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Abstract
A simple but powerful network model with n nodes and

m partly overlapping layers is generated as an overlay of

independent random graphs G1, … ,Gm with variable sizes

and densities. The model is parameterized by a joint dis-

tribution Pn of layer sizes and densities. When m grows

linearly and Pn → P as n → ∞, the model gener-

ates sparse random graphs with a rich statistical structure,

admitting a nonvanishing clustering coefficient together

with a limiting degree distribution and clustering spec-

trum with tunable power-law exponents. Remarkably, the

model admits parameter regimes in which bond percolation

exhibits two phase transitions: the first related to the emer-

gence of a giant connected component, and the second to

the appearance of gigantic single-layer components.
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1 INTRODUCTION

Applications in natural sciences, social sciences, and technology often deal with large networks of

nodes linked by pairwise interactions which involve uncertainty due to noisy observations and miss-

ing data. Such uncertainties have been investigated using statistical models ranging from classical

Bernoulli random graphs and uniform random graphs with given degree distributions to stochastic

block models and more complex generative models involving various preferential attachment and

rewiring mechanisms [1, 25, 30, 38, 46]. While succeeding to obtain a good fit for degree distributions
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and tractable percolation analysis, most earlier models fail to capture second-order effects related

to clustering and transitivity. Random intersection graphs [5, 11, 18, 33, 41], spatial preferential

attachment models [27–29], and hyperbolic random geometric graphs [13, 24, 34, 35] have been

introduced to conduct percolation analysis on networks with nonvanishing transitivity and clustering

properties.

Despite remarkable methodological advances, most sparse network models still appear some-

what rigid in what comes to modeling finer clustering properties, such as the clustering spectrum
(degree-dependent local clustering coefficient) [3, 43, 47], which may significantly impact the per-

colation properties of the network [4, 19]. A decreasing clustering spectrum manifests the fact that

high-degree nodes tend to have sparser local neighborhoods than low-degree nodes. Motivated by

analyzing this phenomenon in a tractable quantitative framework, this article discusses a statistical

network model generated as an overlay of mutually independent Bernoulli random graphs G1, … ,Gm
which can be interpreted as layers or communities. The layers have a variable size (number of nodes)

and strength (link probability), and they may overlap each other. A key feature of the model is that the

layer sizes and layer strengths are assumed to be correlated, which allows to model and analyze a rich

class of networks with a tunable frequency of strong small communities and weak large communities.

1.1 Main contributions

This article presents a rigorous mathematical analysis of clustering and percolation of the overlay

graph model in the natural sparse limiting regime where the number of nodes n tends to infinity, the

number of layers m is linear in the number of nodes, and the joint distribution Pn of layer sizes and

layer strengths converges to a limiting distribution P. We derive exact formulas for the limiting degree

distribution, clustering coefficient, clustering spectrum, and the largest component size in terms of

cross-factorial moments and functional transforms of P. We also investigate the model under bond and

site percolation, and characterize critical parameter values of the associated phase transitions.

The descriptive power of the model is illustrated by a detailed investigation of an instance where

the layer size follows a power law, and the layer strength is a deterministic function of the layer size

following another power law. This setting leads to a power-law degree distribution and a power-law

clustering spectrum with tunable exponents in ranges (1,∞) and [0,2], respectively. A special case

in which layer strengths are inversely proportional to their sizes corresponds to layers of bounded

average degree. In this natural parameter regime we discover a remarkable double phase transition
phenomenon with two critical values: the first characterizing the emergence of a giant component

in the overlay graph, and the second characterizing the emergence of gigantic components in layers

covering a typical node.

Finally, we highlight that the modelling framework in this article covers both deterministic and ran-
dom layer types. Our approach of characterizing the regularity of layer types using averaged empirical

distributions allows both cases to be treated in a uniform manner.

1.2 Related work

The overlay network model discussed in this article is naturally motivated and implicitly described

by classical works in social networks [17, 22]. The explanatory power and wide applicability of the

model in the context of social, collaboration, and information networks has been demonstrated in

[48, 49] by experimental studies of a community-affiliation graph, which represents an instance of

the present model where the node sets of layers are nonrandom or otherwise known to the observer.

The superposition of Bernoulli random graphs considered here serves as a null model for sparse

community-affiliation graphs.
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The mathematical analysis in this article builds on earlier works on component evolution and clus-

tering in inhomogeneous random graphs [14] and random intersection graphs [8, 9]. The special model

instance with unit layer strengths reduces to the so-called passive random intersection graph [26], and

as a byproduct, the present article also provides the first rigorous analysis of giant components in gen-

eral passive random intersection graphs, extending [16, 37]. When layer strengths are constant but not

necessarily one, clustering properties and subgraph densities of the model have been analyzed in [31,

32, 40], and the recovery of the layers in [21]. Another related work [45] (also part of [44]) on percola-

tion in overlapping community networks assumes that layers are sampled from an arbitrary distribution

on the space of finite connected graphs, and the layers are assigned to nodes via a bipartite configura-

tion model. The restriction to connected layers and the use of a configuration model makes the model

in [45] and its analysis fundamentally different from the present one, and limits its applicability by

ruling out networks composed of weak communities.

Clustering spectra with power-law exponent 1 have been shown for random intersection graph mod-

els [7, 9] and spatial preferential attachment models [27, 36], and with a tunable power-law exponent

in [0, 1] for random intersection graphs [10, 12] and recently also for a hyperbolic random geometric

graph model [24]. Furthermore, [43] discusses an inhomogeneous Bernoulli graph model where the

clustering spectrum vanishes, but its normalized version displays evidence of a power-law behavior

with exponent in range (0,2).

To the best of our knowledge, the present work is the first of its kind where a degree dependent

clustering with a tunable power-law exponent in the extended range [0,2] is rigorously analyzed in

terms of a simple statistical network model. This model admits a clear explanation of the values of

power-law exponents, and introduces a new analytical framework for studying ordinary and double

phase transitions in bond and site percolation on sparse networks of overlapping communities of

variable size and strength.

1.3 Outline

In the rest of the article, Section 2 presents model details and notations, and Section 3 the main results.

Section 4 illustrates the main results in a power-law setting, and confirms the existence of double

phase transition. The remaining Sections 5–10 are devoted to proofs, with technical details postponed

to Appendix 11.

2 MODEL DESCRIPTION

2.1 Multilayer network

A multilayer network model with n nodes and m layers is defined by a list(
(G1,X1,Q1), … , (Gm,Xm,Qm)

)
of mutually independent random variables with values in

n×{0, … , n}×[0, 1], where n is the set of undirected graphs with node set contained in {1, … , n}.
We assume that conditionally on (Xk,Qk), the probability distribution of the vertex set V(Gk) of Gk
is uniform on the subsets of {1, … , n} of size Xk, and conditionally on (V(Gk),Xk,Qk), each node

pair of V(Gk) is linked with probability Qk, independently of other node pairs. Thus, Gk is a Bernoulli

random graph on node set V(Gk), with edge set denoted E(Gk). The variables Xk, Qk, and (Xk,Qk) are

called the size, strength, and type of layer k, respectively. Aggregation of layers produces an overlay

random graph G defined by

V(G) = {1, … , n} and E(G) = ∪m
k=1

E(Gk). (1)
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This setting includes as special cases: (i) models with deterministic layer types, and (ii) models where

the layer types are independent and identically distributed random variables.

2.2 Large networks

A large network is analyzed by considering a sequence of network models(
(Gn,1,Xn,1,Qn,1), … , (Gn,m,Xn,m,Qn,m)

)
indexed by the number of nodes n = 1, 2, … so that the

number of layers m = mn tends to infinity as n → ∞. The sequence of corresponding overlay random

graphs is denoted (G(n)). We shall focus on a sparse parameter regime where there exists a probability

measure P on (Borel’s 𝜎-algebra  of) {0, 1, … } × [0, 1] which approximates in sufficiently strong

sense the averaged layer type distribution

Pn(B) =
1

m

m∑

k=1

P
(
(Xn,k,Qn,k) ∈ B

)
, B ∈ . (2)

In this fundamental regime, the network features are described by limiting formulas with rich

expressive power captured by cross moments and tail characteristics of P.

