ŠIAULIŲ UNIVERSITETAS TECHNOLOGIJOS FAKULTETAS MECHANIKOS INŽINERIJOS KATEDRA

Mindaugas Čepulis

NUOVARGIO KREIVIŲ APROKSIMACIJA

Magistro darbas

Vadovas

prof. habil. dr. A.Bražėnas

ŠIAULIAI, 2007

ŠIAULIŲ UNIVERSITETAS TECHNOLOGIJOS FAKULTETAS MECHANIKOS INŽINERIJOS KATEDRA

TVIRTINU

Katedros vedėjas d. Z. Ramonas

2007 06

NUOVARGIO KREIVIŲ APROKSIMACIJA

Magistro darbas

Vadovas

prof. habil. dr. A.Bražėnas

2007 06

Atliko

MM 5 gr. stud. M.Čepulis

Recenzentas prof. habil. dr. J. Bareišis 2007 06

2007 06

ŠIAULIAI, 2007

SUMMARY

Čepulis M. Approximation of Low Cycle Fatigue Curves: Master thesis of mechanical engineer/research advisor Assoc. Prof. Habil. Dr. A. Braženas; Šiauliai University, Technological Faculty, Mechanical Engineering Department. – Šiauliai, 2007. – 37p.

For determination of lifetime of structural elements number cycles N_c before fatigue crack appearance must be known. Dependence of cyclic plastic strains δ on the number of cycles N_c can be expressed by Coffin's law. $\delta = CN_c^{-m}$ but determining of material cyclic constants C and m for cyclic non – stable materials is complicated because in this case the cyclic plastic strain δ depends on number of cycle N. Therefore an equation $\varepsilon = C_1 N_c^{-m_1}$ was proposed by M. Daunys, which approximately may be used for determination lifetime on the interval of cyclic strains $(3...3.5)e_e \leq \varepsilon \leq (0.03...0.04)$.

The analytical method of calculations by using results of experimental investigations is used in this work. The highest value of this curves validity ε_2 , witch corresponds number of cycles $N_c = N_2$, was determined in this work. Also is proposed to change this curve in interval of cycles $1 \le N_c \le 10^7$ by broken line, witch consist from tree linear elements and were determined constants C_{1i} , m_{1i} of these zones. Also expression for simplified determining of the highest interval validity of this curve ε_2 with the sufficient accuracy is proposed.

The cyclic constants of cyclic curves C_{12} , m_{12} , C_1 , m_1 , and C_{10} , m_{10} witch corresponds intervals of loading $1 \le N_c \le N_2$, $N_2 \le N \le N_1$ and $N_1 < N < 10^7$ are presented in tables of work.

The obtained method of calculations enables more exactly to determine of structural elements lifetime subjected to strain controlled loading and extend interval validity of fatigue curve $\varepsilon = C_{1i} N_c^{-m_{1i}}$ till $N_c = N_0 = 10^7$.

TURINYS

SUMMARY	3
ĮVADAS	5
1. EKSPERIMENTINIO TYRIMO YPATUMAI ESANT MAŽACIKLIAM APKROVIMUI	7
1.1. Apkrovimo tipo parinkimas	7
1.2. Apkrovimo būdo parinkimas	7
1.3. Bandiniai, jų forma ir matmenys	9
1.4. Kitos eksperimentų sąlygos	10
1.5. Kiti įrenginiai jėgų ir deformacijų matavimui bei užrašymui	. 10
1.6. Bandymai aukštesnėje temperatūroje	19
1.7. Tyrimo eiga ir eksperimento rezultatų apdorojimas	20
1.8. Tyrimams panaudotos medžiagos	20
2. NUOVARGIO KREIVĖS $\varepsilon = C_1 N_f^{-m}$ parametrų tyrimai	21
2.1. Mažaciklio nuovargio kreivės esant standžiam apkrovimui	21
2.2. Lygties $\varepsilon = \mathbf{C} \mathbf{N}_{\mathbf{f}}^{-\mathbf{m}}$ galiojimo ribų nustatymas	22
2.3. Lygties $\varepsilon = \mathbf{C}_{12} \mathbf{N}_{\mathbf{f}}^{-\mathbf{m}_{12}}$ konstantų nustatymas, kai $\varepsilon > \varepsilon_2$. 25
2.4. Lygties $\varepsilon = \mathbf{C}_{ } \mathbf{N}_{\mathbf{f}}^{-\mathbf{m}_{ }}$ konstantų nustatymas, kai $N > N_1$ ($\varepsilon < \varepsilon_1$)	. 25
3. ATSPARUMO MAŽACIKLIAM SUIRIMUI TYRIMO REZULTATAI	. 26
3.1. Pradiniai duomenys	26
3.2. Eksperimentinių rezultatų apdorojimas	33
IŠVADOS	36
LITERATŪRA	37

ĮVADAS

Darbo aktualumas. Neištyrus medžiagos savybių, negalima pagerinti mašinų kokybės, padidinti jų patikimumo ir ilgaamžiškumo. Šiuolaikinės mašinos ir įrengimai dirba ekstremaliomis ciklinio apkrovimo sąlygomis. Šiose sąlygose deformacijos ir įtempimai mašinų detalėse,konstrukciniuose elementuose eksploatacijos metu dažnai viršija proporcingumo ribą ir atsiranda tampriai plastinės deformacijos.

Dažniausiai jos atsiranda įtempimų koncentracijos vietose netinkamai pasirinkus detalės formą, užapvalinimo spindulius, esant dideliems presavimo įtempimams ir kt.

Parenkant konstrukcijų, dirbančių mažaciklio apkrovimo sąlygomis, medžiagas pirmiausia reikia žinoti, kokiam tipui (stiprėjanti, silpnėjanti, cikliškai stabili) ji priklauso, nes deformacijos ir įtempimai eksploatacijos metu kinta priklausomai nuo medžiagos tipo. Pirmiausia reikia žinoti medžiagos tipą ir tik tuomet galima spręsti apie jos pritaikymo galimybę duotosioms eksploatacijos sąlygoms.

Konstrukcijų realios darbo sąlygos artimos apkrovimui su apribotomis deformacijomis, t.y. dažniausiai mašinų detalėse sutinkamas standus apkrovimas , nes ciklinis tampriai plastinis deformavimas labiausiai išryškėja įtempimų koncentracijos ir plyšio zonose, kurias supa tampriai deformuojama medžiaga.

Esant standžiam tampriai plastiniam apkrovimui, ilgaamžiškumas labai priklauso nuo santykinio skerspjūvio sumažėjimo koeficiento ψ . Iš Kofino (L. F. Coffin) priklausomybės $\delta N^m = C$, nuo

konstantos C priklauso ciklų skaičius N iki plyšio susidarymo arba suirimo: $C = \frac{1}{2} \ln \frac{1}{1 - \psi}$. Tačiau ši

lygybė daugumai medžiagų netinka, todėl tenka naudoti sudėtingesnes formules. Kofino (L. F. Coffin) pasiūlyta konstanta m=0,5 artima eksperimentinėms. C konstanta žymiai skiriasi nuo eksperimentinės, ir tai keičia medžiagos ilgaamžiškumo skaičiavimo rezultatus. Tiksliausiai ilgaamžiškumą mažaciklio nuovargio srityje aprašo Kofino lygtis $\delta = \mathbb{CN}^{-m}$, kuriose panaudotos eksperimentinės konstantos C ir m. Yra nustatyta, kad Kofino lygtis galioja visame ilgaamžiškumo diapazone $1 \le N \le 10^7$.

Nuo medžiagų suirimo kreivių parametrų priklauso daugelio labai atsakingų konstrukcijų stiprumas, ilgaamžiškumas, o šiems parametrams nustatyti reikia atlikti sudėtingus ir brangius bandymus.

Žymiai patogesnė naudojimui M. Daunio pasiūlyta priklausomybė $\varepsilon = C_1 N^{-m_1}$. Jeigu Kofino lygtis yra teisinga (o tai įrodyta), įvertinus, kad $\varepsilon = \delta + S_k / E$, iš matematikos seka, kad M. Daunio lygtis tiksliai visame diapazone galioti negali.

6

Eksperimentiniais tyrimais nustatyta, kad ši priklausomybė apytiksliai galioja, kai $0,02 \le \varepsilon \le 0,0024$. Todėl šiame darbe pasiūlyta pakeisti kreivę $\lg \varepsilon - \lg N$ diapazone $1 \le N \le 10^7$ trimis laužtinėmis tiesėmis. Tam tikslui nustatyta kokiame ilgaamžiškumo diapazone galioja $\varepsilon = C_1 N^{-m_1}$ (M.Daunio) pasiūlyta priklausomybė.

Tyrimo tikslas.

