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1 | INTRODUCTION

Applications in natural sciences, social sciences, and technology often deal with large networks of
nodes linked by pairwise interactions which involve uncertainty due to noisy observations and miss-
ing data. Such uncertainties have been investigated using statistical models ranging from classical
Bernoulli random graphs and uniform random graphs with given degree distributions to stochastic
block models and more complex generative models involving various preferential attachment and
rewiring mechanisms [1, 25, 30, 38, 46]. While succeeding to obtain a good fit for degree distributions
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and tractable percolation analysis, most earlier models fail to capture second-order effects related
to clustering and transitivity. Random intersection graphs [5, 11, 18, 33, 41], spatial preferential
attachment models [27-29], and hyperbolic random geometric graphs [13, 24, 34, 35] have been
introduced to conduct percolation analysis on networks with nonvanishing transitivity and clustering
properties.

Despite remarkable methodological advances, most sparse network models still appear some-
what rigid in what comes to modeling finer clustering properties, such as the clustering spectrum
(degree-dependent local clustering coefficient) [3, 43, 47], which may significantly impact the per-
colation properties of the network [4, 19]. A decreasing clustering spectrum manifests the fact that
high-degree nodes tend to have sparser local neighborhoods than low-degree nodes. Motivated by
analyzing this phenomenon in a tractable quantitative framework, this article discusses a statistical
network model generated as an overlay of mutually independent Bernoulli random graphs Gy, ... ,G,,
which can be interpreted as layers or communities. The layers have a variable size (number of nodes)
and strength (link probability), and they may overlap each other. A key feature of the model is that the
layer sizes and layer strengths are assumed to be correlated, which allows to model and analyze a rich
class of networks with a tunable frequency of strong small communities and weak large communities.

1.1 | Main contributions

This article presents a rigorous mathematical analysis of clustering and percolation of the overlay
graph model in the natural sparse limiting regime where the number of nodes n tends to infinity, the
number of layers m is linear in the number of nodes, and the joint distribution P, of layer sizes and
layer strengths converges to a limiting distribution P. We derive exact formulas for the limiting degree
distribution, clustering coefficient, clustering spectrum, and the largest component size in terms of
cross-factorial moments and functional transforms of P. We also investigate the model under bond and
site percolation, and characterize critical parameter values of the associated phase transitions.

The descriptive power of the model is illustrated by a detailed investigation of an instance where
the layer size follows a power law, and the layer strength is a deterministic function of the layer size
following another power law. This setting leads to a power-law degree distribution and a power-law
clustering spectrum with tunable exponents in ranges (1, o0) and [0,2], respectively. A special case
in which layer strengths are inversely proportional to their sizes corresponds to layers of bounded
average degree. In this natural parameter regime we discover a remarkable double phase transition
phenomenon with two critical values: the first characterizing the emergence of a giant component
in the overlay graph, and the second characterizing the emergence of gigantic components in layers
covering a typical node.

Finally, we highlight that the modelling framework in this article covers both deterministic and ran-
dom layer types. Our approach of characterizing the regularity of layer types using averaged empirical
distributions allows both cases to be treated in a uniform manner.

1.2 | Related work

The overlay network model discussed in this article is naturally motivated and implicitly described
by classical works in social networks [17, 22]. The explanatory power and wide applicability of the
model in the context of social, collaboration, and information networks has been demonstrated in
[48, 49] by experimental studies of a community-affiliation graph, which represents an instance of
the present model where the node sets of layers are nonrandom or otherwise known to the observer.
The superposition of Bernoulli random graphs considered here serves as a null model for sparse
community-affiliation graphs.
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The mathematical analysis in this article builds on earlier works on component evolution and clus-
tering in inhomogeneous random graphs [14] and random intersection graphs [8, 9]. The special model
instance with unit layer strengths reduces to the so-called passive random intersection graph [26], and
as a byproduct, the present article also provides the first rigorous analysis of giant components in gen-
eral passive random intersection graphs, extending [16, 37]. When layer strengths are constant but not
necessarily one, clustering properties and subgraph densities of the model have been analyzed in [31,
32, 40], and the recovery of the layers in [21]. Another related work [45] (also part of [44]) on percola-
tion in overlapping community networks assumes that layers are sampled from an arbitrary distribution
on the space of finite connected graphs, and the layers are assigned to nodes via a bipartite configura-
tion model. The restriction to connected layers and the use of a configuration model makes the model
in [45] and its analysis fundamentally different from the present one, and limits its applicability by
ruling out networks composed of weak communities.

Clustering spectra with power-law exponent 1 have been shown for random intersection graph mod-
els [7, 9] and spatial preferential attachment models [27, 36], and with a tunable power-law exponent
in [0, 1] for random intersection graphs [10, 12] and recently also for a hyperbolic random geometric
graph model [24]. Furthermore, [43] discusses an inhomogeneous Bernoulli graph model where the
clustering spectrum vanishes, but its normalized version displays evidence of a power-law behavior
with exponent in range (0,2).

To the best of our knowledge, the present work is the first of its kind where a degree dependent
clustering with a tunable power-law exponent in the extended range [0,2] is rigorously analyzed in
terms of a simple statistical network model. This model admits a clear explanation of the values of
power-law exponents, and introduces a new analytical framework for studying ordinary and double
phase transitions in bond and site percolation on sparse networks of overlapping communities of
variable size and strength.

1.3 | Outline

In the rest of the article, Section 2 presents model details and notations, and Section 3 the main results.
Section 4 illustrates the main results in a power-law setting, and confirms the existence of double
phase transition. The remaining Sections 5—10 are devoted to proofs, with technical details postponed
to Appendix 11.

2 | MODEL DESCRIPTION

2.1 | Multilayer network

A multilayer network model with n nodes and m layers is defined by a list
((Gl,Xl, 01, oo s Gy Xins Qm)) of mutually independent random variables with values in
Gux{0, ... ,n}x]O0, 1], where G, is the set of undirected graphs with node set contained in {1, ... ,n}.
We assume that conditionally on (X, Ox), the probability distribution of the vertex set V(Gy) of Gy
is uniform on the subsets of {1, ... ,n} of size Xj, and conditionally on (V(Gy), Xk, Ox), each node
pair of V(Gy) is linked with probability Oy, independently of other node pairs. Thus, Gy is a Bernoulli
random graph on node set V(Gy), with edge set denoted E(Gy). The variables X, Oy, and (X, Q) are
called the size, strength, and type of layer k, respectively. Aggregation of layers produces an overlay
random graph G defined by

VG ={1,...,n} and  E(G)=U"EGy. (1)
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This setting includes as special cases: (i) models with deterministic layer types, and (ii) models where
the layer types are independent and identically distributed random variables.

2.2 | Large networks

A large network is analyzed by considering a sequence of network models
((Gn1: Xn1: Q1) -+ + Gy Xnms Onm)) indexed by the number of nodes n = 1,2, ... so that the
number of layers m = m, tends to infinity as n — oo. The sequence of corresponding overlay random
graphs is denoted (G(,)). We shall focus on a sparse parameter regime where there exists a probability
measure P on (Borel’s o-algebra B of) {0, 1, ... } X [0, 1] which approximates in sufficiently strong
sense the averaged layer type distribution

Py(B) = %ZP (XossQur) €B),  BEB. )
k=1

In this fundamental regime, the network features are described by limiting formulas with rich
expressive power captured by cross moments and tail characteristics of P.

2.3 | Notations

We denote Z, = {0,1, ...}, (a); = max{0,a}, and (x); = x(x — 1)---(x — s + 1). The indicator
function of a condition A is denoted by I(A) or I, whichever is more convenient. Sets of size x are
called x-sets. Unordered pairs and triples are abbreviated as ij = {i,j} and ijk = {i,j,k}. We write
Z; and Z;k to indicate sums over ordered pairs and ordered triples with distinct elements. We write
a, < b, and a, = o(b,) when a, /b, - 0, a, < b, and a, = O(b,) when limsup|a, /b,| < oo, and
a, ~ b, when a, /b, — 1. For a sequence of bivariate random variables (a,, §,), we write a,, = op(f,)
whenever lim,_., P(|a,| < €|8,|) = 1 for any € > 0; and &, = Op(f,) if for every € > 0 there exists
a constant ¢, > 0 such that lim,_ o, P(|a,| < c¢|f.]) > 1 — €. Notation «,, = 0p(f,), a, = Op(B,)
extends to the case where the sequence f, is deterministic (nonrandom).

A graph is a pair G = (V, E) where E is a set of unordered pairs of elements of V. The degree and
component of node i in graph G are denoted by deg; (i) and Cg(i), respectively. The transitive closure
of graph G is defined as the graph G with V(G) = V(G) and E(G) = {ij : i € Cs(j).j € V(G)}
consisting of unordered node pairs connected by a path in G.

The probability distribution of a random variable X is denoted by £(X). For probability measures,

dw(f, g) denotes the total variation distance, f * g the convolution, and f, 2 f refers to weak con-

P
vergence. Convergence in probability is denoted —. On countable spaces, the same letter is used for

both a probability measure f(A) and its density f(¢) with respect to the counting measure. The Dirac
measure at x is denoted by &,. The densities of the binomial distribution Bin(x, ¢), with x € Z, and
q € [0, 1], and the Poisson distribution Poi(4) with 4 > 0, are denoted by

Bin(r, )0 = (¥) (1 =g, Poith) =2,

with the convention that the densities are zero for ¢ outside {0, ... ,x} and Z,, respectively. The
Bernoulli distribution is denoted Ber(g)(¢) = Bin(1, g)(t). We also denote by

Bin*(x,9)(t) = P <degf_lx+1,q(l) = t> 3)
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the degree distribution of any particular node in the transitive closure Ex_'.]’q of a Bernoulli random
graph H,1, on node set {1, ... ,x + 1}, where each node pair is linked with probability g, inde-
pendently of other node pairs. Alternatively, Bin*(x, ¢)(¢) equals the probability that the connected
component of any particular node in H,,, has size ¢ + 1. Both distributions have the same support
{0, ... ,x}, and Bin(x, ¢) <« Bin™(x, ¢) in the strong stochastic order. No simple closed form expres-
sion is known for Bin* (x, ¢)(¢), but its values can be efficiently computed with the help of Gontcharoff
polynomials [2, 5]. The compound Poisson distribution with rate parameter A and increment distribu-
tion g is denoted CPoi(4, g); recall that this is the law of a random variable Z,i\:le where A, X1, X5, ...
are mutually independent and such that £(A) = Poi(4) and L(X}) = g.

For any probability measure P on Z, X[0, 1], any P-distributed random variable (X, Q), and integers
r,s > 0, we denote

(P)rs = E),Q" = / ()rq" P(dx,dq), “

and when this quantity is finite and nonzero, we define mixed probability distributions Bin,,(P) and
Bin/;(P) on Z, with probability mass functions

Bmdm@=E<Bm@—n@®%%Q>, 5)
Bint(P)(1) =K <Bin+(x — 00 %)Q> , 6)

where Bin(0, ¢)(r) = Bin* (0, ¢)(r) = [{,=¢) and Bin(x, g) = 0, Bin"(x, g) = 0 for x < 0.

3 | MAIN RESULTS

3.1 | Degree distribution

The model degree distribution is defined by
l n
W) = = N —
f'm—ngp@%%@—o, )

and represents the probability distribution of the number of neighbors of a randomly chosen node.
Because G, is an exchangeable random graph, we see that f = E( degG( )(1)).

Theorem 3.1. Assume that % — u € (0,0) and P, — P weakly together with (P,)19 — (P)1o €
(0, ) for some probability measure P on 7., X [0, 1]. Then the model degree distribution f'™ converges
weakly to the compound Poisson distribution f = CPoi(u(P)19, Binjo(P)).

The limiting degree distribution f in Theorem 3.1 can be represented as the law of { = ZkAlek
where A is Poisson distributed with mean u(P)ig, ¢1,&,, ... follow a mixed binomial distribution
Bin;y(P), and the random variables in the sum are mutually independent. Here, A represents the num-
ber of layers covering a particular node, and ¢; the number of neighbors in a typical layer covering
the node. The mean equals E { = u(P),; < oo, and the variance equals Var({) = u ((P)21 + (P)32)

for (P21), (P32) < o0. Moreover, E({") < oo if and only if (P),41, < oo. The generating function is
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given by IE(Z‘:) = ¢0@-D_ where 81002 = / 1-qg+ qz)x_l % The structure of P determines
10

whether or not the limiting degree distribution is light-tailed or heavy-tailed. Section 4 illustrates both

cases and provides examples of power laws with a tunable exponent. In Theorem 3.1 we have assumed

that (P)19 > 0. One can show that for (P);y = 0 the asymptotic degree distribution is degenerate at zero.

3.2 | Clustering

Given a finite (nonrandom) graph G = (V, £), the global clustering coefficient ¢ and the degree
dependent local clustering coefficient (also called clustering spectrum) o¢(k) are defined as follows.
Let N and N, denote the number of triangles and cherries (paths of length 2) of G, respectively. Let
N A (v) be the number of triangles containing vertex v. Then

ey NAM deg )=k}

k . ®)
ey <2 ) L{degg=k)

= —=, Ug(k) =

These network characteristics represent conditional probabilities of a link between two neighbors of a
randomly selected vertex. Let (v}, V5, v3) be an ordered triple of vertices sampled uniformly at random.
Let Av’;,v;,v; denote the event that v}, v5, v induce the triangle. Similarly, let Vs v denote the event
that vj is adjacent to v and v3. A straightforward calculation shows that the ratios (8) can be written
in the form

¢ = P* (AVT v; v;‘|vvl Vi v ) s O-Q(k) = ]P)* (A»] v2 vglvv v WV ’degg(v3) - )
Here, the probability P* refers to random sampling of vertices v}, v3, v;. Below we consider similar
conditional probabilities, but defined for the random graph G (instead of G)

7(G) = P (Avl V35 |Vvl Vs, v*) P o(G)k) =P (Avl V3.Vs |Vv V35 degG(V3) = ) )
We call 7(G) the model (global) clustering coefficient and ¢(G)(k) the model clustering spectrum of
the random overlay graph G. Note that conditional probabilities (9) refer to two sources of randomness,
namely, the random graph G and the random sampling of vertices v}, v;, v3 (which is assumed to be
independent of G). It is interesting to compare the probabilities (9) with the respective ratios 7 and
og(k) of (8), where G is replaced by an instance of the random graph G. An argument bearing on the
law of large numbers (applied to the sums of random variables in the numerators and denominators
of ratios (8)) suggests that 7g — 7(G) = op(1) and og(k) — 6(G)(k) = op(1) as the number of vertices
n — +o0. Therefore, the model characteristics 7(G) and ¢(G)(k) can be viewed as approximations to
the clustering coefficients ¢ and og(k) and our asymptotic results for 7(G) and o(G)(k) shown below
can likely be extended to 75 and o (k).
Now we focus on the model clustering characteristics 7(G) and o(G)(k). We observe that since the
distribution of G is invariant under permutation of its vertices, we have that

¥ P(GGij), G(ik), G(jk))
PG, G(ik)

Y P(degg(i) = k, G(ij), G(it), G(i£))
¥ P(degg(i) = k, G(ij), G(it))

7(G) = , o(G)k) =

where G(ij) represents the event that nodes i and j are adjacent, and the sums are taken over ordered
triples of distinct nodes. We denote 7 = 7(G,) and 6™ (k) = 6(G))(k).
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Theorem 3.2. Assume that (P,),s — (P),s < oo for rs = 21,32,33, and (P);; > 0. Then
lim,—o 7 = 7, where

(P)33 when m < n and (P)s; > 0,
(P)32 p

r= #32 when 2 — € (0, ),
(P)32 + pu(P)y; "
0 when n <« m < n?.

Remark (constant layer strengths). When Oy = g is constant for all k, we see that (P),; = (p),q° where

(p), equals the rth factorial moment of the limiting layer size distribution. In this case the limiting
o 9(P); 3

model clustering equals T and agrees with [9, 32].

Theorem 3.3. Assume that % — i € (0,00), and P, — P weakly together with (P,),s = (P),s €

(0, 00) for rs = 10,21, 32. Then o™ > ¢ pointwise to the limit

(P)33 (f * g33)(t —2) (10)

o(t) = 5 ,
(P)aa(f * g32)(t = 2) + pu(P)3 (f * g21 * g20)( —2)

where f = CPoi(u(P)1g, Binjog(P)) is the limiting degree distribution in Theorem 3.1, and the
distributions g,; = Bin,(P) are defined by (5).

Section 4 illustrates examples where the limiting clustering spectrum o(¢) follows a power law.

3.3 | Connected components

We denote by N1(G(n)) = N2(G,y) the two largest component sizes in G,,). For a probability distribution
h on Z,, we denote by

pgy = 1 —min {s >0: sth(x) =s}

x>0

the probability of eternal survival of a Galton—Watson branching process with offspring distribution 4.
Theorem 3.4. Assume that % — u € (0,00) and P, — P weakly together with (P,)10 — (P)1o €
(0, ). Then

Ni(Gw) P

No(Ggy) P
— pg+y and —F —
n n

07

where f* = CPoi(u(P)10, Bin{y(P)) is a compound Poisson distribution with rate parameter u(P)o
and increment distribution Binfo(P) defined by (6).

In Theorem 3.4 we have assumed that (P);p > 0. One can show that for (P);p = 0 we have

MGw E
n
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3.4 | Site percolation

We may analyze how a subset of nodes S C {1, ... ,n} is connected by considering a site-percolated
graph defined as the subgraph

G = G[S] (11)

of G induced by S. The site-percolated overlay graph is an instance of the overlay graph model (1) on the
vertex set S with layers (G, X1, Ql), oo (G X o, Qm) such that Gy has vertex set V(Gy) = SN V(Gy)
of size X; := [V(Gy)| and Qk = Q. Note that the conditional distribution of X given X; = |V(Gy)|
is hypergeometric. An approximation of the hypergeometric distribution by a binomial distribution
Bin(Xy, 8) with lnﬂ ~ 0 suggests replacing the limiting layer type distribution P by

PA) = / (Bin(x, 0) X 8,) (A) P(dx,dq).

The following result confirms that this modification is well justified, and summarizes the results of
Theorems 3.1-3.4 adjusted to site percolation.

Theorem 3.5. Assume that % — u € (0, ), P, » Pweakly together with (P,))10 — (P)19 € (0, o),
18l

site-percolated graph é(,,) = é(,,) [S,]:

and S, C {1, ... ,n} satisfies — 0 € (0, 1]. Then the following approximations are valid for the
(i) The degree distribution converges weakly tof = CPoi (,u(lv’)lo, Binlo(P)).
. PRV & i s N By oy 4o
(ii) 1S,| lNl(G(n)) = PG and |S,| 1NZ(G(,,)) — Owithf = CPoi (,u(P)lo,BmTO(P)).
If we also assume that (P,),s = (P),s € (0, 00) for rs = 21,32,33, then

(iii) The model clustering coefficient T(G(n)) converges to T where T is the corresponding limit of the
nonpercolated graph G).