2.3 Notations

We denote Z+ = {0, 1, …}, (a)+ = max{0, a}, and (x)s = x(x − 1) · · · (x − s + 1). The indicator

function of a condition A is denoted by I(A) or IA, whichever is more convenient. Sets of size x are

called x-sets. Unordered pairs and triples are abbreviated as ij = {i, j} and ijk = {i, j, k}. We write∑′
ij and

∑′
ijk to indicate sums over ordered pairs and ordered triples with distinct elements. We write

an ≪ bn and an = o(bn) when an∕bn → 0, an ≲ bn and an = O(bn) when limsup|an∕bn| < ∞, and

an ∼ bn when an∕bn → 1. For a sequence of bivariate random variables (𝛼n, 𝛽n), we write 𝛼n = oP(𝛽n)
whenever limn→∞ P(|𝛼n| < 𝜀|𝛽n|) = 1 for any 𝜀 > 0; and 𝛼n = OP(𝛽n) if for every 𝜀 > 0 there exists

a constant c
𝜀
> 0 such that limn→∞ P(|𝛼n| < c

𝜀
|𝛽n|) > 1 − 𝜀. Notation 𝛼n = oP(𝛽n), 𝛼n = OP(𝛽n)

extends to the case where the sequence 𝛽n is deterministic (nonrandom).

A graph is a pair G = (V ,E) where E is a set of unordered pairs of elements of V . The degree and

component of node i in graph G are denoted by degG(i) and CG(i), respectively. The transitive closure

of graph G is defined as the graph G with V(G) = V(G) and E(G) = {ij ∶ i ∈ CG(j), j ∈ V(G)}
consisting of unordered node pairs connected by a path in G.

The probability distribution of a random variable X is denoted by (X). For probability measures,

𝑑tv(f , g) denotes the total variation distance, f ∗ g the convolution, and fn
w
−→ f refers to weak con-

vergence. Convergence in probability is denoted
P

−→. On countable spaces, the same letter is used for

both a probability measure f (A) and its density f (t) with respect to the counting measure. The Dirac

measure at x is denoted by 𝛿x. The densities of the binomial distribution Bin(x, q), with x ∈ Z+ and

q ∈ [0, 1], and the Poisson distribution Poi(𝜆) with 𝜆 ≥ 0, are denoted by

Bin(x, q)(t) =
(x

t

)
(1 − q)x−tqt

, Poi(𝜆)(t) = e−𝜆 𝜆
t

t!
,

with the convention that the densities are zero for t outside {0, … , x} and Z+, respectively. The

Bernoulli distribution is denoted Ber(q)(t) = Bin(1, q)(t). We also denote by

Bin
+(x, q)(t) = P

(
degHx+1,q

(1) = t
)

(3)
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the degree distribution of any particular node in the transitive closure Hx+1,q of a Bernoulli random

graph Hx+1,q on node set {1, … , x + 1}, where each node pair is linked with probability q, inde-

pendently of other node pairs. Alternatively, Bin
+(x, q)(t) equals the probability that the connected

component of any particular node in Hx+1,q has size t + 1. Both distributions have the same support

{0, … , x}, and Bin(x, q) ≤st Bin
+(x, q) in the strong stochastic order. No simple closed form expres-

sion is known for Bin
+(x, q)(t), but its values can be efficiently computed with the help of Gontcharoff

polynomials [2, 5]. The compound Poisson distribution with rate parameter 𝜆 and increment distribu-

tion g is denoted CPoi(𝜆, g); recall that this is the law of a random variable
∑Λ

k=1
Xk whereΛ,X1,X2, …

are mutually independent and such that (Λ) = Poi(𝜆) and (Xk) = g.

For any probability measure P on Z+×[0, 1], any P-distributed random variable (X,Q), and integers

r, s ≥ 0, we denote

(P)rs = E(X)rQs =
∫
(x)rqs P(𝑑x, 𝑑q), (4)

and when this quantity is finite and nonzero, we define mixed probability distributions Binrs(P) and

Bin
+
rs(P) on Z+ with probability mass functions

Binrs(P)(t) = E

(
Bin(X − r,Q)(t) (X)rQ

s

(P)rs

)
, (5)

Bin
+
rs(P)(t) = E

(
Bin

+(X − r,Q)(t) (X)rQ
s

(P)rs

)
, (6)

where Bin(0, q)(t) = Bin
+(0, q)(t) = I{t=0} and Bin(x, q) ≡ 0, Bin

+(x, q) ≡ 0 for x < 0.

3 MAIN RESULTS

3.1 Degree distribution

The model degree distribution is defined by

f (n)(t) = 1

n

n∑

i=1

P

(
degG(n)

(i) = t
)
, (7)

and represents the probability distribution of the number of neighbors of a randomly chosen node.

Because G(n) is an exchangeable random graph, we see that f (n) = 
(
degG(n)

(1)
)
.

Theorem 3.1. Assume that m
n
→ 𝜇 ∈ (0,∞) and Pn → P weakly together with (Pn)10 → (P)10 ∈

(0,∞) for some probability measure P on Z+×[0, 1]. Then the model degree distribution f (n) converges
weakly to the compound Poisson distribution f = CPoi(𝜇(P)10,Bin10(P)).

The limiting degree distribution f in Theorem 3.1 can be represented as the law of 𝜁 =
∑Λ

k=1
𝜁k

where Λ is Poisson distributed with mean 𝜇(P)10, 𝜁1, 𝜁2, … follow a mixed binomial distribution

Bin10(P), and the random variables in the sum are mutually independent. Here, Λ represents the num-

ber of layers covering a particular node, and 𝜁k the number of neighbors in a typical layer covering

the node. The mean equals E 𝜁 = 𝜇(P)21 ≤ ∞, and the variance equals Var(𝜁) = 𝜇 ((P)21 + (P)32)
for (P21), (P32) < ∞. Moreover, E(𝜁 r) < ∞ if and only if (P)r+1,r < ∞. The generating function is
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288 BLOZNELIS AND LESKELÄ

given by E(z𝜁 ) = e𝜆(ĝ10
(z)−1)

, where ĝ10(z) = ∫ (1 − q + qz)x−1 xP(𝑑x,𝑑q)
(P)

10

. The structure of P determines

whether or not the limiting degree distribution is light-tailed or heavy-tailed. Section 4 illustrates both

cases and provides examples of power laws with a tunable exponent. In Theorem 3.1 we have assumed

that (P)10 > 0. One can show that for (P)10 = 0 the asymptotic degree distribution is degenerate at zero.

3.2 Clustering

Given a finite (nonrandom) graph  = ( , ), the global clustering coefficient 𝜏 and the degree

dependent local clustering coefficient (also called clustering spectrum) 𝜎(k) are defined as follows.

Let N△ and N∨ denote the number of triangles and cherries (paths of length 2) of , respectively. Let

N△(v) be the number of triangles containing vertex v. Then

𝜏 =
3N△

N∨
, 𝜎(k) =

∑
v∈ N△(v)I{deg(v)=k}

∑
v∈

(
k
2

)
I{deg(v)=k}

. (8)

These network characteristics represent conditional probabilities of a link between two neighbors of a

randomly selected vertex. Let (v∗
1
, v∗

2
, v∗

3
) be an ordered triple of vertices sampled uniformly at random.

Let △v∗
1
,v∗

2
,v∗

3

denote the event that v∗
1
, v∗

2
, v∗

3
induce the triangle. Similarly, let ∨v∗

1
,v∗

2
,v∗

3

denote the event

that v∗
3

is adjacent to v∗
1

and v∗
2
. A straightforward calculation shows that the ratios (8) can be written

in the form

𝜏 = P
∗ (△v∗

1
,v∗

2
,v∗

3

|∨v∗
1
,v∗

2
,v∗

3

)
, 𝜎(k) = P

∗ (△v∗
1
,v∗

2
,v∗

3

|∨v∗
1
,v∗

2
,v∗

3

, deg(v∗3) = k
)
.