- 1. Nustatyti kuriame ilgaamžiškumo diapazone galioja M. Daunio ($\varepsilon = C_1 N_f^{-m_1}$) priklausomybė.
- 2. Išplėsti priklausomybės ($\varepsilon = C_1 N_f^{-m_1}$) taikymo ribas pakeičiant kreivę, $\lg \varepsilon \lg N$ trimis laužtinėmis linijomis, apskaičiuojant jų konstantas C_{1i} ir m_{1i} .

Darbo uždaviniai.

- 3. Rasti teorines priklausomybes, nusakančias kreivės $\varepsilon = C_1 N_f^{-m_1}$ atskirų zonų galiojimo ribas.
- 4. Iš eksperimentinių duomenų rezultatų, apskaičiuoti šių zonų nuovargio kreivės $\lg \varepsilon \lg N$ konstantas C_{1i} ir m_{1i} .

Tyrimo metodai. Analitiniai skaičiavimo metodai, panaudojant eksperimentinių tyrimų rezultatus.

Tiriamojo darbo naujumas.

Gautos priklausomybės išplečia kreivės $\lg \varepsilon - \lg N$ taikymo ribas ir patikslina nuovargio pažeidimų nustatymą, esant cikliniam standžiam tampriai plastiniam deformavimui.

1. EKSPERIMENTINIO TYRIMO YPATUMAI ESANT MAŽACIKLIAM APKROVIMUI

1.1. Apkrovimo tipo parinkimas

Esant cikliniam apkrovimui tamprumo ribose, apkrovimas pagal užduotas deformacijas tapatus apkrovimui pagal užduotus įtempimus. Tačiau viršijus medžiagos proporcingumo ribą, šie du apkrovimo tipai skiriasi. Apribojus jėgą ar įtempimą, turėsime minkštą apkrovimą. Standus apkrovimas - apkrovimas su apribotomis ciklinėmis deformacijomis ε .

Kai apkrovimas standus cikliškai stiprėjančioms ir silpnėjančioms medžiagoms, pastebimas įtempimų, tampriųjų ir plastinių deformacijų kitimas kiekviename apkrovimo cikle, t.y. stiprėjančioms medžiagoms įtempimai didėja ir histerezės kilpos plotis didėja. Stabilioms medžiagoms įtempimai ir deformacijos yra pastovūs.

Realios konstrukcijos ir detalės dažniausiai būna apkrautos standžiai, nes mažaciklis apkrovimas paprastai susidaro nedideliuose medžiagos tūriuose (prie įtempių koncentratorių, plyšių). Tokios nedidelės plastinės deformacijos zonos yra varžomos aplink esančio tampriai deformuojamo metalo, plastinė deformacija negali laisvai plėstis ir apkrovimas tampa artimas standžiam. Minkšto apkrovimo bandymais dažnai nustatomos deformavimo charakteristikos, medžiagų savybės (stiprėjimas, silpnėjimas, stabilumas), nes, esant nevaržomoms deformacijoms, šios savybės labiau išryškėja.

Todėl pasirinktas standus apkrovimas, kaip artimiausias realioms konstrukcijų ir sujungimų darbo sąlygoms, esant mažacikliam deformavimui.

1.2. Apkrovimo būdo parinkimas

Esant cikliniam deformavimui, bandiniai dažniausiai apkraunami tempimu gniuždymu, lenkimu ir sukimu. Atliekant bandymus, bandiniai dažniausiai apkraunami tempimu – gniuždymu, nors šiuo atveju reikalinga sudėtinga deformavimo įranga. Apkrovimas tempimu gniuždymu skiriasi nuo kitų apkrovimo būdų deformacijos vienalytiškumu visame geometriškai vienalyčio kūno (bandinio, detalės)

7

darbiniame skerspjūvyje. Nustatant medžiagos mechanines charakteristikas, dauguma statinio ir ciklinio apkrovimo rezultatų gaunama atliekant tempimą gniuždymą. Šio apkrovimo ypatumai žymiai

pav. Mažaciklio standaus deformavimo diagramos esant simetriniam ciklui: a - stiprėjančių medžiagų;

b – silpnėjančių mežiagų: c – stabilių medžiagų.

9

palengvina eksperimentinių duomenų apdorojimą ir palyginimą su kitų darbų rezultatais. Dėl šios priežasties mažaciklio tempimo gniuždymo bandymai sutinkami dažniausiai.

Tačiau apkrovimas tempimu – gniuždymu turi ir trūkumų: sunkesnis bandinio nustatymas ir tvirtinimas, lyginant su cikliniu sukimu ar lenkimu; prie žymių gniuždymo deformacijų bandiniai praranda stabilumą, todėl keliami aukšti reikalavimai bandinio centravimo tikslumui ir bandinių apdirbimo technologijai; matuojant išilginę deformaciją, būtinas optimalus bandinio formos ir matmenų parinkimas. Nežiūrint minėtų trūkumų, šiame darbe naudojami tyrimo rezultatai gauti tempimu – gniuždymu, užtikrinant vienalytį deformavimą $N_f = 10^2 - 2 \cdot 10^4$ ciklų intervale.

1.3. Bandiniai, jų forma ir matmenys

Bandiniai, naudojami mažaciklio deformavimo bandymams atlikti, esant tiesiniam įtempimų būviui, turi užtikrinti vienalytį įtempimų būvį bandomoje bandinio dalyje iki nuovargio plyšio atsiradimo.

Šį reikalavimą geriausiai atitinka 1.2 pav. parodyti bandiniai, naudojami atliekant tyrimus aukštesnėje temperatūroje (prailginta pereinamoji dalis elektrai laidžių griebtų tvirtinimui) [4].

1.2 pav. Apvalaus skerspjūvio bandinys

Atliekant tyrimus aukštesnėje temperatūroje, bandinio deformuojamos dalies ilgis 20 mm. Neilga bandomoji dalis bandinyje daroma siekiant išvengti bandinio klupimo esant didelėms gniuždymo deformacijoms, artimoms stiprumo ribai. Bandinio bandomųjų dalių paviršiaus kokybė, kaip ir daugiaciklio apkrovimo metu, turi didelę reikšmę jų ilgaamžiškumui, todėl jų darbinės dalies paviršiaus šiurkštumas turi būti ne didesnis kaip Ra = $0,63 \mu$ m.

1.4. Kitos eksperimentų sąlygos

Mažaciklio deformavimo metu atsiranda plastinės deformacijos, todėl priklausomai nuo apkrovimo lygio bandinys apkraunamas 3 – 10 ciklų per minutę dažniu, nes, esant didesniems dažniams, sunku užrašyti deformavimo diagramas.

Esant ciklinėms apkrovoms, pažeidimo kaupimo procesas skirstomas į dvi stadijas: stadiją iki nuovarginio plyšio atsiradimo ir stadiją po nuovarginio plyšio atsiradimo. Pirmojoje stadijoje pažeidimo kaupimas vyksta deformuojamos detalės ar bandinio makro tūryje. Antroje stadijoje pažeidimo kaupimas lokalizuojasi netoli plyšio ir yra apribotas nedidelėje detalės ar bandinio tūrio dalyje. Plyšio atsiradimas sąlygoja deformavimo sąlygų pasikeitimą, kadangi žymiai išauga deformacijos reikšmės ir pasiskirstymo gradientai priklausantys ne tik nuo apkrovimo būdo, bet ir nuo plyšio ilgio, formos, jo vystimosi greičio ir atsivėrimo dydžio. Dėl šios priežasties, šioje stadijoje negali būti naudojami tyrimo metodai, nagrinėjantys medžiagos pažeidimo kaupimą iki plyšio atsiradimo.

1.5. Kiti įrenginiai jėgų ir deformacijų matavimui bei užrašymui

Užrašant tempimo diagramas, tenka registruoti funkcinę priklausomybę $\bar{F} = f\left(\Delta \bar{l}\right)$. \bar{F} ir $\Delta \bar{l}$ -

jėgos ir deformacijos reikšmės užrašytoje diagramoje. Šias funkcines priklausomybes galima registruoti dviejų koordinačių savirašiais prietaisais [3]. Šiuo atveju signalas iš apkrovos keitiklio paduodamas į vieną prietaiso koordinatės užrašymo schemų (X), o poslinkių koordinatę (Y). Dažnai prie bandymo mašinų būna deformavimo diagramų užrašymo įrenginiai, įmontuoti valdymo pultuose. Supaprastinta mechaninės mašinos UME – 10T su tempimo diagramų užrašymo schema parodyta 1.3 pav.

