

Article

On the Mishou Theorem for Zeta-Functions with Periodic Coefficients

Aidas Balčiūnas ^{1,†}, Mindaugas Jasas ^{1,†}, Renata Macaitienė ^{2,†} and Darius Šiaučiūnas ^{2,*,†}

- Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; aidas.balciunas@mif.vu.lt (A.B.); mindaugas.jasas@mif.stud.vu.lt (M.J.)
- ² Institute of Regional Development, Šiauliai Academy, Vilnius University, P. Višinskio Str. 25, LT-76351 Šiauliai, Lithuania; renata.macaitiene@sa.vu.lt
- * Correspondence: darius.siauciunas@sa.vu.lt; Tel.: +370-41-595800
- † These authors contributed equally to this work.

Abstract: Let $\mathfrak{a} = \{a_m\}$ and $\mathfrak{b} = \{b_m\}$ be two periodic sequences of complex numbers, and, additionally, \mathfrak{a} is multiplicative. In this paper, the joint approximation of a pair of analytic functions by shifts $(\zeta_{n_T}(s+i\tau;\mathfrak{a}),\zeta_{n_T}(s+i\tau,\alpha;\mathfrak{b}))$ of absolutely convergent Dirichlet series $\zeta_{n_T}(s;\mathfrak{a})$ and $\zeta_{n_T}(s,\alpha;\mathfrak{b})$ involving the sequences \mathfrak{a} and \mathfrak{b} is considered. Here, $n_T \to \infty$ and $n_T \ll T^2$ as $T \to \infty$. The coefficients of these series tend to a_m and b_m , respectively. It is proved that the set of the above shifts in the interval [0,T] has a positive density. This generalizes and extends the Mishou joint universality theorem for the Riemann and Hurwitz zeta-functions.

Keywords: Hurwitz zeta-function; joint universality; periodic Hurwitz zeta-function; periodic zeta-function; universality

MSC: 11M41

Let $\mathfrak{a} = \{a_m : m \in \mathbb{N}\}$ and $\mathfrak{b} = \{b_m : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\}$ be two periodic sequences of complex numbers with minimal periods $q_1 \in \mathbb{N}$ and $q_2 \in \mathbb{N}_0$, respectively, $0 < \alpha \le 1$ a fixed parameter, and $s = \sigma + it$ a complex variable. The periodic $\zeta(s; \mathfrak{a})$ and periodic Hurwitz $\zeta(s, \alpha; \mathfrak{b})$ zeta-functions are defined, for $\sigma > 1$, by the Dirichlet series

$$\zeta(s;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m}{m^s}$$
 and $\zeta(s,\alpha;\mathfrak{b}) = \sum_{m=0}^{\infty} \frac{b_m}{(m+\alpha)^s}$.

When $a_m \equiv 1$ and $b_m \equiv 1$, the functions $\zeta(s; \mathfrak{a})$ and $\zeta(s, \alpha; \mathfrak{b})$ reduce to the classical Riemann zeta-function $\zeta(s)$ and Hurwitz zeta-function $\zeta(s, \alpha)$, respectively. In view of the periodicity of the sequences \mathfrak{a} and \mathfrak{b} , for $\sigma > 1$, it follows that

$$\zeta(s;\mathfrak{a}) = \frac{1}{q_1^s} \sum_{l=1}^{q_1} a_l \zeta\left(s, \frac{l}{q_1}\right) \quad \text{and} \quad \zeta(s, \alpha; \mathfrak{b}) = \frac{1}{q_2^s} \sum_{l=0}^{q_2-1} b_l \zeta\left(s, \frac{l+\alpha}{q_2}\right).$$

Thus, the properties of the function $\zeta(s,\alpha)$ imply the analytic continuation for the functions $\zeta(s;\mathfrak{a})$ and $\zeta(s,\alpha;\mathfrak{b})$ to the whole complex plane, except the point s=1 which is a simple pole with residues

$$a \stackrel{\text{def}}{=} \frac{1}{q_1} \sum_{l=1}^{q_1} a_l$$
 and $b \stackrel{\text{def}}{=} \frac{1}{q_2} \sum_{l=0}^{q_2-1} b_l$,

respectively. If a=0, then the function $\zeta(s;\mathfrak{a})$ is entire, and if b=0, then the function $\zeta(s,\alpha;\mathfrak{b})$ is entire.

Citation: Balčiūnas, A.; Jasas, M.; Macaitienė, R.; Šiaučiūnas, D. On the Mishou Theorem for Zeta-Functions with Periodic Coefficients. *Mathematics* **2023**, *11*, 2042. https://doi.org/10.3390/math11092042

Academic Editor: Sitnik Sergey

Received: 28 March 2023 Revised: 21 April 2023 Accepted: 22 April 2023 Published: 25 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Mathematics 2023, 11, 2042 2 of 10

Examples of the function $\zeta(s; \mathfrak{a})$ are Dirichlet *L*-functions

$$L(s,\chi) = \sum_{m=1}^{\infty} \frac{\chi(m)}{m^s}, \quad \sigma > 1,$$

and of the function $\zeta(s, \alpha; \mathfrak{b})$ they are Lerch zeta-functions

$$L(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m+\alpha)^s}, \quad \sigma > 1,$$

with rational parameter λ .

The analytic properties of the functions $\zeta(s;\mathfrak{a})$ and $\zeta(s,\alpha;\mathfrak{b})$, including the universality property of the approximation of the analytic functions by shifts $\zeta(s+i\tau;\mathfrak{a})$ and $\zeta(s+i\tau,\alpha;\mathfrak{b})$, $\tau\in\mathbb{R}$, are closely connected to the sequence \mathfrak{a} , the sequence \mathfrak{b} , and parameter α , respectively.