(iv) The model clustering spectrum a(é(n)) converges pointwise to & defined by replacing f and g,
in (10) by f and 3,, = Bin,(P).

3.5 | Bond percolation

Bond percolation studies how well the nodes of a graph are connected along a subset of links obtained
by random sampling. In a multilayer network, we may either sample (i) a subset of links of the overlay
graph, or (ii) independent subsets of links for each layer separately. To analyze these cases for the
overlay graph model G = G, in (1), we define an overlay bond-percolated graph by

G=GnH, (12)

and a layerwise bond-percolated graph G by
V(G) ={1, ... ,n) and  E(G)=U",E(GinH,), (13)
where H,H, ... ,H,, are mutually independent random graphs on {1, ... ,n} in which each node

pair is linked with probability @, independently of other node pairs, and independently of the layers
(G, Xk, Or). To emphasize the dependence on € we sometimes write G= G(G) and G = G(9).
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In an epidemic modeling context, the standard SIR epidemic model is used to model individuals
who infect their neighbors with probability €, independently of each other [2]. The links of a graph
G represent social contacts, and the bond-percolated component of node i corresponds to the set of
eventually infected individuals in a population where node i is initially infectious and the other nodes
susceptible. Bond percolation on the overlay graph can be used to develop finer models to model
contacts of individuals generated by social communities (households, workplaces, schools) of variable
size and strength. Layerwise percolation G then models the case where infections occur independently
inside the communities, and the overlay bond-percolation G models the case where infections occur
between individuals regardless of the underlying community structure.

The layerwise bond-percolated graph is an instance of the overlay model (1) with layer types
(X, 00x). This suggests considering a modified limiting layer type distribution

PA) = / (8x X 8py)(A) P(dx,dq).

We expect the overlay bond-percolated model to behave similarly to the layerwise bond-percolated
model in sparse regimes where the layers do not overlap much. The following result confirms this, and
summarizes the results of Theorems 3.1-3.4 adjusted to bond percolation.

Theorem 3.6. Assume that % — u € (0, ), and P, 2, P together with (P,)10 — (P)10 € (0, 00),
and 6 € (0, 1]. Then the following approximations are valid for both the overlay bond-percolated
graph G(n) = G(n)(e) and layerwise bond-percolated graph G(n) = G(,,)(Q):

(i) The degree distribution converges weakly to f = CPoi( M(f))lo, Binlo(f’)).

P
(ii) For Ny and N, denoting the largest and the second largest component sizes we have n"'N; —

P A A A
pg+, and n~'Ny — 0 with 77 = CPoi(u(P)9, Biniy(P)).

If we also assume that (P,),s = (P),s € (0, ) for rs = 21,32,33, then:
(iii) The model clustering coefficient converges to 0t where t is the corresponding limit of the
nonpercolated graph G.

(iv) The model clustering spectrum converges pointwise to 6 defined by replacing P, f, and g, in
(10) by P, f, and g,; = Bin,,(P).

3.6 | Double phase transition

Theorem 3.6 shows that the largest relative component size in the bond-percolated graph is approxi-
mated by the survival probability PG of a Galton—Watson process with compound Poisson offspring

distribution f T = CPoi(u(lA’)m, Binfo(f’)). The mean of the offspring distribution can be written as!
Ry(0) = H/R(x— 1,09) xP(dx,dq), (14)

where R(x,q) = Zzzo t Bin"(x, ¢)(r) defined using (3) represents the expected degree of a node in
the transitive closure of Bernoulli random graph with x + 1 nodes and link probability g. Classical
branching process theory tells that PGty > 0 if and only if Ry(@) > 1. Hence the largest component in

'Ry(0) can be interpreted as the basic reproduction number “R naught” in the epidemiological context.
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the bond-percolated graph is sublinear for 8 < 6, and linear for 6 > 6, where the critical threshold
is defined by

0, = sup{0 € [0,1] : Ry(0) < 1}.

The overlay graph model studied in this article involves another nontrivial phase transition associated
with a critical threshold value

0, = sup{0 € [0, 1] : Ro(8) < o0}.

Section 4 describes an example where 0 < 6; < 0, < 1.

The first phase transition at 6; characterizes the emergence of a giant component in a
bond-percolated overlay graph. To understand the second phase transition, note that Ry(6) is propor-
tional to the expected number of nodes which can be reached by paths within a typical bond-percolated
layer covering a particular node. The second phase transition at #, hence amounts to the emergence of
gigantic components inside bond-percolated layers covering a typical node.

In the epidemic context discussed in Section 3.5, we note that the critical quantity Ry(8) does not
refer to the number of individuals directly infected by a reference individual in an otherwise suscep-
tible population, unlike in classical SIR models. Rather, Ry(6) also counts the number of individuals
indirectly infected by the reference individual via single-layer infection paths.

4 | POWER-LAW MODELS

This section illustrates the rich statistical features of the overlay model by discussing the results of
Section 3 in a setting where the limiting layer strength is a deterministic function of layer size according
to Q = g(X) for some g : Z, — [0, 1], and the limiting layer type distribution factorizes according to

P(dx, dq) = p(dx)byx»(dq), as)

where the layer size distribution p is a probability on Z... We are especially interested in the case where
the probability mass function p(x) = P(X = x) of the layer size distribution and g(x) follow power laws

p(x) =L(x)x™* and g(x)=bx"" (16)

with exponents « > 2 and § > 0. Here L(x) is a slowly varying function at +c0, b > 0 is a constant,
and we choose b < 1 for f = 0. We will assume that (16) holds for large x. Note that for r, s satisfying
a+ sf > r+ 1 the cross moment

(P)rs = ) (0)r8(x)’p(x)

x>0

is finite. It is also finite in the case where a + s = r + 1 and x~'L(x) is integrable at +co.

4.1 | Degree distribution and clustering spectrum

Theorems 4.1 and 4.2 below establish power laws for the limiting degree distribution and clus-
tering spectrum. Figures 1 and 2 illustrate how the associated power-law exponents relate to the
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(6 >3)
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(2<6<3)
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FIGURE 1 Power-law exponent of degree distribution as a function of layer size exponent a and layer strength exponent .

5
1
Power law with exponent 2
Power law: 8/(1 — 8) € (1,2)
(P D\ (=
0
2 3 4 «

FIGURE 2 Power-law exponent of clustering spectrum as a function of layer size exponent a and layer strength exponent f.
The assumptions of Theorem 4.2 do not hold in the grey areas where (P);; = 0.

corresponding exponents of layer sizes and layer strengths. Remarkably, the power law of the cluster-
ing spectrum admits a tunable exponent in [0, 2]. A similar power law with exponent 1 has earlier been
established for a random intersection graph [9] and for a spatial preferential attachment random graph
[27], and with exponent restricted to [0, 1] for inhomogeneous random intersection graphs [7, 10, 12]
and a hyperbolic random geometric graph model [24].

Theorem 4.1. Leta >2,0 >0, and b > 0. Assume (16) and (P)1y < .

(i) If p € (0, 1), then the limiting degree distribution f satisfies ast — +oo
f@®) ~ cL(/0P)? (17)

fors=1+ ﬁ and ¢ = u(1 — p)y~1p%1,

(ii) Relation (17) holds also for f = 0. Note that in this case we have b < 1.

(iii) If p > 1, then the limiting degree distribution is light-tailed with the moment generating function
bounded by Y, ., ¢"f (1) < exp {(B€=D = Du(P)1o} Vs. Here B = max, xg(x).

Theorem 4.2. Let a > 2. Let f € [0, 1) be such that a +2f > 4. Assume that for some a,b > 0 (16)
holds with L(x) = a + o(1) as x = +o0. For f = 0 we assume in addition that b < 1. Then the model
clustering spectrum defined by (10) follows a power law according to

clt‘ﬁ/(l‘/’), p<2/3,
o(t) ~ qct?, p=2/3,
c3t2, p>2/3,

where ¢ = b1 ¢35 = u(P)s3, and ¢z = ¢; + c3. In particular, o(t) ~ b for f = 0.
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We remark that the inequality @ + 2 > 4 implies (P)o, (P)21,(P)32 < o0; in particular the
asymptotic degree distribution has a finite second moment/variance.

Networks with o(f) < t~! are sometimes called weakly clustered, and those with o(f) > ¢!
strongly clustered [4]. According to Theorem 4.2, the overlay graph model produces weakly clustered
networks for f > %, and strongly clustered networks for f < % We believe Theorem 4.2 can be
extended to more general subexponential distributions p(x). We do not pursue this line here to avoid
unnecessary technicalities.

4.2 | Existence of double phase transition

For the power-law model (16), the function in (14) can be computed as Ry(0) = u Ex R(x — 1,
0g(x))xp(x). By applying a classical giant component result for Bernoulli random graphs [30, Theorem
5.4], one may verify that?

limsup Oxg(x) <1—¢ = limsupR(x—1,0g(x)) < 272,

X—00 X—00 (18)
liminf Oxg(x) > 14+¢ =  liminf x 'R(x — 1,0g(x)) > 0.
X—=>0 X—=0

If @ > 3, then the limiting layer size distribution p has a finite second moment and R(x — 1,q) < x—1
implies that Ry(1) < oo. Hence 8, = 1, and the second phase transition cannot occur. On the other
hand, when @ € (2,3], the limiting layer size distribution has infinite second moment. In this case
(18) yields the following conclusions:

(1) p=1withb > 1. Then Ry(f) < oo for & < b=}, and Ry(9) = oo for & > b~!. Hence 6, = b~! €
(0, 1). Assume in addition that the constant a in (16) is large enough so that 46(P),; > 1 for
0 = 10,. Then 71 >y J implies that Ry(0) = ¥, 7 () > X, (1) = ub(P)y > 1 for 6 = 10,
and the continuity of Ry(@) on [0, 8;) implies that §; € (0, %02). There are hence two critical
values 0 < ) < 6, < 1 in which the model displays two distinct phase transitions.

2) pe(,00),0orf =1withb < 1. Then Ry(f) < oo for all 8 € [0, 1], so that 8, = 1, and the
second-type phase transition cannot occur.

(3) p €10,1). Then one can show that Ry(f) = oo for all & € (0, 1], and hence 8; = 8, = 0, and
there are no phase transitions of either type.

The above observations confirm the existence of a double phase transition in bond percolation, as
postulated in [19], for a natural network model admitting tunable power-law exponents for both the
degree distribution and the clustering spectrum. Together with Theorems 4.1 and 4.2, this opens up a
flexible framework for studying the significance and interrelations of these power laws to bond and site
percolation properties in clustered complex networks. The investigation of how these phase transitions
are reflected in the core-periphery organization of the network [4, 19] remains an important topic for
future research.

5 | NOTATION USED IN PROOFS

Let (X, Q) and (X, 7, Q) be bivariate random variables with the distributions P and P, respectively
(one may interpret z as a integer selected uniformly at random from {1, ... ,m}). For arandom variable

2The first implication in (18) follows by noting that if xg < 1, then the proof of Theorem 5.4 [30] shows that ElCHw(l)I =
Yo PUCH, D20 <X, e300 < /O""e-%“-w)zfdz < 2(1 = xg)7, so that R(x — 1,¢) = E|Cy (D = 1 < 2(1 —xq)™.
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¢ we denote by P, the probability distribution of & and write & ~ P (equivalently, P; = L(&)). For
a bivariate random variable (£, ) we denote by PZ the conditional probability distribution of & given
n. In particular, Pg(B) = E(I;zep} 1), for a Borel set B. In the proof of Theorem 3.1 below we use the
inequality

dy(Pe,Py) <E dy, (PLP)). (19)

For vectors x = (x, ... ,x,) € R" and g = (q1, -.. ,gn) € [0,1]" we denote (x,q) =
((x1,91)s .. , (x> gm)). With a little abuse of notation we write (X, q,) = (.1, Gn1)s --- » Enms Gnin))
and (X, Q) = (X1, On1)s -+ s Xoms Qum)). To stress the dependence of the overlay graph on the

sequence X, @n) we write G,y = G()_(”,Ql)' By V = {vi, ... ,v,} we denote the vertex set of G,). The
vertex sets of the layers G,; are denoted D;, 1 <j < m.

Next we introduce an e-discretization of the space [0, 1] of admissible layer strengths (edge densi-
ties) which helps to reduce the analysis of the general model with potentially uncountably many layer
types into a one with finitely many layer types. For any € € (0, 1) we fix numbers 0 = 5o < s; < -+ <
s, =1 (withr <2/e)suchthat P(Q =5;,) =0for0 < s; < 1and |s; — s;-1| < e for 1 <i < r. Rela-
tive to this mesh, we define down-rounding and up-rounding operations ¢ = ¢~ and ¢ — ¢* on [0, 1]
using the formulas

r

,
0" = silig=o) + D silis <qssts a7 = Dysieilis<qss- 20)
i=1 =1

Forg € [0, 1]" we denote ¢ ~ = (q7, ... »gm), G = (47, ... .q) and write

&g ) = (1, g0, oo s Coms i) ) » & 7" = (@gD), o s G g) - @

Furthermore, we denote for short Gt = G~ —+ and G- =G In particular, G* is the superpo-

X,,0,) X,.0,)"
sition of the layers (Gl |, X1, Oy )s --- » (Giims Xoum> Qitm). In view of the coordinate-wise inequalities
Q;’i < Qi < QL, 1 < i < m, there is a natural coupling of random graphs G-, G*, and G, such
that (G~ € G,y € G*) = 1. By d, d*, and d~ we denote the degree of vertex v in G, G and G~
respectively. The discretization is used in the proofs of Theorems 3.1 and 3.4. Given € € (0, 1) we first
establish respective results for G~ and G* and then letting € | 0 we carry them over to G, using the
coupling G~ C G,y C G*.

ByE and P we denote the conditional expectation and probability given the random vector

(Ym @n)

X.0) *X.0

6 | ANALYSIS OF DEGREE DISTRIBUTIONS

Here we prove Theorem 3.1. Before the proof we collect some useful facts about the compound Poisson
distribution and the total variation distance. Let A1, 4, > 0. Let &, # be random variables and let
Zz ~ CPoi(41, L(&)) and Z, ~ CPoi(4,, L(n)) be independent compound Poisson random variables.
Let 7 be Bernoulli random variable independent of (£, 7) having the success probability P(/ = 1) =
ﬂl/(ﬂ.l + A2). Then

Zs +Zy ~ CPoi(A; + A0, L(C)),  where ¢ =1&+ (11D (22)
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In the particular case where & and # take values in Z, we have

M pe =gy 4 22

P =k) =
(¢ ) A+ A A+ A

Py =k), keZ,. (23)

If, in addition, £(&) = L(n) then we have L({) = L(&) = L(7).

{&, t > 0} be sequences of independent random variables. Assume that {&, t > 0} is independent of
y, and {{,, t > 0} is independent of n. Then

Lemma 6.1. Let y,n be non-negative integer valued random variables. Let {&, t > 0} and

dw (L&), L&) < 2dy (L(r), L) + Zdw (LD, LEN P =1). (24)

>0

Proof.  We can assume that {&;, ¢t > 0} and 5 are independent. By the triangle inequality

dw (L&), L&) < di (L(E), L&) + dw (L), L&) -

Furthermore, the identities that hold for any Borel set B C R

P, € B) - P, €B)= )\ (Py =1) - P(n = ) P(& € B)

>0

P¢, e B)-P(¢, €B) = Z P& eB)-P(GeB)Pn=1

>0
imply

dw (L&), L&) < 2d0(L(y), L)),
dw (L&), L&) < Zdw(ﬁ(éz),ﬁ(&))ﬂ"(n =1).

>0

We apply Lemma 6.1 to compound Poisson random variables. Let a,b > 0. Let £, be random
variables. It follows from the lemma that

dy (CPoi(a, L(£)), CPoi(b, L(£))) < 2|a — b| + bdy (L(£), L(])) (25)

To see how (25) follows from (24) put y ~ Poi(a), n ~ Poi(b) and & := &V + ... + &0 ¢, =
CO 4. 42O where D, i > 1, and ¢P, j > 1, are independent copies of & and ¢ respectively. Then
use the triangle inequality d ((L(&;), £(£;)) < dw(L(E), L({)) and the fact that Ex = b.

Proof of Theorem 3.1. In the proof we drop the subscript n when it does not cause an ambiguity.
Thus we write G = G, G; = Gy}, G;J. = Gj+ and X; = X, Qj = Onj» X, 0) = X0, 0,), Xz = Xz
We begin by outlining the idea of the proof. The degree d of vertex v, in the overlay random graph G
is approximated by the sum of degrees of v in the layers G; containing this vertex. We denote this sum

Ly= Y Tiyen)H(. (26)

1<j<m
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Here, ]I{VIGD,'} is the indicator of the event {v, € D;} and H(j) stands for the degree of v; in G;. In the
sparse regime considered it is rather unlikely that two layers intersect in more than one point. Hence
we approximate

d =Ly +op(l). 27)

Note that only the layers of size at least 2 may contribute to the sum L,. We denote the respec-
tive number of layers Sy = Z 1<j<m H{vleD/_,X/ZQ]. In order to analyze the distributions of L4 and
S4 it is convenient to condition on (X;,Q;), 1 < j < m. Then §4 becomes the sum of inde-

pendent Bernoulli random variables and its distribution is approximately Poi (%fc*), where
X = i 2i<jm Xilix22). Furthermore, each H(j) has binomial distribution Bin(X; — 1, Q;) and the
probability that it will contribute to the sum L, is proportional to X;. This in turn yields that the
typical contribution to the sum (26) by a layer of size at least 2 has the size biased mixed binomial
distribution

MO =hEX 00 = = Y Binl - LOOX a2y, 1=01, (28)

* T gigm

while the conditional distribution of L4 is approximately CPoi <%)~c*, h)

Finally, letting n,m — +o0 we approximate %X* — ux,, where x,, = [EXTx>>,. Furthermore, we
approximate & by the distribution 4., where

h(f) = LEBin(X — 1, O)(OXIixszy,  1=0,1,2 ... (29)
X

In this way we establish the approximation CPoi (%X*, h) 2 CPoi(ux., h.). We conclude the outline

with the observation that

CPoi(px., hs) = CPoi (u(P)10, Binjo(P)) . (30)
Indeed, a simple calculation shows that

(P)]O =EX = IP)(X =1)+x,,
(P)10Bingo(P)(0) = x. (P(X = 1) + 1.(0)),
(P)10Binyo(P)(7) = x:hu (1), r>1

These identities imply the relation (P)o(g — 1) = x. (h. — 1) between the Fourier transforms g and
h.. of the increment distributions Binjo(P) and A,. The latter relation establishes the correspondence
between the Fourier transforms of respective compound distributions (30).

Finally, we mention that the rigorous proof of Theorem 3.1 is a bit more complex and the proof
idea is somewhat hidden by technicalities including the truncation and discretization.

Now we give a rigorous proof. We first consider the special case where there exists M > 0 such
that X,,; < M almost surely for eachnand 1 <j < m.