Bandinys 1 yra tvirtinamas dinamometro 2 ir apatinės judamos traversos 3 griebtuose. Apkrova suteikiama nuo elektros variklio 4 per reduktorių 5 ir sliekinę porą 6, kurios sliekratyje yra veržlė 7. Sukant veržlę yra traukiamas sraigtas 8 ir prie jo pritvirtinta traversa 3. Disbalanso signalas nuo jėgos keitiklio (dinamometro 2) tiltelio, perduodamas į kompensacinę potenciometrinę schemą 9, sulyginamas su etaloniniu ir gautas disbalansas perduodamas į stiprintuvą 10.

Sustiprinto signalo įtampos fazė priklauso nuo disbalanso ženklo ir suka reversinį elektros variklį 11 taip, kad disbalansas sumažėtų.

1.3 pav. Tempimo gniuždymo bandymo stendo schema

Variklis pasuka skridinėlį 12 su prie jo pritvirtinta rodykle, rodančią apkrovos jėgą. Ant skridinėlio pritvirtintas standus lynelis 13 perslenka plunksną 14, kuri užrašo F jėgos pokytį. Su plunksna yra sujungtas vielinio potenciometro 15, įjungto į potenciometrinę sulyginimo schemą, šliaužiklis. Judant šliaužikliui reochordu tiltelio disbalansas mažėja. Signalo ΔF registracija vyksta autokompensaciniu principu, t.y. reochordo šliaužiklis visą laiką yra padėtyje, beveik atitinkančiąjėgos keitiklio tiltelio balansą.

Kompensaciniame įrenginyje 10 yra numatyta schemos pradinė kompensacija prieš apkrovimą, kuri įgalina nustatyti plunksną norimoje pradinėje padėtyje.

Analogiškai vyksta ir poslinkių pokyčio registracija antrame kanale. Šiuo atveju signalas į potenciometrinę sulyginimo schemą paduodamas iš poslinkių keitiklio 16, pritvirtinto prie bandinio 1 darbinės dalies, tiltelio. Variklio 17 velenas sujungtas su būgno 18 velenu. Ant veleno yra pritvirtintas reochordas R, kuris automatiškai kompensuoja šios koordinatės keitiklio disbalansą. Ant būgno uždėta popierinė juosta, kuriai slenkant užrašomi jėgos ir pailgėjimo dydžiai nagrinėjamu laiko momentu. Taigi apkraunant bandinį iki nutrūkimo, užrašoma tempimo diagrama.

Šiuo įrengimu galima užrašyti ir mažaciklio deformavimo diagramas. Užrašant jas apkrovos ženklui keisti naudojami induktyviniai eigos ribotuvai 2 (1.4 pav.).

1.4 pav. Ciklinio deformavimo diagramos užrašymo schema esant minkštam apkrovimui

Šių ribotuvų kreipiančioji 1 tvirtinama prie savirašio korpuso X koordinatės kryptimi. Prie plunksnos 14 lynelio pritvirtintos plieninės veliavėlės perjunginėja induktyvinius eigos ribotuvus, kurie per rėlę valdo variklio 4 reversinį paleidiklį.

Esant minkštam apkrovimui ($S_k = \sigma_t - \sigma_{gn} = const$) apkrova kinta nuo $+ \tilde{F_1}$ iki $- \tilde{F_2}$ ribose (1.4 pav.). Šiuo atveju, pasiekus jėgos dydį $\tilde{F_1}$, vėliavėlė yra kairėje kraštinėje padėtyje ir induktyvinis eigos ribotuvas reversuoja variklį 4 bei prasideda bandinio gniuždymas kol pasiekiama, $-\tilde{F_2}$ jėga. Šiuo momentu vėliavėlė yra pasislinkusi į kraštinę dešinę pusę ir variklis 4 reversuojamas. Prasideda tempimas kol pasiekiama apkrova $\tilde{F_1}$. Šis deformavimo ciklas kartojasi. Tokiu būdu galima užrašyti ciklinio deformavimo diagramas.

Ciklų numerius parodo impulsinis skaitiklis, įjungtas į magnetinio paleidiklio grandinę. $\overline{F_1}$ ir - $\overline{F_2}$ nustatomos perstumiant induktyvinius eigos ribotuvus kreipiančiąja 2 į reikiamas padėtis, įvertinant pasirinktas F_1 ir F_2 reikšmes ir jėgų užrašymo mastelį m_F .

Sukeitus koordinates F ir Δl_1 vietomis, galima užrašinėti standaus apkrovimo diagramas, kai Δl_1 ir Δl_2 yra pastovūs.

Būgniniai deformacijos užrašymo prietaisai turi žymius inercijos momentus. Todėl, esant didesniems užrašymo greičiams, atsiranda užrašymo paklaida dėl būgno inercijos. Žymiai mažesnių matmenų, patogesni ir tikslesni yra dviejų koordinačių užrašantys potenciometrai, kurie vadinami savirašiais. Šiuo atveju kiekviena koordinatė dirba autokompensacijos principu. |Diagrama užrašoma ant planšeto uždėto popieriaus, pritraukiamo elektrostatiniu lauku. Plunksna, pritvirtinta prie lynelio, sujungto su Y koordinatės reochordu. X koordinatės reochordo šliaužiklis pritvirtintas prie liniuotės galo, kurios išilgine kryptimi yra sumontuotas Y koordinatės reochordas. Dažnai naudojami dviejų koordinačių planšetiniai savirašiai PDS – 021 M, LPD – 002,...,LPD – 04, H 306 ir kt.

Norint sudaryti medžiagos deformavimo diagramą o - e ir užrašyti bandinio deformavimo

diagramos koordinatėse $\bar{F} = f\left(\Delta \bar{l}\right)$, reikia žinoti jėgos užrašymo mastelį m_F ir deformacijos mastelį

 $m_{\Delta I}$. Šie masteliai nustatomi atliekant jėgos ir poslinkio užrašymo sistemos taravimą. Jėgos taravimui vietoj bandinio įstatomas 3 kategorijos gniuždymo mechaninis dinamometras, pvz., DOSM3 – 5. Gniuždymo metu pagal dinamometro indikatoriaus rodmenis jis apkraunamas 10, 20, 30,..., F_{max} kN jėga ir nustatomas užrašančio prietaiso rodyklės poslinkis x jėgos koordinatės kryptimi. Jėgos mastelis $m_F = F_{\text{max}} / \bar{F}$, N/mm (čia \bar{F} - užrašančios plunksnos poslinkis, atitinkantis jėgą F_{max}). Įtempimų mastelis $m_g = m_F / A_0$, (A_0 - pradinis bandinio skerspjūvio plotas).

Išilginio deformometro taravimas atliekamas suteikiant jam poslinkį mikrometriniu įtaisu. Pasukus mikrometro rankenėlę, jo judamas antgalis perstūmiamas 0,1;0,2;0,3,..., Δl_{max} mm ir atitinkamai nustatomi užrašančio prietaiso plunksnos poslinkiai deformacijos koordinatės kryptimi. Mastelis $m_{\Delta I} = \overline{\Delta l}$, mm/mm (čia $\overline{\Delta l}$ - plunksnos poslinkis, atitinkantis Δl_{max}). Santykinės deformacijos mastelis $m_{\epsilon} = m_{\Delta I}/l$, (1 – deformacijos matavimo bazė). Abiejų keitiklių taravimas atliekamas 3 kartus ir imamos vidutinės m_f ir $m_{\Delta I}$ reikšmės. Išmatavus užrašytos diagramos $F_{-\Delta I}$ atitinkamas koordinates iš mastelių m_{σ} ir m_{ε} sudaroma deformavimo diagrama $\sigma - \varepsilon$.

Šiuolaikinės kompiuterizuotos deformavimo diagramų, esant vienkartiniam ir mažacikliam apkrovimui, užrašymo sistemos įgalina ne tik užrašyti deformavimo diagramas, bet ir atlikti jų parametrų skaičiavimus bei valdyti bandymo stendus. Panagrinėsime paprasčiausią iš jų. Dviem nepriklausomai kintantiems dydžiams registruoti, įrašyti į atmintį, įvesti į PC, perskaičiuoti ir išvesti norimą formą šiuo metu dažnai naudojama kompiuterizuota signalų registracijos ir apdorojimo sistema, kurios blokinė schema pateikta 1.5 pav. Šios schemos elementai pažymėti taip: 1 – X koordinatės signalo šaltinis; 2 – Y koordinatės signalo šaltinis; 3 ir 4 programuojami operaciniai stiprintuvai PCA204AP; 5 – programuojamas mikroprocesorius PIK16F877 – 20/P; 6 – 7 atminties blokai M95256; 8 – mikroprocesoriaus išėjimo ir asmeninio kompiuterio (PC) įėjimo varžų suderinimo blokai MAX232; 9 – asmeninis kompiuteris; 10 – skaitmeninės indikacijos blokas; 11 – valdymo blokas.

