡ 0} ×H(∆).

Proof. The lemma is the union of Theorem 6 and Lemma 12 from [15].

Now, we consider a limit theorem for ζnT
(s + iτ, α; a, b). For A ∈ B(H2(∆)), define

P̂T,α,a,b(A) =
1
T
M
{

τ ∈ [0, T] : ζnT
(s + iτ, α; a, b) ∈ A

}
.

Theorem 2. Suppose that the sequence a is multiplicative, the parameter α is transcendental, and
nT → ∞ and nT � T2 as T → ∞. Then, P̂T,α,a,b converges weakly to Pζ,α,a,b as T → ∞.



Mathematics 2023, 11, 2042 6 of 10

Proof. Let θT be a random variable defined on a certain probability space (Ω̂,A, P) and
uniformly distributed on the segment [0, T]. Define theH2(∆)-valued random elements

XT,α,a,b = XT,α,a,b(s) = (XT,a(s), XT,α,b(s)),

where
XT,a(s) = ζ(s + iθT ; a), XT,α,b(s) = ζ(s + iθT , α; b),

and
X̂T,α,a,b = X̂T,α,a,b(s) =

(
X̂T,a(s), X̂T,α,b(s)

)
,

where
X̂T,a(s) = ζnT (s + iθT ; a), X̂T,α,b(s) = ζnT (s + iθT , α; b).

By the definitions of θT , XT,α,a,b and X̂T,α,a,b, for A ∈ B(H2(∆)), we have

P
{

XT,α,a,b ∈ A
}
= PT,α,a,b(A) (2)

and
P
{

X̂T,α,a,b ∈ A
}
= P̂T,α,a,b(A). (3)

Fix ε > 0, a closed set F ⊂ H2(∆), and define

Fε =
{

F ∈ H2(∆) : ρ2(F, F) 6 ε
}

,

where ρ2(F, F) = infF̂∈F ρ2(F, F̂). Then, Lemma 2, equality (2), and the equivalent of weak
convergence in terms of closed sets [36] show that

lim sup
T→∞

PT,α,a,b(Fε) = lim sup
T→∞

P{XT,α,a,b ∈ Fε} 6 Pζ,α,a,b(Fε). (4)

It is easily seen that{
X̂T,α,a,b ∈ F

}
⊂
{

XT,α,a,b ∈ Fε

}
∪
{

ρ2(XT,α,a,b, X̂T,α,a,b) > ε
}

.

Note that ρ2(XT,α,a,b, X̂T,α,a,b) is a random variable, and, by the definition of θT , its expec-
tation is

1
T

∫ T

0
ρ2

(
ζ(s + iτ, α; a, b), ζnT

(s + iτ, α; a, b)
)

dτ.

Thus,
P
{

X̂T,α,a,b ∈ F
}
6 P

{
XT,α,a,b ∈ Fε

}
+ P

{
ρ2(XT,α,a,b, X̂T,α,a,b) > ε

}
, (5)

and Lemma 1 together with Chebyshev’s type inequality

M
{

τ ∈ [0, T] : ρ2

(
ζ(s + iτ, α; a, b), ζnT

(s + iτ, α; a, b)
)
> ε
}

6
1
ε

∫ T

0
ρ2

(
ζ(s + iτ, α; a, b), ζnT

(s + iτ, α; a, b)
)

dτ

implies that

P
{

ρ2

(
XT,α,a,b, X̂T,α,a,b

)
> ε
}
6

1
εT

∫ T

0
ρ2

(
ζ(s + iτ, α; a, b), ζnT

(s + iτ, α; a, b)
)

dτ

= 0. (6)

Therefore, in view of (5) and (6),

lim sup
T→∞

P
{

X̂T,α,a,b ∈ F
}
6 lim sup

T→∞
P
{

XT,α,a,b ∈ Fε

}
,
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and, by (2), (3), and (4),
lim sup

T→∞
P̂T,α,a,b(F) 6 Pζ,α,a,b(Fε).

Because Fε → F as ε→ +0, this gives

lim sup
T→∞

P̂T,α,a,b(F) 6 Pζ,α,a,b(F),

and the equivalent of weak convergence in terms of closed sets proves the theorem.

Let K1, K2, and f1(s), f2(s) be as in Theorem 1. For A ∈ B(R2), define

QT,α,a,b(A) =
1
T
M

{
τ ∈ [0, T] :

(
sup
s∈K1

|ζnT (s + iτ; a)− f1(s)|

sup
s∈K2

|ζnT (s + iτ, α; b)− f2(s)|
)
∈ A

}
.

Corollary 1. Under hypotheses of Theorem 2, QT,α,a,b converges weakly to the measure

µH

{
(ω1, ω2) ∈ Ω :

(
sup
s∈K1

|ζnT (s, ω1; a)− f1(s)|,

sup
s∈K2

|ζnT (s, α, ω2; a)− f2(s)|
)
∈ A

}
, A ∈ B(R2),

as T → ∞.

Proof. Define the function h : H2(∆)→ R2 by the formula

h(F1, F2) =

(
sup
s∈K1

|F1(s)− f1(s)|, sup
s∈K2

|F2(s)− f2(s)|
)

.