Given 0 < ¢ < 1, consider e-discretized random variables Ot and O~ and the overlay graphs G*
and G~ defined by the vectors (X,,, Q:r) and (X,,, Q,), see (20), (21). Let 4 and 45 denote the distribu-
tions defined by (29), where Q is replaced by O and Q™ respectively. Let d; = dif (¢) and dy = d; (¢)
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be compound Poisson random variables with the distributions CPoi(ux.., ) and CPoi(ux., h5 ). Note
thatase - 0

L£(d}) =5 CPoi(px., hy)  and  L£(dS) — CPoi(pxs, hy). 31)
Now we turn to the analysis of the degrees d, d* and d~. We will show below that
L£d™) 5 £(dD)  and  L(dY) = £(dD). (32)
Since the coupling G~ C G C G* implies the coupling d~ < d < d* we have
Pd*<t)<Pd<t)<Pd” <1 Vet>0. (33)
Combining (32) and (33) we obtain

P(df < 1) = lim inf P(d* < ) < lim inf P(d < £) (34)

<limsupP(d <¢) <limsup P(d™ <1) =P(d; <¥).

Finally, letting € | O we obtain from (31), (34) that L(d) A CPoi(ux,, hy).
It remains to prove (32). We only show the second relation. The proof of the first one is the same.
At this point we need some more notation. Recall e-discretization (20). Let r/k i .fk i Hiis H,E’}, H,Ef;l) for

k>2and 1 <i <randj,[> 1be independent random variables. We assume that 11,?3 and 5,83 have
Poisson and Bernoulli distributions with mean values En,((’: = Eé,&’z = k/n. Furthermore, Hy;, H]E’},
H,((f;l) have binomial distribution Bin(k — 1, s;), where s;, 1 < i < r are the same as in (20). Let

Li= Y LOoH' ()= ) LDH (M), (35)

1<gj<m 1<gj<m

where H*(j) stands for the number of neighbors of v; created by the layer G;r. In particular, given
(X, 0), the random variable H*(j) has binomial distribution Bin(X; — 1, Qj+). Introduce random sets
M =1{j : X, Qf) = (k,s;)} and denote their sizes my; = | My;|. Furthermore, put

S_ms km"lﬂs>0 l<i<r k>2.
n

S= Z Xj]l{szz}, A=-== ;x*, Pri =

1<j<m

Next we condition on (X, Q). Given (X, Q) such that S > 0 define random variables

roomyy T My ”k,
L=LX0= Y Z::@H,?i, Li=LX0= Y > YYH
2<k<M i=1 j= 2<k<M i=1 j=1 I=1

ForS=0weputL, =0and L3 =0.

We observe that the conditional distributions P; do coincide. To see this we partition
the index set {j : X; > 2} = UgyMy,; of the second sum of (35) and note that the conditional
distributions of Y% ,E’:H(’) and ¥\, Li(vi)H*(j) do coincide. Another useful fact is that for § > 0

(X.0) and P(X 0
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the conditional distribution P(X’Q) is a compound Poisson distribution. Moreover, using the property

(22), (23) one can easily show that P(X 0 CP01(/1 ht), where

RO =hX00= Y Y PH;=0p, =012 ...

2<k<M1<i<r

Now we are ready for the proof of (32). We observe that d* # L, implies that some v; # v; is a
neighbor of v in at least two different layers. We have, by the union bound and symmetry, that

P@* #L) <D Y Po,v€D,nD)=@m—-1Y (E(X)Z> (E(Xf”>

4 <j =\ () (n)2

<(n-— 1) (EXz)
Invoking EX2 < M? and using the fact that £(L,) = L£(L;) we obtain
di(L(d™), £(L)) = do(L(d™), L(L1)) S P(¥ # Ly) = O(n™"). (36)

Next we evaluate dy, (L£(L;), L(L3)). To this aim we consider an array of random variables starting with
L, and ending at L3 where each subsequent element of the sequence is obtained from the previous
one by replacing 5(’) H(’) > <i<e? sz by X1 <10 H,” We proceed until all the products é(’)H(’)
are replaced so that at the array ends with L3. By the triangle inequality, the total variation distance
between the conditional distributions

de (P(XQ) P(xQ)) Z Z Z dw( (”k;))

2<k<M 1<i<r 1<j<my;

Invoking the bound d,y (LZ( (’)) [:('71(,)) < 2k*/n?, which follows by Le Cam’s inequality [42], we
obtain
du (Pg@,Pg@> <2 Y X7 < —IE

1<j<m

&, Q)

Now an application of (19) yields

2m

diy (L(La), L(L3)) < fEXz =0(n™"). (37

Finally, we evaluate the distance dy,(L£(L3), £(d™)), where L£L(d*) = CPoi(ux., ii). For this purpose it
is convenient to write 4} in the form

k
B = D, Y PHG=0pls  pli= P =k QT =),

2<k<M1<i<r
Recall that given (X, Q) the conditional distribution of Ls is CPoi(fl, ht). It follows from (25) that

diy (CPOI(A. 1), CPoi(ux,. 1)) < 214 = jxs | + pxe diy(h* 1), (38)
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Furthermore, Lemma 6.1 implies

dy(h* 1) <2 |y = Pl (39)

2<k<L1<i<r

(Here we apply Lemma 6.1 to &; = {x; = Hy,; in the case where y and # are bivariate random vari-
ables with the distributions P(y = (k, i)) = p;; and P(n = (k, 1)) = p,ti.) We observe that both terms on
the right of (38) vanish in probability. Indeed, by the weak law of large numbers (we use Chebyshev’s

N P P
inequality), our assumption P, p implies A—4 — Oandp, ;— p,ti — O foreach k and i. Since the

A P

number of different pairs (k, i) is finite, we conclude that 7 := d\,(CPoi(4, h™), CPoi(px,, hf) — 0.

In view of the obvious inequality 7 < 1 we have also that Ez = o(1). Now (19) implies
di(L(L3), L£(d)) = o(1).

Finally, from the latter bound combined with (36), (37) we derive (32), by the triangle inequality:

dy (L@@, £(dY)) < di (£(d), L(L2)) + diy (L(La), £(L3)) + duy (L(L3), L(dF)) = o(1).

Now we revoke the extra condition that X,,; < M almost surely for each n and 1 < j < m. From
now on let {(X,;, 0,j), n > 1,1 < j < m,} be arbitrary bivariate random variables satisfying con-

ditions of the theorem. Given M > 0, let G%] be the random overlay graph defined by the sequence

((X%], Oni)s - (X,[,Afn], Om) ), where X,[,’;” = X,.l;x, <m)- In the proof above we have shown that the

degree d™! of vertex v in G(n) has asymptotic compound Poisson distribution CPoi < puxiM] h[M]>
Here x[M] and hEkM] are defined in the same way as x, and /. above, but with X replaced by XM =
Xix<my.

Now we let M — oo and observe that CPoi ( yx* M) h[M]) — CPoi (ux, h). Furthermore, the
natural coupling G ) I'c G implies d™! < d, where d stands for the degree of v; in G,). Moreover,
d # d™ implies that v, belongs to a layer of size greater than M. Hence, by the union bound,

P (d # dpny) < 2 P(v, € D, X,j > M)

1<j<m

nj nmw

’ZE (Xnrlix, >my) -

1<j<m

Note that the quantity on the right is o(1) uniformly in n as M — oo. Indeed our assumptions P, p

and (P)1o = (P)1o imply limy—e sup, EX,, . Iix >my = 0. Therefore, £(d) ~ CPoi (UXyr Py

7 | ANALYSIS OF CLUSTERING

Here we prove Theorems 3.2 and 3.3. In the proof we drop the subscript n when it does not cause
an ambiguity. Thus we write G = G(,), V = V(Gy)) = {1,2, ... ,n} and Gy = G,x. Let K, be the
two-star on the vertex set { 1,2, 3} with links {12, 13}. Let K3 be the triangle on the vertex set {1,2,3}.
Denote events K3 = {G D K3} and K, = {G D K2 }. We also denote d = deg;(1). Theorems 3.2 and
3.3 are derived from Theorems 7.3 and 7.4 below, where we evaluate the probabilities P(K3), P(K2),
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P(d = t, K3) and P(d = t, Ky,) defining the ratios 7" = IP;(I]CQ and 6" () = W In the
proof of Theorem 7.3 we approximate P(XC3) by the probability that K3 is produced by a single layer
(with m different layers available). Similarly, in the proof of Theorem 7.4 IP(K;) is approximated by
the sum of two probabilities: the first one being the probability that K, is produced by a single layer
(with m different layers available) and the second one being the probability that the edges of K|, are
produced by different layers (with m(m — 1) layer pairs available). We note the corresponding sum in
the denominator of (10).

Before the proof we introduce some notation and collect auxiliary results. Subgraph frequencies

in the overlay graph will be characterized using cross moments

(Pn)rs = /(x)rySde (Pn)rs,tu = /(x)rys (x)lyudPn (40)

of the averaged layer type distribution P, defined by (2), and normalized cross moments defined by
prs = D Prk) s = Y prs(R) puh), (41)
k=1 k=1

where py(k) = ()7 'E(X,.0), 0} i Note that iy = m(n)7 (Py),s.

Lemma 7.1.  Recall the averaged empirical distribution P, defined by (2). If P, 2 Pand Pp)ys —
(P)ys < o0, then the cross moments defined in (40)—(41) satisfy pio,s <K m(n);! and Piors K n.

Proof.  Denote Ay = X; and By = (Xi),Q;. Observe that Ay < a+AI(Ax > a) and By, < b+BI(By >
b) for any a, b > 0. Because A; < n, we find that

Ag EBk < (Cl + Ak]I(Ak > a))EBk 42)
< aEBy + bnl(Ay > a) + nEBI(B; > b).
By taking expectations and averaging with respect to k, we find that
L S EA BB} < aEB, + bnP(4, > a) + nEB,I(B, > b), 43)
m
=1

where A, = X, B, = (X;),05, and (X, Y,) is a generic P,-distributed random variable. Because the
left side above equals m™ Tn(n), Hio.rs» We conclude that

m™ () 10,5 < gc + b(a) + w(b),

where ¢ = sup,(Py)s, $(t) = sup, [ I(x > )dP,, and w(t) = sup, [ (x),y*I((x),y* > 1)dP,. Then the
tightness of P, implies that ¢(a,) — O for a, = n'/>. Hence also b,$(a,) — 0for b, = ¢(a,)"/? = co.
The uniform (x),y’-integrability of P, further implies that y(b,) — 0. Hence the right side above
vanishes and first claim follows.

For the second claim, we may repeat the above reasoning to verify that (42) holds also with
the [E-symbol removed. Therefore, (43) also holds when the left side is replaced by (P,)i0,s =
iZZnﬂEAkBk- Hence the second claim follows by the same argument. [
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Let k* be a random number uniformly distributed in {1, ... ,m} and independent of G = G(. In
the following result G- = G, 4~ represents a randomly chosen layer.

Lemma 7.2. Let F,; be a graph with node set in {1, ... ,n} such that |\V(Fy)| = r and |E(F )| = s,
and let i be a node in V(F,s) with degF”(i) =r— 1. Select k* € {1, ... ,m} uniformly at random and
independently of the layers. Then:

(i) P(Gy D Fpy) = m_lﬂrs’
(ii) P(degg, (i) = 1] G- D Fyy) = Biny(P)(t — r + 1) for all 1

Proof. (i) Because P(V(Gy) D V(F,)|Xw. Or) = <Xk for any k, we see that P(Gy D F,) =

(()i‘)) O, = pik). The corresponding probablhty for a randomly selected k* equals

P(Ge D Fry) = - X4t Prs(k) = ()7 (Py)ys. Fimally, recall that (n)7'(Py)yy = m™ pys.

(ii) Denote di = degg (i). On the event that Gy D Fyy, we see that dy = ¢ + d; where d| =
|NG, () \ V(Fy)| and £ = r — 1. Conditionally on (X, Ox) = (x,q) and G D F, the random integer
d} is Bin(x — r, ¢)-distributed. Hence

P(de=t, Gk D Fy)=E <Bin(Xk =1, 0 — f)((Xk))er>

The corresponding probability for a randomly chosen k* is

P(di =1, G D Fyy) = / (Bin(x —rq)t— f)EX’qS) Py(dx,dg),

r

so the claim follows by dividing both sides by P(Gy- D Fy) = ()71 (P,);s. n

Now we are ready to state and prove Theorems 7.3 and 7.4. We use the short hand notation g(")
Bin,(P,), where the mixed binomial distribution Bin,,(P,) is defined in (5).

Theorem 7.3. We have

(i) |P(G D K3) — pss| < dporps + 3.
(ii) P(degg(1) =1, G D K3) = ps3 f® g(") —2) +&(2), where f™ is the model degree distribution
defined by (7) and the approximation error is bounded by

le()] < (4 + Dpar sz + p3; + 241033 (44)

Proof. Denote by Ay = {G; D K3} the event that all node pairs of the triangle are linked by the
layer k. We also denote d; = degGk(l), and d_; = degG_k(l) with G_y = Uy G
Proof of (i). Denote

el(t) =P(d =1,K3) — P(d = 1, U Ap),
and observe that 0 < () < P(d =1, &) +P(d =1, £111), where €15 is the event that there exists one

layer covering one link and a different layer covering the remaining two links of K3, and &£}, is the
event that three distinct layers cover distinct links of K3. We write p(abc) = P(Gi%, G}?, G?*), where
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GJ denotes the event that node pair §j is linked in layer a. We note that p(abc) = pa1(a)p21(b)pai(c),
plaab) = px(a)pa1(b), and p(aaa) = ps3(a) for distinct layers a, b, c. Hence

P(€12) < ), (plaab) + plaba) + p(baa) < 34z pa,
a,b

and P(&111) < X, plabe) < p3y. Thus, ¥ le1(D] < 3paips + 43,
Then denote

() = P(d = t,UpAy) — ZIP’(d =1, Ay).
k

Bonferroni’s inequalities imply that 0 < —&,(f) < Z,/{,k,IP’(d = t, Ay, Ap), and hence, noting that
H33 < Uz < Hal,

/

!
Z|82(l)| < Zk!k,P(-Aks-Ak’) = Zkk,P33(k)P33(k/) < Ui < porps.

>0

By combining this with the bound for £;(¢), we conclude that
Pld=1K;) = ZP(d =1, Ap) + €1(1) + &2(0), (45)
k
where 2t20(|51(t)| +|ex(®)]) < duppszn + ygl. Hence claim (i) follows by summing the above equality

over 7, and noting that ), P(Ax) = u33.
Proof of (ii). We start with (45) and approximate

2P =140 & PPyt di=1,4) (46)
k k
= Z Z P(d_ = r) P(dy = 5, Ap)
k r+s=t
~ DY P =) Pldi =5, A (47)
k r+s=t
It follows from Lemma 7.2 that
D Py = 5, 4) = mP(dy = 5, Gy D K3) (48)
k

= mP(di= = 5|Gp D K3)P(Gp D K3) = p33Binz3(P,)(s — 2).

Hence the last term above equals y33 £ % g\2(t —2), and to prove the claim it suffices to analyze

the approximation errors in (46)—(47).
The approximation error in (46) equals €3(r) = ), £3(1), where

e =P(d =1t, Ay) = P(d_y + di = 1, Ap).

By applying Lemma 11.2 with A = {k}, B = [n] \ {k}, E4 = A, and Ep being the sure event, we see
that |e3x ()] < cptP(dy < t, Ap) < cptP(Ay), where cg = P(G 2 12) < 3, p21(¢) < pa1. Hence

les(®)] < l#212P33(k) =ty 33 < T 3.
T
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The approximation error in (47) equals e4(f) = )", e4(t) where

eq(n) = Z P(d =r) = P(d_, = ) Pd = s, Ap).

r+s=t

By Lemma 11.1, 2[20 leqr(®)] < 2P(dy > 0)P(Ay). Because P(d; > 0) < p1o(k) and P(Ay) = p33(k),
it follows that Y . [€4(t)| < 2p1033. Claim (ii) follows by combining the above estimates for the total
approximation error £(f) = £1(f) + e2(¢) + £3(f) + €4(). [

Theorem 7.4. We have

(i) |P(G D K1) — (s + p3)| < 6paipzo + 6443, + 13, + pa121-
(ii) P(degs(1) = 1,G D K1p) = uza f® # g0t = 2) + 12/ ® % g5 % g¥0(1 — 2) + €(1), where f® is
the degree distribution of G, and the approximation error is bounded by

le()] < (6430 (o132 + 43)) + Hay + 41030 + 421 Hio21 + Ho1 21 (49)

Proof.  Recall that K, is the two-star with node set {1,2,3} and link set {ej,e;} := {12,13}. We
denote by Qij the event that ij € E(Gy) and we set Ay, = Q,iz N Qlﬁ. We denote Gy, = Gy U G, and
G_ir = Ugg(rryGy» and we set d = degs(1), diy = degGkK(l) and d_;, = degG_M(l). We also denote
hie(s) = P(dye = s, Are).

We start with an outline of the proof. First we approximate

Pd=1,Kn) ~ Y Pd=1t Ay (50)
kit
~ zp(dkf +d_yr =1, Agr) (51)
= 2 Pldir = 1) hie(s)
k,C r+s=t
~ DY P =) hyes), (52)
k,C r+s=t
so that
P(d =1,Kpn) ~ Zf<"><r>2hkk(s) + Zf“)(r)z‘,hkf(s) (53)
r+s=t r+s=t
We note that
X hua(s) = mP (degg,. (1) = 5, K12 € G- ) (54)
k

= mP (degg,, (1) = 5IK12 € Gie ) P(C12 € Gi) = gz g5 = 2),

where the conditional probability is evaluated using Lemma 7.2. Hence the first term on the right of
(53) equals

Zﬂ")(r)thk(s) unf ™ gt = 2). (55)

r+s=t
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Next we approximate, denoting /(s) = P(dy = s, G}?),

D i) = )P (die = 5,62, G)
k.l k.t
~ Y Pdi+de =5,G2,GP) (56)
k.l
= D ulshe(s2)
k,Z s1+sy=s
mY Y lsDhe(s2). (57)
k,l s+s,=s

After noting (see Lemma 7.2) that ), hi(s) = po g(znl)(s — 1), we conclude that

DD elsnhe(sa) = u3i85) + g5 (s = 2),

kil 51+5,=s

and hence the second term on the right side of (53) is approximately

!

DO Y Iues) ~ i " % g8 g8t - 2), (58)

r+s=t k.t
By combining (53), (55) and (58), we conclude that

P(d =1,K12) ~ psof ™ % gt = 2) + 2,/ % g5 g¥0(r = 2). (59)

The total approximation error in (59) can be written as () = £;(f) + &2(f) + €3(¢) + €4(¢), where
£1(1), £2(2), £3(¢) are the approximation errors in (50), (51), (52), respectively, and the approximation
error in (58) equals

ea() = Y ) (ea1(s) + £a(s)). (60)

r+s=t

where £41(s), £42(s) denote the errors made in (56), (57), respectively.

Now we give a rigorous proof of (i) and (ii), where we analyze the individual approximation errors
one by one.