Here, the probability P∗ refers to random sampling of vertices v∗
1
, v∗

2
, v∗

3
. Below we consider similar

conditional probabilities, but defined for the random graph G (instead of )

𝜏(G) = P
(
△v∗

1
,v∗

2
,v∗

3

|∨v∗
1
,v∗

2
,v∗

3

)
, 𝜎(G)(k) = P

(
△v∗

1
,v∗

2
,v∗

3

|∨v∗
1
,v∗

2
,v∗

3

, degG(v∗3) = k
)
. (9)

We call 𝜏(G) the model (global) clustering coefficient and 𝜎(G)(k) the model clustering spectrum of

the random overlay graph G. Note that conditional probabilities (9) refer to two sources of randomness,

namely, the random graph G and the random sampling of vertices v∗
1
, v∗

2
, v∗

3
(which is assumed to be

independent of G). It is interesting to compare the probabilities (9) with the respective ratios 𝜏G and

𝜎G(k) of (8), where  is replaced by an instance of the random graph G. An argument bearing on the

law of large numbers (applied to the sums of random variables in the numerators and denominators

of ratios (8)) suggests that 𝜏G − 𝜏(G) = oP(1) and 𝜎G(k) − 𝜎(G)(k) = oP(1) as the number of vertices

n → +∞. Therefore, the model characteristics 𝜏(G) and 𝜎(G)(k) can be viewed as approximations to

the clustering coefficients 𝜏G and 𝜎G(k) and our asymptotic results for 𝜏(G) and 𝜎(G)(k) shown below

can likely be extended to 𝜏G and 𝜎G(k).
Now we focus on the model clustering characteristics 𝜏(G) and 𝜎(G)(k). We observe that since the

distribution of G is invariant under permutation of its vertices, we have that

𝜏(G) =
∑′

ijkP(G(ij),G(ik),G(jk))
∑′

ijkP(G(ij),G(ik))
, 𝜎(G)(k) =

∑′
ij𝓁P(degG(i) = k,G(ij),G(i𝓁),G(j𝓁))
∑′

ij𝓁P(degG(i) = k,G(ij),G(i𝓁))
,

where G(ij) represents the event that nodes i and j are adjacent, and the sums are taken over ordered

triples of distinct nodes. We denote 𝜏
(n) = 𝜏(G(n)) and 𝜎

(n)(k) = 𝜎(G(n))(k).
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BLOZNELIS AND LESKELÄ 289

Theorem 3.2. Assume that (Pn)rs → (P)rs < ∞ for rs = 21, 32, 33, and (P)21 > 0. Then
limn→∞ 𝜏

(n) = 𝜏, where

𝜏 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(P)33

(P)32

when m ≪ n and (P)32 > 0,

(P)33

(P)32 + 𝜇(P)221

when
m
n
→ 𝜇 ∈ (0,∞),

0 when n ≪ m ≪ n2
.

Remark (constant layer strengths). When Qk = q is constant for all k, we see that (P)rs = (p)rqs
where

(p)r equals the rth factorial moment of the limiting layer size distribution. In this case the limiting

model clustering equals
q(p)

3

(p)
3
+𝜇(p)2

2

and agrees with [9, 32].

Theorem 3.3. Assume that m
n
→ 𝜇 ∈ (0,∞), and Pn → P weakly together with (Pn)rs → (P)rs ∈

(0,∞) for rs = 10, 21, 32. Then 𝜎(n) → 𝜎 pointwise to the limit

𝜎(t) = (P)33 (f ∗ g33)(t − 2)
(P)32(f ∗ g32)(t − 2) + 𝜇(P)2

21
(f ∗ g21 ∗ g21)(t − 2)

, (10)

where f = CPoi(𝜇(P)10,Bin10(P)) is the limiting degree distribution in Theorem 3.1, and the
distributions grs = Binrs(P) are defined by (5).

Section 4 illustrates examples where the limiting clustering spectrum 𝜎(t) follows a power law.

3.3 Connected components

We denote by N1(G(n)) ≥ N2(G(n)) the two largest component sizes in G(n). For a probability distribution

h on Z+, we denote by

𝜌(h) = 1 −min

{

s ≥ 0 ∶
∑

x≥0

sxh(x) = s

}

the probability of eternal survival of a Galton–Watson branching process with offspring distribution h.

Theorem 3.4. Assume that m
n
→ 𝜇 ∈ (0,∞) and Pn → P weakly together with (Pn)10 → (P)10 ∈

(0,∞). Then

N1(G(n))
n

P

−→ 𝜌(f+) an𝑑
N2(G(n))

n
P

−→ 0,

where f + = CPoi(𝜇(P)10,Bin
+
10
(P)) is a compound Poisson distribution with rate parameter 𝜇(P)10

and increment distribution Bin
+
10
(P) defined by (6).

In Theorem 3.4 we have assumed that (P)10 > 0. One can show that for (P)10 = 0 we have

N
1
(G(n))
n

P

−→ 0.
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290 BLOZNELIS AND LESKELÄ

3.4 Site percolation

We may analyze how a subset of nodes S ⊂ {1, … , n} is connected by considering a site-percolated
graph defined as the subgraph

̌G = G[S] (11)

of G induced by S. The site-percolated overlay graph is an instance of the overlay graph model (1) on the

vertex set S with layers ( ̌G1,
̌X1,

̌Q1), … , ( ̌Gm, ̌Xm, ̌Qm) such that ̌Gk has vertex set V( ̌Gk) = S ∩ V(Gk)
of size ̌Xk ∶= |V( ̌Gk)| and ̌Qk = Qk. Note that the conditional distribution of ̌Xk given Xk = |V(Gk)|
is hypergeometric. An approximation of the hypergeometric distribution by a binomial distribution

Bin(Xk, 𝜃) with
|S|
n
≈ 𝜃 suggests replacing the limiting layer type distribution P by

̌P(A) =
∫

(
Bin(x, 𝜃) × 𝛿q

)
(A) P(𝑑x, 𝑑q).

The following result confirms that this modification is well justified, and summarizes the results of

Theorems 3.1–3.4 adjusted to site percolation.

Theorem 3.5. Assume that m
n
→ 𝜇 ∈ (0,∞), Pn → P weakly together with (Pn)10 → (P)10 ∈ (0,∞),

and Sn ⊂ {1, … , n} satisfies |Sn|
n
→ 𝜃 ∈ (0, 1]. Then the following approximations are valid for the

site-percolated graph ̌G(n) = ̌G(n)[Sn]:

(i) The degree distribution converges weakly to ̌f = CPoi
(
𝜇( ̌P)10,Bin10( ̌P)

)
.

(ii) |Sn|−1N1

(
̌G(n)

) P

−→ 𝜌(̌f+) and |Sn|−1N2

(
̌G(n)

) P

−→ 0 with ̌f + = CPoi
(
𝜇( ̌P)10,Bin

+
10
( ̌P)

)
.

If we also assume that (Pn)rs → (P)rs ∈ (0,∞) for rs = 21, 32, 33, then

(iii) The model clustering coefficient 𝜏( ̌G(n)) converges to 𝜏 where 𝜏 is the corresponding limit of the
nonpercolated graph G(n).

(iv) The model clustering spectrum 𝜎( ̌G(n)) converges pointwise to 𝜎̌ defined by replacing f and grs
in (10) by ̌f and ǧrs = Binrs( ̌P).

3.5 Bond percolation

Bond percolation studies how well the nodes of a graph are connected along a subset of links obtained

by random sampling. In a multilayer network, we may either sample (i) a subset of links of the overlay

graph, or (ii) independent subsets of links for each layer separately. To analyze these cases for the

overlay graph model G = G(n) in (1), we define an overlay bond-percolated graph by

̂G = G ∩ H, (12)

and a layerwise bond-percolated graph ̃G by

V( ̃G) = {1, … , n} and E( ̃G) = ∪m
k=1

E (Gk ∩ Hk) , (13)

where H,H1, … ,Hm are mutually independent random graphs on {1, … , n} in which each node

pair is linked with probability 𝜃, independently of other node pairs, and independently of the layers

(Gk,Xk,Qk). To emphasize the dependence on 𝜃 we sometimes write ̂G = ̂G(𝜃) and ̃G = ̃G(𝜃).
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BLOZNELIS AND LESKELÄ 291

In an epidemic modeling context, the standard SIR epidemic model is used to model individuals

who infect their neighbors with probability 𝜃, independently of each other [2]. The links of a graph

G represent social contacts, and the bond-percolated component of node i corresponds to the set of

eventually infected individuals in a population where node i is initially infectious and the other nodes

susceptible. Bond percolation on the overlay graph can be used to develop finer models to model

contacts of individuals generated by social communities (households, workplaces, schools) of variable

size and strength. Layerwise percolation ̃G then models the case where infections occur independently

inside the communities, and the overlay bond-percolation ̂G models the case where infections occur

between individuals regardless of the underlying community structure.

The layerwise bond-percolated graph is an instance of the overlay model (1) with layer types

(Xk, 𝜃Qk). This suggests considering a modified limiting layer type distribution

̂P(A) =
∫
(𝛿x × 𝛿𝜃q)(A) P(𝑑x, 𝑑q).

We expect the overlay bond-percolated model to behave similarly to the layerwise bond-percolated

model in sparse regimes where the layers do not overlap much. The following result confirms this, and

summarizes the results of Theorems 3.1–3.4 adjusted to bond percolation.