Because the space H(∆) is equipped with the topology of the uniform convergence on
compacta, the function h is continuous. Therefore, using a property of weak convergence
preservation under continuous mappings [36], by Theorem 2, we have that P̂T,α,a,bh−1

converges weakly to Pζ,α,a,bh−1 as T → ∞. However,

P̂T,α,a,bh−1(A) = P̂T,α,a,b(h−1 A) =
1
T
M{τ ∈ [0, T] : ζnT

(s + iτ, α; a, b) ∈ h−1 A}

= QT,α,a,b(A)

and

Pζ,α,a,bh−1(A) = Pζ,α,a,b(h−1 A)

= µH

{
(ω1, ω2) ∈ Ω :

(
sup
s∈K1

|ζ(s, ω1; a)− f1(s)|, sup
s∈K2

|ζ(s, α, ω2; a)− f2(s)|
)
∈ A

}
.

This proves the corollary.

Taking A = (−∞, ε1)× (−∞, ε2) in the definition of QT,α,a,b and its limit measure, we
obtain the distribution functions

FT,α,a,b(ε1, ε2) =
1
T
M

{
τ ∈ [0, T] : sup

s∈K1

|ζnT (s + iτ; a)− f1(s)| < ε1,

sup
s∈K2

|ζnT (s + iτ, α; b)− f2(s)| < ε2

}
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and

Fζ,α,a,b(ε1, ε2) = µH

{
(ω1, ω2) ∈ Ω : sup

s∈K1

|ζ(s, ω1; a)− f1(s)| < ε1,

sup
s∈K2

|ζ(s, α, ω2; b)− f2(s)| < ε2

}
.

It is well-known that the weak convergence of probability measures on (R2,B(R2)) is
equivalent to that of the corresponding distribution functions. Recall that FT,α,a,b(ε1, ε2)
converges weakly to Fζ,α,a,b(ε1, ε2) if

lim
T→∞

FT,α,a,b(ε1, ε2) = Fζ,α,a,b(ε1, ε2)

for all (ε1, ε2) such that ε1 and ε2 are continuity points of the functions Fζ,α,a,b(ε1,+∞) and
Fζ,α,a,b(+∞, ε2), respectively. Thus, Corollary 1 implies the following:

Corollary 2. Under hypotheses of Theorem 2, the distribution function FT,α,a,b(ε1, ε2) converges
weakly to the distribution function Fζ,α,a,b(ε1, ε2) as T → ∞.

4. Proof of Theorem 1

Proof of Theorem 1. Because the set of the discontinuity points of the distribution function
is at most countable, by Corollary 2, the limit

lim
T→∞

FT,α,a,b(ε1, ε2) = Fζ,α,a,b(ε1, ε2)

exists for all but at most countably many ε1 > 0 and ε2 > 0. Thus, it remains to prove the
positivity of Fζ,α,a,b(ε1, ε2).

In view of the Mergelyan theorem on the approximation of analytic functions by
polynomials [37], there exist polynomials p1(s) and p2(s) such that

sup
s∈K1

∣∣∣ f1(s)− ep1(s)
∣∣∣ < ε1

2
and sup

s∈K2

| f2(s)− p2(s)| <
ε2

2
. (7)

By Lemma 2, the support S of the measure Pζ,α,a,b is the set {g ∈ H(∆) : either g(s) 6=
0 on D, or g(s) ≡ 0}. Therefore,

(
ep1(s), p2(s)

)
is an element of S. Hence,

Pζ,α,a,b(Gε1,ε2) > 0, (8)

where

Gε1,ε2 =

{
(F1, F2) ∈ H2(∆) : sup

s∈K1

∣∣∣F1(s)− ep1(s)
∣∣∣ < ε1

2
, sup

s∈K2

|F2(s)− p2(s)| <
ε2

2

}
.

Define one more set

Ĝε1,ε2 =

{
(F1, F2) ∈ H2(∆) sup

s∈K1

|F1(s)− f1(s)| < ε1, sup
s∈K2

|F2(s)− f2(s)| < ε2

}
.

The inequalities (7) show that if (F1, F2) ∈ Gε1,ε2 , then (F1, F2) ∈ Ĝε1,ε2 . Thus, Gε1,ε2 ⊂
Ĝε1,ε2 . Therefore, in virtue of (8), Pζ,α,a,b(Ĝε1,ε2) > 0, i.e., Fζ,α,a,b(ε1, ε2) > 0. The theorem
is proved.
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5. Conclusions

In this paper, the joint approximation of a pair of analytic functions by shifts of
absolutely convergent Dirichlet series

ζnT (s; a) =
∞

∑
m=1

amvnT (m; θ)

ms and ζnT (s, α; b) =
∞

∑
m=0

bmvnT (m, α; θ)

(m + α)s

with periodic sequences {am} and {bm}, and exponentially decreasing sequences {vnT (m; θ)}
and {vnT (m, α; θ)}, is obtained. It is proved that if nT → ∞ and nT � T2 as T → ∞, then the
set of approximating shifts (ζnT (s + iτ; a), ζnT (s + iτ, α; b)) has an explicitly given density on
the interval [0, T].

A possible improvement to the main theorem is an extension of the class of functions
nT . Moreover, we are planning to invite experts in numerical methods and IT into our
group to obtain some numerical calculations of concrete examples. This is a very difficult
problem closely connected to the effectivization of universality theorems for zeta-functions.
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