Proof of claim (i). The union bound shows that the approximation error £;(¢) in (50) is nonpositive
for all ¢, and hence ), . le1()] = X , P(Ar) — P(; » Axe). Bonferroni’s inequalities imply that

’
Z|51([)| < Z P(Aklkz,Aflfz) =: A.

>0 (ky.ky)(€1.C5)

We split the right side above by A = A, + Az + Ay, where A;, i = 2,3, 4, is the sum over layer pairs
(k1,ky) # (£1,¢2) such that the list (ky, kp, 1, ¢>) contains precisely i distinct elements. Denote

plkikat€2) = P(Gy, D e1,Gy, D €2,Gy, D e1,Gy, D e3).
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Ay = Z (p(aabb) + p(abba) + p(aaab) + p(aaba) + p(abaa) + p(baaa))
ab

Ay = Z (p(aabc) + p(abac) + p(abca) + p(baac) + p(baca) + p(bcaa)) .

a,b,c

In the sum of A, the terms p(aabb) and p(abba) equal ps,(a)ps»(b) and the other terms equal
p(@)pr1(b). Because pir(b) < poi(b), it follows that A, < 6Z/p21(a)p32(b) < 6uz pz. In
a,b

the sum of Aj, the terms p(abac) and p(baca) equal pzl(a)pzl(b)pzi(c) and the other terms equal
pn(@)p21(b)pr1(c). Because py(a) < poi(a), it follows that A3 < 6/431. Furthermore, Ay =

Z;’b’c’  plabed) < p3,. As a conclusion, it follows that

Zlen(t)l < 621 pzz + 643 + 43y 61)

>0

Claim (i) now follows by combining the above bound with the equality
/
Y P(Ake) = Y pak) + Y pan(pa () = px + i3y — g1 1.
k& k k&

Proof of claim (ii). The approximation error in (51) equals &,(r) = Y. vz €2ke (1) where
eae(t) = P(d = 1, Ake) — P(dre + die = 1, Ase).

By applying Lemma 11.2 with A = {k,Z}, B = [m] \ {k,Z}, Ex = Aye, and Ep being the sure event,
we see that

|€2re (D] < tepP(dre < 1, Akp) < teplP(Are),
where cg < P(G_iy 2 12) < P(G 3 12) < uy;. Hence

le2(0)] < tﬂlep(Akf) < a1 s + 13)). (62)
%

The approximation error in (52) equals £3(f) = Zkf e312(f) where

()= Y, (B(d = 1) = Pldgr = 1) i (s).

r+s=t

By applying Lemma 11.1 with g(s) = %, it follows that Y, . less(1)] < 2P(Aw)P(die > 0).
kt -

Observe now that P(dy, > 0) < p1o(k) + p1o(¢). Hence,

D11 <2 o) + pio(£)) P(Are)

>0 kit
<4 p10psk) +4 Y pro(pa1 ()pai (£)
k kit

<4uioz2 + 4u21 fi021- (63)
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The approximation error in (56) equals £41(s) = Z,'( €4z (s) where
Eqe () =Pldre = 5, Ake) — Pldi + dy = 5, Agy).

By applying Lemma 11.2 with A = {k} and B = {¢}, together with &4 = {12 € G;} and &g = {13 €
Gy}, it follows that |e4xs(s)| < sp21(k)p32(€) + sp21(€)p32(k). By summing the above inequality with
respect to k, Z, it follows that |e41(s)| < 2su01 3.

The approximation error in (57) equals

len@] =Y Y Pld = 51, GOP) = 5. G,

k sy+sy=s
where Y o leaa(s)] = X p21(k)? = pp121. Hence, by (60),

les(®)] < Zf(")(r)(|641(5)| + |eqn(s)) < r]glgt)(|s41(s)| + T§}|842(S)|

r+s=t
< 2tuoipzp + Mo121- (64)
Claim (ii) follows by collecting all the bounds in (61-64) together. [

Proof of Theorem 3.2. We evaluate the ratio 7" = 7[5((1]53))' By Theorems 7.3 and 7.4,
12
P(K3) = sz + O (pa1pz2 + 131) »
P(K12) = us2+ p3) + O (paipz2 + wy + 131 + p2121)

where y,; = m(n); ' (P,),s. Now relations (P,)2; S 1and (P,)3 S 1imply pp; S m/n*and uz, S m/n.
Hence ppipuzn S m*n=>, 13, S mn~°, and u3, < m*n~8. Next, we note that up; 21 < m(n)3(Py)2121 by

Jensen’s inequality. Note also that ((x)»¢)> < 2x(x)3¢* for x > 3. Hence, ((x)29)> < 4 + 2x(x)3¢°, and

(Pn)2121 £ 4+ 2(Pp)1032. Furthermore, Lemma 7.1 implies that (P,)1032 << n. Hence pp121 < mn~3,

(i) Consider the case % ~ 4 € [0,0). Then up = ((P)+o(l)mn=3 and
13, = (u(P)3, + o(1)) mn=3 imply that

P(K12) = (P)samn™ + u(PY3ymn™ + o (mn™>).

Similarly, 33 = ((P)33 + o(1)) n=>m implies

P(K3) = (P)3zmn™ + o(mn™),

and hence the first two claims of Theorem 3.2 follow (the first claim corresponds to u = 0).

(ii) Assume now that n < m < n?. Then mn=3, m?n=>,m3n=% <« m*n=*. Hence, P(K3) <« m*n~*.
Furthermore, m*n=® < m?n~*, and we conclude that P(K1p) = (P);;m*n™* + o(m*n~*). Hence,
Q(T% — 0 implies the third claim of Theorem 3.2. n

Proof of Theorem 3.3. We evaluate the ratio ¢™(f) = %. By Theorems 7.3 and 7.4,
il 12

P(d =1, K3) = pz3 [ % g5t — 2) + ea(0),
P(d =1, K12) = uza f % g5t = 2) + (uan)f® # %) g%t — 2) + e5(2),
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where the remainder terms €4 (¢) and e5(¢) are upper bounded in (44) and (49) respectively. The condi-
tions m/n — p and (P,);s = (P),s imply pry = (u + o(1)(P),sn'~" for rs = 21, 32, 33. Invoking these
relations in (44), (49) and using the bounds u033 << n72, pip32 < n=2 and py 01 < n~2 (the latter
bound is shown in the proof of Theorem 3.2 above) we upper bound the remainders £4(f) < n~2 and
ep(t) < n~%. We obtain

ps [ 5 gt —2) = (P)azun 2 % g1 = 2) + o(n™2),
iy fO % g0t = 2) = (Pyapun™2f® % g1 = 2) + o(n72),
S g5 gt =2) = (PR P x g8 % g0t — 2) + o(n7?).

Now the claim follows by the fact that 2 f = CPoi(u(P)10, g10) (see Theorem 3.1) and g 2 &rs
for rs = 21,32, 33. =

8 | CLUSTERING AND DEGREE IN POWER-LAW MODELS

Here we prove Theorems 4.1 and 4.2. In the proof we use the fact that a compound Poisson distribution
CPoi(4, h) is heavy-tailed whenever the increment distribution /% is [23, Theorem 4.30]. Namely, for a
subexponential distribution s we have as t - +oo

CPoi(4, h)(t) ~ Ah(t). (65)

Furthermore, we show below that for P satisfying (15), (16) the mixed binomial distribution (5) follows
a power law

Bin, (P)(t) ~ dL(t"/0~P)r s, (66)
with parameters
— = s 6,—1
Go=142FP=r=1 g g, = B0 67)
1-p P)s 1 =P

It is an immediate consequence of (65) and (66) that the limiting degree distribution f = CPoi(u(P)i0,
Bino(P)) obeys a power law (17). We similarly establish respective power law asymptotics for the
distributions f * g3, f * g3 and f * gp; * go; that appear in (10). Now a simple analysis of the ratio
(10) as t = +o0 shows the asymptotics of Theorem 4.2.

Proof of Theorem 4.1.  Statements (i) and (ii) are immediate consequences of (65), (66) as described
above. To prove (iii) we note that § > 1 implies XQ = Xg(X) < B almost surely. Denote for short
A = u(P)p and let H be a random variable with the distribution Bin;y(P) and A be a Poisson random
variable with parameter 4. We have

(o) = E(EeM) = o0,

>0

where

Ee'H = ZeshE ((X; 1>Qh(1 _ Q)X_l_h(P)§IO>

h>0
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; 1 X
=E(1+0( - 1) 1)
< (P)io
<E <eQ(X—1>(e~‘—1> X > _
B (P)io
The almost sure inequality QX < B together with the identity (P);o = EX complete the proof. n

Proof of Theorem 4.2. Theory of discrete subexponential densities [23, Lemmas 4.9 and 4.14],
implies that (f] * f)(f) ~ f1(¢) + f2(¢) for all probability densities on the positive integers such that
fi(®) ~ a;t~% with a; > 0 and &; > 1. By Theorem 4.1, we know that f(f) ~ u(P)1od ot %, and by (66),
we find that g,,(f) = Bin,(P)(¢) ~ d,t~% with parameters given by (67). Because 83 < 8,1 < 619, it
follows that

(f * g32)@) ~ f@O)+gn®) ~ g3

and
(f * 21 * g21)(®) ~ f(1) + g21(1) + g21(1) K g32(0).
Hence by formula (10),
o(f) ~ P33 f() +833(0) (P33 u(P)iod ot %0 + d33t‘533.
(P2 830 (P)32 d3t=%
Because 633 — 619 = %, we see that o () follows a power law with density exponent 633 — 63, = %

for f < %, and density exponent 6,9 — 63, = 2 for f > % The constant term of the power law is
determined by (67).

Let us prove (66). Given r € Z,., let H;y be a mixed binomial random variable with the distribution
P(H; =t) = EBin(X — r, g(X))(®)), t=0,1,2, ..., (68)

where the distribution p(x) = P(X = x) of X and function g are given by (16). In Lemma 8.1 below we
show that the distribution of H(;, follows a power law

a—

P(Hgy =1) ~ %L T o= R gy (69)

=

Next we observe that the distribution Bin,;(P) can be written in the form
Bin,(P)(1) = E (Bin(X — r, g(X)(1)) = ZBin(x — 7, 8(x))(®) P,(x),
x=0

where the random variable X has the power law distribution

o _ Wg®px) b —(a+sp—r)
FX=0 =0 =" By '
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Hence (69) yields (66). It remains to prove (69). In the proof we use the fact that binomial distribution
is highly concentrated around its mean. We apply this fact to mixed binomial random variable H;
conditionally, given the mixing random variable X.

Lemma8.1. Leta>1,0<p < 1andb > 0. Assume that (15), (16) hold. For p = 0 we assume,
in addition, that b < 1. Then for each r € Z.. (69) holds.

Proof of Lemma 8.1.  For f = 0, b = 1 relation (69) follows from the identity P(H,) = t) = P(X =
t + r), which holds for large ¢. Indeed, for large ¢ the second relation of (16) implies g(x) = 1 forx > ¢.
Hence Bin(x — 7, g(x))(t) = [{x—y=}, and thus P(Hy = t) = P(X =t + 7).

In what follows we assume that either 0 < f < 1 or f = 0 and b < 1. We only consider the case
where » = 0. The proof for » > 1 is much the same.

In the proof limits are taken as t — +o0. Let H; ~ Bin(k, g(k)) be a binomial random variable. We
use the shorthand notation

e = EHy = kg(k), o; = VarH, = kg(k)(1 — g(k)), P, = P(X =k).
Given 1, let §, = 1'/2In*. We split the probability

P(Hoy=0= Y PHc=0p=h+L+5 I := Y P(H, =0,
k>t keA;

where
Ar=tk2t: wy<t=64, Ay=1{k: [t—m| <6}, As={k: wm>1t+05]}.

We assume that 7 is large enough so that g(k) = bk~* for k > t. Then p; = bk'~? and A| # @. To prove
(69) we show that

1
1-p

a=l a-1
L= b L (O TS 4 0(1)  and L, I3 = OO, (70)

Let us evaluate I,. By the local limit theorem [39], [50] we approximate uniformly in k € A,

-mp)*
1 —_——

PH, =1) = e  (1+o0(1)). (71)

2mo

Furthermore, we have p, = L (1//1=P) (b/1)*/1=P)(1 + o(1)) uniformly in k € A,. In what follows we
consider the cases 0 < f < 1 and f = 0 separately.

For 0 < f < 1 we have 67 = (1 — g(k)) = (1 + O(5,/t) + O(~/1=7)) uniformly in k € A,.
Now (71) implies

(Y—Mk)2
1 —

202 = S - a/(1—
L=(+o(1) )] e i =1 +o(1)—==L (/1P (b /10D,

kea, V2mok 2xt
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_(Hlk’z .
where § = ZkeAz e 2 . Next we approximate

S=1+01), I= / e~ =Y Cn gy

[t=by'=#|<é,

and use the substitution x = (by'~# — 1)/4/t to write the integral in the form

1 1 1 B
1= S b 7t r I 1=/ e_x2/2(1 +xt_l/2) - dx.
1-p |x|<In*t

Now it is easily seen that the integral I; converges to \/2x as t — +o0. Hence,
1 1 1
S=01+ 0(1))ﬁ b =t 2 as t— +oo.

We have arrived to the first relation of (70).
For f =0and b < 1 we have (7/% = t(1 — b)(1 + O(6,/1)). Now (71) implies

! (=m)?
L= S L)(b/0%(1 + o(1)), where 8 = Ze_ )
2711 - D) keA,
Invoking the approximation S’ = I’ + O(1), where
I'= / e~ Q=b) gy, = 271(1 = b) b~ (1 + o(1)),

lt=by| <5,

we obtain the first relation of (70).
We derive the bounds on the right of (70) from the upper bounds
P(Hy = 1) < e "1 + o(1)). (72)

that hold uniformly in k € A| UAj3. Indeed, (72) follows from the well-known exponential inequalities
for Binomial probabilities see for example, Theorem 2.1 of [30],

2 2

P(Hy > e+ 5) < e 24y PH, < pp— ) < e 2, s> 0. (73)

We only show (72) for k € As. Let w = min{y, : k € As}. The function h(x) = (x —£)’x~" is
increasing for x > ¢. Hence h(uy) > h(u) for k € A3. The second inequality of (73) implies

P(Hy = 1) < P(Hy < e — (i — 1) < 70500 < @703100 = =001 (1 4 (1)),

9 | GIANT COMPONENT

Here we prove Theorem 3.4. We start with an outline of the proof. In the proof we apply the approach
developed in [15]: we approximate the number N;(Gy,)) of vertices in the largest connected component
of G, by the number of vertices u with the property that the breadth first search (BFS) tree rooted
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at u contains at least w vertices, where ® = w(n) — +o00 as n — +o0. Then the BFS exploration
process rooted at u is approximated by respective branching process and the fraction of vertices u
having large BFS trees (of size at least w) is approximated by the survival probability p = p(s+ of the

P
branching process. Hence Ni(G(,)/n — p. We briefly comment on the branching process, which is

much different from that of [15]. Let us consider the BFS exploration process at the moment when it
enters a new layer, say, G,;. The first vertex of G,; detected by BFS will be included into the BFS
tree together with the component of G,,; the vertex belongs to. The other members of the component
are called children of the vertex. Since the vertex may belong to several layers, it can have children
from the other layers as well. Consequently, the total number of children is approximated by the sum
of degrees of the vertex in the transitive closures G,; of layers G, that cover this vertex. Accordingly,
the offspring distribution is approximated by f*. We note that layers do not need to be connected.
Each layer G,; may split into components, but for moderately growing @ = w(n) the BFS exploration
process will not visit the same layer twice within the first O(w) steps with high probability. Therefore
the offspring numbers are approximately independent.

The proof is organized as follows. We start with Lemma 9.1 which establishes the result in the
special case where the layer types are deterministic, that is, Vn P((X,, Q,) = (X4.9,)) = 1 for some
Xn = Xn1, - s Xnm) and g, = (gn,1, ... > Gnm). Furthermore, we assume that the distribution of (X, Q)
has a finite support, say,A C {0, 1,2, ... ,M}X[0, 1], where M > 2 is an integer. Hence, P(X = 1,0 =
q) > 0 whenever (¢, q) € A. Moreover, we assume in Lemma 9.1 that the set

A'={(t,q): t>2, g>0, (t,9 €A}

is nonempty and

Vn>1 VI<i< my (xn,ia qn,i) € A. (74)

Note that for each (x,,;, gn;)) € A \AO respective layer G,,; has no edges. Next, in Lemma 9.2 we relax
condition (74) by allowing a negligible fraction of layer types (x,;, g,) to take their values outside A.
In the last step of the proof we reduce the general case to that considered in Lemma 9.2. To this aim
we truncate the layer sizes X,,; (at level M) and e-discretize the edge densities Q,,; as in (20). Then we

apply Lemma 9.2 conditionally given the truncated and discretized layers ()? i Qf) Here we use
notation (21) and for X, = (X1, ... ,Xum) We denote X! = (x%], X, where xM1 = xTl(, <y
Finally, letting € | 0 and M 1 oo we approximate the distribution of (X, Q) and survival probability p
by respective characteristics of (X™1, %) thus completing the proof of Theorem 3.4.

Notation. Before the proof we introduce some notation. Given a Galton-Watson (G-W) branching
process X we denote by |X| the total progeny of X, p®(X) = P(|X| > k) and p(X) = P(|X| = o).

LetT(t,q) = degﬁ (¢) be the degree of a randomly selected vertex # in the transitive closure H, g of

Bernoulli random graph H,, on ¢ vertices and with edge density g. Let 7 = {Ti(t,q), T (t q) :
[0,1],/,s,t € N} be a collection of independent random variables such that T(z, ¢) and T (t q) have
the same distribution as T'(t, g).

Let C, C V be the vertex set of the connected component of G = G, = G 5, containing
vertex v € V. Let w : N — N be a function satisfying w(n) — oo, w(n) = o(n) asn - +o0. Let
B = {v : |C,| > k} C V be the set of vertices belonging to connected components of G of size at
least k. We write B® = B®™, Let C C V denote the vertex set of the largest connected component of
G. Note that for each integer k > 1

|C| < max{k, |B*|}. (75)
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In Lemma 9.1 below we assume that the distribution of (X, Q) has a finite support A and denote
qo=min{g: (t,q) €A’} and  h,=PX=10=¢q), (tq) EA.

Given 0 < 6 < 1/4, let y;, Y5, Y be G-W processes with the offspring numbers

Atﬂ/ A:t[ Al,t[
vi= ) YT, Y5= ) ITtg, Y= ) DTq. (76)
(tg)eA s=1 (t.g)eA s=1 (t.g)eA s=1

Here A;y ~ Poi(4:4) and Af, ~ Poi(A7,) with A,y = th,gu and A7, = A,4(1 + 6). Furthermore, we
assume that the collection of random variables {A;4, A,qu, Ay, (t,q) € A%} and T are independent.
Note that offspring numbers (76) have compound Poisson distributions. In particular, Y has the prob-
ability distribution CPoi(4, L(T)), where 4 = px, with x, = E(XI;x»»;) and the random variable T,
has the probability distribution

(T, =¢) =x'E (P(T(X, Q) = £|X, O)XI x52}) (77)
=x'E (Bin*(X — 1, 0)(®)XI(x52) ) » £=0,1, ...