Let $\Delta = \{s \in \mathbb{C} : 1/2 < \sigma < 1\}$. Denote by \mathfrak{K} the class of compact sets of the strip Δ with connected complements, by $\mathcal{H}(K)$ with $K \in \mathfrak{K}$ the class of continuous functions on K that are analytic in the interior of K, and by $\mathcal{H}_0(K)$ the subclass of $\mathcal{H}(K)$ of non-vanishing on K functions. Let $\mathfrak{M}A$ stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$.

The first universality results for the function $\zeta(s;\mathfrak{a})$ were obtained by J. Steuding. In [1], he proved that if \mathfrak{a} is not a multiple of the Dirichlet character modulo q_1 , and $a_m = 0$ for $(m, q_1) > 1$, then for $K \in \mathfrak{K}$, $f(s) \in \mathcal{H}(K)$ and all $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \mathfrak{M} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau; \mathfrak{a}) - f(s)| < \varepsilon \right\} > 0.$$
(1)

Under the above conditions on the sequence \mathfrak{a} , this sequence is not multiplicative. We recall that the sequence \mathfrak{a} is multiplicative, if $a_1=1$ and $a_{mn}=a_ma_n$ for all $m,n\in\mathbb{N}$, (m,n)=1. The universality of the function $\zeta(s;\mathfrak{a})$ with multiplicative sequence \mathfrak{a} was proved in [2]. In [3], it was obtained that there exists a constant $c_0=c_0(\mathfrak{a})$ such that, for $K\in\mathfrak{K}$, $\max_{s\in K}\operatorname{Im} s-\min_{s\in K}\operatorname{Im} s\leqslant c_0$, $f(s)\in H_0(K)$ and $\varepsilon>0$, equality (1) holds.

The universality properties of the function $\zeta(s,\alpha)$ are included in the following theorem [4–6]. Suppose that α is transcendental or rational, not equal to 1 or 1/2. Let $K \in \Re$ and $f(s) \in \mathcal{H}(K)$. Then, for all $\varepsilon > 0$,

$$\liminf_{T\to\infty}\frac{1}{T}\mathfrak{M}\bigg\{\tau\in[0,T]:\sup_{s\in K}|\zeta(s+i\tau,\alpha)-f(s)|<\varepsilon\bigg\}>0.$$

The universality of $\zeta(s,\alpha)$ with algebraic irrational α remains an open problem up to our days. A certain approximation to this problem is given in [7], and see also [8]. The best result in this direction was obtained in [9]. The universality property of the function $\zeta(s,\alpha;\mathfrak{b})$ was first studied in [10], and similar theorems to those for $\zeta(s,\alpha)$ with transcendental and algebraic irrational α were obtained in [11] and [12]. The case of rational α is studied in [13]. In this case, some hypotheses for the sequence \mathfrak{b} are also involved.

The aim of this paper is the joint universality of certain Dirichlet series connected to the functions $\zeta(s;\mathfrak{a})$ and $\zeta(s,\alpha;\mathfrak{b})$. Recall that the first joint universality theorem for the functions $\zeta(s)$ and $\zeta(s,\alpha)$ with transcendental α was obtained by H. Mishou in [14].

Mathematics 2023, 11, 2042 3 of 10

Suppose that $K_1, K_2 \in \Re$ and $f_1(s) \in \mathcal{H}_0(K_1)$, $f_2(s) \in \mathcal{H}(K_2)$. Then, he proved that, for all $\varepsilon > 0$,

$$\lim_{T \to \infty} \inf \frac{1}{T} \mathfrak{M} \left\{ \tau \in [0, T] : \sup_{s \in K_1} |\zeta(s + i\tau) - f_1(s)| < \varepsilon, \\
\sup_{s \in K_2} |\zeta(s + i\tau, \alpha) - f_2(s)| < \varepsilon \right\} > 0.$$

A similar result for the functions $\zeta(s;\mathfrak{a})$ and $\zeta(s,\alpha;\mathfrak{b})$ was given in [15]. The approximation problem of a pair of analytic functions by shifts $(\zeta(s+i\tau;\mathfrak{a}),\zeta(s+i\tau,\alpha;\mathfrak{b}))$ with algebraic irrational α was considered in [16]. More general joint universality results for periodic and periodic Hurwitz zeta-functions can be found in [17–20]. A weighted generalization of the Mishou theorem was obtained in [21].

The abovementioned universality results are of a continuous type because τ in shifts takes arbitrary real values. Moreover, there are results of a discrete type when τ takes values in a certain discrete set, see, for example, [22–30].