Theorem 3.6. Assume that m
n
→ 𝜇 ∈ (0,∞), and Pn

w
−→ P together with (Pn)10 → (P)10 ∈ (0,∞),

and 𝜃 ∈ (0, 1]. Then the following approximations are valid for both the overlay bond-percolated
graph ̂G(n) = ̂G(n)(𝜃) and layerwise bond-percolated graph ̃G(n) = ̃G(n)(𝜃):

(i) The degree distribution converges weakly to ̂f = CPoi
(
𝜇( ̂P)10,Bin10( ̂P)

)
.

(ii) For N1 and N2 denoting the largest and the second largest component sizes we have n−1N1

P

−→

𝜌(̂f+) and n−1N2

P

−→ 0 with ̂f + = CPoi
(
𝜇( ̂P)10,Bin

+
10
( ̂P)

)
.

If we also assume that (Pn)rs → (P)rs ∈ (0,∞) for rs = 21, 32, 33, then:

(iii) The model clustering coefficient converges to 𝜃𝜏 where 𝜏 is the corresponding limit of the
nonpercolated graph G(n).

(iv) The model clustering spectrum converges pointwise to 𝜎̂ defined by replacing P, f , and grs in
(10) by ̂P, ̂f , and ĝrs = Binrs( ̂P).

3.6 Double phase transition

Theorem 3.6 shows that the largest relative component size in the bond-percolated graph is approxi-

mated by the survival probability 𝜌(̂f+) of a Galton–Watson process with compound Poisson offspring

distribution ̂f + = CPoi
(
𝜇( ̂P)10,Bin

+
10
( ̂P)

)
. The mean of the offspring distribution can be written as

1

R0(𝜃) = 𝜇
∫

R(x − 1, 𝜃q) xP(𝑑x, 𝑑q), (14)

where R(x, q) =
∑

t≥0
t Bin

+(x, q)(t) defined using (3) represents the expected degree of a node in

the transitive closure of Bernoulli random graph with x + 1 nodes and link probability q. Classical

branching process theory tells that 𝜌(̂f+) > 0 if and only if R0(𝜃) > 1. Hence the largest component in

1R0(𝜃) can be interpreted as the basic reproduction number “R naught” in the epidemiological context.
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292 BLOZNELIS AND LESKELÄ

the bond-percolated graph is sublinear for 𝜃 < 𝜃1, and linear for 𝜃 > 𝜃1, where the critical threshold

is defined by

𝜃1 = sup{𝜃 ∈ [0, 1] ∶ R0(𝜃) < 1}.

The overlay graph model studied in this article involves another nontrivial phase transition associated

with a critical threshold value

𝜃2 = sup{𝜃 ∈ [0, 1] ∶ R0(𝜃) < ∞}.

Section 4 describes an example where 0 < 𝜃1 < 𝜃2 < 1.

The first phase transition at 𝜃1 characterizes the emergence of a giant component in a

bond-percolated overlay graph. To understand the second phase transition, note that R0(𝜃) is propor-

tional to the expected number of nodes which can be reached by paths within a typical bond-percolated

layer covering a particular node. The second phase transition at 𝜃2 hence amounts to the emergence of

gigantic components inside bond-percolated layers covering a typical node.

In the epidemic context discussed in Section 3.5, we note that the critical quantity R0(𝜃) does not
refer to the number of individuals directly infected by a reference individual in an otherwise suscep-

tible population, unlike in classical SIR models. Rather, R0(𝜃) also counts the number of individuals

indirectly infected by the reference individual via single-layer infection paths.

4 POWER-LAW MODELS

This section illustrates the rich statistical features of the overlay model by discussing the results of

Section 3 in a setting where the limiting layer strength is a deterministic function of layer size according

to Q = g(X) for some g ∶ Z+ → [0, 1], and the limiting layer type distribution factorizes according to

P(𝑑x, 𝑑q) = p(𝑑x)𝛿g(x)(𝑑q), (15)

where the layer size distribution p is a probability on Z+. We are especially interested in the case where

the probability mass function p(x) = P(X = x) of the layer size distribution and g(x) follow power laws

p(x) = L(x)x−𝛼 and g(x) = bx−𝛽 (16)

with exponents 𝛼 ≥ 2 and 𝛽 ≥ 0. Here L(x) is a slowly varying function at +∞, b > 0 is a constant,

and we choose b ≤ 1 for 𝛽 = 0. We will assume that (16) holds for large x. Note that for r, s satisfying

𝛼 + s𝛽 > r + 1 the cross moment

(P)rs =
∑

x≥0

(x)rg(x)sp(x)

is finite. It is also finite in the case where 𝛼 + s𝛽 = r + 1 and x−1L(x) is integrable at +∞.

4.1 Degree distribution and clustering spectrum

Theorems 4.1 and 4.2 below establish power laws for the limiting degree distribution and clus-

tering spectrum. Figures 1 and 2 illustrate how the associated power-law exponents relate to the
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BLOZNELIS AND LESKELÄ 293

FIGURE 1 Power-law exponent of degree distribution as a function of layer size exponent 𝛼 and layer strength exponent 𝛽.

FIGURE 2 Power-law exponent of clustering spectrum as a function of layer size exponent 𝛼 and layer strength exponent 𝛽.

The assumptions of Theorem 4.2 do not hold in the grey areas where (P)32 = ∞.

corresponding exponents of layer sizes and layer strengths. Remarkably, the power law of the cluster-

ing spectrum admits a tunable exponent in [0, 2]. A similar power law with exponent 1 has earlier been

established for a random intersection graph [9] and for a spatial preferential attachment random graph

[27], and with exponent restricted to [0, 1] for inhomogeneous random intersection graphs [7, 10, 12]

and a hyperbolic random geometric graph model [24].

Theorem 4.1. Let 𝛼 ≥ 2, 𝛽 ≥ 0, and b > 0. Assume (16) and (P)10 < ∞.

(i) If 𝛽 ∈ (0, 1), then the limiting degree distribution f satisfies as t → +∞

f (t) ∼ cL
(
t1∕(1−𝛽)) t−𝛿 (17)

for 𝛿 = 1 + 𝛼−2

1−𝛽
and c = 𝜇(1 − 𝛽)−1b𝛿−1

.

(ii) Relation (17) holds also for 𝛽 = 0. Note that in this case we have b ≤ 1.

(iii) If 𝛽 ≥ 1, then the limiting degree distribution is light-tailed with the moment generating function
bounded by

∑
t≥0

estf (t) ≤ exp
{
(eB(es−1) − 1)𝜇(P)10

}
∀s. Here B = maxx xg(x).

Theorem 4.2. Let 𝛼 > 2. Let 𝛽 ∈ [0, 1) be such that 𝛼 + 2𝛽 > 4. Assume that for some a, b > 0 (16)
holds with L(x) = a + o(1) as x → +∞. For 𝛽 = 0 we assume in addition that b < 1. Then the model
clustering spectrum defined by (10) follows a power law according to

𝜎(t) ∼
⎧
⎪
⎨
⎪
⎩

c1t−𝛽∕(1−𝛽), 𝛽 < 2∕3,

c2t−2
, 𝛽 = 2∕3,

c3t−2
, 𝛽 > 2∕3,

where c1 = b1∕(1−𝛽)
, c3 = 𝜇(P)33, and c2 = c1 + c3. In particular, 𝜎(t) ∼ b for 𝛽 = 0.
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294 BLOZNELIS AND LESKELÄ

We remark that the inequality 𝛼 + 2𝛽 > 4 implies (P)10, (P)21, (P)32 < ∞; in particular the

asymptotic degree distribution has a finite second moment/variance.

Networks with 𝜎(t) ≪ t−1
are sometimes called weakly clustered, and those with 𝜎(t) ≫ t−1

strongly clustered [4]. According to Theorem 4.2, the overlay graph model produces weakly clustered

networks for 𝛽 >

1

2
, and strongly clustered networks for 𝛽 <

1

2
. We believe Theorem 4.2 can be

extended to more general subexponential distributions p(x). We do not pursue this line here to avoid

unnecessary technicalities.

4.2 Existence of double phase transition

For the power-law model (16), the function in (14) can be computed as R0(𝜃) = 𝜇

∑
x R(x − 1,

𝜃g(x))xp(x). By applying a classical giant component result for Bernoulli random graphs [30, Theorem

5.4], one may verify that
2

lim sup
x→∞

𝜃xg(x) ≤ 1 − 𝜀 ⇒ lim sup
x→∞

R(x − 1, 𝜃g(x)) ≤ 2𝜀
−2
,

lim inf
x→∞

𝜃xg(x) ≥ 1 + 𝜀 ⇒ lim inf
x→∞

x−1R(x − 1, 𝜃g(x)) > 0.