By the same reasoning as in (30) above, we obtain the equality of distributions
CPoi(4, L(T)) = CPoi(u(P)10, Bin{y(P)), (78)

where the increment distribution BinTO(P) is defined by (6).

We recall that D; denotes the vertex set of layer G,,;, 1 < i < m. With a little abuse of notation we
also refer to D; as the layer G,,;. Furthermore, we assign label D; to the edges of G,,;. In particular, an
edge of G may receive several labels if it is present in several layers. Given n and (¢,q) € A, let D, ,
be the collection of layers D; having size x,,; = t and edge density g,; = g. Put Dy = U yea0D; 4. For
every D; € Dy the probability that a randomly chosen vertex of D; has a neighbor in D; connected by
an edge labeled D; is

=1 =g 2min{l-(1-¢": (.9 €A’} =: 7.
Note that g > q.
Lemma9.1. Let u > 0. Let M > 2 be an integer. Let n,m — +00. Assume that m/n — u. Lete, | 0

be a positive sequence. Assume that P(X < M) = 1 and (X, Q) has a finite support denoted by A.
Assume that A° = {(t,q) €A : t>2, q > 0} is nonempty. Assume that (74) holds and the numbers

m 4 =#{l € {1s ,m} : (xn,i’QH,i) = (LQ)}
satisfy

Vn max
(1,9)€A?

e /m| <e,. (79

Assume that w(n) < nln~? n and

Vn |m/n— u| < eg,. (80)
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There exists sequences €, | 0,&) | 0 (depending on {e,},w and p, A°, {h 4, (t,q) € A°}) such that
for each n we have

max|B(IC,] 2 o(w) - p(V)| < €/, @1)
P (|11 = np)| > ein) <l (82)

There exists sequences €, | 0, €/ | 0 (depending on {€,}, u, A%, {h.4, (t,q) € A}) such that for each
n we have

P ([IcI - np)| > efin) <&, (83)
We note that A? # @ implies go > 0 and § > 0.

Proof of Lemma 9.1.  We recall that the idea of the proof is outlined in the first paragraph of the
section above. Proofs of (81), (82), (83) are given in separate steps.

Proof of (81). Note that the distribution of |C,| is the same for each v € V. Hence, it suffices to
approximate P(|C,| > w(n)) for v = v,.

Before the proof we introduce some notation. Given 0 < § < 4~! we denote

myg(8) = mhy(1—8) and pr; =11 —6)n". (84)

We assume that n, m are large enough so that m,, > m, 4(8), for (t,q) € Ao. Let o’ : N — N be such
that ' (n) = o(y/n), @'(n) » +o0, @' < w. We write, for short, p@ = p@M(Y), p@) = p@ W) (y),
Let

Nt = (N}, 2<1 <M}, N~ ={Ny, 2<t<M},
N = (N, 2<t<M}, N =N, 2<t<M}

be collections of independent random variables having binomial and Poisson distributions:

N}, ~ Bin (myg,t/(n — &' (n))), Niy ~ Bin(m,4(26), p;s), (85)
N, ~ Poi (tmy o /(n — & (n))) , Niy ~ Poi (m y28)p;5) - (86)

Note that EN/, = ]E1\7,qu and EN;, = IENZq. We assume that 7 is independent of N'=, N'F, N, N
Let Z* (respectively Z*) be defined as Y in (76), but with A7, replaced by N, (respectively N, 2)- Let
X* and X* be Galton-Watson processes with the offspring numbers Z* and z* respectively.

Using the total variation distance bound d,, (Bin(n, p), Poi(np)) < p, see (1.23) in [6], we show by
coupling the offspring numbers of X* and X that

[p® @) = o (X7) | < Mk, (87)
| (%) = o (2" )| < Mk(r = ).
From (79), (80), (87) we obtain for k = k(n) = o(n) as m,n - +oo

PP (V355) < PN (X7) < p© @)+ Mkn™! = p0 (X7) + o(1), (88)
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P9 (%) 2 o (&) 2 5 (X%) = MK(n = o) 2 5 (XF) = o(1), (89)

To show the first inequality of (88) we couple the offspring numbers Y3; < 7~ . The coupling is feasible
whenever 4,4(1 — 38) < my,(28)p;, V(t,q) € A° or, equivalently, u(1 — 35) < (m/n)(1 — 36 + 25?).
In view of (80) the latter inequality holds true for sufficiently large n, say, n > n,, where n, depends
on 6 and {g,}. Similarly, the first inequality of (89) holds whenever 4, ,(1 + 26) > tm, ,/(n — @' (n))
Y(t,q) € A°. In view of (79), (80) the latter inequality holds for sufficiently large n, say, n > n..., where
n.. depends on 6 and {&,}.

Furthermore, we show in (101), (109) below that

P(X7) = o(1) PG| 2 w(n) < P(IC,| 2 &' (m) < p (&%) +0(1) (90)

(the second inequality follows by w > @'). We note that o(1) on the left of (90) depends on &, w, M,
u, |A%|, and {&,}, while o(1) on the right depends on ', M and §. (88), (89), (90) imply

P (V55) = o(1) S P(IC| > w(n)) < p (V55) + o(1). o1
Finally, letting 6 | O we obtain as n — +oo
P(ICy| > o) = p(P) + o(1), (92)

where the remainder o(1) depends on M, A°, {hig,(t.q) € A°}, u, {&,} and function w. Indeed the
lower bound of (92) follows from p<w>(y3—5) > p(Vi5) — p(Y) as 6 | 0. More precisely, given 7 > 0
we choose 6, > 0 such that 6 < &, implies p(Vs;5) > p(Y) — 7 and then letting n — oo we apply the
left inequality of (91) to get

P(C,| 2 om) 2 p'(V5;) = 7 2 p(P) = 27.

For the upper bound we push p®(Y3;) arbitrarily close to p(¥) choosing large k and small §.
Indeed, given 7 > 0 we find large k, > 0 such that p%-() < p()?) + 7. Next, we find small 6, such
that § < &, implies p*(¥5;) < p*)(Y) + 7. For § < ; and k > k, we have

p® (¥55) < o (¥35) < o) + 7 < p(D) + 21 (93)
Now letting n — oo we apply the right inequality of (91) to get
P(IC| 2 o) < " (V5;) +7 < p(V) + 27.

Finally, we note that (92) implies (81). It remains to prove the first and the last inequality
of (90).

Proof of (90). We fix an order vi < v, < --- < v, of elements of V. Let m’ = Z(m)e 40 My g be the
number of sets in the collection Dy. We can assume without loss of generality that Dy = {Dy, ... , D}
and |D1| < |D2| <= |Dm/|.

Upper bound (the last inequality of (90)). Given v € V, define the list L, of vertices using a BFS
type exploration procedure. In the beginning all vertices are uncolored, all sets D; € D are unmarked,
and L, = . After a vertex is added to L, the vertex is colored white. We add v to the list. Next we pro-
ceed recursively. We choose the oldest (with respect to inclusion to L,) white vertex, say u, from L,.
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Fori=1,2, ... ,m suchthat u € D; and D; is not marked, we mark D; (we say that D; is marked by u)

and add to L, (in increasing order) all uncolored vertices of D; that are connected to u by paths of edges
labelled D;. We say that D; brings these vertices to the list and attach label D; to each of them. After-
wards we color u black. Vertices added to L, in this step are called children of u. We then chose the
oldest white vertex from L,, add to L, its children and color this vertex black etc. We stop when there are
no more white vertices in L, or there are no more unmarked sets D; left. We denote L, = {uy,u,, ... },
where elements are listed in the order of their inclusion to the list (; is older than u; for i < j and
u; =v). We denote L, = {uj, ... ,ux} the set of k oldest vertices of L,. Note that L, is a subset of
C,. For any u; € L, with i > 2 there is unique i* € [1,i) such that u; is a child of u;+ (equivalently,
u;+ is the parent of u;). While constructing the list L, we keep track of the sets D; , D;,, ... that have
been marked one after another (D; was marked before D; for s < 1). For u; € L, the number r = r(j)
tells us that u; was brought to the list by D; , the rth member of the sequence {D; ,D;,, ... } =: D,.
A set D; marked by u € L, is called void if u has no neighbors in D; linked to u by edges labeled D;
(in this case D; brings no children to ). Note that any D; is void with probability at most 1 —g. A
set D; € D, is called regular if U;;IID,-], and D; intersect in a single point. Vertex v is called k-regular
if [L,| > k and each D,-f is regular for j = 2,3, ... , r(k). The set of k-regular vertices of G is denoted
Vi={veV:vis kéregular}. Note that the events {|C,| > k,v € Vi } and {|L,| > k,v € V,} are
equivalent.

We observe that the number of vertices brought to the list L, by a regular set D; € D, has the
same distribution as T'(¢, g). For a nonregular set this number may be smaller, since white vertices of
a nonregular set D; that have been colored in previous steps of the exploration cannot be brought to
L, by D; . Therefore as long as k < @'(n) a coupling of the exploration process with the branching
process Xt shows that

P(|L,| > k) <P(|X"| > k). (94)

Next we show that

P(L| > kv & Vi) < KM~ + 2k, (95)

where k := 2k/g. For v with |L,| > k the event {v & V,} implies that one or more nonregular sets
have been marked during the exploration. Then either the first marked nonregular set D; has index s
satisfying s < k (we denote this event 4;) or we have s > k. In the latter case there are at least k —k +2
void sets D; with [ < k (this event we denote ;). Indeed, on the event A, N {v & Vi} n {|L,| >
k} we have that the index s of the first observed nonregular set D; satisfies k < s < r(k). But the
inequality k& < r(k) implies that among the first k sets from ID, there are less than k — 1 nonvoid
ones as each nonvoid set contributes at least one new vertex to the list. Now (95) follows from the

inequalities

P(By) <P(Y < k—-1) <2k, (96)

(k — DHm?
—

(A0 < Y, P(D; is non regular) < (k — 1) ©7)

2<s<k

Here, Y ~ Bin(k, @) and (96) follows by Chebyshev’s inequality. In (97) we estimated P(D; is
non regular) < (lAc - DM?/(n — (lAc — 1)). Indeed, given H,_| = Ui<¢<s-1D;,, the size |D; | = t and
the event that D; is marked by u;, the probability that D; is non regular is the conditional probability

8508017 SUOWILIOD 3AIIR1D) 3|ed! [dde 8Ly Aq peusenob aJe 9l YO ‘8sN JO S9INI 104 AR1q 17 8UIUO AB]IA UO (SUOIPUOD-PLE-SWS} W00 A8 | 1M Al.q U IUO//SHNY) SUORIPUOD pUe SWie | U1 88S *[€202/80/20] Uo AtiqiT8uljuo A8 |Im ‘AISAIN SNIUIIA Ad OFTTZ€S)/200T 0T/I0PW00 A8 | Aleiq Ul UO//SdNY Woly papeojumod ‘Z ‘€202 '8TYZ860T



BLOZNELIS AND LESKELA 317
WILEY——¢
pr=P (|HS_1 ND*[>2 |y € D*), where D* is a random subset of size ¢ of the set V\ {uy, ... ,uj_1}.

For |H;_{| = h we have

_PAH- nD*| 22,4, €D7) _ (h—j)t—1)
P(u; € D*) - on—j

£

(98)

The last fraction upper bounds the probability that D* \ {u;} of size t — 1 intersects with
Hy 1 \{u1, ... ,u;} of size h—j. Note that (h—j)/(n—j) < h/nand h < (k—1)M and r < M. Therefore
the right side of (98) is at most (lAc — 1)M? /n. This shows (97) and we arrive to (95). It follows from
(95) that for k = k, - +o0

k=o(/n) = P(L,| > kv & Vi) =o(l). (99)
We similarly show that
k=o(y/n) = P(C,| 2 kv & Vi) = o(l). (100)

Namely, given v with |C,| > k, the event v € V; implies that either |L,| < k or |L,| > k and D; is
nonregular for some 2 < j < r(k). The probability of the latter event is bounded by (99). Now we show
that the remaining event C; := {|C,| > k, |L,| < k} has probability P(C;) = o(1). We observe? that
event C; implies that a nonregular set D; has been marked by some u, € L,, where r < k. Next we
consider two alternatives: either the index s of the first marked nonregular set D; satisfies s < k (the
probability of such event is upperbounded in (97) and is o(1)) or s > k. But the inequality s > k implies
that at most k — 1 elements of the list L,, have marked at least k — k + 2 void sets before a nonregular
set was marked. The probability of such event is upperbounded by (96) and is o(1).

Finally, we observe that the events {|C,| > k,v € V,} and {|L,| > k,v € V} are equal. Now (99),
(100) combined with (94) imply

P(C| 2 k) =P(IL,| 2 k) + o(1) < P(1X*] > k) + o(1). (101)

Lower bound (the first inequality of (90)). We modify a bit our exploration procedure. Givenv € V,
we construct the list Ly = {uy,up, ... } similarly as L, above, but now each u; € L7 only accepts
children brought by regular sets. Moreover, not every regular set is allowed to contribute to the list L;.
Permission to contribute is granted at random. The construction of L; is described in the algorithm A,
which uses a slightly modified definition of regular set.

In the algorithm A we use the following notation. D}, Dj, ... denote the regular marked sets that
were allowed to contribute to the list L} one after another during the exploration; Hy = {u;} U
(UlslssD;‘), s > 1. We set Hy = {u; }. Furthermore, M), M@, ... denote the numbers of sets marked
by uy,uy, - - - € Ly respectively; M,(,’; denotes the number of sets from ID; , marked by u; (so that MO =
Z(I’ e’ M,(,’z). For each (t,q) € A” we define the integer sequence mg’; = m4(6) — (G — D|[31Inm],
Jj = 1. For integers h, t we denote, see (84),

. Pis . n—h\(n—j+1\7"
“(hyt,j) = —t0 “(h, 1, =( )( ) . 102
p (h,1.)) D)) pith.t) =" _| . (102)

3Indeed, we always have L, C C,. The opposite, L, # C,, may happen if, for example, some u, € L, marks a nonregular set
D; containing a white vertex u,,; (which is already on the list L, ) and vertices u,; and u, belong to distinct components of the
layer corresponding to D; . The set D; once marked by u, will not be allowed to bring children to u,;.
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Algorithm A

1. for (1, g) € A° set DYy 1=,

2. Ly < v, color[v] = white, j < 0;

3. while L} contains a white vertex:

4.j < j+ 1, u; < the oldest white vertex of L}, color[u;] = black,

5. for (t,q) € A”: A

6.  selectasubset DY) C DE{; Y of size D] = m?),

7.  examine each D € ]Dg;: mark D whenever u; € D, and if D is regular* then accept D with
probability p*(h, t,j), where t = |D| and where h = |HS | refers to the union Hy of regular sets accepted
so far. Color white the children of u; brought by D and insert them to the list Ly. Set Iﬁ)ﬁ{}, to be the
family of unmarked sets from the collection ID)%. Stop if either (a) |L}| = k or (b) M}Z > [31nm].

Let us show that for any sequence k = k, — 400, k, < nln"*n we have

PALS| =2 k) 2 P(1X7| > k) + o(1). (103)

More precisely, we show that there exist integer . depending on & and {A,,, (t,q) € A°} such that for
n > nl, we have P(|L}| > k) > P(|X~| > k) + r.,, where the sequence r, = o(1) may depend on M,
#, (€, and |A°).

We firstly show that the acceptance probability p*(4, ¢, j) of step 7 is well defined, that is, for suffi-
ciently large n, m it is always less than 1. Indeed, while deciding whether to accept a regular set D in step
7 we know that |L}| < k. Hence, the number of sets marked so far is at most Zuj e M D < k|A°|3Inm

as each M%) contribute at most [A°|3 Inm. The number of marked regular accepted sets is even less.
Hence i < Mk|A°|3Inm = O(nln~'n). Here we used the fact that the layer sizes |Dj| £ M, the set A°
is finite and m/n - p € (0, 4+00). Now for j = O(nln™?n) and 2 < 1 < M we have

Py = ¢ L 00 )
N (

== (L4 o(1)L > (1= 8)L = p;.
n—O(nln_zn))[ (14 o( ))n>( é)n Drs

In the inequality above we use n > n. A similar reasoning shows that each time we perform step 6 the
1 i _1 . —
collection DE{,, ’ has more than m; 4(26) members. Indeed, we have for j < nln n

DY) = DD = M9 > m® — |3Inm] > m,,(6) —j|3Inm]| > m,,(26).

In the last inequality above we use n > nl.
We secondly show (see (105), (106) below) that the probability that algorithm A stops for the
reason (b) is negligibly small. Introduce the event

& = {M,(f; > 31Inm, for some 1 <j < r and some (¢, q) e A"},

If the algorithm did not stop before u; started exploring its children in the layers of size ¢ and strength
q, then M,(’; has binomial distribution Bin (my; t/(n—j+ 1)). In this case we have for some constant

¢ depending on y and M
PMY) > [31nm]) < em™. (104)

A set D marked by u; is called regular if u; is the only common vertex shared by D and the union of previously marked and
accepted regular sets.
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To show (104) we couple M,(Z with binomial random variable M;‘ ~ Bin(m,t/(n — j + 1)) so that
P(MY) < M;) = 1. Then we apply*exponential Markov inequality P(M; > x) < e~Ee™ with
x = |3Inm| and use the bound® Ee™ < ¢, where ¢ depends on u, M and the sequence {¢,}. If the
algorithm stops before u; starts exploring its children in the layers of size f and strength g, then we set

M,(,’g = 0. In the latter case (104) is obvious. For » < k we obtain from (104) by the union bound that

P(E) < P(&) < c|A’m™" = O(m™). (105)

By i*(k) and r*(k) we denote the positive integers such that u; € L} is a child of uqq) € L} and uy is
brought to the list by the set Df*(k). Observe that r*(k) < My + - - + M) and i*(k) < k. Therefore
(105) implies

PEra) =1-00m7"),  P(IL| 2k | Erw) =PULI| 2 k) + O(m™). (106)

Here, the second relation follows from the first one. The conditioning on ;- means that the algorithm
has not stopped for the reason (b).