Let $\theta > 1/2$ be a fixed number, u > 0, and

$$v_u(m;\theta) = \exp\left\{-\left(\frac{m}{u}\right)^{\theta}\right\}, \quad v_u(m,\alpha;\theta) = \exp\left\{-\left(\frac{m+\alpha}{u}\right)^{\theta}\right\}.$$

Define the series

$$\zeta_u(s;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m v_u(m;\theta)}{m^s}, \qquad \zeta_u(s,\alpha;\mathfrak{b}) = \sum_{m=0}^{\infty} \frac{b_m v_u(m,\alpha;\theta)}{(m+\alpha)^s}.$$

Then, the latter series are absolutely convergent for $\sigma > 1/2$. Really, in view of the exponential decreasing of $v_u(m;\theta)$ and $v_u(m,\alpha;\theta)$, these series are absolutely convergent for $\sigma > \sigma_0$ for all finite σ_0 . We will consider the approximation of pairs of analytic functions by shifts $(\zeta_{n_T}(s+i\tau;\mathfrak{a}),\zeta_{n_T}(s+i\tau,\alpha;\mathfrak{b}))$, where $n_T \to \infty$ as $T \to \infty$. For the statement of a theorem, we need some definitions. Denote by η the unit circle on the complex plane, and by $\mathcal{B}(\mathcal{X})$ the Borel σ -field of the space \mathcal{X} . Define two tori

$$\Omega_1 = \prod_{p \in \mathbb{P}} \eta_p$$
 and $\Omega_2 = \prod_{m \in \mathbb{N}_0} \eta_m$,

where $\eta_p = \eta$ for all $p \in \mathbb{P}$ (\mathbb{P} is the set of all prime numbers), and $\eta_m = \eta$ for all $m \in \mathbb{N}_0$. With the product topology and pointwise multiplication, the tori Ω_1 and Ω_2 are compact topological Abelian groups. Therefore, by the Tikhonov theorem [31],

$$\Omega = \Omega_1 \times \Omega_2$$

also is a compact topological group. Thus, on $(\Omega, \mathcal{B}(\Omega))$, we can define the probability Haar measure μ_H , and we have the probability space $(\Omega, \mathcal{B}(\Omega), \mu_H)$. Denote by $\omega(p)$ the pth component of an element $\omega_1 \in \Omega_1$, $p \in \mathbb{P}$, and by $\omega_2(m)$ the mth component of an element $\omega_2 \in \Omega_2$, $m \in \mathbb{N}_0$. Extend the functions $\omega_1(p)$ to the set \mathbb{N} by the formula

$$\omega_1(m) = \prod_{\substack{p^l \mid m \\ p^{l+1} \nmid m}} \omega_1^l(p), \quad m \in \mathbb{N}.$$

Denote by $\mathcal{H}(\Delta)$ the space of analytic functions on Δ equipped with the topology of uniform convergence on compact sets, let $\mathcal{H}^2(\Delta) = \mathcal{H}(\Delta) \times \mathcal{H}(\Delta)$, and, on the probability space $(\Omega, \mathcal{B}(\Omega), \mu_H)$, define the $\mathcal{H}^2(\Delta)$ -valued random element

$$\zeta(s, \alpha, \omega_1, \omega_2; \mathfrak{a}, \mathfrak{b}) = (\zeta(s, \omega_1; \mathfrak{a}), \zeta(s, \alpha, \omega_2; \mathfrak{b})),$$

Mathematics 2023, 11, 2042 4 of 10

where

$$\zeta(s,\omega_1;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m \omega_1(m)}{m^s}$$
 and $\zeta(s,\alpha,\omega_2;\mathfrak{b}) = \sum_{m=0}^{\infty} \frac{b_m \omega_2(m)}{(m+\alpha)^s}$.

Note that the latter series are uniformly convergent on compact subsets of the strip Δ for almost all ω_1 and ω_2 with respect to the Haar measures μ_{1H} on $(\Omega_1, \mathcal{B}(\Omega_1))$ and μ_{2H} on $(\Omega_2, \mathcal{B}(\Omega_2))$, respectively. The notation $x \ll_{\xi} y$, y > 0, means that there exists a constant $c = c(\xi) > 0$ such that $|x| \leqslant cy$.

Theorem 1. Suppose that the sequence \mathfrak{a} is multiplicative, α is transcendental, and $n_T \to \infty$ and $n_T \ll T^2$ as $T \to \infty$. Let $K_1, K_2 \in \mathfrak{K}$, and $f_1(s) \in \mathcal{H}_0(K_1)$, $f_2(s) \in \mathcal{H}(K_2)$. Then, the limit

$$\begin{split} \lim_{T \to \infty} \frac{1}{T} \mathfrak{M} \bigg\{ \tau \in [0,T] : \sup_{s \in K_1} |\zeta_{n_T}(s+i\tau;\mathfrak{a}) - f_1(s)| < \varepsilon_1, \\ \sup_{s \in K_2} |\zeta_{n_T}(s+i\tau,\alpha;\mathfrak{b}) - f_2(s)| < \varepsilon_2 \bigg\} \\ = \mu_H \bigg\{ (\omega_1,\omega_2) \in \Omega : \sup_{s \in K_1} |\zeta(s,\omega_1;\mathfrak{a}) - f_1(s)| < \varepsilon_1, \\ \sup_{s \in K_2} |\zeta(s,\alpha,\omega_2;\mathfrak{b}) - f_2(s)| < \varepsilon_2 \bigg\} \end{split}$$

exists and is positive for all but at most countably many $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$.

The first result on the approximation of the analytic functions by shifts of the absolutely convergent Dirichlet series was obtained in [32] and generalized in [33]. Discrete versions of the latter results are given in [34] and [35].

Theorem 1 extends the previous results on the universality of the Dirichlet series involving periodic sequences in two directions. Firstly, Theorem 1 is a joint universality on the simultaneous approximation of a pair of analytic functions. Secondly, the analytic functions are approximated by shifts of absolutely convergent series. This moment is a certain advantage in the estimation of approximated functions.