(18)

If 𝛼 > 3, then the limiting layer size distribution p has a finite second moment and R(x− 1, q) ≤ x− 1

implies that R0(1) < ∞. Hence 𝜃2 = 1, and the second phase transition cannot occur. On the other

hand, when 𝛼 ∈ (2, 3], the limiting layer size distribution has infinite second moment. In this case

(18) yields the following conclusions:

(1) 𝛽 = 1 with b > 1. Then R0(𝜃) < ∞ for 𝜃 < b−1
, and R0(𝜃) = ∞ for 𝜃 > b−1

. Hence 𝜃2 = b−1 ∈
(0, 1). Assume in addition that the constant a in (16) is large enough so that 𝜇𝜃(P)21 ≥ 1 for

𝜃 = 1

2
𝜃2. Then ̂f + ≥st

̂f implies that R0(𝜃) =
∑

t t̂f +(t) ≥
∑

t t̂f (t) = 𝜇𝜃(P)21 ≥ 1 for 𝜃 = 1

2
𝜃2,

and the continuity of R0(𝜃) on [0, 𝜃2) implies that 𝜃1 ∈ (0, 1

2
𝜃2). There are hence two critical

values 0 < 𝜃1 < 𝜃2 < 1 in which the model displays two distinct phase transitions.

(2) 𝛽 ∈ (1,∞), or 𝛽 = 1 with b < 1. Then R0(𝜃) < ∞ for all 𝜃 ∈ [0, 1], so that 𝜃2 = 1, and the

second-type phase transition cannot occur.

(3) 𝛽 ∈ [0, 1). Then one can show that R0(𝜃) = ∞ for all 𝜃 ∈ (0, 1], and hence 𝜃1 = 𝜃2 = 0, and

there are no phase transitions of either type.

The above observations confirm the existence of a double phase transition in bond percolation, as

postulated in [19], for a natural network model admitting tunable power-law exponents for both the

degree distribution and the clustering spectrum. Together with Theorems 4.1 and 4.2, this opens up a

flexible framework for studying the significance and interrelations of these power laws to bond and site

percolation properties in clustered complex networks. The investigation of how these phase transitions

are reflected in the core-periphery organization of the network [4, 19] remains an important topic for

future research.

5 NOTATION USED IN PROOFS

Let (X,Q) and (Xn,𝜋 ,Qn,𝜋) be bivariate random variables with the distributions P and Pn respectively

(one may interpret 𝜋 as a integer selected uniformly at random from {1, … ,m}). For a random variable

2
The first implication in (18) follows by noting that if xq < 1, then the proof of Theorem 5.4 [30] shows that E|CHx,q

(1)| =
∑

t≥1
P(|CHx,q

(1)| ≥ t) ≤
∑

t≥1
e−

1

2
(1−xq)2 t

≤ ∫
∞

0
e−

1

2
(1−xq)2 t

𝑑t ≤ 2(1 − xq)−2
, so that R(x − 1, q) = E|CHx,q

(1)| − 1 ≤ 2(1 − xq)−2
.
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BLOZNELIS AND LESKELÄ 295

𝜉 we denote by P
𝜉

the probability distribution of 𝜉 and write 𝜉 ∼ P
𝜉

(equivalently, P
𝜉
= (𝜉)). For

a bivariate random variable (𝜉, 𝜂) we denote by P𝜂
𝜉

the conditional probability distribution of 𝜉 given

𝜂. In particular, P𝜂
𝜉

(B) = E(I{𝜉∈B}|𝜂), for a Borel set B. In the proof of Theorem 3.1 below we use the

inequality

𝑑tv(P𝜉 ,P𝜁 ) ≤ E 𝑑tv

(
P𝜂
𝜉

,P𝜂
𝜁

)
. (19)

For vectors x = (x1, … , xm) ∈ Rm
and q = (q1, … , qm) ∈ [0, 1]m we denote (x, q) =

((x1, q1), … , (xm, qm)). With a little abuse of notation we write (xn, qn) = ((xn,1, qn,1), … , (xn,m, qn,m))
and (Xn,Qn) = ((Xn,1,Qn,1), … , (Xn,m,Qn,m)). To stress the dependence of the overlay graph on the

sequence (Xn,Qn) we write G(n) = G(Xn,Qn)
. By V = {v1, … , vn} we denote the vertex set of G(n). The

vertex sets of the layers Gn,j are denoted Dj, 1 ≤ j ≤ m.

Next we introduce an 𝜀-discretization of the space [0, 1] of admissible layer strengths (edge densi-

ties) which helps to reduce the analysis of the general model with potentially uncountably many layer

types into a one with finitely many layer types. For any 𝜀 ∈ (0, 1) we fix numbers 0 = s0 < s1 < · · · <
sr = 1 (with r ≤ 2∕𝜀) such that P(Q = si) = 0 for 0 < si < 1 and |si − si−1| < 𝜀 for 1 ≤ i ≤ r. Rela-

tive to this mesh, we define down-rounding and up-rounding operations q → q− and q → q+ on [0, 1]
using the formulas

q+ = s1I{q=0} +
r∑

i=1

siI{si−1
<q≤si}, q− =

r∑

i=1

si−1I{si−1
<q≤si}. (20)

For q ∈ [0, 1]m we denote q − = (q−
1
, … , q−m), q+ = (q+

1
, … , q+m) and write

(x, q −) =
(
(x1, q−1 ), … , (xm, q−m)

)
, (x, q+) =

(
(x1, q+1 ), … , (xm, q+m)

)
. (21)

Furthermore, we denote for short G+ = G(Xn,Q
+
n )

and G− = G(Xn,Q
−
n )

. In particular, G+
is the superpo-

sition of the layers (G+
n,1,Xn,1,Q+

n,1), … , (G+
n,m,Xn,m,Q+

n,m). In view of the coordinate-wise inequalities

Q−
n,i ≤ Qn,i ≤ Q+

n,i, 1 ≤ i ≤ m, there is a natural coupling of random graphs G−
,G+

, and G(n) such

that P(G−
⊂ G(n) ⊂ G+) = 1. By 𝑑, 𝑑

+
, and 𝑑

−
we denote the degree of vertex v1 in G(n), G+

and G−

respectively. The discretization is used in the proofs of Theorems 3.1 and 3.4. Given 𝜀 ∈ (0, 1) we first

establish respective results for G−
and G+

and then letting 𝜀 ↓ 0 we carry them over to G(n) using the

coupling G−
⊂ G(n) ⊂ G+

.

By E(X,Q) and P(X,Q) we denote the conditional expectation and probability given the random vector

(Xn,Qn).

6 ANALYSIS OF DEGREE DISTRIBUTIONS

Here we prove Theorem 3.1. Before the proof we collect some useful facts about the compound Poisson

distribution and the total variation distance. Let 𝜆1, 𝜆2 > 0. Let 𝜉, 𝜂 be random variables and let

Z
𝜉
∼ CPoi(𝜆1,(𝜉)) and Z

𝜂
∼ CPoi(𝜆2,(𝜂)) be independent compound Poisson random variables.

Let I be Bernoulli random variable independent of (𝜉, 𝜂) having the success probability P(I = 1) =
𝜆1∕(𝜆1 + 𝜆2). Then

Z
𝜉
+ Z

𝜂
∼ CPoi(𝜆1 + 𝜆2,(𝜁)), where 𝜁 = I𝜉 + (1 − I)𝜂. (22)
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296 BLOZNELIS AND LESKELÄ

In the particular case where 𝜉 and 𝜂 take values in Z+ we have

P(𝜁 = k) = 𝜆1

𝜆1 + 𝜆2

P(𝜉 = k) + 𝜆2

𝜆1 + 𝜆2

P(𝜂 = k), k ∈ Z+. (23)

If, in addition, (𝜉) = (𝜂) then we have (𝜁) = (𝜉) = (𝜂).