We now are ready to prove (103). We consider the probability P (|L;‘| >k| ?i*(k)). We claim
that as long as the algorithm does not stop for the reason (b), we have for each 1 < j < i*(k), each
(t,q) € A’ and each D € DE{; that the probability that D is marked by u;, D is regular and it is allowed
to contribute to Ly is p; ;. To show this we examine the probability p*(h,t,j) of step 7. Note that
pi(h,t,j) is the probability that given H C W of size |H| = hand uy, ... ,u; € H, a random subset
D Cc V\ {uy, ... ,uj—1} of size ¢ intersect with H and the intersection D N H = {u;} (i.e., pj(h,t,)) is
the probability that D is marked by u; and it is regular). The random acceptance of D with probability
p*(h,t,j) (in step 7) makes the final acceptance probability equal p; ;. Now we can write the total
number of children of u;, 1 <j <i*(k), in the form

)
Mg

> Y1t q). (107)

(r,g)eA?s=1

Here, }1_9)(:, q) is a Bernoulli random variable (independent of all the other random variables) with
success probability

Dis Pis

_ _ n-j+l
~ P(Dis marked by ;) t/(n—j+1)

Pis =(1-96)

(note that p]’.‘ s 18 the conditional probability that D € ]D)g()] is allowed to contribute to Ly, given that D
is marked by ;). Furthermore, by r],(’; we denote the random variable Mt(g conditioned on the event
MY < [31nm).

Let us compare the exploration process Ly (conditioned on the event £;+)) with the branching
process L, which produces an ordered list of particles {u;, u;, ... } and where the offspring number

5 M t " m 7’“‘:”2 m 7’1”(”1‘“) I
Wehave E¢™/ = (1+(e—1) — <e nnZn < e w2 < e forn > 5.
n—j—
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of u; is defined by (107), but with ;1,(2 replaced by M;(Z- Note that the total variation distance between
their distributions £(n)) and L(MY))

do (£(n), (M%) ) <P (M%) > 31nm) < om™.

Here, the second inequality is shown in (104) and the first one follows from the inequality® |P(A|B) —
P(A)| < IP(B), which holds for any events A, B with P(B) > 0. Hence, we have

P(ILi| 2 k| Erw) = PUL] 2 k) + OG/m?). (108)

Furthermore, we have P(|£| > k) > P(JX~| > k}. Indeed, we can represent the offspring number of
L as

—0)

Mig M,
> Yo’ = ), Y1109,
(1.g)€A’ s=1 (1,9)€A s=1

where Mf’; ~ Bin(m{), p;5), and then couple MY; with N, so that P (Mﬁ’; > N, q> = 1. Now (106),

(108) imply (103). Finally, (103) together with the simple inequality P(|C,| > k) > P(L;| > k) shows
P(Cy| 2 k) 2 P(|1X7| = k} + o(1). (109)

Proof of (82). We use the shorthand notation I, := Ij|c,|>wm). We have

8 = YL, ("9260'): Y LL. (110)

veV {uyicVv
The first identity combined with (81) yield
E[B”| = np(Y) + o(n). (111

For p(Y) = 0 this implies (82). For p(Y) > 0 we establish (82) by showing that |B“| concentrates
around its mean E|B®|.

We first consider the special case of @ = @, where w(n) = Inn. Let {x,y} C V denote a pair of
vertices selected uniformly at random. We show below that

ELL) < p(Y) X p(¥) + o(1), (112)
where the remainder o(1) only depends on M, A® and {&,}. (112) combined with (110), (111) imply
E|B®|> < (E|B®|)> + o(n?). From the latter inequality we conclude that Var|B®| = o(n?). Now
Chebyshev’s inequality implies

Vy>0 P { 157 - E157)| > yn} < () 2Var(|B?)) = o(1). (113)

Letting y | 0 we obtain (82). It remains to prove (112).

For A := P(A|B)—P(A) > 0 we have A < P(A|B)—P(A, B) = P(A|B)P(B) < P(B). For A < 0 we have |A| = P(A)—P(A|B) <
PA) — P4, B) < P(B).
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Proof of (112). We start with an outline. Denote for short k = @(r). We select y and perform explo-
ration L, (as in the proof of the upper bound of (90)). We stop the exploration after the first k elements
of the list L, are discovered. Let ID, denote the collection of sets marked during this exploration and
H(y) = Upen D. We will show that |H(y)| = Op(k) (see (115) below). Next we select x. The event
Lyy = {x & H(y)} has probability 1 — O(E)/n =1 - 0(1) (see (116) below). We then consider the
exploration L, (until the first k elements of the list L, are discovered) conditionally on the event L, .
Using the fact that |H(y)| = Op(k) we show that the sets marked during the exploration L, do not
intersect with H(y) with high probability (see (118)). Hence the event £, := {|L,| > k} is asymp-
totically independent of £, := {|L,| > k}. Finally, we establish (112) by approximating P(L,) and
P(Li|Ly) = P(L)(1 +0(1)) by the survival probabilities of related branching processes. The rigorous
argument below adds the details.

Recall that V; denotes the set of k-regular vertices. Denote the events

M, = {|HO)| < Mk, |D,| <k}, cr=Cr.n{zeVy, z=xy,
where k = 2k/q. (100) and the fact that events {|C,| > k,v € V;} and L{ are equal imply
E(LL) = E (LI ev) Iyev) ) + o(D), E (LI ev Tyevy ) = P{LE N LT} (114)

Note that event £ N {|D,| > i} implies that among the first k sets marked by L, less than k — 1 are
nonvoid. The probability of such event is o(1), see (96). Since |D,| < k implies H, we conclude that

P(L} N Hy) = o(1). (115)
Combining the latter bound with the obvious bound
P(L.y|H,) < Mk/n = o(1) (116)
we obtain
P{inciy=P{cinLinH,} +o(1)=P{LInLFnH,N Ly} +o(D). (117)
In the last step we used the inequalities
P{cinLinMynLy} <P{H,N Ly} <P(LyylH,) =o(l).
LetD, = {D;,,D;,, ... } denote the sets marked during the exploration L, (D; is marked before D).
We call D;_ healthy whenever D; N H(y) = @. Exploration L, is falled healthy if all marked sets D;
are healthy (recall that we stop marking the sets after L, collects k elements). Introduce events
S, = {L, is healthy}, S¢ = {there is no nonhealthy D; with s < i}.
Next we show that

P{inLinH,nLy} =P{LInLINnH, N Ly NS} +o(]). (118)
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Given integer 0 < t < M, let D C V be a random set of size |D| = ¢. Assuming that D and H(y) are
independent we estimate the conditional probability

P(DNH®Y) # 8|H@),x ¢ Hy),x € D) < (t = DIHW|(n - 17" (119)

Now we consider the exploration L, conditionally, given the event H,NL,|,. The conditional probability

that D; marked by x is not healthy is at most (M — 1)Mz(n —1)~!. Here, we applied (119) and used
the fact that x ¢ H(y) implies D;, & ID, and therefore D;, and H(y) are (conditionally) independent.
Furthermore, for s = 1,2, ..., given the event that D;, ... ,D; are all healthy and that D;  was
marked by the jth element (where j < k) of the list L,, the probability that D;_, is not healthy is at most

M - l)Mi(n -l M- 1)Mi(n —k)~!. Here we used the fact that u; & H(y) implies D; , & D,.
By the union bound applied to Sy = U1<c<i{Dil , ... »D;_, are healthy and D; is not healthy}, we have

P {S|Hyx & HO)} <k- (M — DMk(n —B)™" = o(1).

This bound implies
P(SEnH, N Lyy) =P(H, N Lyy) — o(1). (120)

Furthermore, on the event Sy the exploration L, does not encounter H(y) and therefore L, is deter-
mined solely by the sets D, = {D; ,D;,, ... } (which are subsets of V' \ H(y)). The same argument as

that of (96), (97) above yields that the event £ N {|D,| > i} has probability o(1), that is, we have
P {a N (D] > k}[S2, Loy, Hy} = o(1). Consequently,

]P’{Ef{ N D, <k} NSI ALy Hy} =P{LinSiNn Ly, H,} — o). (121)

In view of the fact that the event {|D,| < i} NS¢ implies Sy and event S, implies Sy we obtain from
(121) that

P{LinSinLyynH,} =P{Lf NS N Ly Hy} —o(D).

This relation together with (117), (120) imply (118).
In the last step of the proof of (112) we estimate

P{LinLinH,NLyyNS} <P{LISNLI NHyN Ly} PLY) (122)

and

P(L)) < pV) +o(),  P{LIIS N LENHy 0Ly} < oY) +o(D). (123)

The first bound of (123) follows from (89,93,94). The second one is obtained by a similar argument, but
now we perform exploration L, in the subgraph of G induced by the vertex set V \ H(y). In particular,
we set N;fq ~ Bin(m, 4, pf) and 1\7:4 ~ Poi(m, 4p;) in (85), (86). Here pf =t/(n— k— Mﬁ) upperbounds
the probability P(u; € D) that u; € L, = {uy,up, ... } with j < k marks a *“healthy” random set
Dc V\{ui, ... ,uj-1} UH(y)) of size |D| = t. Note that 2 < t < M implies p; = tn~1(1 + o(1)).

Relation (112) follows from (114), (117), (118), (122), and (123). We have shown (82) in the special
case of w = @, where w(n) = Inn.
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Next we prove (82) for general w. To this aim we show that IlB“’I — |Bal’ =o0y(n). Letw; =0 Vo

and @» = @ A @ so that ||B‘”| - |BE|| = |B®| — |B*1| > 0. Now (111) implies
E[18”] - |87|| = E(1B*| - B ]) = o(n).

Hence ||B‘”| - |Ba|‘ = 0p(n).

Proof of (83). The upper bound P (|C| < np(Y) + e//n) > 1 — o(1) follows from (82). Indeed, we
can assume without loss of generality that £/ from (82) satisfies £//n > In’n. For w(n) = In n we obtain
from (75) for large n, m that

P (IC| > np(Y) + er/n) <P (max{w(n), |B”|} > np(Y) + €,n)
P (1B > np(¥) + enn) = o(1). (124)

For p(Y) = 0 relation (83) follows from (124). It remains to prove (83) for p(}?) > 0. To this aim
we show the matching lower bound |C| > p(Y)n + op(n). Fix (t,q) € AY. Choose 6 = 6§, > 0 such
that p(¥;) > 0. We select a subset DY, C D, of size |D?,| = |6m,,] and color sets from D?, blue.
The collection D} = Dy \ D, is obtained from Dy by removal of the blue sets. Let G® (respectively
G*) be the overlay graph on the vertex set V defined by the collection of layers Dﬁq (respectively D).
We color edges of G blue. We couple G, G° and G* so that G = G® U G*. Let w(n) = n*/ and let
B* C V be the set of vertices belonging to connected components of G* having at least w(n) vertices.
Clearly, there are at most '/3 such components. Given a pair of such components C’, C" C V, for any
D € D}, the probability that C’, C”" are connected by a blue edge labeled D is at least
p*:=P(DnC',DnC"|C,C")-q>2m**n2q.

Indeed, P (D nc,Dnc" | cC,c” ), the probability that a randomly selected pair of elements of D

intersects with C’ and C” simultaneously, is at least n*/> x n*/3/ (;) Furthermore, by Chernoff’s

bound (see formula (2.6) of [30]), for any ¢ > O the probability that there are less than ¢ In n blue edges
between C’ and C” is at most

P{X* <¢lnn} <e ", (125)

where the random variable X* has binomial distribution Bin(|6m,4], p*). Furthermore, the constant
¢ > 0in (125) depends on , 4, constant ¢ > 0 and the sequence m,, /n — u. Next, by the union bound,
the probability that there exists a pair of components connected by less than ¢ In n blue edges is at most

< Mzm ) e = o(1), (126)

provided that 6n'/3 > In’n.

We let 6 = n~'/° and apply (82) to the set B* of vertices of G*. In view of (126) these ver-
tices belong to the same connected component of G = G° U G* with high probability. Hence,
ICl > |B*| 2 np(Y) + op(n). .

In the next Lemma, we relax condition (74) by allowing a negligible fraction of layer types (x,;, gn.;)
to take their values outside A.
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Lemma 9.2. Statements (82), (83) of Lemma 9.1 remain true if we replace condition (74) by the
condition

Vn>1 V1<i<m, Xni <M.
and condition (79) by the condition

Vn max |h;, —m,,/m| < &,. 127
max [y = miq/ (127)

Proof.  Given n and (x,,g,) we color a pair (x,;, g»;) red whenever (x,;,g,;) € A. Otherwise we
color (x,;,gn,;) blue. The layers defined by red (blue) pairs are colored red (blue) as well. By (127),
the number mp of blue layers satisfies mp = o(m). The overlay graphs defined by the families of red
(blue) pairs are denoted by Gg (Gp). Then G = G, 7 ) is the union G = Gg U Gg. Let Cg and C be the
vertex sets of the largest components of Gy and G.

We first show that (83) holds (under conditions of Lemma 9.2). We observe that results (81),
(82), (83) of Lemma 9.1 apply to G because mg = o(m). In particular, (83) remains true with C
replaced by C. This observation together with the simple inequality |C| > |Cg| yields the lower bound
|C| = np(Y) + op(n). To prove the matching upper bound we apply the inequality

|B*| < |By| + mpMk, (128)

where BY is the set of vertices that belong to components of G of sizes at least k. Let us show inequality
(128). We observe that each v € B* \ B belongs to a component of Gy of size less than k and this
component intersects with some blue layer. Furthermore, each blue layer (being of size at most M)
may intersect with at most M distinct components. Hence each blue layer may contribute at most kM
vertices to BX \ B];e~ Consequently, blue layers altogether contribute at most mpMk vertices. From (75)
and (128) we obtain

|C| < max {k, |B*|} < |Bk| + mgMk + k. (129)

Choosing k = k, — +o0 so that
mpk, = o(n) (130)

we obtain |C| < |By| + o(n). Finally we apply (82) to |B} | and obtain |C| < np(¥) + op(n).

Next we show that (82) holds (under conditions of Lemma 9.2). For k,, satisfying (130) the upper
bound |B%| < np(Y)+ op(n) follows from (128) and relation (82) applied to BI;{. We extend this upper
bound to arbitrary w. Fix some {k,} satisfying (130). Then w,(n) = w(n) A k, satisfies (130) and the
upper bound applies to |B“2| > |B“|.

The lower bound |B?”| > np(Y)+o0p(n) makes sense when p()?) > 0. For p()’) > 0 the lower bound
follows from the lower bound |C| > |Cg| > np(Y) + op(n) (see (83)) and the fact that |B®| > |C|

provided that w(n) = o(n) and |C| > 0.5np(}). [

Proof of Theorem 3.4. The proof of Theorem 3.4 rests on Lemma 9.1. With the aid of truncation
and discretization we reduce the general case to the case of a finite set of layer types considered in
Lemma 9.1.

We start with some notation. Let M > 2 be a positive integer. Recall the notation x!™ and XM,
given X, = (Xn1, ... »xum) We denote T = (x%], ,x,%]), where xM! = xI,<)sy. Furthermore,

given0 < & < 1 and O, = (O, .. » Qum) we denote O, = (Q%,, ... , QL) the e-discretization as

n,1°
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in (20). Let AZ denote the support of (Y[M],Qi). That is, AF isasubsetof {0, 1, ... ,M} X {so, ... .},
where 59, ... ,s, are possible values of Q*, and (¢, g) € AF whenever i, > 0. Here,

hE e =P (XM, 0%) = (1,9)), (t,q) € {0,1, ... ,M} X {s0, ... ,5,}.

We consider the overlay random graphs GEWJ = Gom-+ and Gy = Gomn - defined by the

x"ah x"0)
M)+ —IM] - . .
sequences of layer types (X, ,Q,) and (X, ,Q,) respectively. We can couple Gf;,; with Gy =
— + 0\ _ —(— _
G&LMJ@") so that P Gy € Gy € Gily) = 1. Furthermore, we couple Gy and G = Gz 5, so that

P(Guy € G) = 1. Let Cjj; and Cpyyy denote the vertex sets of the largest components of Gij; and Gy
respectively. The couplings above imply the couplings

P (Il < IConl < ICHA) =1 and P (ICgl <1CI) = 1. (131)

Denote Ay = pxou, where x.p = E(XIj2<x<my). Let Tipy be a random variable with the
distribution

P (Tupn =€) = x;3E (Bin* (X = 1, Q)X ppexamny) . £=0.1, ...

Note that Ty has the same distribution as (77) above, but with (X, Q) replaced by (X M1 0). Let Yy
be a G-W process with the offspring number Yy ~ CPoi(Appr), L(Twipy))-

Now we are ready to prove the theorem. We will assume that P(X > 2,0 > 0) > 0. (The case
where P(X > 2,0 > 0) = 0 is treated at the very end of the proof.) Let M be large enough so that
PQ2 <X <M,Q>0)>0and e > 0is small enough so that AF and A7 are both nonempty (this will
ensure the condition A° # @ of Lemma 9.1).

In the first step of the proof we show that as n — +oo

’Cw]’ =np(Yu) + op(n). (132)

We note that the remainder term op(n) depends on M. To prove (132) we apply Lemma 9.2 to overlay
graphs GEM] and Gy, conditionally, given their layer types (YLM], Q,J,r) and (XLM], Q,) respectively. We
will show below that as n — +oo

'c[tM]l = np (V%) + op(n), (133)

where op(n) depends on M, €, AZ, {h 4., (1, q) € A7}, the sequence m/n — u, and sequences &7 | 0
constructed below. Here Vi is a G-W processes with offspring numbers Y3; ~ CPoi (A, E(T;—'[M])),
where Tf[M] is a random variable with the probability distribution

P (T, = ¢) = x;pnE (Bin* (X — 1, 05X p<x<m) ) - £=0,1, ...

Letting € | O we obtain p (37,5) — p(YVu). Now (133) together with the first identity of (131) yield
(132). We explain the implication (131), (133) = (132) in more detail. Given ¢ > 0 we choose small &
so that | p(Y;;) — p(¥m)| < 7. Then we build sets AZ, {h, 4., (t,q) € AZ} and sequences &; (depending
on € and M, see the proof of (133) below) and apply (133). We obtain

’lCE—;W]l - np(yM)‘ <tn+ 'ICﬁ,,]I —np (Y3) ’ < tn+ op(n).

This yields (132): ¥ z > 0 we have P (||c[iM]| —1p ) | > 2m> = o(1) as n — +oo.
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Let us show (133). We only consider Cf},;. For (t,q) € AZ denote

myg =# {i : (Xr[f,\f], QL,) =(t, q)} .

Let A,,(6) denote the event that max gea+ |1ifge — mig/m| < 6. We claim that there exists a positive
sequence &, | 0 such that

PA(GH) =1-0() as  nm— +oo. (134)
Indeed, for each (z,g) € A we have

Emy /m) = hiye =P (04, 010 = (1.0)) = P (X, 0%) = (1.9)) = o). (139)

In the very last step we use the fact that our assumption P, = p implies £ <(X,[,M], QI)) R

L ((X™1, Q*)). Noting that m, is a sum of independent Bernoulli random variables (some of them
may be degenerate) we have, by Chebyshev’s inequality, for any 6 > 0

Var(m, 4) 1
P ((m[’q - ]Em[,q) > mé) < W < W (136)
Combining (135) and (136) we obtain (134). Now we are ready to derive (133) from Lemma 9.2. We
apply (83) of Lemma 9.2 to Gf;m conditionally, given the event A, (5;). By (83) there exists a sequence
ey | 0 (depending on M, A¥, {h, .. (1,q) € At} and the sequences &, and m/n — u) such that

P (|1l = ne i)l > erin| 4,61 ) = o(1).