2. Approximation in the Mean

Recall the metric in the space $H^2(\Delta)$. There exists a sequence of compact sets $\{K_l : l \in \mathbb{N}\} \subset \Delta$ satisfying the requirements:

- 1. Δ is the union of the sets K_l ;
- 2. $K_l \subset K_{l+1}$ for all $l \in \mathbb{N}$;
- 3. For every compact set $K \subset \Delta$, there exists K_l such that $K \subset K_l$.

Then,

$$\rho(F_1, F_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |F_1(s) - F_2(s)|}{1 + \sup_{s \in K_l} |F_1(s) - F_2(s)|}, \quad F_1, F_2 \in \mathcal{H}(\Delta),$$

is a metric in $\mathcal{H}(\Delta)$ inducing its topology of uniform convergence on compacta. Putting, for $\underline{F}_1 = (F_{11}, F_{12})$, $\underline{F}_2 = (F_{21}, F_{22}) \in \mathcal{H}^2(\Delta)$,

$$\rho_2(\underline{F}_1,\underline{F}_2) = \max_{j=1,2} \rho(F_{1j},F_{2j})$$

gives a metric in $\mathcal{H}^2(\Delta)$ inducing the product topology.

Lemma 1. Suppose that $n_T \to \infty$ and $n_T \ll T^2$ as $T \to \infty$. Let

$$\zeta(s, \alpha; \mathfrak{a}, \mathfrak{b}) = (\zeta(s; \mathfrak{a}), \zeta(s, \alpha; \mathfrak{b}))$$

Mathematics 2023, 11, 2042 5 of 10

and

$$\underline{\zeta}_{n_T}(s,\alpha;\mathfrak{a},\mathfrak{b}) = (\zeta_{n_T}(s;\mathfrak{a}),\zeta_{n_T}(s,\alpha;\mathfrak{b})).$$

Then,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\rho_2\Big(\underline{\zeta}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}),\underline{\zeta}_{n_T}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b})\Big)\,\mathrm{d}\tau=0.$$

Proof. By the definition of the metric ρ_2 , it suffices to show that

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T \rho(\zeta(s+i\tau;\mathfrak{a}),\zeta_{n_T}(s+i\tau;\mathfrak{a}))\,\mathrm{d}\tau=0$$

and

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T \rho(\zeta(s+i\tau,\alpha;\mathfrak{b}),\zeta_{n_T}(s+i\tau,\alpha;\mathfrak{b}))\,\mathrm{d}\tau=0.$$

The first of these equalities follows from Lemma 2 of [33] which states that, for every compact set $K \subset \Delta$,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\sup_{s\in K}\!\left|\zeta(s+i\tau;\mathfrak{a})-\zeta_{n_T}(s+i\tau;\mathfrak{a})\right|\mathrm{d}\tau=0,$$

and from the definition of the metric ρ . The second equality is obtained similarly using the representation

$$\zeta_{n_T}(s,\alpha;\mathfrak{b}) = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \zeta(s+z,\alpha;\mathfrak{b}) l_{n_T}(z;\theta) \, \mathrm{d}z,$$

where $s \in \Delta$, $\Gamma(s)$ is the Euler gamma-function, and

$$l_{n_T}(s;\theta) = \frac{1}{\theta} \Gamma\left(\frac{s}{\theta}\right) n_T^s.$$

3. Limit Theorem

We will apply a limit theorem in the space $\mathcal{H}^2(\Delta)$ obtained in [15]. For $A \in \mathcal{B}(\mathcal{H}^2(\Delta))$, define

$$P_{T,\alpha,\mathfrak{a},\mathfrak{b}}(A) = \frac{1}{T}\mathfrak{M}\Big\{\tau\in[0,T]:\underline{\zeta}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b})\in A\Big\}.$$

Moreover, let $P_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}$ be the distribution of the random element $\zeta(s+i\tau,\alpha,\omega_1,\omega_2;\mathfrak{a},\mathfrak{b})$, i.e.,

$$P_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}(A) = \mu_H\{(\omega_1,\omega_2) \in \Omega : \zeta(s+i\tau,\alpha,\omega_1,\omega_2;\mathfrak{a},\mathfrak{b}) \in A\}.$$

Lemma 2. Suppose that the sequence \mathfrak{a} is multiplicative and the parameter α is transcendental. Then, $P_{T,\alpha,\mathfrak{a},\mathfrak{b}}$ converges weakly to $P_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}$ as $T\to\infty$. Moreover, the support of the measure $P_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}$ is the set

$$\{g \in \mathcal{H}(\Delta) : \text{ either } g(s) \neq 0 \text{ on } \Delta, \text{ or } g(s) \equiv 0\} \times \mathcal{H}(\Delta).$$

Proof. The lemma is the union of Theorem 6 and Lemma 12 from [15]. \Box

Now, we consider a limit theorem for $\underline{\zeta}_{n_T}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b})$. For $A\in\mathcal{B}(\mathcal{H}^2(\Delta))$, define

$$\widehat{P}_{T,\alpha,\mathfrak{a},\mathfrak{b}}(A) = \frac{1}{T}\mathfrak{M}\Big\{\tau\in[0,T]:\underline{\zeta}_{n_T}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b})\in A\Big\}.$$

Theorem 2. Suppose that the sequence \mathfrak{a} is multiplicative, the parameter α is transcendental, and $n_T \to \infty$ and $n_T \ll T^2$ as $T \to \infty$. Then, $\widehat{P}_{T,\alpha,\mathfrak{a},\mathfrak{b}}$ converges weakly to $P_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}$ as $T \to \infty$.