Ši sistema gali būti naudojama įvairiems analoginiams signalams registruoti realaus laiko mastelyje, tarp jų ir bandinių deformavimo diagramoms užrašyti. Panagrinėsime koordinatės X signalo 1 registravimo, apdorojimo ir išvedimo principus. Šis signalas stiprinamas programuojamu operaciniu stiprintuvu 3, kurio stiprinimo koeficientas 1, 10 arba 100, parenkamas rankiniu būdu. Sustiprintas signalas paduodamas į programuojamą mikroprocesorių 5, kuriame analoginis signalas pakeičiamas į skaitmeninį. Mikroprocesoriuje programavimo kalboje ASEMBLER, panaudojus PC ir specialų įtaisą, programuojamas sistemos darbas (įvedamas signalo mastelis, stiprinimo koeficientas, kvantavimo intervalas ir kt. parametrai, reikalingi skaičiavimams ir sistemai valdyti). Nuskaityto signalo dydis perduodamas į atminties bloką 6, skaitmeninės indikacijos bloką ir valdymo bloką 11. Skaitmeninės indikacijos bloke 10 išvedamas stiprinimo dydis, laikas, signalo dydis, kvantavimo intervalas (laiko intervalas tarp dviejų kintamo signalo reikšmių registracijos). Kvantavimo intervalai negali būti mažesni už mažiausią laiką t_n , reikalingą analoginio signalo keitimo į skaitmeninį, komandai perduoti, šio signalo keitimo trukmei, informacijos įvedimo į abu kanalus laiko ir laiko, reikalingo tarpiniams skaičiavimams atlikti.

Sistemos elementai 5 – 11 užtikrina atliekamų tyrimų sistemos matematinį aprūpinimą. Jis skirstomas į sisteminį ir specializuotą. Sisteminis matematinis aprūpinimas apima operacines sistemas, specializuotas programavimo kalbas, būdingas nagrinėjamam bandymų tipui.

Specializuotą sisteminį matematinį aprūpinimą sudaro parašytos programos, užtikrinančios valdymo signalų sukūrimą ir perdavimą bei eksperimentinių duomenų surinkimą ir pirminį jų apdorojimą.

Signalo lygtis sistemoje (1.5 pav.), neturi kisti ribose, didesnėse už ± 2 V. Priešingu atveju sistema sustoja funkcionuoti. Reikiamas signalo dydis nustatomas parenkant stiprinimo dydį. Skenavimo rezultatai per bloką 8 lentelės forma perduodami į PC. Visų, reikalingų skaičiavimams atlikti, rezultatų išvedimas, kiekvienam konkrečiam atvejui atliekamas panaudojus programinę įrangą HYPERTERMINAL. Galutiniai skaičiavimai atliekami užbaigus tyrimus.

- Bendru atveju atliekant mechaninius bandymus specializuotas sisteminis matematinis aprūpinimas atlieka šias funkcijas:
- surenka jėgos ir deformacijos kanalų keitiklių duomenis apie signalų dydį kvantavimo momentu;
- nustato signalų mažiausias ir didžiausias reikšmes, pradedant nuo pradinio momento išskiriant jų reikšmes, atsiradusias dėl trikdžių;
- > šių kanalų signalų registracija atliekama kas parinktą laiko tarpą;
- laiko trukmės nustatymas tarp ieškomų įvykių;
- registruoja signalų dydį, kai realizavosi ieškomas įvykis;
- sukuria valdymo signalą, pvz., apkrovimo ribas;
- laiko tarpų tarp nuskaitymų nustatymas;
- > skaitmeninis informacijos įvedimas ir išvedimas;
- bandymo stendo įjungimas ir išjungimas.

Paprasčiausia specializuoto sisteminio matematinio aprūpinimo (SSMA) sistema yra atliekant tempimo bandymus. Užrašant bandinio tempimo diagramą įėjimo signalas gaunamas iš tenzorezistorinių deformacijos ir jėgos keitiklių 1 ir 2 sujungtų į tiltelines matavimo schemas su balansavimo elementais. Šie keitikliai bandinio darbinės dalies matmenis ir jėgos pokyčius keičia į įtampos pokyčius. Kadangi išilginių deformometrų, matuojančių bandinio ilgio pokytį Δl matavimo bazėje l, matavimo diapazonas yra ribotas, bandymo metu tenka stabdyti tempimo mašiną ir rankiniu būdu perstatyti šį deformometrą į pradinę padėtį. Esant kompiuterizuotam tempimo diagramų užrašymui tai ypač nepatogu. Šių trūkumų neturi ir šiuo atveju geriau tinka skersiniai deformometrai matuojantys bandinio skersmens pokytį Δd . Skersmens pokyčių Δd perskaičiavimą į išilgines deformacijas ε atlieka PC pagal sudarytą programą. Sistemos jėgos ir deformacijų koordinačių taravimas atliekamas analogiškai kaip ir užrašant deformavimo diagramas savirašiais potenciometrais, kai stiprinimo koeficientas lygus 1. Šiuo atveju jėgos mastelis N/V ir bandinio skersmens pokyčio mastelis mm/V nustatomas iš skaitmeninio indikatoriaus rodmenų žinant F ir Δd reikšmes nagrinėjamu momentu. Esant kitiems stiprinimo dydžiams (10 ar 100) masteliai dauginami iš atitinkamo koeficiento. Stiprinimo masteliai parenkami taip, kad signalo lygis mikroprocesoriaus išėjime būtų ne didesnis kaip ± 2 V (1.5 pav.).

1.5 pav. . Elektroninio deformavimo diagramų užrašymo įrenginio schema

Valdymo signalai gali būti gaunami naudojant papildomus keitiklius (pvz., apatinio griebto poslinkio keitiklį) arba panaudojus tam tikras registruojamų signalų reikšmes. Antru atveju papildomi keitikliai procesui valdyti nereikalingi. KSRAS sistemoje, parodytoje 1.5 pav., naudojami šie proceso valdymo elementai:

- bandymo mašinos stabdymas;
- a) kai išėjimo signalas išeina už ± 2 V ribų;
- b) kai jėga F_{max} viršija leistiną dydį;

- > fiksuojama didžiausia apkrovimo jėga F_{max} , atitinkanti stiprumo ribą ir šį momentą atitinkantis bandinio skersmens pokytis $\Delta d_{u\min}$;
- > fiksuojamas didžiausias skersmens pokytis Δd_{\max} , kai $F = F_{\max}$, atitinkantis didžiausią tolydinę bandinio deformaciją $\varepsilon_{u\max}$, kai F pradeda mažėti deformuojantis bandinio kakleliui;
- > fiksuojama bandinio trūkimo jėga F_{tr} ;
- > tempimo mašinos stabdymas, kai $F < F_{tr.}$.

Dydžiai F_{max} , $\Delta d_{u \min}$, Δd_{max} , F_{u} nustatomi lyginant atitinkamų koordinačių signalų reikšmes su prieš tai buvusiomis. Šie dydžiai reikalingi galutiniam skaičiavimui nustatant stiprumo ribą, didžiausią ir mažiausią ją atitinkančias deformacijas $\varepsilon_{u \min}$ ir $\varepsilon_{u \max}$. Trūkimo jėgos dydis yra naudojamas tikriesiems trūkimo įtempimams apskaičiuoti išmatavus bandinio kakliuko skersmenį po suirimo. Šis dydis yra išspausdinamas kartu su bandinio tempimo diagrama koordinatėse $\sigma - \varepsilon$. Sudarant diagramą priimame $\varepsilon_{\max} = \varepsilon_{u \min}$.

Visi minėti valdymo signalai gauti analizuojant jėgos ir bandinio skersmens pokyčio keitiklių nuskaitytus signalus, papildomi keitikliai proceso valdymui nereikalingi. Todėl KSRAS schema šiuo atveju yra paprasčiausia. Esant papildomiems valdymo keitikliams ir sudėtingesniems deformavimo atvejams, KSRAS schema taip pat darosi sudėtingesnė. Užrašant tempimo diagramą, esant išilginiam poslinkių Δl matavimui dėl anksčiau minėtų išilginių deformometrų trūkumų, šie matavimai išskiriami į dvi stadijas. Pradiniai poslinkiai, atitinkantys $\varepsilon = 0,75...1$ proc., matuojami išilginiu deformometru. Pasiekus šį pailgėjimą, išilginis deformometras automatiškai atjungiamas nuo bandinio, o signalo nuskaitymas pradedamas nuo apatinio griebto poslinkio keitiklio.