Combining this bound with (134) we obtain (133).
In the second step of the proof we let M — +oo. Denote A = px,., where x,, = E(XIx»7;), and let
T. be a random variable with the distribution

P(T, =¢) =x'E (Bin*(X — 1, 0)(©)XIp<y) ) » £=0,1, ...

Note that T, has the same distribution as (77) above, but now we drop the restriction on (X, Q) of having
a finite support. Let ) be a G-W process with the offspring number ¥ ~ CPoi(4, £(T)). We mention
that the equality of distributions (78) extends to the general setup (where we drop the restriction on
(X, Q) of having a finite support). Consequently, the respective survival probabilities p(Y) and p+)
are the same.

To prove the first relation of Theorem 3.4 we show that

|C| = np(Y) + op(n).
We have, by continuity, that p(YVy) — p(Y) as M — +o0. Now the second identity of (131) together

with (132) yield the lower bound |C| > np(Y)+op(n) asn — +oo. Indeed, given 7 > 0 we choose large
M such that | p(Vy)—p(Y)| < 7. Then we apply (131), (132) to get |C| > |Cppn| = (p(P)—7)n+0p(n).
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To show the matching upper bound |C| < np(Y) + op(n) we use the inequalities

|C| < max{k, |B"|} < |B[M]| +k Y X, om + k. (137)

ni
1<i<m

Here, B* (respectively B’[‘M]) is the set of vertices of G (respectively Gyy) that belong to components
of size at least k. The first inequality of (137) is obvious. The second one is obtained in the same way
as (128), (129) above.

Now we upper bound IB’[‘MJ ‘ An inspection of the proof of (82) in Lemmas 9.1 and 9.2 shows that
(82) remains true if we replace B® and p()’) by B* and p® (), respectively, where integer k > 1 is
fixed. (Note that sequences ), | 0, £/ | 0 of (82) now depends on & (instead of w). Using this fact and
proceeding as in the proof of (132) above we show that as n — +o0

|Blin| = 10 © ) + 0p(). (138)

Note that the remainder term op(n) depends on k and M.
Next we upper bound the sum Y (- - - ) on the right of (137). We observe that as M — oo

P
Zigw i=m Y Xy, iy — O (139)

1<i<m

uniformly in n. Indeed, our conditions P, 2 P and (P,)10 — (P)1o imply the uniform integrability of

the sequence {X, ,, n > 1}. That is, we have

Py = SllpE (Xn,,,]l{xn_”>M}) -0 as M — +o0.
n

Then for any = > 0 and n we have, by Markov’s inequality, that
P (Zyn > 7) <77 'EZyp = v7'E (Xuelix, >my) < 77" ou.

Hence (139) holds uniformly in 7.
Finally, combining (137), (138) and invoking the simple inequality p*(Y,) < p®(J) we obtain
for any k, M as n,m — +o0

ICI < np® V) + kmZys . + k + 0p(n),

where op(n) depends on k and M. Now, by choosing large k, we can make p® () arbitrarily close to
p(Y). Then, by choosing large M, we can make kZy, arbitrarily close to zero whp. In this way we
obtain the desired upper bound |C| < np(Y) + 0,(n). For readers convenience we explain these steps
in more detail. From the fact that m/n — u we conclude that the sequence {m/n} is bounded, that is,
m/n < Cy for some Cy, > 0 and all n (recall that m = m,,). Given = > 0 we choose (sufficiently large)
k such that p®(¥) < p()’) + 7. Then we choose (sufficiently large) M such that @y < 72/(Cyk).
Now (137), (138) yields

IC| < np(Y) + tn+ kmZy ,, + k + nrpgn,
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where nryr, stands for the remainder op(n) in (138). In particular, rx,, = op(l) as n — +oo.
Consequently,

P(|C| > np(Y) + 4tn) < PtkmZy, > tn) + Pk > tn) + P(rea, > 7).
The first probability on the right
PtkmZy,, > tn) < (km/tn)EZy, < (km/tn)py < 7,

by Markov’s inequality. Furthermore, P(k > tn) + P(rypn > 7) = o(l) as n — +oo. Hence
P(|C| > np(Y) + 4rn) < v+ o(1). The latter inequality yields the bound |C| < np(Y) + o0,(n).

It remains to show that N»(G,y) = op(n). We write for short N; = N;(G,). For p = 0 we have
N, < Ny = op(n). For p > 0 we use the simple inequality N; + N, < |B¥| + 2k Vk = 2,3, ... . From
(138) and the second inequality of (137) we obtain Ny + Na < np®(Y) + kmZy , + 2k + op(n). Hence
N1+ N, < np+op(n). Now N, = op(n) follows from the relation Ny > np + op(n) shown above (recall
that Ny = |C]).

Now we consider the case where P(X > 2,0 > 0) = 0. In this case the distribution f* =
CPoi(u(P) 10, Binfy(P)) is degenerate, f*(0) = 1, and the theorem claims that N;(G,)) = op(n), for
i = 1,2. To prove this claim we show that E|N;(G,)| = o(n). Note that the asymptotic degree dis-
tribution f = CPoi(u(P);0, Binjo(P)) defined by Theorem 3.1 is degenerate as well. In particular, we
have f™(0) — £(0) = 1. Consequently, we have

EIN(Gew)| < E <Zﬂ{deg%<i>zu> = Y P(degg, (i) > 1) = n(1 = {*/(0) = o(n).

eV i€V

10 | PERCOLATION MODELS

Proof of Theorem 3.5.  The site-percolated graph G is an instance of the overlay graph model (1) with
i = |S| nodes and m layers G, ... , G,, where Gy is the subgraph of Gy induced by vertices belonging
to S, and Gy, ... , G,, are the original layers generating the overlay graph G. The layer types (Xx, Ox)
in the site-percolated model are mutually independent, and £(X | X; = x;) is hypergeometric with

probability mass function
< ! ) (Xk__t )

Hyp(n, 71, x;)(1) =
G

We consider the sequence of site-percolated graphs (G(H)) defined by a sequence of overlay graphs
(Gwyy) and sets (S,,). For each n, the site-percolated graph G(,,) is an instance of the overlay model with
|S,| = it = i, nodes, m = my, layers, and averaged layer type distribution

Py(A) = /(Hyp(n,ﬁ,x)x 6¢)(A) Py(dx,dq).
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We claim that P, 2 Pasn — +oo. In the proof of the claim we use the following bounds

dy (Hyp(n, 7, x), Bin (x, n )) <4* 4, (Bin <x, ﬁ) ,Bin(x, 9)) <
n n n

T _olx (140)
n

The first bound is shown in [20, Theorem 4]. The second one is obtained by coupling of coin flips.
Recall that (X, ;, O,.) is a bivariate random variable with the distribution P,. Let S;; be a random
subset of {1, ... ,n} = V of size 7 independent of (X, ,, 0, ). Then the random variable )V(,,,,, =
I{1, ... . X,z } N S;| has the mixed hypergeometric distribution P(X,,, = 1) = E (Hyp(n, it, X,.2)(1))
and the random vector (X, z, O, ) has the distribution P,. Let (X, Q) be a random variable with the

distribution P. To prove the weak convergence P, = P we show for every (t,5) € Z4 X [0, 1] that

A :=P,(tx[0,s]) — P(t X [0, s]) = o(1). We split

A =E (Hyp(n, /1, X, )(D](g, .<s)) — E (Bin(X, 0)()]{0<s}) = A1 + Ag,

n,w =

where

Ay = E (Hyp(n. it, X, .)(D(g, <5}) — E (Bin(X,, 2, 0)(D(g, <)
= E ((Hyp(n, , X, )(t) — Bin(X,... 0)(1)) Lo, <)

and

Ay = E (Bin(X,, )00, <5)) — E (Bin(X, )0 0<y) ) -

By (140), we have |A,] < (|§—0| +%>EXM. Our assumption (P,)1y — (P)io implies

limsup,EX, , < co. Hence A; = o(1). Furthermore, the assumption P, 2 P implies A, = o(1). We
obtain A = o(1) thus proving the claim.

Next we observe that (P,)9 = E(P,L)10 - 0(P)1o = (P)10, and % — ji = 67" yi. Theorem 3.5(i)—(ii)
now follow by applying Theorems 3.1 and 3.4 to G,, and noting that ji(P)1o = u(P)io.

Now assume that (P,),s = (P),s € (0,00) for rs = 21,32,33. A direct computation shows that

(P),s = 0"(P),s. Theorem 3.5(iii) now follows by applying Theorem 3.2 to conclude that the clustering
Pry Py
Py +i(P?, — (PraptuPy
Theorem 3.3. u

coefficient T(G(n)) converges to = 7. Theorem 3.5(iv) follows similarly from

Proof of Theorem 3.6 for the layerwise bond-percolated graph G,. The graph G, is an
instance of the overlay model with n nodes and m layers G, ... ,Cn‘m where G, has size X,
and strength 60, ;. The layers (Gn,k,Xn,k, 00, ) are mutually independent, with averaged layer type
distribution

Py(A) = /(5x>< 694)(A) Pu(dx, dq) (141)

~ WA ~ A . .
converging according to P, — P and (P);9 — (P)jo. Furthermore, a direct computation shows that

(13),.Y = 0°(P),s. Statements (i)—(ii) of Theorem 3.6 now follow by Theorems 3.1 and 3.4, and noting
that (fD)lo = (P)j0. Statements (iii)—(iv) follow analogously by Theorems 3.2 and 3.3.
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Proof of Theorem 3.6 for overlay bond percolated graph G(,,). In the proof we use a cou-
pling argument. We will utilize the fact that the overlay bond-percolated graph does not differ
much from the layerwise bond-percolated graph G, for which the theorem has already been
proved. The conditional distribution of G(,,) given the layers (G, x, Xnx, Onx) is an inhomogeneous
Bernoulli graph on {1, ... ,n} where each node pair ij is linked with probability p; = 0(M; A 1)
where M; = Y, I(E(G,x)  ij) is the number of layers linking a node pair ij. The corresponding
conditional distribution of Gy, is a similar inhomogeneous Bernoulli graph with link probabilities
p=1-(0- 6)i. Because Py < Dyj» this suggest the following coupling construction:

(i) Sample the layers (G, x, Xux, Oni), k=1, ... ,m.
(i) Sample independent inhomogeneous Bernoulli graphs A and H* with link probabilities p; and

pjfj = % with the convention g = 1. Note that pfj > 0.
ij

(iii) Define G,y = Gy N H and G,y = G,y N H with G, defined by (1) and # = A n H*. Note the
identity G(n) = G(n) NnH*.

Then (G(n),G(,,),G(n)) constitutes a coupling of the overlay bond-percolated, layerwise
bond-percolated, and nonpercolated graphs such that

Gy C Gy € Gy almost surely. (142)

Proof of Theorem 3.6(i). Let us denote by d, n = degG(n)(i) andd, = degGw)(i) the degrees of node i in
the overlay bond-percolated and layerwise bond-percolated graph, respectively. By the coupling (142),
we have d,, = d,, on the event M; < 1, where M; = max;y; M. Hence dy(£(d,), £(d,)) < P(M; > 1).
The union bound implies that

’ 2
P(My > 1) < Y PEGp) 3 i) P(E(Gor) 3 i) < (ZP(E(Gn,k) > ij)) .
ktl k

By noting that P(E(G,.;) 3 ij) = E%Qn,k, we conclude that
n)

P(M; > 1) < (m(); ' (Py))”, (143)

Another union bound shows that P(M; > 1) < ZJ. i P(M;; > 1) and hence
di(L(dy), L(d)) < (m/n)*(Py)5 (n = D7 (144)
In the particular case, where there the layer sizes are bounded, that is, there exists constant M > 0 such

that

PXyp<M)=1 V n=12,... and k=1,...,m,, (145)

the right side of (144) is o(l) as n — +o0. Now (144) together with the weak conver-
gence (shown above) L£(d,) 2 CPoi(u(P) 10, Binjo(P)) yields the weak convergence £(d,) A
CPoi(u(P)10, Binio(P)).

Finally, to treated the general case we revoke the boundedness condition (145) in the same way as
in the proof of Theorem 3.1. The proof of Theorem 3.6(i) is complete.
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Proof of Theorem 3.6(iii). By the fact that random overlay graph G, is independent of the
percolating graph H, see (12), for any distinct nodes i, j, k, we have

P (G (i), G (ik), Gy () = 6°P (G (i), G (i), Gy (5))
P (G (i), Gy (k) = 0°P (G (i), Gy (i) -

Hence T(G(H)) = 07(G(y)) and the claim follows by applying Theorem 3.2 to the nonpercolated model.
Proof of Theorem 3.6(iv). The proof is similar to that of Theorem 3.3, but it is a bit more technical.
For reader’s convenience we give it in the Appendix (Section A) below.
Proof of Theorem 3.6(i1). Let N; and N, (respectively, N 1 and Nz) denote the number of vertices of
the largest and second largest component of G, (respectively Gi,)). Let 5 = PG denote the survival

probability of the Galton-Watson branching process with the offspring distribution f i

We observe that coupling (142) yields a coupling of N; and N, such that Pr(NV, < N;) = 1. Further-
more, an application of Theorem 3.4 to the sequence of overlay graphs (G(,)) yields the approximation
N\ = jpn+ op(n). These two facts taken together imply the upper bound N1 < jn + op(n). To show the
matching lower bound N1 > np + op(n) and the bound N, = op(n) we use the same argument as that
of the proof of Theorem 3.4. The only place where we need a minor modification of the argument is
the proof of Lemma 9.1. In what follows we review the proof of Lemma 9.1 and pinpoint the changes
needed to be made.

At this point we need some notation. Let C‘, C’v, Bk and C, C,, Bk denote the largest component,
the component containing vertex v and the set of vertices belonging to components of size at least k in
G and G, respectively. Recall the notation 4 = px, and x, = E(XI;x»2)), and let 7, be a random
variable with the distribution

P(T, =¢)=x;'E (Bin" (X — 1,0Q)()XL(x52)),  £=0,1, ...,

which is obtained from (77) by attaching the factor 6 to Q. We note the equality of distributions f T =
CPoi(A, £(T.)), which is shown by the same argument as (30) above. In particular, j is the survival
probability of the Galton-Watson branching process with the offspring distribution CPoi(4, £(7,)).

We claim that the results (81), (82), (83) of Lemma 9.1 hold true if we replace C, C,, B®, p(}) by
¢, G, B”, p, respectively. In the proof we use the fact that the coupling G(n) C G implies couplings
CcC, C cC, B’ c B’ and that the results of Lemma 9.1 hold true for C, C,, B”, 5.

Proof of (81). We apply Lemma 9.1 to G,, and obtain the upper bound of (81) via the coupling
C,CcC:

P (1G] > o(m)) < 5+ €.

The corresponding lower bound

P (1G] 2 @) 25—,

is obtained by the same argument as in the proof of respective result of Lemma 9.1 (note that regular
exploration will not detect any difference between the coupled graphs G(n) C G-

Proof of (82). In the proof we take a shortcut (compared to the original argument of Lemma 9.1)
while establishing the analog of the main intermediate inequality (112). For the overlay graph G, the
inequality (112) holds and it reads as follows

I <H{|Gx|2w<n>}]1{|éy|2m<n>}) <pxp+ol).

8508017 SUOWILIOD 3AIIR1D) 3|ed! [dde 8Ly Aq peusenob aJe 9l YO ‘8sN JO S9INI 104 AR1q 17 8UIUO AB]IA UO (SUOIPUOD-PLE-SWS} W00 A8 | 1M Al.q U IUO//SHNY) SUORIPUOD pUe SWie | U1 88S *[€202/80/20] Uo AtiqiT8uljuo A8 |Im ‘AISAIN SNIUIIA Ad OFTTZ€S)/200T 0T/I0PW00 A8 | Aleiq Ul UO//SdNY Woly papeojumod ‘Z ‘€202 '8TYZ860T



332 BLOZNELIS AND LESKELA
WILEY

The coupling C, c G,, Cy C G, implies

E (H{|Cx|2w(n)}]1{|éy|2w(ﬂ)}) =k (H{|G,r|2w<n>1]1[|6y|2w<n>}) :

Hence

E (H{|Q|2w<n)}]1{|éy|2w<n)}) <pxp+ol).

This is the analogue of (112) that yields (82) for G<n>. The rest of the proof of (82) goes without changes.
Proof of (83). The upper bound

P(IC| < np+en) 2 1 —o(1)

follows from the respective upper bound for |C| combined with the coupling C ¢ C. To show the
matching lower bound

P(C| 2 np —e;n) = 1 — o(1)

we use the coupling G(n) C Gy and slightly modify the corresponding argument of the proof of
Lemma 9.1. Recall that G, is obtained from G, by deleting certain edges at random and the proba-
bility of deletion is at most 1 —p. We call this process thinning. Let C’, "’ be connected components of
G(n) that have at least n2/3 vertices each. We show that for any pair of such components C’, C"’ there is
at least one blue edge of Gy, (blue edges are defined in the proof of Lemma 9.1 when applied to G(,)
connecting €’ and C" that has not been removed when we intersect H* with G, to get G,y = G(,yNH*
in our coupling construction (142). For this purpose we choose ¢ = 100! in (125). Now the probabil-
ity that all blue edges of G, connecting a given pair C', C” have been removed by the intersection of

Gy with H* is at most (1 — 6)°™"" < n~1%. As the number of pairs does not exceed ( ["]2/31 > the prob-

ability that at least one pair C’, " is not connected by a blue edge is at most < ["]2/31 ) n~1% = o(1), by

the union bound. The rest of the proof of the lower bound of (83) goes without changes. Hence (83)
holds. O

11 | SUPPLEMENTARY RESULTS

Recall the overlay graph G defined by (1). Given A C [m], we consider the subgraph G4 C G on the
vertex set V(G4) = V(G) = {1, ... ,n} defined by the layers (G,, X,, Q,), a € A. Thus, the edge set of
Gy is E(G4) = UueaE(G,). In the following two results, we denote by N, the set of neighbors of node
iin G4, and we set D4 = |N,4| to denote the degree of i in G4.

Lemma 11.1.  Let g be a probability density on Z... Let

et)= Y PDaus =r)—PDs = 1)) g(s).

r+s=t

Then Y, le(®)| < 2P(Dg > 0).
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Proof.  Denote the densities of the degrees by faup = L(Dayp) and f4 = L(D,). Then

D 1@ = lfaus * & —fa * glh = 2dw(favs * 8.fa * 8) < 2du(Favs-fo).

>0
Further, dy,(faus.f4) < P(Daus # Da) < P(Dp > 0). m
Lemma 11.2.  Assume that Gy, ... , G, are mutually independent, let A, B C [m] be disjoint, and let

Ex, Ep be events determined by (G,)aeca and (Gp)pep, respectively. Then
P(Daus =1, &4, E) = P(Dy + Dp =1, E4, E) + (1),

where the error term is bounded by |e(t)| < cptP(Dy < t,E4), and where cg = max;y P(jj €

E(Gp), E). In the particular case wherei = 1,A = {k}, B={¢}, Es = {12 € G}, Ep = {13 € G}
we have |e(t)| < 1P(12,13 € Gu)P(13 € Gy) +1P(12,13 € G,)P(12 € Gy).