Mathematics 2023. 11, 2042 6 of 10

Proof. Let θ_T be a random variable defined on a certain probability space $(\widehat{\Omega}, \mathcal{A}, P)$ and uniformly distributed on the segment [0, T]. Define the $\mathcal{H}^2(\Delta)$ -valued random elements

$$\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}} = \underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}}(s) = (X_{T,\mathfrak{a}}(s), X_{T,\alpha,\mathfrak{b}}(s)),$$

where

$$X_{T,\mathfrak{a}}(s) = \zeta(s + i\theta_T; \mathfrak{a}), \qquad X_{T,\alpha,\mathfrak{b}}(s) = \zeta(s + i\theta_T, \alpha; \mathfrak{b}),$$

and

$$\underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}} = \underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}}(s) = \Big(\widehat{X}_{T,\mathfrak{a}}(s), \widehat{X}_{T,\alpha,\mathfrak{b}}(s)\Big),$$

where

$$\widehat{X}_{T,\mathfrak{a}}(s) = \zeta_{n_T}(s + i\theta_T; \mathfrak{a}), \qquad \widehat{X}_{T,\alpha,\mathfrak{b}}(s) = \zeta_{n_T}(s + i\theta_T, \alpha; \mathfrak{b}).$$

By the definitions of θ_T , $\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}}$ and $\underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}}$, for $A \in \mathcal{B}(\mathcal{H}^2(\Delta))$, we have

$$P\{\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}} \in A\} = P_{T,\alpha,\mathfrak{a},\mathfrak{b}}(A) \tag{2}$$

and

$$P\left\{\underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}} \in A\right\} = \widehat{P}_{T,\alpha,\mathfrak{a},\mathfrak{b}}(A). \tag{3}$$

Fix $\varepsilon > 0$, a closed set $F \subset \mathcal{H}^2(\Delta)$, and define

$$F_{\varepsilon} = \left\{ \underline{F} \in \mathcal{H}^2(\Delta) : \rho_2(\underline{F}, F) \leqslant \varepsilon \right\},$$

where $\rho_2(\underline{F}, F) = \inf_{\underline{\hat{F}} \in F} \rho_2(\underline{F}, \underline{\hat{F}})$. Then, Lemma 2, equality (2), and the equivalent of weak convergence in terms of closed sets [36] show that

$$\limsup_{T\to\infty} P_{T,\alpha,\mathfrak{a},\mathfrak{b}}(F_{\varepsilon}) = \limsup_{T\to\infty} P\{X_{T,\alpha,\mathfrak{a},\mathfrak{b}} \in F_{\varepsilon}\} \leqslant P_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}(F_{\varepsilon}). \tag{4}$$

It is easily seen that

$$\left\{\underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}} \in F\right\} \subset \left\{\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}} \in F_{\varepsilon}\right\} \cup \left\{\rho_{2}(\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}},\underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}}) \geqslant \varepsilon\right\}.$$

Note that $\rho_2(\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}}, \widehat{\underline{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}})$ is a random variable, and, by the definition of θ_T , its expectation is

$$\frac{1}{T} \int_0^T \rho_2 \left(\underline{\zeta}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}), \underline{\zeta}_{n_T}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}) \right) d\tau.$$

Thus,

$$P\Big\{\underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}} \in F\Big\} \leqslant P\Big\{\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}} \in F_{\varepsilon}\Big\} + P\Big\{\rho_{2}(\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}}, \underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}}) \geqslant \varepsilon\Big\},\tag{5}$$

and Lemma 1 together with Chebyshev's type inequality

$$\begin{split} \mathfrak{M} \Big\{ \tau \in [0,T] : & \rho_2 \Big(\underline{\zeta}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}), \underline{\zeta}_{n_T}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}) \Big) \geqslant \varepsilon \Big\} \\ \leqslant & \frac{1}{\varepsilon} \int_0^T \rho_2 \Big(\underline{\zeta}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}), \underline{\zeta}_{n_T}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}) \Big) \, \mathrm{d}\tau \end{split}$$

implies that

$$P\Big\{\rho_2\Big(\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}},\widehat{\underline{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}}\Big) \geqslant \varepsilon\Big\} \leqslant \frac{1}{\varepsilon T} \int_0^T \rho_2\Big(\underline{\zeta}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}),\underline{\zeta}_{n_T}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b})\Big) d\tau$$

$$= 0. \tag{6}$$

Therefore, in view of (5) and (6),

$$\limsup_{T\to\infty} P\Big\{\underline{\widehat{X}}_{T,\alpha,\mathfrak{a},\mathfrak{b}}\in F\Big\}\leqslant \limsup_{T\to\infty} P\Big\{\underline{X}_{T,\alpha,\mathfrak{a},\mathfrak{b}}\in F_{\varepsilon}\Big\},\,$$

Mathematics 2023, 11, 2042 7 of 10

and, by (2), (3), and (4),

$$\limsup_{T\to\infty}\widehat{P}_{T,\alpha,\mathfrak{a},\mathfrak{b}}(F)\leqslant P_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}(F_{\varepsilon}).$$

Because $F_{\varepsilon} \to F$ as $\varepsilon \to +0$, this gives

$$\limsup_{T\to\infty}\widehat{P}_{T,\alpha,\mathfrak{a},\mathfrak{b}}(F)\leqslant P_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}(F),$$

and the equivalent of weak convergence in terms of closed sets proves the theorem.