Iš 1.4 pav. matyti, kad pasiekus tempimo jėgą F_1 , reikia reversuoti elektros variklį 4 ir gniuždyti bandinį tol, kol bus pasiekta gniuždymo jėga – F_2 . Naudojant aprašytą sistemą cikliniams bandymams, šios jėgų reikšmės įvedamos į programą. Pasiekus šias apkrovimo reikšmes, paduodamas signalas į valdymo sistemą varikliui reversuoti. Sistemoje turi būti ciklų skaitiklis.

Dar sudėtingesnė ciklinio apkrovimo mašina SSMA esant programuotam cikliniam apkrovimui. Šiuo atveju tenka programuoti kiekvieno bloko apkrovimo lygį ir skaičiuoti ciklus kiekviename apkrovimo bloke. Pasiekus reikiamą ciklų skaičių, apkrovimo bloke reikia keisti kito bloko F_1 ir - F_2 . Šiuo atveju KSRAS schema yra žymiai sudėtingesnė.

18

Skersinėms deformacijoms matuoti naudojami deformometrai, kurių šarnyras ir svirtys išdėstyti vertikalioje plokštumoje (1.6 pav.), kurie sukurti KTU medžiagų patikimumo laboratorijoje. Jų pagrindinės dalys: L formos svirtys 1 ir 2, jautraus elemento įveržimo sraigtas 3, jautrus elementas 4, plokščias šarnyras 5, spyruoklė 6, matavimo antgaliai 7, pakaba 8. Šios konstrukcijos deformometro privalumai:

- pakankamai maži gabaritai;
- matuoja bandinio skersmens pokytį, nepriklausomai nuo jo deformacijos laipsnio;
- jų matavimo antgaliai 7 prisispaudžia prie bandinio, nesukeldami didesnės įtempimų koncentracijos.

1.6 pav. Skersinis deformometras

Deformuojant bandinį, jo skersmens pokytis per svirtį l_1 , plokščią šarnyrą 5 ir svirtį l_2 masteliu l_2/l_1 perduodamas į jautrų elementą 4 su priklijuotais tenzorezistoriais R_{t1} ir R_{t2} .

Įvertinus, kad Puasono koeficientas metalams tamprumo zonoje $v \approx 0.3$, o skersinių deformacijų matavimo bazė 2...3 kartus mažesnė už išilginių deformometrų, skersinių tenzometrų jautrumas yra

ganėtinai mažas. Jautrumui padidinti vietoj plokštelės formos jautraus elemento gali būti naudojama elektroninė lempa su paslankiu tinkleliu.

19

1.6. Bandymai aukštesnėje temperatūroje

Atliekant bandymus aukštesnėje temperatūroje, bandymo įrengimas turi papildomą kaitinimo ir bandinio temperatūros automatinę reguliavimo sistemą [3]. Ši sistema užtikrina vienodą tiriamo bandinio darbinės dalies kaitinimą ir temperatūros palaikymą.

Bandinius iki 400°C galima kaitinti praleidžiant per juos elektros srovę, kurios stiprumas gali siekti kelis šimtus amperų. Srovė į bandinį perduodama per spyruokliuojančius gnybtus (1.7 pav.).

1.7 pav. Bandinio kaitinimo schema

Šiuo atveju viršutinis griebtas turi būti izoliuotas nuo korpuso. Trūkumas – oksiduojasi ir apdega kontakto vieta su bandiniu (ypač aukštesnėse temperatūrose). Atsiradus plyšiui, jo vietoje pasikeičia temperatūra.

Kauno technologijos universiteto mažaciklio nuovargio laboratorijoje, tiriant įtempimų bei deformacijų būvį iki plyšio atsiradimo padidintoje temperatūroje, bandiniai buvo kaitinami (200-350)^oC temperatūrų intervale, praleidžiant elektros srovę.

1.7. Tyrimo eiga ir eksperimento rezultatų apdorojimas

Bandymų atlikimas. Esant standžiam apkrovimui įvyko nuovarginis suirimas, esant tam tikram ciklų skaičiui N_c , atsirasdavo nuovargio plyšys, o toliau deformuojant iki ciklų skaičiaus N_f , įvykdavo galutinis suirimas. Ciklų skaičius N_c atliktuose bandymuose atitinka 1 mm plyšio ilgį ant bandinio paviršiaus.

Eksperimento rezultatų apdorojimas. Eksperimentų metu buvo užrašytos standaus mažaciklio deformavimo diagramos ir nustatytas ciklų skaičius iki plyšio susidarymo bei bandinio suirimo. Pagal ciklų skaičių iki bandinio suirimo N_f , tampriąją deformaciją ε_e buvo sudarytos mažaciklio nuovargio kreivės koordinatėse $\lg \varepsilon - \lg N$.

1.8. Tyrimams panaudotos medžiagos

3.1 – 3.4 lentelėse pateiktos medžiagos, kurių tyrimo rezultatai, esant mažacikliam standžiam apkrovimui aukštesnėje temperatūroje, panaudoti šiame darbe. Panaudotų medžiagų cheminė sudėtis, terminio apdirbimo režimai ir bandinių ruošinių išpjovimo schemos, atliekant bandymus aukštesnėje temperatūroje, pateikti darbuose [5-9].

KTU mažaciklio nuovargio laboratorijoje bandiniai buvo kaitinami 200-350°C temperatūrų diapazone, leidžiant elektros srovę.

Mažaciklio nuovargio kreivėms sudaryti $\lg \varepsilon - \lg N$ koordinatėse, o kartu ir suirimo charakteristikoms nustatyti Kauno technologijos universiteto mažaciklio nuovargio laboratorijoje buvo panaudota 10 – 15 bandinių.

2. NUOVARGIO KREIVĖS $\varepsilon = C_1 N_f^{-m}$ PARAMETRŲ TYRIMAI

2.1. Mažaciklio deformavimo kreivės esant standžiam apkrovimui

Esant standžiam tampriai plastiniam apkrovimui, ilgaamžiškumui apskaičiuoti naudojama Kofino (L. F. Coffin) priklausomybė:

$$\delta = C_f \cdot N_f^{-m}. \tag{2.1}$$

čia δ -plastinės deformacijos amplitudė arba histerezės kilpos plotis;

C ir m - konstantos pagal galutinį suirimą, kur Kofino pasiūlyta konstanta m = 0,5; konstantos C

reikšmė nustatoma naudojant plastiškumo charakteristiką \forall ir $C_f = \frac{1}{2} \ln \frac{1}{1 - \psi}$.

Kofino priklausomybė naudojama tik tampriai plastinėje zonoje ir aprašo suirimo sąlygas esant standžiam apkrovimui ir mažam ciklų skaičiui, kai suirimas įvyksta sukauptai ciklinei plastinei deformacijai pasiekus kritinę reikšmę.

Kadangi skaičiavimuose ir eksperimento metu yra matuojamos suminės ciklinės deformacijos tuomet:

$$\varepsilon = \delta_K + S_K / E = const. \tag{2.2}$$

Ilgaamžiškumui apskaičiuoti vėliau buvo pradėta taikyti Mensono tipo lygtis:

$$\varepsilon = C_f N_f^{-m} + \frac{2\delta_{-1}}{E} \cdot \left(\frac{N_0}{N_f}\right)^{m_s}.$$
(2.3)

čia ε - ciklinė tampriai plastinė deformacija; δ_{-1} - simetrinio ciklo patvarumo riba; E – tamprumo modulis; $N_0 = 10^7$ - bazinis ciklų skaičius, atitinkantis patvarumo ribą δ_{-1} ;

$$m_s = \frac{\lg \frac{S_K}{\delta_{-1}}}{\lg N_0}$$
; S_K - bandinio trūkimo įtempimai.

Nesant eksperimentinių duomenų galima imti: $S_K \approx \sigma_u (1+1,4\psi)$ [1]. čia σ_u - stiprumo riba; ψ - santykinio skerspjūvio sumažėjimo koeficientas.

Simetrinio ciklo patvarumo riba:

$$\sigma_{-1} = k_{-1} \cdot \sigma_{u}. \tag{2.4}$$

čia $k_{-1} = 0,4$, kai $\sigma_u \le 700 MPa$ ir $k_{-1} = 0,4 - 0,002(\sigma_u - 700)$, kai $\sigma_u > 700$.

Kadangi plastinė deformacija, keičiantis ciklų skaičiui standaus apkrovimo procese, keičiasi, o pilnutinė deformacija ε (tamprioji ir plastinė) išlieka pastovi, daug patogiau vietoje δ naudoti ε .

M.Daunys ilgaamžiškumui apskaičiuoti esant tampriai plastiniam standžiam apkrovimui pasiūlė priklausomybę:

$$\varepsilon = C_1 N_f^{-m_1}. \tag{2.5}$$

čia ε - stacionari pilnutinė ciklinė tampriai plastinė deformacija; C₁ ir m₁ – medžiagos konstantos, nustatomos iš eksperimentinių tyrimo duomenų. Neturint eksperimentinių duomenų konstantas C₁ ir m₁ galima nustatyti [2].