Proof. Because Dayp = D + Dp outside the event F = {|N4 N Ng| > 0}, we see that
e(t) =P(Daup =1,E4,E, F) —IP(Dg + Dp = 1,4, Ep, F).
Hence, it follows that |e(f)] < P(D4 < t, &4, Ep, F), where the upper bound can be expressed as

P(Dy <1,E0,E5.F) = D P(Na=U,E) P(UNNs| >0,E).
U:|U|<tigU

Because P(|JU N Ng| > 0, &) < ZjeU P(ij € E(Gp), Eg) < cpt whenever |U| < t, the inequality
le(®)| < cptP(Dy < t, E4) follows.

To show the remaining bound we note that Ny N Np # @ implies that at least one of the events
{3 € Ns} and {3j € Ny N Np,j # 3} occurs. Hence

P(Dy < 1,E7,Ep, F) =P(Ex, Ep, 13 € Gy)
+ Y PWa=U.é& Y P(Eslj€Cy).

U:|U|<t,igU JEU j#3

By symmetry, the inner sum is at most /IP(12, 13 € G,). Consequently, the second term on the right is
at most P(E4)P(12, 13 € Gy). The first term equals P(12, 13 € G)(P(13 € Gy). n
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APPENDIX

Here, we prove Theorem 3.6(iv). The proof is similar to that of Theorem 3.3 above. In particular, we
use notation of section 7. Furthermore, for a graph F' C G, we denote by F = F n H the percolated
graph, where each edge of F is retained independently with probability 6, see (12). We write G = G(n),
d = degg(1). We also denote gﬁ?) = Bin,,(P,), where P, is defined in (141) and where the mixed
binomial distribution Bin, is defined in (5). The degree distribution f o of G is defined as in (7), but
with degG(m(i) replaced by degc(m(i). Introduce events IAC3 = {G D K3} and ]&12 = {G D Kz} and
denote

3

= T (P)rs(P)2i (P) A=miz(1’3)(1”) (A1)
((n)2)3 n)rs\I'n)21\U"n )21, rs (n)3(n)2 n)rs\I'n)21-

rs

We derive Theorem 3.6(iv) from the relations
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. 5 P O .
() P(d=1, K3)=0uss J * gt — 2) + &(t), where
|E(O)| < 4pni sy + 3y + pi033 + 2840 + 4A53;
(i) P(d =1, K1) =62 LN (n) 2,2 20 <) =)
i) P(d =t Kip)=0"unf &5, (t—=2)+ 075, * 85 * 85 (t — 2) + &(2), where

[E()| < 10u21 32 + 6103, + p3y + 4p1030 + dpioi o1 + o121 +2(n — 33,
+ 2&43 + 4(&32 + K32 + Zzl).

We first show (1) and (ii). Afterwards we prove Theorem 3.6 (iv). Introduce events Ak {Gk D K3}

and Az = Qk ngf , where Qk is the event that ij € E(Gy) . Recall the overlay graphs G_; = UG
G =GLUGgand G_yp = Uge( k’f}Gq and denote

dy = degg (1), d_y=degs (1), dir =degg (1), d =degs (1),
6 = degg,ng (1), ke =degg g (D), Sre = degg g, (D.

We also denote . (s) = P(dys = s, Aie), and hyi(s) = P(dy = s, C,lci).
Proof of (i). The proof is similar to that of Theorem 7.3 (ii): we denote

81() =P = 1,K3) ~P(d = 1, U A0, &0 =P(d =1,uA) — Y Pd =1, 40)
k

and estimate (cf. proof of Theorem 7.3 (ii))
0 < &(1) S P(Ep) + P(E111) < 3paipz + 13y,

! !
0< -6 < Z]P)(ﬂi =1t Ay, Ap) < Z]P)(Ak’ Ap) < po1 3.

kK kK

Hence |P(d = 1, K3) — o Pd =1, .th)| < 4pr1 pz2 + p3,. We next approximate

DPA=1,4) ~ Y, Y Pd—i=r P =s4) (A2)
k k r+s=t
~ Z Z P(d = r) P(d; = 5, Ap) (A3)
k r+s=t

and observe that Y, X IP’((f F =S, .Ztk) = Pun gg';)(s — 2) (the identity follows from Lemma 7.2 applied

to Gk* = G- N H, cf. (48)). Hence the right side of (A3) equals 03 uz3 f g’?(r — 2), and to prove
(1) it suffices to analyze the approximation errors in (A2), (A3).

To upper bound the approximation error in (A2), denoted £5(f), we apply the first inequality of
Lemma A.1 with F = K3, A = {k}, B = [m] \ {k} Vk. We obtain

|é3(t)| < ZzP(Ak, 6 >0) < 2544 + 4533,
k

where in the last step we apply inequality (A12) of Lemma A.2.
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The approximation error in (A3) equals £4(r) = Y, £4(f) where

en= D (P =r ~P(d = 1) Py = 5. A0).

r4s=t

Noting that deg (1) = 0 implies d = d_j we estimate
B(d = 1)~ P(d— = | < Pldegg, (1) > 0) < B(1 € V(G) = pro(k) (A4)
and subsequantly

|4k (D) Splo(k)zp(ffk =5, Ar) < pro(OP(Ay) = p1ok)ps3 (k).
s=2

Hence, |£4(0)| < Zk Pp1o(k)p33(k) = pip33. Claim (i) follows by combining the above estimates for the
total approximation error £(¢) = Z?zléi(t).
Proof of (ii). The proof is similar to that of Theorem 7.4 (ii): we approximate

P(d=1,Kn) ~ Y P(d=1A0), (A5)
k¢
~ Y D Pk = 1) hug(s), (A6)
k, r+s=t

~ Y D P =) hue(s), (A7)

k,C r+s=t

so that
Pd =1.R1) ~ Zf(")mthk(s) = Zf(”)(r)z‘,hkf(m (A8)
r+s=t r+s=t

Invoking identity ), hia(s) = 0%z g(;g)(s — 2) (which follows by Lemma 7.2 applied to Gy, cf. (54))
we write the first term on the right of (A8) in the form 6> /432f gg"z)(t -2).

Next, we approximate the second inner sum on the right of (A8)

/ /

Zilkf(s) ~ Z Z hia(s1)he3(s2), (A9)
k¢ k.t s\+s,=s
Z z hia(sD)hes(s2). (A10)
k,C s)+sy=s

Invoking identities Y, hxa(s) = X, hes(s) = 02185 (s — 1) (the first one follows by symmetry;

the second one follows by Lemma 7.2 applied to Gy, cf. (54)) we write the right side of (A10) in
the form 0243, gé"l) * g(zl)(s — 2). Hence, the second term on the right side of (AS8) is approximately

92/4§1 e 2 « g(1 — 2). Finally, we conclude that

Pd=6R1) ~ Cunf” #5800 —2) + 0227 " % 52 % 0 - 2),
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where the total approximation error can be written as () = Z?zlgi(t). Here £,(2), £5(t), €5(¢) are the
approximation errors in (AS), (A6), (A7), respectively, and

a0 = Y 7"0) Ens) +Enl).

r+s=t

where £41(s) and €4>(s) denote the errors made in (A9) and (A10).
Now, we analyze individual approximation errors €;(¢). The cases i = 1, 3 are treated similarly as
in the corresponding proof of Theorem 7.4 (ii) Bonferroni’s inequalities imply

! i
le1(0)] < 2 P(Axr,» Arye,) < Z P(Ax 1, Azy2,)
(ky:kp) (1.8 2) (ky k) (1.8 2)

and therefore (61) extends to |£,(¢)|. Furthermore, invoking inequalities (cf. (A4))
[P = r) = Pd_ir = 1| < P(1 € V(G) +P(1 € V(G) = prok) +p1o(®)
and ), e (s) < P(Ary) < P(Arp) we obtain

B30 < Y (P10(k) + Pro@) P(Ake) < Y (pro(k) + pro(€)) P(Ake).
kt k.l

Therefore (63) extends to |€5(¢)].
To upper bound £;,(¢) we apply the first inequality of Lemma A.1 with F = K|,, where we set
A=1{k?},B=[m]\ {k,Z} fork # ¢, and we set A = {k}, B = [m] \ {k} for k = #£. We obtain

[E2(0)] < 2ZP(AM’ Sie > 0) <2043 + 4(A5 + Ay + Ayy),
%

where the last inequality follows by inequality (A13) of Lemma A.2.
To upper bound €4, (s) we apply the second inequality of Lemma A.1 with A = {k}, B = {£} and
F, F' being the edges 12, 13. We obtain

!/

[€41(s)] < ZZP (Aker 81 > 0) < 2(n = 3)p3y + 2uzp,
7

where the last inequality follows by inequality (A11) of Lemma A.2.
Finally the approximation error in (A10)

[€42(s)| = Z Z P(dy = SI’QIIZ)ED(dAk = 52,61;2)

k si+sy=s

e _ ~A12\\2 2 _
satisfies 3 o [En(s)| = X, (]P’(Qk )) =0y, (p21(k)) = 60%uy121. We conclude that [g4(r)] <
2(n = 3)ud, + 2uzapo1 + H2121-

Claim (ii) follows by collecting the bounds for €;, i = 1,2, 3, 4 altogether.
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P(d=t, K3)

~——2>_To this aim we invoke
P(d=t, K,,)

Proof of Theorem 3.6(iv). We evaluate the ratio o(G)(k) =
approximations (i) and (ii) above, where respective leading terms

~n) o Y SN _
Puss % 8001 = 2) = (P)ysun™F 8331 = 2) + o(n™?)
and

~(n) ~(n ~(n) ~(n ~(n
OCun % 80 =2)+ Oua)f - % 3 % g0 - 2)
= (Pysoun™f * g3(t — 2) + (PY3 1?02 * g1 * g21(t — 2) + o(n™?)

are of order ®(n~2) as n — +o0. It remains to show that the remainders £(z) and £(¢) of (i) and (ii) are
of order o(n~?). In the proof of Theorem 3.3 all the terms contributing to £(¢) and £(¢) are shown to be
o(n™2), but A3, Ay, Ay3, Ay, Ay, Ay, and (n — 3)pi,.

Here, we only show that A3 = o(n~2). The proof of o(n~2) bound for the remaining terms is
easy. We have Ay3 < n™3(P,)ys = nE(X1,03 ), where (X, z, O,.) is a bivariate random variable
with the distribution P,. Our conditions (P,);3 — (P)33 and P, 2 P implies that the sequence

{X; .05 ,n > 1} is uniformly integrable. Note also that P(X,,; < n) = 1 Vn. Now fix 0 < 7 < 1 and
split

(Pn)43 = E(Xﬁ,IEQ;l,IT) =E (XI‘:,”Q}?I,IE)H{X,”[<‘[11}) +E (Xﬁ,IEQEL,HH[X"ﬂZTI‘I])
< nlE (Xg,irQ?wr) +nkE (Xg,ﬂQg,ﬂH{Xn_”Zrn]) .

The last term above is o(n), by the uniform integrability property. Hence (P, )43 = o(n). Consequently,
we have Ag; = o(n™2).

In the next lemma we use notation G4 = (V(Ga), E(G4)), A C [m], introduced in section 11. We
also denote N, the set of neighbors of vertex 1 in G4 and write D4 = |N,|. For A, B C [m] we denote
64 = |Na N Np|. We denote by Dy the degree of vertex 1 in the percolated graph Gy = Gy N H.
Given a graph F with the vertex set V(F) C V = {1, ... ,n} we denote by A4 and Ar 4 the events
that F C G4 and F C GA respectively. Lemma A.1 is used in the proof of claims (i), (ii) above where
we take F = K3, K]z.

Lemma A.1. Let A, B C [m]. Assume that AN B = @. Assume that 1 € V(F). Then

‘]P(DAUB =1, Apa) — Z P(Dp = 1) P(Da = 5, Ara)| < 2P(Ar.a, 845 > 0).

rts=t

Assume, in addition, that graph F' has vertex set V(F') C V and 1 = V(F)n V(F"). Then

r+s=t

‘P(DAUB = t, Arur avss Ar.as Arrg) — Z P(Dp = r, App) P(Da = 5, Ara)
< 2P(Apa, Ap g, 648 > 0).
Proof.  We only prove the first inequality. The proof of the second one is much the same.

In the proof we write, for short, A = Ap,4 and A= .Qtp,A. We note that random variables Dy
and Dg are independent and 64 5 = 0 implies Dayp = D4 + Dp and, consequently, bAug = DA + ﬁg.
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Introduce Bernoulli random graph A with V(H) = V and edge probability 6, which is independent of
G, ... ,G, and H. Let Dy denote the degree of vertex 1 in the percolated graph Gz = GgnH. Clearly,
random variables 133 and Dg have the same probability distributions. Moreover, on the event 54 5 = 0
the pairs ((ﬁA, A); (ﬁg)) and ((ﬁA, A); (D3)> have the same distributions. Hence

]P)(IA)AUB =1, Aa 5A,B = 0) = II;D(DA + DB =1, -’zts 5A,B = O) = IP(DA + DB =1, -249 5A,B = O)
Consequently, we obtain
|IP’(DAU3 =1, )= P(Dy + Dy =1, A)( < 2P(A, 845 > 0).

Next, by the independence of Dy and (D, A) we can factorize the probability P(D, + Dg =1, A) =
Zr et IP’(DA =5, .Qt)]P(DB = r). Now the identity L(Dp) = E(DB) completes the proof.

To prove the second inequality of the lemma we note that V(F) N V(F’) = 1 implies that F and F’
have no common edges. Therefore, given the event F' C G4, F’ C Gg and 645 = 0, the percolation
process acts on F and F’ independently. The rest of the proof is much the same as above. m

Lemma A.2. For A, and A, defined in (Al), we have

!
D P( A, bie > 0) < (= 33, + 2pa1 32, (A11)
kt

D P(Ak, 8 > 0) < Ay + 245, (A12)
ke[m)
D P(Ase, ke > 0) < Ay + 2(Bsy + By + By). (A13)
k.t

Proof. ByP= P(x 0, We denote the conditional probability given (X, Q,).

Proof of (A11). We write event { Az, 6; > 0} in the form

gian}fﬁm( UU g gls>

Invoking identities

B2 gl g%y = K3 2 Xeha g Fonz g3 g2y - X2 Xeds
(gk gf gk ) ( ) Qk (n)2 Qf (g gf gf) ( ) Q (n) Q
X3 o Xe)3

P(GI2, 61, ¢l ¢k = 0;

(s —* (n)s

we obtain, by the union bound and symmetry,

(X)3 2 Xe)2 X2 -, Xe)3 2
P(Aw, 6, 0) <
(Axe, 0ke > 0) ") Ox () Or + s O ) 0Oy

X3 2 Xe)3 2
+(n-— )( % O )3 0y.
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Consequently,

P(Ak{,gkf > O) = E@(Akﬁ,gkf > 0)
< p3()p21(8) + p21(K)p32(€) + (n = 3)paa(k)p32(?).
Now, summing over k # £ we obtain (Al1).
Proof of (A12). We write 6; = 6, + 6], where &, (respectively ;) is the number of vertices
s € V(G)\ {1,2,3} (respectively s € {2,3}) such that 1s € E(Gy) N E(G_;). Then P(A, 6 > 0) <

P(Ay, 6, > 0) + P(Ay, 8 > 0) and we estimate the probabilities on the right separately.
To evaluate P(Ay, 6, > 0) we write event {5 > 0} in the form

U (g}jn( U Q}S>>. (Al14)
SEV(GO\{1,2.3) jelml\{k})

Then, using the union bound and symmetry, we upper bound the conditional probability

, / Xi)3 (X))2
P(Ag, 6; > 0) < (X —3 . AlS5
(Ax, 6 > 0) < (X —3) ) ije[mzl\{k} )2 Q; (A15)

Here, X;—3 is the number of vertices s € V(G)\{1,2,3}. % is the probability that {1, 2,3} C V(Gy).
((Xf))z is the probability that {1, s} C V(G;j). Next, we take the expectation EP(Ay, 6. >0) =
n)

P(Ay, 8, > 0) and sum over k to obtain

Similarly,

, L E((X0408) E((X)20))
;P(Ak,ék > 0) < ; T o (A16)

Note that, the right side is upper bounded by

E((X0)+07) E(X)20) 1
Zk: () x Z m, Ay (A17)

Now, we evaluate P(Ay, 5, > 0). We write event { Ay, §; > 0} in the form

Ar N U ( U Qﬁ)
s€{2,3} N jelm\{k}

and proceeding similarly as in (A15) above we obtain that

3 VO, 3
P(AL 8! > 0) <2 Z E(X:00) E(X))0) _ , E((X0):Q)  (Pu)ar (AL8)

jelml\k )’ (my (n)3 n),

Consequently, the sum ), (A, 8 > 0) < 2As3. The latter bound together with (A17) implies (A12).
Proof of (A13). We write 6, = 6;, + 6,,,, where 6, (respectively 6;,) is the number of vertices
s € V(G) \ {1,2,3} (respectively s € {2,3}) such that 1s € E(Gys) N E(G_ip).
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We split
/
Y P(Aierbie > 0) = D P( A ke > 0) + I P( A 86 > 0) =2 S + S5
k.t kt k

and estimate
! /
1 < Y P(Aie. 8, > 0) + D P(Awe, 6 > 0) =: S| + 5.
kt [
In what follows we upper bound S}, S and S,. To estimate S} we write event {§;, > 0} in the form

1 1 1
U, (vea( U o))
SEV(G)\{1,2,3} JEmMI\{k,2}

and upper bound the conditional probability P(Ay, 8, > 0) using the union bound and symmetry,

P(Asr, 6l > 0) < (X(")sz" (Xg’ )sz" (X — 200k + (Xs — 2)07) (A19)
(5:0;

jeinikey 2

Here, (X(",z;Q" (XE}ZQf is the (conditional) probability of event Az; (X; —2)Qy counts s € V(Gy) \ {1,2}

linked to 1 by the layer Gy; (Xy — 2)Q¢ counts s € V(Gy) \ {1,3} linked to 1 by the layer G.
Furthermore, each such s is linked to 1 by G_;, with probability ]P’(Uje[m]\ mg < Zje[m]\ (ks Oi’;;Q’.
It follows from (A19) that '

/
_ 3 _
= ZEP(AM,@/J >0) <27 (Pa)n(Pn)y) = 2A3.
Kt ()

We similarly setimate S{'. The event §;,, > 0 means that at least one link 12 or/and 13 is present in
G_;r. Hence

P(Awe, 8], > 0) < < 0 XioOk Xe)Qr o X0,
, - (n)p (n)» e (1),

Consequently, S/ < ¥ EP(Asz, s — 6, > 0) < 2%(&)%1 =2A,).

Finally, we show S, < A43 + 2A32 in much the same way as (A12) above. Collecting the bounds
for §7, Y, and S, we obtain (A13). "
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