Let K_1 , K_2 , and $f_1(s)$, $f_2(s)$ be as in Theorem 1. For $A \in \mathcal{B}(\mathbb{R}^2)$, define

$$Q_{T,\alpha,\mathfrak{a},\mathfrak{b}}(A) = \frac{1}{T}\mathfrak{M}\bigg\{\tau \in [0,T] : \bigg(\sup_{s \in K_1} |\zeta_{n_T}(s+i\tau;\mathfrak{a}) - f_1(s)| \\ \sup_{s \in K_2} |\zeta_{n_T}(s+i\tau,\alpha;\mathfrak{b}) - f_2(s)|\bigg) \in A\bigg\}.$$

Corollary 1. Under hypotheses of Theorem 2, $Q_{T,\alpha,\mathfrak{a},\mathfrak{b}}$ converges weakly to the measure

$$\mu_H\bigg\{(\omega_1,\omega_2)\in\Omega: \bigg(\sup_{s\in K_1}|\zeta_{n_T}(s,\omega_1;\mathfrak{a})-f_1(s)|,\\ \sup_{s\in K_2}|\zeta_{n_T}(s,\alpha,\omega_2;\mathfrak{a})-f_2(s)|\bigg)\in A\bigg\},\quad A\in\mathcal{B}(\mathbb{R}^2),$$

as $T \to \infty$.

Proof. Define the function $h: \mathcal{H}^2(\Delta) \to \mathbb{R}^2$ by the formula

$$h(F_1, F_2) = \left(\sup_{s \in K_1} |F_1(s) - f_1(s)|, \sup_{s \in K_2} |F_2(s) - f_2(s)|\right).$$

Because the space $\mathcal{H}(\Delta)$ is equipped with the topology of the uniform convergence on compacta, the function h is continuous. Therefore, using a property of weak convergence preservation under continuous mappings [36], by Theorem 2, we have that $\widehat{P}_{T,\alpha,\mathfrak{a},\mathfrak{b}}h^{-1}$ converges weakly to $P_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}h^{-1}$ as $T\to\infty$. However,

$$\widehat{P}_{T,\alpha,\mathfrak{a},\mathfrak{b}}h^{-1}(A) = \widehat{P}_{T,\alpha,\mathfrak{a},\mathfrak{b}}(h^{-1}A) = \frac{1}{T}\mathfrak{M}\{\tau \in [0,T] : \underline{\zeta}_{n_T}(s+i\tau,\alpha;\mathfrak{a},\mathfrak{b}) \in h^{-1}A\}$$
$$= Q_{T,\alpha,\mathfrak{a},\mathfrak{b}}(A)$$

and

$$\begin{split} &P_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}h^{-1}(A) = P_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}(h^{-1}A) \\ &= \mu_H \bigg\{ (\omega_1,\omega_2) \in \Omega : \left(\sup_{s \in K_1} |\zeta(s,\omega_1;\mathfrak{a}) - f_1(s)|, \sup_{s \in K_2} |\zeta(s,\alpha,\omega_2;\mathfrak{a}) - f_2(s)| \right) \in A \bigg\}. \end{split}$$

This proves the corollary. \Box

Taking $A = (-\infty, \varepsilon_1) \times (-\infty, \varepsilon_2)$ in the definition of $Q_{T,\alpha,\mathfrak{a},\mathfrak{b}}$ and its limit measure, we obtain the distribution functions

$$F_{T,\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_{1},\varepsilon_{2}) = \frac{1}{T}\mathfrak{M}\bigg\{\tau \in [0,T] : \sup_{s \in K_{1}} |\zeta_{n_{T}}(s+i\tau;\mathfrak{a}) - f_{1}(s)| < \varepsilon_{1},$$

$$\sup_{s \in K_{2}} |\zeta_{n_{T}}(s+i\tau,\alpha;\mathfrak{b}) - f_{2}(s)| < \varepsilon_{2}\bigg\}$$

Mathematics 2023, 11, 2042 8 of 10

and

$$\begin{split} F_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2) &= \mu_H \bigg\{ (\omega_1,\omega_2) \in \Omega : \sup_{s \in K_1} |\zeta(s,\omega_1;\mathfrak{a}) - f_1(s)| < \varepsilon_1, \\ &\sup_{s \in K_2} |\zeta(s,\alpha,\omega_2;\mathfrak{b}) - f_2(s)| < \varepsilon_2 \bigg\}. \end{split}$$

It is well-known that the weak convergence of probability measures on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ is equivalent to that of the corresponding distribution functions. Recall that $F_{T,\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2)$ converges weakly to $F_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2)$ if

$$\lim_{T\to\infty} F_{T,\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2) = F_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2)$$

for all $(\varepsilon_1, \varepsilon_2)$ such that ε_1 and ε_2 are continuity points of the functions $F_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,+\infty)$ and $F_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}(+\infty,\varepsilon_2)$, respectively. Thus, Corollary 1 implies the following:

Corollary 2. Under hypotheses of Theorem 2, the distribution function $F_{T,\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2)$ converges weakly to the distribution function $F_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2)$ as $T\to\infty$.

4. Proof of Theorem 1

Proof of Theorem 1. Because the set of the discontinuity points of the distribution function is at most countable, by Corollary 2, the limit

$$\lim_{T\to\infty} F_{T,\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2) = F_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2)$$

exists for all but at most countably many $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$. Thus, it remains to prove the positivity of $F_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}(\varepsilon_1,\varepsilon_2)$.