2.2. Lygties $\varepsilon = \mathbf{C} | \mathbf{N}_{f}^{-m} |$ galiojimo ribų nustatymas

Tarp (2.1) Kofino (L. F. Coffin) lygties konstantų ir M.Daunio (2.5) lygties konstantų yra skirtumas, t.y. $m > m_1$ ir C>C₁.

Iš (2.1), (2.2), ir (2.5) išraiškų matyti, kad galiojant Kofino lygčiai (2.1), M.Daunio priklausomybę (2.5) galima taikyti suskirčius ilgaamžiškumo diapazone $1 \le N \le N_0$ atskirais inervalais.

2.1 pav. Nuovargio kreivių sudarymo schema esant standžiam deformavimui

Eksperimentinių tyrimų rezultatai parodė, kad mažaciklio nuovargio srityje ($N_f \le 20000 - 40000$) M.Daunio lygtis (2.5) galioja, kai (3...4) $e_e \le \varepsilon \le 0.03...0.04$.

Iš lygties (2.2) ir (2.1 pav.) matyti, kad esant pasirinktam ciklų skaičiui N negali būti, kad ε būtų mažesnė už δ . Kai ilgaamžiškumas aprašomas M.Daunio (2.5) lygtimi, esant ciklų skaičiui N_{rib}, suminė ciklinė deformacija $\varepsilon = \delta$ ir priklausomybė (2.2) nebegalioja (2.1 pav.).

Žinant C, m, C₁, m₁, ϵ_1 ir m_s reikšmes galima nustatyti lygties (2.5) galiojimo viršutinę reikšmę, tenkinančią sąlygą:

$$\varepsilon_N = \delta_N + \varepsilon_{eN}. \tag{2.6}$$

Esant nuovargio kreivės $\lg \varepsilon - \lg N$ aproksimacija, parodyta (2.1pav.).Tamprioji deformacijos dedamoji $\varepsilon_{eN} = \varepsilon_N - \delta_N = C_1 N^{-m^1} - C N^{-m}$ mažėjant ciklų skaičiui intervale 1<N<N₁ pradžioje didėja ir pasiekia maksimumą, kai N=N₂ ir vėliau pradeda mažėti.

Žemutinė lygties (2.2) galiojimo riba nustatoma iš sąlygos:

$$\frac{d \cdot \varepsilon_{eN}}{dN} = \frac{d(C_1 N^{-m_1} - C N^{-m})}{dN} = 0.$$
(2.7)

Atlikę skaičiavimus iš lygties (2.7) gauname:

$$N_2 = \left(\frac{C \cdot m}{C_1 \cdot m_1}\right)^{\frac{1}{m-m_1}}$$
(2.8)

Čia C_1 ir m_1 – medžiagos konstantos, nustatomos iš eksperimentinių tyrimo duomenų. Neturint eksperimentinių duomenų konstantas C_1 ir m_1 galima nustatyti [2].

2.3. Lygties $\varepsilon = \mathbf{C}_{12} \mathbf{N}_{f}^{-\mathbf{m}_{2}}$ konstantų nustatymas, kai $\varepsilon > \varepsilon_{2}$

Įrašę apskaičiuotą N₂ reikšmę į (2.2) lygtį, nustatome didžiausią ε reikšmę:

$$\varepsilon = \varepsilon_2 = \frac{C_1}{N_2^{m_1}}.$$
 (2.9)

Kuriai esant ši lygtis galioja, lygties (2.5) konstantos ilgaamžiškumo intervale $1 \le N \le N_2$.

$$C_{12} = C + \varepsilon_{emax}$$

$$m_{12} = \lg \frac{C_1}{\varepsilon_2}$$
(2.10)

Lygtys (2.10) apskaičiuojamos iš (2.2) ir (2.5) priklausomybių.

Žemutinė lygties (2.5) taikymo riba nustatoma iš sąlygos:

$$\begin{cases} N_1 \leq \left(\frac{C_1}{3e_e}\right)^{\frac{1}{m_1}} \\ N_1 \approx 20000 \end{cases}$$
 (2.11)
Intervale, kai $N_2 < N < N_1$

 $(\varepsilon_1 \le \varepsilon \le \varepsilon_2)$ galioja C_1 ir m_1 konstantos gautos apdorojant bandymų rezultatus (pateiktos pradiniuose duomenyse).

2.4. Lygties $\varepsilon = \mathbf{C}_{|||} \mathbf{N}_{f}^{-\mathbf{m}_{||}}$ konstantų nustatymas, kai $N > N_{1}$ ($\varepsilon < \varepsilon_{1}$)

Lygtį (2.5) galima panaudoti ilga
amžiškumui apskaičiuoti, kai $N_1 < N \le N_0$, įrašius į (2.5) lygtį konstantas:

$$m_{10} = \frac{\lg \frac{\varepsilon_1}{2\sigma_{-1}}}{\lg \frac{N_0}{N_1}} \text{ ir } C_{10} = \varepsilon_1 N_1^{m_{10}}.$$
(2.12)

3. ATSPARUMO MAŽACIKLIAM SUIRIMUI TYRIMO REZULTATAI

3.1. Pradiniai duomenys

Paaukštintose temperatūrose legiruotų konstrukcinių plienų nuovargio kreivių $\varepsilon = \mathbf{C} |\mathbf{N}_{f}^{-\mathbf{m}}|$ konstantos [2] pateiktos 3.1lentelėje, o jų mechaninės charakteristikos ir nuovargio kreivės atskirų zonų konstantos – lentelėse 3.1 – 3.4.

3.1 lentelė

Eil. Nr.	Legiruoti konstrukciniai plienai	C/C ₁	E 2, %
1	10XH1M (A)	3,539	1,619
2	20Х2Н4ВФ	1,789	2,278
3	ВК-2Ш (Н)	5,828	1,30
4	ВК-2Ш (Д)	6,912	0,927
5	ВК-2М (Д)	7,577	1,485
6	ВК-2М (Е)	17,665	0,880
7	ВК-2М (Г)	1,618	0,917
8	ВК-2М (О)	2,608	1,224
9	ВК-2М (ГО)	5,675	1,044
10	15Х2НМФАА	14,671	0,904
11	15Х2МФААВУ (7-12)	8,785	0,911
12	19MN5 (K)	4,992	1,542
13	19MN5 (K)	12,538	1,272
14	19MN5 (K)	5,157	1,153
15	10ГН2МФА(ГЭ)	6,063	1,484

Legiruotųjų konstrukcinių plienų pagrindinės suirimo charakteristikos aukštesnėje temperatūroje

3.2 lentelė

·	I	1	1						1			
Eil.	Legiruoti konstrukciniai	T ⁰C	Terminis		Mechani	inės chara	akteristik	os	Suirimo kreivių parametrai			
Nr.	plienai	1, 0	apdirbimas	σ _u , MPa	σ _y , MPa	ψ,%	N_1	N_2	С,%	m,%	C1,%	m1,%
1	15Х2МФ	350°C	G-Atl	574	387	72						
2	22К	350°C	G-Atl	474	230	73,7						
3	22KIII (3)	350°C	N-Atl	463	130							
4	ВК-1А	350°C	N-Atl	598	188	66,3						
5	ВК-2М	350°C	G-Atl	672	447	66,7	2687	21,46	58,29	0,63	49,3	0,5
6	Г (10Г2НМФА)	350°C		665	381							
7	10XH1M (A)	200°C	G-Atl	595	335	54,3	8274	1439	202,12	0,716	57,1	0,490
8	20Ш	350°C	N	382	86							
9	20Х2Н4ВФ	300°C	G-Atl	825	543	61,5	1255	216,18	40,26	0,597	22,5	0,426
10	22К-ВД (ШИ)	350°C	N-Atl	477	149							
11	25ЛС	350°C	N-Atl	448	140							
12	ВК-2Ш (9)	350°C	Atkh-N-G-Atl	576	360							
13	ВК-2М (ПВ)	350°C	G-3Atl	687	490							
14	ВК-2Ш (Н)	200°C	2Atkh-2N-Atl	637	459	68,9	1543	778,13	196,42	0,834	33,7	0,489
15	ВК-2Ш (П)	350°C	Atkh-N-G-Atl	697	348	54,8	3213	154,06	130,83	0,782	51,6	0,514
16	ВК-2Ш (Д)	350°C	Atkh-N-G-Atl	600	397	59,4	1981	1288	179,03	0,813	25,9	0,465
17	Л (25Л)	350°C	N-Atl	545	180	40,1						
18	15Х2МФАА(ТСП)	350°C	G-2Atl	412	223	72						