Lemma 6.1. Let 𝛾, 𝜂 be non-negative integer valued random variables. Let {𝜉t, t ≥ 0} and
{𝜁t, t ≥ 0} be sequences of independent random variables. Assume that {𝜉t, t ≥ 0} is independent of
𝛾 , and {𝜁t, t ≥ 0} is independent of 𝜂. Then

𝑑tv

(
(𝜉

𝛾
),(𝜁

𝜂
)
)
≤ 2𝑑tv ((𝛾),(𝜂)) +

∑

t≥0

𝑑tv ((𝜉t),(𝜁t))P(𝜂 = t). (24)

Proof. We can assume that {𝜉t, t ≥ 0} and 𝜂 are independent. By the triangle inequality

𝑑tv

(
(𝜉

𝛾
),(𝜁

𝜂
)
)
≤ 𝑑tv

(
(𝜉

𝛾
),(𝜉

𝜂
)
)
+ 𝑑tv

(
(𝜉

𝜂
),(𝜁

𝜂
)
)
.

Furthermore, the identities that hold for any Borel set B ⊂ R

P(𝜉
𝛾
∈ B) − P(𝜉

𝜂
∈ B) =

∑

t≥0

(P(𝛾 = t) − P(𝜂 = t))P(𝜉t ∈ B)

P(𝜉
𝜂
∈ B) − P(𝜁

𝜂
∈ B) =

∑

t≥0

(P(𝜉t ∈ B) − P(𝜁t ∈ B))P(𝜂 = t)

imply

𝑑tv

(
(𝜉

𝛾
),(𝜉

𝜂
)
)
≤ 2𝑑tv((𝛾),(𝜂)),

𝑑tv

(
(𝜉

𝜂
),(𝜁

𝜂
)
)
≤
∑

t≥0

𝑑tv((𝜉t),(𝜁t))P(𝜂 = t).

▪

We apply Lemma 6.1 to compound Poisson random variables. Let a, b > 0. Let 𝜉, 𝜁 be random

variables. It follows from the lemma that

𝑑tv (CPoi(a,(𝜉)),CPoi(b,(𝜁))) ≤ 2|a − b| + b𝑑tv ((𝜉),(𝜁)) (25)

To see how (25) follows from (24) put 𝛾 ∼ Poi(a), 𝜂 ∼ Poi(b) and 𝜉t ∶= 𝜉

(1)
1
+ · · · + 𝜉(t), 𝜁t ∶=

𝜁

(1) + · · · + 𝜁 (t), where 𝜉
(i)

, i ≥ 1, and 𝜁
(j)

, j ≥ 1, are independent copies of 𝜉 and 𝜁 respectively. Then

use the triangle inequality 𝑑tv(((𝜉t),(𝜁t)) ≤ 𝑑tv((𝜉),(𝜁)) and the fact that E𝜂 = b.

Proof of Theorem 3.1. In the proof we drop the subscript n when it does not cause an ambiguity.

Thus we write G = G(n), Gj = Gn,j, G+
n,j = G+

j and Xj = Xn,j, Qj = Qn,j, (X,Q) = (Xn,Qn), X
𝜋
= Xn,𝜋 .

We begin by outlining the idea of the proof. The degree 𝑑 of vertex v1 in the overlay random graph G
is approximated by the sum of degrees of v1 in the layers Gj containing this vertex. We denote this sum

LA =
∑

1≤j≤m
I{v

1
∈Dj}H(j). (26)
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BLOZNELIS AND LESKELÄ 297

Here, I{v
1
∈Dj} is the indicator of the event {v1 ∈ Dj} and H(j) stands for the degree of v1 in Gj. In the

sparse regime considered it is rather unlikely that two layers intersect in more than one point. Hence

we approximate

𝑑 = LA + oP(1). (27)

Note that only the layers of size at least 2 may contribute to the sum LA. We denote the respec-

tive number of layers SA =
∑

1≤j≤m I{v
1
∈Dj,Xj≥2}. In order to analyze the distributions of LA and

SA it is convenient to condition on (Xj,Qj), 1 ≤ j ≤ m. Then SA becomes the sum of inde-

pendent Bernoulli random variables and its distribution is approximately Poi

(
m
n

x̃∗
)

, where

x̃∗ = 1

m

∑
1≤j≤m XjI{Xj≥2}. Furthermore, each H(j) has binomial distribution Bin(Xj − 1,Qj) and the

probability that it will contribute to the sum LA is proportional to Xj. This in turn yields that the

typical contribution to the sum (26) by a layer of size at least 2 has the size biased mixed binomial

distribution

h(t) = h(X,Q)(t) = 1

x̃∗
1

m
∑

1≤j≤m
Bin(Xj − 1,Qj)(t)XjI{Xj≥2}, t = 0, 1, … , (28)

while the conditional distribution of LA is approximately CPoi

(
m
n

x̃∗, h
)

.

Finally, letting n,m → +∞ we approximate
m
n

x̃∗ → 𝜇x∗, where x∗ = EXI{X≥2}. Furthermore, we

approximate h by the distribution h∗, where

h∗(t) =
1

x∗
EBin(X − 1,Q)(t)XI{X≥2}, t = 0, 1, 2 … . (29)

In this way we establish the approximation CPoi

(
m
n

x̃∗, h
) w
−→ CPoi(𝜇x∗, h∗). We conclude the outline

with the observation that

CPoi(𝜇x∗, h∗) = CPoi (𝜇(P)10,Bin10(P)) . (30)

Indeed, a simple calculation shows that

(P)10 = EX = P(X = 1) + x∗,
(P)10Bin10(P)(0) = x∗ (P(X = 1) + h∗(0)) ,
(P)10Bin10(P)(t) = x∗h∗(t), t ≥ 1.

These identities imply the relation (P)10(ĝ − 1) = x∗( ̂h∗ − 1) between the Fourier transforms ĝ and

̂h∗ of the increment distributions Bin10(P) and h∗. The latter relation establishes the correspondence

between the Fourier transforms of respective compound distributions (30).

Finally, we mention that the rigorous proof of Theorem 3.1 is a bit more complex and the proof

idea is somewhat hidden by technicalities including the truncation and discretization.

Now we give a rigorous proof. We first consider the special case where there exists M > 0 such

that Xn,j ≤ M almost surely for each n and 1 ≤ j ≤ m.

Given 0 < 𝜀 < 1, consider 𝜀-discretized random variables Q+
and Q−

and the overlay graphs G+

and G−
defined by the vectors (Xn,Q

+
n ) and (Xn,Q

−
n ), see (20), (21). Let h+∗ and h−∗ denote the distribu-

tions defined by (29), where Q is replaced by Q+
and Q−

respectively. Let 𝑑
+
∗ = 𝑑+∗ (𝜀) and 𝑑

−
∗ = 𝑑−∗ (𝜀)
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298 BLOZNELIS AND LESKELÄ

be compound Poisson random variables with the distributions CPoi(𝜇x∗, h+∗ ) and CPoi(𝜇x∗, h−∗ ). Note

that as 𝜀 → 0

(𝑑+∗ )
w
−→ CPoi(𝜇x∗, h∗) and (𝑑−∗ )

w
−→ CPoi(𝜇x∗, h∗). (31)

Now we turn to the analysis of the degrees 𝑑, 𝑑
+

and 𝑑
−

. We will show below that

(𝑑−)
w
−→ (𝑑−∗ ) and (𝑑+)

w
−→ (𝑑+∗ ). (32)

Since the coupling G−
⊂ G ⊂ G+

implies the coupling 𝑑
− ≤ 𝑑 ≤ 𝑑+ we have

P(𝑑+ ≤ t) ≤ P(𝑑 ≤ t) ≤ P(𝑑− ≤ t) ∀ t ≥ 0. (33)

Combining (32) and (33) we obtain

P(𝑑+∗ ≤ t) = lim inf
n

P(𝑑+ ≤ t) ≤ lim inf
n

P(𝑑 ≤ t) (34)

≤ lim sup
n

P(𝑑 ≤ t) ≤ lim sup
n

P(𝑑− ≤ t) = P(𝑑−∗ ≤ t).

Finally, letting 𝜀 ↓ 0 we obtain from (31), (34) that (𝑑)
w
−→ CPoi(𝜇x∗, h∗).

It remains to prove (32). We only show the second relation. The proof of the first one is the same.