In view of the Mergelyan theorem on the approximation of analytic functions by polynomials [37], there exist polynomials $p_1(s)$ and $p_2(s)$ such that

$$\sup_{s \in K_1} \left| f_1(s) - \mathrm{e}^{p_1(s)} \right| < \frac{\varepsilon_1}{2} \quad \text{and} \quad \sup_{s \in K_2} \left| f_2(s) - p_2(s) \right| < \frac{\varepsilon_2}{2}. \tag{7}$$

By Lemma 2, the support S of the measure $P_{\underline{\zeta},\alpha,\mathfrak{a},\mathfrak{b}}$ is the set $\{g\in\mathcal{H}(\Delta): \text{ either }g(s)\neq 0 \text{ on }D, \text{ or }g(s)\equiv 0\}$. Therefore, $\left(\mathrm{e}^{p_1(s)},p_2(s)\right)$ is an element of S. Hence,

$$P_{\zeta,\alpha,\mathfrak{a},\mathfrak{b}}(G_{\varepsilon_1,\varepsilon_2}) > 0,$$
 (8)

where

$$G_{\varepsilon_1,\varepsilon_2} = \left\{ (F_1, F_2) \in \mathcal{H}^2(\Delta) : \sup_{s \in K_1} \left| F_1(s) - e^{p_1(s)} \right| < \frac{\varepsilon_1}{2}, \sup_{s \in K_2} |F_2(s) - p_2(s)| < \frac{\varepsilon_2}{2} \right\}.$$

Define one more set

$$\widehat{G}_{\varepsilon_1,\varepsilon_2} = \left\{ (F_1, F_2) \in \mathcal{H}^2(\Delta) \sup_{s \in K_1} |F_1(s) - f_1(s)| < \varepsilon_1, \sup_{s \in K_2} |F_2(s) - f_2(s)| < \varepsilon_2 \right\}.$$

The inequalities (7) show that if $(F_1, F_2) \in G_{\varepsilon_1, \varepsilon_2}$, then $(F_1, F_2) \in \widehat{G}_{\varepsilon_1, \varepsilon_2}$. Thus, $G_{\varepsilon_1, \varepsilon_2} \subset \widehat{G}_{\varepsilon_1, \varepsilon_2}$. Therefore, in virtue of (8), $P_{\underline{\zeta}, \alpha, \mathfrak{a}, \mathfrak{b}}(\widehat{G}_{\varepsilon_1, \varepsilon_2}) > 0$, i.e., $F_{\underline{\zeta}, \alpha, \mathfrak{a}, \mathfrak{b}}(\varepsilon_1, \varepsilon_2) > 0$. The theorem is proved. \square

Mathematics 2023, 11, 2042 9 of 10

5. Conclusions

In this paper, the joint approximation of a pair of analytic functions by shifts of absolutely convergent Dirichlet series

$$\zeta_{n_T}(s;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m v_{n_T}(m;\theta)}{m^s} \quad \text{and} \quad \zeta_{n_T}(s,\alpha;\mathfrak{b}) = \sum_{m=0}^{\infty} \frac{b_m v_{n_T}(m,\alpha;\theta)}{(m+\alpha)^s}$$

with periodic sequences $\{a_m\}$ and $\{b_m\}$, and exponentially decreasing sequences $\{v_{n_T}(m;\theta)\}$ and $\{v_{n_T}(m,\alpha;\theta)\}$, is obtained. It is proved that if $n_T \to \infty$ and $n_T \ll T^2$ as $T \to \infty$, then the set of approximating shifts $(\zeta_{n_T}(s+i\tau;\mathfrak{a}),\zeta_{n_T}(s+i\tau,\alpha;\mathfrak{b}))$ has an explicitly given density on the interval [0,T].

A possible improvement to the main theorem is an extension of the class of functions n_T . Moreover, we are planning to invite experts in numerical methods and IT into our group to obtain some numerical calculations of concrete examples. This is a very difficult problem closely connected to the effectivization of universality theorems for zeta-functions.

Author Contributions: Conceptualization, A.B., M.J., R.M. and D.Š.; methodology, A.B., M.J., R.M. and D.Š.; investigation, A.B., M.J., R.M. and D.Š.; writing—original draft preparation, A.B., M.J., R.M. and D.Š. All authors have read and agreed to the published version of the manuscript.

Funding: The research of the third author is funded by the Research Council of Lithuania (LMT LT), agreement No. S-MIP-22-81.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the referees for useful remarks and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1877.
- 2. Laurinčikas, A.; Šiaučiūnas, D. Remarks on the universality of the periodic zeta-functions. *Math. Notes* **2006**, *80*, 532–538. [CrossRef]
- 3. Kaczorowski, J. Some remarks on the universality of periodic *L*-functions. In *New Directions in Value-Distribution Theory of Zeta and L-Functions, Proceedings of the Würzburg Conference*; Steuding, R., Steuding, J., Eds.; Shaker Verlag: Aachen, Germany, 2009; pp. 113–120.
- 4. Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981.
- 5. Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975.
- 6. Voronin, S.M. Analytic Properties of Arithmetic Objects. Ph.D. Thesis, V.A. Steklov Math. Inst., Moscow, Russia, 1977.
- 7. Balčiūnas, A.; Dubickas, A.; Laurinčikas, A. On the Hurwitz zeta-function with algebraic irrational parameter. *Math. Notes* **2019**, 105, 173–179. [CrossRef]
- 8. Laurinčikas, A. "Almost" universality of the Lerch zeta-function. Math. Commun. 2019, 24, 107–118.
- 9. Sourmelidis, A.; Steuding, J. On the value distribution of Hurwitz zeta-function with algebraic irrational parameter. *Constr. Approx.* **2022**, *55*, 829–860. [CrossRef]
- 10. Javtokas, A.; Laurinčikas, A. On the periodic Hurwitz zeta-function. Hardy-Ramanujan J. 2006, 29, 18–36. [CrossRef]
- 11. Javtokas, A.; Laurinčikas, A. Universality of the periodic Hurwitz zeta-function. *Integral Transforms Spec. Funct.* **2006**, 17, 711–722. [CrossRef]
- 12. Franckevič, V.; Laurinčikas, A.; Šiaučiūnas, D. On approximation of analytic functions by periodic Hurwitz zeta-functions. *Math. Model. Anal.* **2019**, 24, 20–33.
- 13. Laurinčikas; A.; Macaitienė, R.; Mochov, D.; Šiaučiūnas, D. Universality of the periodic Hurwitz zeta-function with rational parameter. *Sib. Math. J.* **2018**, *59*, 894–900. [CrossRef]
- 14. Mishou, H. The joint value distribution of the Riemann zeta-function and Hurwitz zeta-functions. *Lith. Math. J.* **2007**, 47, 32–47. [CrossRef]
- 15. Kačinskaitė, R.; Laurinčikas, A. The joint distribution of periodic zeta-functions. *Studia Sci. Math. Hungar.* **2011**, 48, 257–279. [CrossRef]