Legiruotųjų konstrukcinių plienų terminis apdirbimas, pagrindinės mechaninės ir suirimo charakteristikos aukštesnėje temperatūroje

Eil.	Legiruoti konstrukciniai	T⁰C	Terminis	Mechaninės charakteristikos					Suirimo kreivių parametrai			
Nr.	plienai	1, 0	apdirbimas	σ _u , MPa	σ _y , MPa	ψ,%	N_1	N_2	С,%	m,%	C1,%	m1,%
19	BK-2M (3E)	350°C	G-2Atl-S	680	240	68						
20	ВК-2М (Д)	350°C	N-2Atl	502	480	59	3575	586,93	228,09	0,889	30,1	0,472
21	ВК-2М (Е)	350°C	G-Atl	875	501	63	5304	1366	142,56	0,845	8,07	0,307
22	ВК-2М (Г)	350°C	G-2Atl	603	254	59	1305	33,931		0,828	65,6	0,600
23	ВК-2М (О)	350°C	G-3Atl	619	367	59	1445	579,31		0,702	28,9	0,497
24	ВК-2Ш (Н)	350°C	G-3Atl	550	236	68						
25	ВК-2М (ГО)	350°C	G-2Atl	660	390	67	2493	1952		0,733	28,2	0,435
26	15Х2НМФАА	350°C	G-Atl	580	440	69,2	2758	2349	228,87	0,816	15,6	0,367
27	15ХЗНМФАА	350°C	G-3Atl	550	275	58						
28	15Х2МФААВУ (7-12)	350°C	G-3Atl	530	480	75,5	1728	1521	456,85	0,918	52,0	0,552
29	19MN5 (K)	275°C		548	245	57	3589	705,949	231,67	0,837	46,4	0,519
30	19MN5 (K)	285°C		559	255	57	2494	909,751	1119,7	1,075	89,3	0,624
31	19MN5 (K)	350°C		480	277	64,4	2221	634,376	107,8	0,791	20,9	0,449
32	10ГН2МФА(ГЭ)	350°C		550	403	74,5	1184	470,228	315,31	0,952	52,0	0,578

Legiruotųjų konstrukcinių plienų terminis apdirbimas, pagrindinės mechaninės ir suirimo charakteristikos aukštesnėje temperatūroje

Atkh - homogeninis atkaitinimas; N - normalizavimas; G - grūdinimas; Atl - aukštas atleidimas; S - sendinimas

Eil.	Legiruoti konstrukciniai	T,ºC	Terminis	M	echaninės akteristikos	Suirimo kreivių parametrai			
Nr.	plienai		apdirbimas	σ _u , MPa	σ _y , MPa	C ₁₀ ,%	m ₁₀ , %	C ₁₂ ,%	m ₁₂ , %
1	15Х2МФ	350°C	G-Atl	574	387				
2	22К	350°C	G-Atl	474	230				
3	22КШ (3)	350°C	N-Atl	463	130				
4	BK-1A	350°C	N-Atl	598	188				
5	ВК-2М	350°C	G-Atl	672	447	267,102	0,714	60,486	0,666
6	Г (10Г2НМФА)	350°C		665	381				
7	10XH1M (A)	200°C	G-Atl	595	335	91,895	0,798	203,631	1,547
8	20111	350°C	N	382	86				
9	20Х2Н4ВФ	300°C	G-Atl	825	543	232,03	0,753	40,912	0,995
10	22К-ВД (ШИ)	350°C	N-Atl	477	149				
11	25ЛС	350°C	N-Atl	448	140				
12	ВК-2Ш (9)	350°C	Atkh-N-G-Atl	576	360				
13	ВК-2М (ПВ)	350°C	G-3Atl	687	490				
14	ВК-2Ш (Н)	200°C	2Atkh-2N-Atl	637	459	129,141	0,672	196,958	1,414
15	ВК-2Ш (П)	350°C	Atkh-N-G-Atl	697	348	243,20	0,706	132,158	1,124
16	ВК-2Ш (Д)	350°C	Atkh-N-G-Atl	600	397	127,538	0,675	179,427	1,446
17	Л (25Л)	350°C	N-Atl	545	180				
18	15Х2МФАА(ТСП)	350°C	G-2Atl	412	223				

Legiruotųjų konstrukcinių plienų terminis apdirbimas, pagrindinės mechaninės ir suirimo charakteristikos aukštesnėje temperatūroje

3.3 lentelės tęsinys

Eil. Legiruoti Nu konstrukciniai		T,ºC	Terminis	Mechaninės charakteristikos		Suirimo kreivių parametrai				
Nr.	plienai		apdirbimas	σ _u , MPa	σ _y , MPa	C ₁₀ ,%	m ₁₀ , %	C ₁₂ ,%	m ₁₂ , %	
19	BK-2M (3E)	350°C	G-2Atl-S	680	240					
20	ВК-2М (Д)	350°C	N-2Atl	502	480	238,522	0,725	228,787	1,307	
21	ВК-2М (Е)	350°C	G-Atl	875	501	205,6	0,953	143,12	0,962	
22	ВК-2М (Г)	350°C	G-2Atl	603	254	100,864	0,66	108,35	1,855	
23	ВК-2М (О)	350°C	G-3Atl	619	367	87,97	0,65	75,747	1,373	
24	ВК-2Ш (Н)	350°C	G-3Atl	550	236					
25	ВК-2М (ГО)	350°C	G-2Atl	660	390	238,531	0,708	160,465	1,432	
26	15Х2НМФАА	350°C	G-Atl	580	440	257,696	0,721	229,367	1,237	
27	15ХЗНМФАА	350°C	G-3Atl	550	275					
28	15Х2МФААВУ (7-12)	350°C	G-3Atl	530	480	147,669	0,692	457,213	1,756	
29	19MN5 (K)	275°C		548	245	240,489	0,72	232,256	1,478	
30	19MN5 (K)	285°C		559	255	148,488	0,689	1120,234	1,846	
31	19MN5 (K)	350°C		480	277	138,061	0,694	108,299	1,258	
32	10ГН2МФА(ГЭ)	350°C		550	403	93,542	0,661	315,893	1,545	

Legiruotųjų konstrukcinių plienų terminis apdirbimas, pagrindinės mechaninės ir suirimo charakteristikos aukštesnėje temperatūroje

Atkh – homogeninis atkaitinimas; N – normalizavimas; G – grūdinimas; Atl – aukštas atleidimas; S - sendinimas

T.ºC	Terminis	ninis charakteristikos		Kreivių parametrai						
,	apdirbimas	σ _u , MPa	σ _y , MPa	ε _{eN} , %	ε ₁ , %	ε ₂ , %	σ-1, MPa			
350°C	G-Atl	574	387							
350°C	G-Atl	474	230							
350°C	N-Atl	463	130							
350°C	N-Atl	598	188							
350°C	G-Atl	672	447	2,196	0,951	1,642	268,8			
350°C		665	381							
200°C	G-Atl	595	335	0,511	0,687	1,619	238,0			
350°C	N	382	86							
300°C	G-Atl	825	543	0,652	1,077	2,278	123,75			
350°C	N-Atl	477	149							
350°C	N-Atl	448	140							
350°C	Atkh-N-G-Atl	576	360							
350°C	G-3Atl	687	490							
200°C	2Atkh-2N-Atl	637	459	0,538	0,93	1,30	254,8			
350°C	Atkh-N-G-Atl	697	348	1,328	0,813	3,874	278,8			

0,397

0,759

0,927

240,0

Legiruotųjų konstrukcinių plienų terminis apdirbimas, pagrindinės mechaninės ir suirimo charakteristikos aukštesnėje temperatūroje

Legiruoti

konstrukciniai

plienai

15X2MΦ

22КШ (З)

ВК-1А

ВК-2М

20Ш

25ЛС

Г (10Г2НМФА)

10XH1M (A)

20X2H4BΦ

ВК-2Ш (9)

ВК-2М (ПВ)

ВК-2Ш (Н)

ВК-2Ш (П)

ВК-2Ш (Д)

15Х2МФАА(ТСП)

Л (25Л)

Atkh-N-G-Atl

N-Atl

G-2Atl

350°C

350°C

350°C

600

545

412

397

180

223

22К-ВД (ШИ)

22К

Eil.

Nr.