At this point we need some more notation. Recall 𝜀-discretization (20). Let 𝜂
(j)
k,i, 𝜉

(j)
k,i, Hk,i, H(j)

k,i, H(j,l)
k,i for

k ≥ 2 and 1 ≤ i ≤ r and j, l ≥ 1 be independent random variables. We assume that 𝜂
(j)
k,i and 𝜉

(j)
k,i have

Poisson and Bernoulli distributions with mean values E𝜂
(j)
k,i = E𝜉

(j)
k,i = k∕n. Furthermore, Hk,i, H(j)

k,i,

H(j,l)
k,i have binomial distribution Bin(k − 1, si), where si, 1 ≤ i ≤ r are the same as in (20). Let

L1 =
∑

1≤j≤m
Ij(v1)H+(j) =

∑

1≤j≤m
Ij(v1)H+(j)I{Xj≥2}, (35)

where H+(j) stands for the number of neighbors of v1 created by the layer G+
j . In particular, given

(X,Q), the random variable H+(j) has binomial distribution Bin(Xj − 1,Q+
j ). Introduce random sets

k,i = {j ∶ (Xj,Q+
j ) = (k, si)} and denote their sizes mk,i = |k,i|. Furthermore, put

S =
∑

1≤j≤m
XjI{Xj≥2}, ̂

𝜆 = S
n
= m

n
x̃∗, p̂k,i =

kmk,i

S
I{S>0}, 1 ≤ i ≤ r, k ≥ 2.

Next we condition on (X,Q). Given (X,Q) such that S > 0 define random variables

L2 = L2(X,Q) =
∑

2≤k≤M

r∑

i=1

mk,i∑

j=1

𝜉

(j)
k,iH

(j)
k,i, L3 = L3(X,Q) =

∑

2≤k≤M

r∑

i=1

mk,i∑

j=1

𝜂

(j)
k,i∑

l=1

H(j,l)
k,i .

For S = 0 we put L2 ≡ 0 and L3 ≡ 0.

We observe that the conditional distributions P(X,Q)L
2

and P(X,Q)L
1

do coincide. To see this we partition

the index set {j ∶ Xj ≥ 2} = ∪(k,i)k,i of the second sum of (35) and note that the conditional

distributions of
∑mk,i

j=1
𝜉

(j)
k,iH

(j)
k,i and

∑
j∈k,i

Ij(v1)H+(j) do coincide. Another useful fact is that for S > 0
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BLOZNELIS AND LESKELÄ 299

the conditional distribution P(X,Q)L
3

is a compound Poisson distribution. Moreover, using the property

(22), (23) one can easily show that P(X,Q)L
3

= CPoi( ̂𝜆, h+), where

h+(t) = h+(X,Q)(t) =
∑

2≤k≤M

∑

1≤i≤r
P(Hk,i = t)p̂k,i, t = 0, 1, 2, … .

Now we are ready for the proof of (32). We observe that 𝑑
+ ≠ L1 implies that some vl ≠ v1 is a

neighbor of v1 in at least two different layers. We have, by the union bound and symmetry, that

P(𝑑+ ≠ L1) ≤ (n − 1)
∑

i<j
P(v1, v2 ∈ Di ∩ Dj) = (n − 1)

∑

i<j

(
E
(Xi)2
(n)2

)(
E
(Xj)2
(n)2

)

≤ (n − 1)m
2

n4

(
EX2

𝜋

)2

.

Invoking EX2
𝜋
≤ M2

and using the fact that (L2) = (L1) we obtain

𝑑tv((𝑑+),(L2)) = 𝑑tv((𝑑+),(L1)) ≤ P(𝑑+ ≠ L1) = O(n−1). (36)

Next we evaluate 𝑑tv((L2),(L3)). To this aim we consider an array of random variables starting with

L2 and ending at L3 where each subsequent element of the sequence is obtained from the previous

one by replacing 𝜉
(j)
k,iH

(j)
k,i =

∑
1≤l≤𝜉(j)k,i

H(j,l)
k,i by

∑
1≤l≤𝜂(j)k,i

H(j,l)
k,i . We proceed until all the products 𝜉

(j)
k,iH

(j)
k,i

are replaced so that at the array ends with L3. By the triangle inequality, the total variation distance

between the conditional distributions

𝑑tv

(
P(X,Q)L

2

,P(X,Q)L
3

)
≤

∑

2≤k≤M

∑

1≤i≤r

∑

1≤j≤mk,i

𝑑tv

(

(
𝜉

(j)
k,i
)
,

(
𝜂

(j)
k,i
))
.

Invoking the bound 𝑑tv

(

(
𝜉

(j)
k,i
)
,

(
𝜂

(j)
k,i
))
≤ 2k2∕n2

, which follows by Le Cam’s inequality [42], we

obtain

𝑑tv

(
P(X,Q)L

2

,P(X,Q)L
3

)
≤ 2

∑

1≤j≤m
X2

j n−2 ≤
2m
n2

E(X,Q)X
2
𝜋
.

Now an application of (19) yields

𝑑tv ((L2),(L3)) ≤
2m
n2

EX2
𝜋
≤

2m
n2

M2 = O(n−1). (37)

Finally, we evaluate the distance 𝑑tv((L3),(𝑑+)), where (𝑑+) = CPoi(𝜇x∗, h+∗ ). For this purpose it

is convenient to write h+∗ in the form

h+∗ (t) =
∑

2≤k≤M

∑

1≤i≤r
P(Hk,i = t)p+k,i, p+k,i ∶=

k
x∗

P(X = k,Q+ = si).

Recall that given (X,Q) the conditional distribution of L3 is CPoi( ̂𝜆, h+). It follows from (25) that

𝑑tv

(
CPoi( ̂𝜆, h+),CPoi(𝜇x∗, h+∗ )

)
≤ 2| ̂𝜆 − 𝜇x∗| + 𝜇x∗ 𝑑tv(h+, h+∗ ). (38)
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300 BLOZNELIS AND LESKELÄ

Furthermore, Lemma 6.1 implies

𝑑tv(h+, h+∗ ) ≤ 2

∑

2≤k≤

∑

1≤i≤r
|p̂k,i − p+k,i|. (39)

(Here we apply Lemma 6.1 to 𝜉k,i = 𝜁k,i = Hk,i in the case where 𝛾 and 𝜂 are bivariate random vari-

ables with the distributions P(𝛾 = (k, i)) = p̂k,i and P(𝜂 = (k, i)) = p+k,i.) We observe that both terms on

the right of (38) vanish in probability. Indeed, by the weak law of large numbers (we use Chebyshev’s

inequality), our assumption Pn
w
−→ P implies ̂𝜆−𝜆

P

−→ 0 and p̂k,i−p+k,i
P

−→ 0 for each k and i. Since the

number of different pairs (k, i) is finite, we conclude that 𝜏 ∶= 𝑑tv(CPoi( ̂𝜆, h+),CPoi(𝜇x∗, h+∗ )
P

−→ 0.

In view of the obvious inequality 𝜏 ≤ 1 we have also that E𝜏 = o(1). Now (19) implies

𝑑tv((L3),(𝑑+∗ )) = o(1).
Finally, from the latter bound combined with (36), (37) we derive (32), by the triangle inequality:

𝑑tv

(
(𝑑+),(𝑑+∗ )

)
≤ 𝑑tv

(
(𝑑+),(L2)

)
+ 𝑑tv ((L2),(L3)) + 𝑑tv

(
(L3),(𝑑+∗ )

)
= o(1).

Now we revoke the extra condition that Xn,j ≤ M almost surely for each n and 1 ≤ j ≤ m. From

now on let {(Xn,j,Qn,j), n ≥ 1, 1 ≤ j ≤ mn} be arbitrary bivariate random variables satisfying con-

ditions of the theorem. Given M > 0, let G[M]
(n) be the random overlay graph defined by the sequence((

X[M]n,1 ,Qn,1
)
, … ,

(
X[M]n,m ,Qm

))
, where X[M]n,j = Xn,jI{Xn,j≤M}. In the proof above we have shown that the

degree 𝑑
[M]

of vertex v1 in G[M]
(n) has asymptotic compound Poisson distribution CPoi

(
𝜇x[M]∗ , h[M]∗

)
.

Here x[M]∗ and h[M]∗ are defined in the same way as x∗ and h∗ above, but with X replaced by X[M] =
XI{X≤M}.

Now we let M → ∞ and observe that CPoi

(
𝜇x[M]∗ , h[M]∗

) w
−→ CPoi (𝜇x∗, h∗). Furthermore, the

natural coupling G[M]
(n) ⊂ G(n) implies 𝑑

[M] ≤ 𝑑, where 𝑑 stands for the degree of v1 in G(n). Moreover,

𝑑 ≠ 𝑑[M] implies that v1 belongs to a layer of size greater than M. Hence, by the union bound,

P
(
𝑑 ≠ 𝑑[M]

)
≤

∑

1≤j≤m
P(v1 ∈ Dj, Xn,j > M)

=
∑

1≤j≤m
E

Xn,j

n
I{Xn,j>M} =

m
n

E
(
Xn,𝜋I{Xn,𝜋>M}

)
.