Mathematics 2023, 11, 2042 10 of 10

- 16. Laurinčikas, A. On the Mishou theorem with algebraic parameter. Siber. Math. J. 2019, 60, 1075–1082. [CrossRef]
- 17. Laurinčikas, A. Joint universality of zeta-functions with periodic coefficients. Izv. Math. 2010, 74, 515-539. [CrossRef]
- 18. Janulis, K.; Laurinčikas, A.; Macaitienė, R.; Šiaučiūnas, D. Joint universality of Dirichlet *L*-functions and periodic Hurwitz zeta-functions. *Math. Model. Anal.* **2012**, *17*, 673–685. [CrossRef]
- 19. Javtokas, A.; Laurinčikas, A. A joint universality theorem for periodic Hurwitz zeta-functions. *Bull. Austral. Math. Soc.* **2008**, *78*, 13–33. [CrossRef]
- 20. Laurinčikas, A.; Skerstonaitė, S. A joint universality theorem for periodic Hurwitz zeta-functions. II. *Lith. Math. J.* **2009**, 49, 287–296. [CrossRef]
- 21. Laurinčikas, A.; Šiaučiūnas, D.; Vadeikis, G. A weighted version of the Mishou theorem. *Math. Modell. Anal.* **2021**, *26*, 21–33. [CrossRef]
- 22. Laurinčikas, A.; Šiaučiūnas, D.; Vadeikis, G. Weighted discrete universality of the Riemann zeta-function. *Math. Modell. Anal.* **2020**, 25, 21–36. [CrossRef]
- 23. Buivydas, E.; Laurinčikas, A. A discrete version of the Mishou theorem. Ramanujan J. 2015, 38, 331–347. [CrossRef]
- 24. Buivydas, E.; Laurinčikas, A. A generalized joint discrete universality theorem for Riemann and Hurwitz zeta-functions. *Lith. Math. J.* **2015**, *55*, 193–206. [CrossRef]
- 25. Laurinčikas, A. Joint discrete universality for periodic zeta-functions. Quaest. Math. 2019, 42, 687–699. [CrossRef]
- 26. Laurinčikas, A. Joint discrete universality for periodic zeta-functions. II. Quaest. Math. 2020, 43, 1765–1779.
- 27. Laurinčikas, A.; Tekorė, M. Joint universality of periodic zeta-functions with multiplicative coefficients. *Nonlinear Anal. Model. Control* **2020**, 25, 860–883. [CrossRef]
- 28. Laurinčikas; A., Macaitienė, R. The discrete universality of the periodic Hurwitz zeta-function. *Integral Transforms Spec. Funct.* **2009**, 20, 673–686. [CrossRef]
- 29. Laurinčikas, A. On discrete universality of the Hurwitz zeta-function. Results Math. 2017, 72, 907–917. [CrossRef]
- 30. Sander, J.; Steuding, J. Joint universality for Euler products of Dirichlet L-functions. Analysis 2006, 26, 295–312.
- 31. Tychonoff, A. Über einen Funktionenraum. Math. Ann. 1935, 111, 762–766. [CrossRef]
- 32. Laurinčikas, A. Approximation of analytic functions by an absolutely convergent Dirichlet series. *Arch. Math.* **2021**, *117*, 53–63. [CrossRef]
- 33. Jasas, M.; Laurinčikas, A.; Šiaučiūnas, D. On the approximation of analytic functions by shifts of an absolutely convergent Dirichlet series. *Math. Notes* **2021**, *109*, 876–883. [CrossRef]
- 34. Laurinčikas, A.; Šiaučiūnas, D. Discrete approximation by a Dirichlet series connected to the Riemann zeta-function. *Mathematics* **2021**, *9*, 1073. [CrossRef]
- 35. Jasas, M.; Laurinčikas, A.; Stoncelis, M.; Šiaučiūnas, D. On the approximation of analytic functions by shifts of an absolutely convergent Dirichlet series. *Math. Model. Anal.* **2022**, 27, 78–87. [CrossRef]
- 36. Billingsley, P. Convergence of Probability Measures; 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999.
- 37. Mergelyan, S.N. Uniform approximations to functions of a complex variable. In *American Mathematical Society Translations*; no. 101; Mathematical Association of America: Providence, RI, USA, 1954.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.