1 2

3

4

5

6

7

8

9 10

11 12

13

14

15

16

17

18

3.4 lentelė

Eil. Legiruoti		T,ºC	Terminis	Terminis andirbimas Mechaninės charakteristikos		Kreivių parametrai				
111.	plienai		apanonnas	σ _u , MPa	σ _y , MPa	ε _{eN} , %	ε ₁ , %	ε ₂ , %	σ-1, MPa	
19	BK-2M (3E)	350°C	G-2Atl-S	680	240					
20	ВК-2М (Д)	350°C	N-2Atl	502	480	0,697	0,633	1,485	200,8	
21	ВК-2М (Е)	350°C	G-Atl	875	501	0,560	0,580	0,880	43,75	
22	ВК-2М (Г)	350°C	G-2Atl	603	254	2,18	0,886	0,917	241,2	
23	ВК-2М (О)	350°C	G-3Atl	619	367	0,357	0,777	1,244	247,6	
24	ВК-2Ш (Н)	350°C	G-3Atl	550	236					
25	ВК-2М (ГО)	350°C	G-2Atl	660	390	0,425	0,939	1,044	264,0	
26	15Х2НМФАА	350°C	G-Atl	580	440	0,497	0,852	0,904	232,0	
27	15ХЗНМФАА	350°C	G-3Atl	550	275					
28	15Х2МФААВУ (7-12)	350°C	G-3Atl	530	480	0,363	0,849	0,911	212,0	
29	19MN5 (K)	275°C		548	245	0,586	0,663	1,542	219,2	
30	19MN5 (K)	285°C		559	255	0,534	0,678	1,272	223,6	
31	19MN5 (K)	350°C		480	277	0,499	0,657	1,153	192,0	
32	10ГН2МФА(ГЭ)	350°C		550	403	0,583	0,870	1,484	220,0	
	Atkh – homogeninis atkaitinimas; N – normalizavimas; G – grūdinimas; Atl – aukštas atleidimas; S - sendinimas									

Legiruotųjų konstrukcinių plienų terminis apdirbimas, pagrindinės mechaninės ir suirimo charakteristikos aukštesnėje temperatūroje

3.2. Eksperimentinių rezultatų apdorojimas

Nuovargio kreivės $\varepsilon = \mathbb{C} N_f^{-m}$ galiojimo ribos nustatymas pagal (2.9) ir (2.10) priklausomybes reikalauja daugiau laiko. Todėl buvo pabandyta viršutinį šios kreivės galiojimo ribos tašką ε_2 nustatyti iš empirinių priklausomybių: $\varepsilon_2 = f(C/C_1)$, $\varepsilon_2 = f(\varepsilon_2 / \varepsilon_{ri})$. Kaip matyti 3.1 pav. ir 3.2 pav. geriausia iš jų yra priklausomybė parodyta 3.1 pav. Ji gauta apdorojant rezultatus mažiausių kvadratų metodu ir aprašoma priklausomybe:

$$\varepsilon_2 = 1,5 - 0,022 C_1 / C_2 \tag{3.1}$$

3.1 pav. ε_2 priklausomybė nuo konstantų C/C₁ santykio legiruotiems konstrukciniams plienams aukštesnėje temperatūroje

3.2 pav. $\varepsilon_{rib.}$ priklausomybė nuo $\varepsilon_2/\varepsilon_{rib.}$ santykio legiruotiems konstrukciniams plienams aukštesnėje temperatūroje

Viršutinės nuovargio kreivės $\varepsilon = \mathbf{C} |\mathbf{N}_{f}^{-\mathbf{m}}|$ ribos ε_{2} nustatymo paklaidos, gautos naudojantis (3.1) formule pateiktos 3.5 lentelėje. Iš šios lentelės matyti, kad (3.1) priklausomybė gali būti apytiksliai naudojama viršutinei nuovargio kreivės ribai nustatyti, kai žinomos konstantos C_{1} ir C.

3.5 lentelė

Eil. Nr.	Legiruoti konstrukciniai plienai	ε _{2,} %	€ _{2sk.} , %	$\Delta \varepsilon_2, $ %
1	10XH1M (A)	1,619	1,430	0,189
2	20Х2Н4ВФ	2,278	1,471	0,807
3	ВК-2Ш (Н)	1,30	1,363	-0,063
4	ВК-2Ш (Д)	0,927	1,348	-0,421
5	ВК-2М (Д)	1,485	1,345	0,14
6	BK-2M (E)	0,880	1,101	-0,221
7	ВК-2М (Г)	0,917	1,473	-0,556
8	BK-2M (O)	1,224	1,454	-0,230
9	ВК-2М (ГО)	1,044	1,387	-0,343
10	15Х2НМФАА	0,904	1,167	-0,263
11	15Х2МФААВУ (7-12)	0,911	1,308	-0,397
12	19MN5 (K)	1,542	1,403	0,139
13	19MN5 (K)	1,272	1,226	0,046
14	19MN5 (K)	1,153	1,391	-0,238
15	10ГН2МФА(ГЭ)	1,484	1,361	0,123

Legiruotųjų konstrukcinių plienų pagrindinės suirimo charakteristikos aukštesnėje temperatūroje

IŠVADOS

- Eksperimentinių tyrimų rezultatai parodė, kad mažaciklio nuovargio srityje (N_f ≤20000 40000)
 M.Daunio lygtis ε = C₁N_f^{-m₁} apytiksliai galioja, kai (3...4) e_e ≤ ε ≤ 0,03...0,04.
- 2. Ilgaamžiškumą aprašant lygtimi $\varepsilon = C_1 N_f^{-m_1}$, kai suminė ciklinė deformacija $\varepsilon > \varepsilon_2 = \delta_{k.} + S_k/E$, ši lygtis nebegalioja . Todėl viršutinė ciklinės deformacijos riba, kuriai esant galioja minėta lygtis, yra $\varepsilon = \varepsilon_2$. Žemutinė ciklinės deformacijos riba nustatoma iš sąlygos: $\varepsilon \le \varepsilon_1 = 1, 5e_e$ ir $N_1 \le$ 20000.
- 3. Darbe lygtis koordinatėse lg ε lgN pakeista trijų tiesių atkarpų laužtine linija, ir nustatytos priklausomybės jų konstantoms C_{li} ir m_{li} apskaičiuoti.
- 4. Iš pradinių nuovargio kreivių eksperimentinių duomenų ir ε_2 skaičiavimo priklausomybės analizės pasiūlyta supaprastinta nuovargio kreivės $\varepsilon = C_1 N_f^{-m_1}$ viršutinės galiojimo ribos (deformacijos ε_2) skaičiavimo metodika, įgalinanti su praktikai tinkamu tikslumu nustatyti šį parametrą.
- 5. Gauta lygties $\varepsilon = C_1 N_f^{-m_1}$ aproksimavimo metodika įgalina žymiai patikslinti nuovargio pažeidimų nustatymą visame ciklinio deformavimo intervale $1 \le N \le 10^7$.

Literatūra

- 1. Махутов Н.А. Деформационные критерии разрушения и расчет элементов конструкций на прочность. Москва, 1981.-272s.
- Šniuolis R. Konstrukcinių medžiagų mažaciklio nuovargio charakteristikų priklausomybė nuo mechaninių savybių. Daktaro disertacija. Kaunas, 1999.
- Bražėnas A. Eksperimentinės mechanikos pagrindai: vadovėlis / Šiaulių universitetas, Kauno technologijos universitetas. Šiauliai, 2006. 166 p. ISBN 9986-38-663.
- 4. Daunys M. Ciklinis konstrukcijų stiprumas ir ilgaamžiškumas: monografija / Kauno technologijos universitetas. Kaunas: Technologija, , 2005. 286 p. . ISBN 9955-09-918-6.
- Даунис М. (Руководитель темы). Отчет научно исследовательской работы. Оценка характеристик сварных соединений при циклическом упруго – пластическом нагружении в условиях комнатных и повышенных температур. Каунас: КПИ, 1978.369 с.
- 6. Даунис М. (Руководитель темы). Отчет научно исследовательской работы. Определение характеристик сопротивления деформированию и разрушению материалов и их сварных соединений при циклическом упруго – пластическом нагружении. Каунас:КПИ, 1980. 325с.
- Даунис М. (Руководитель темы). Отчет научно исследовательской работы. Исследование повреждения при малоцикловом нагружении конструкционных материалов и их сварных соединений с учетом конструктивно – технологических факторов. Каунас:КПИ, 1982. 244 с.
- Даунис М. (Руководитель темы). Отчет научно исследовательской работы. Исследование сопротивления малоцикловому нагружению узлов энергетического оборудования с учетом воздействия конструкционных технологтческих и эксплуатационных факторовю Каунас: КПИ, 1986. т.І 70 с., т.ІІ 92 с., т.ІІІ 125 с.
- Даунис М. (Руководитель темы). Отчет научно исследовательской работы. Исследование прочности конструкционных материалов и их сварных соединений при малоцикловом нагружении применительно к изделиям энергомашиностроения. Каунас: КПИ, 1990. 208с.
- A. Bražėnas. Strength and Low Cycle fatigue of Mechanically Heterogeneous Butt Welded Joints.-Kaunas: Technologija, 2002.-283p.