Note that the quantity on the right is o(1) uniformly in n as M →∞. Indeed our assumptions Pn
w
−→ P

and (P)10 → (P)10 imply limM→∞ supn EXn,𝜋I{Xn,𝜋>M} = 0. Therefore, (𝑑)
w
−→ CPoi (𝜇x∗, h∗).

7 ANALYSIS OF CLUSTERING

Here we prove Theorems 3.2 and 3.3. In the proof we drop the subscript n when it does not cause

an ambiguity. Thus we write G = G(n), V = V(G(n)) = {1, 2, … , n} and Gk = Gn,k. Let K12 be the

two-star on the vertex set {1, 2, 3}with links {12, 13}. Let K3 be the triangle on the vertex set {1, 2, 3}.
Denote events3 = {G ⊃ K3} and12 = {G ⊃ K12}. We also denote 𝑑 = degG(1). Theorems 3.2 and

3.3 are derived from Theorems 7.3 and 7.4 below, where we evaluate the probabilities P(3), P(12),
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BLOZNELIS AND LESKELÄ 301

P(𝑑 = t, 3) and P(𝑑 = t, 12) defining the ratios 𝜏
(n) = P(

3
)

P(
12
)

and 𝜎
(n)(t) = P(𝑑=t, 

3
)

P(𝑑=t, 
12
)
. In the

proof of Theorem 7.3 we approximate P(3) by the probability that K3 is produced by a single layer

(with m different layers available). Similarly, in the proof of Theorem 7.4 P(12) is approximated by

the sum of two probabilities: the first one being the probability that K12 is produced by a single layer

(with m different layers available) and the second one being the probability that the edges of K12 are

produced by different layers (with m(m − 1) layer pairs available). We note the corresponding sum in

the denominator of (10).

Before the proof we introduce some notation and collect auxiliary results. Subgraph frequencies

in the overlay graph will be characterized using cross moments

(Pn)rs =
∫
(x)rys

𝑑Pn, (Pn)rs,tu =
∫
(x)rys (x)tyu

𝑑Pn (40)

of the averaged layer type distribution Pn defined by (2), and normalized cross moments defined by

𝜇rs =
m∑

k=1

prs(k), 𝜇rs,tu =
m∑

k=1

prs(k) ptu(k), (41)

where prs(k) = (n)−1
r E(Xn,k)rQs

n,k. Note that 𝜇rs = m(n)−1
r (Pn)rs.

Lemma 7.1. Recall the averaged empirical distribution Pn defined by (2). If Pn
w
−→ P and (Pn)rs →

(P)rs < ∞, then the cross moments defined in (40)–(41) satisfy 𝜇10,rs ≪ m(n)−1
r and (Pn)10,rs ≪ n.

Proof. Denote Ak = Xk and Bk = (Xk)rQs
k. Observe that Ak ≤ a+AkI(Ak > a) and Bk ≤ b+BkI(Bk >

b) for any a, b > 0. Because Ak ≤ n, we find that

Ak EBk ≤ (a + AkI(Ak > a))EBk

≤ aEBk + bnI(Ak > a) + nEBkI(Bk > b).
(42)

By taking expectations and averaging with respect to k, we find that

1

m

m∑

k=1

EAk EBk ≤ aEB
𝜋
+ bnP(A

𝜋
> a) + nEB

𝜋
I(B

𝜋
> b), (43)

where A
𝜋
= X

𝜋
, B

𝜋
= (X

𝜋
)rQs

𝜋
, and (X

𝜋
,Y

𝜋
) is a generic Pn-distributed random variable. Because the

left side above equals m−1n(n)r𝜇10,rs, we conclude that

m−1(n)r𝜇10,rs ≤
a
n

c + b𝜙(a) + 𝜓(b),

where c = supn(Pn)rs, 𝜙(t) = supn ∫ I(x > t)𝑑Pn, and 𝜓(t) = supn ∫ (x)rysI((x)rys
> t)𝑑Pn. Then the

tightness of Pn implies that𝜙(an) → 0 for an = n1∕2
. Hence also bn𝜙(an)→ 0 for bn = 𝜙(an)−1∕2 →∞.

The uniform (x)rys
-integrability of Pn further implies that 𝜓(bn) → 0. Hence the right side above

vanishes and first claim follows.

For the second claim, we may repeat the above reasoning to verify that (42) holds also with

the E-symbol removed. Therefore, (43) also holds when the left side is replaced by (Pn)10,rs =
1

m

∑m
k=1

EAkBk. Hence the second claim follows by the same argument. ▪

 10982418, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21140 by V

ilnius U
niversity, W

iley O
nline L

ibrary on [07/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



302 BLOZNELIS AND LESKELÄ

Let k∗ be a random number uniformly distributed in {1, … ,m} and independent of G = G(n). In

the following result Gk∗ = Gn,k∗ represents a randomly chosen layer.

Lemma 7.2. Let Frs be a graph with node set in {1, … , n} such that |V(Frs)| = r and |E(Frs)| = s,
and let i be a node in V(Frs) with degFrs

(i) = r − 1. Select k∗ ∈ {1, … ,m} uniformly at random and
independently of the layers. Then:

(i) P(Gk∗ ⊃ Frs) = m−1
𝜇rs,

(ii) P(degGk∗
(i) = t |Gk∗ ⊃ Frs) = Binrs(Pn)(t − r + 1) for all t.

Proof. (i) Because P(V(Gk) ⊃ V(Frs) |Xk,Qk) = (Xk)r
(n)r

for any k, we see that P(Gk ⊃ Frs) =

E
(Xk)r
(n)r

Qs
k = prs(k). The corresponding probability for a randomly selected k∗ equals

P(Gk∗ ⊃ Frs) = 1

m

∑m
k=1

prs(k) = (n)−1
r (Pn)rs. Finally, recall that (n)−1

r (Pn)rs = m−1
𝜇rs.

(ii) Denote 𝑑k = degGk
(i). On the event that Gk ⊃ Frs, we see that 𝑑k = 𝓁 + 𝑑′k where 𝑑

′
k =

|NGk (i) ⧵ V(Frs)| and 𝓁 = r − 1. Conditionally on (Xk,Qk) = (x, q) and Gk ⊃ Frs, the random integer

𝑑

′
k is Bin(x − r, q)-distributed. Hence

P (𝑑k = t, Gk ⊃ Frs) = E

(
Bin(Xk − r,Qk)(t − 𝓁)

(Xk)r
(n)r

Qs
k

)
.

The corresponding probability for a randomly chosen k∗ is

P(𝑑k∗ = t, Gk∗ ⊃ Frs) =
∫

(
Bin(x − r, q)(t − 𝓁) (x)r

(n)r
qs
)

Pn(𝑑x, 𝑑q),

so the claim follows by dividing both sides by P(Gk∗ ⊃ Frs) = (n)−1
r (Pn)rs. ▪

Now we are ready to state and prove Theorems 7.3 and 7.4. We use the short hand notation g(n)rs =
Binrs(Pn), where the mixed binomial distribution Binrs(Pn) is defined in (5).

Theorem 7.3. We have

(i) |P(G ⊃ K3) − 𝜇33| ≤ 4𝜇21𝜇32 + 𝜇3

21
.

(ii) P(degG(1) = t, G ⊃ K3) = 𝜇33 f (n) ∗ g(n)
33
(t− 2) + 𝜀(t), where f (n) is the model degree distribution

defined by (7) and the approximation error is bounded by

|𝜀(t)| ≤ (4 + t)𝜇21𝜇32 + 𝜇3

21
+ 2𝜇10,33. (44)

Proof. Denote by k = {Gk ⊃ K3} the event that all node pairs of the triangle are linked by the

layer k. We also denote 𝑑k = degGk
(1), and 𝑑−k = degG−k

(1) with G−k = ∪k′≠kGk′ .

Proof of (i). Denote

𝜀1(t) = P(𝑑 = t,3) − P(𝑑 = t,∪kk),

and observe that 0 ≤ 𝜀1(t) ≤ P(𝑑 = t, 12)+P(𝑑 = t, 111), where 12 is the event that there exists one

layer covering one link and a different layer covering the remaining two links of K3, and 111 is the

event that three distinct layers cover distinct links of K3. We write p(abc) = P
(
12

a ,
13

b ,
23
c
)
, where
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BLOZNELIS AND LESKELÄ 303


ij
a denotes the event that node pair ij is linked in layer a. We note that p(abc) = p21(a)p21(b)p21(c),

p(aab) = p32(a)p21(b), and p(aaa) = p33(a) for distinct layers a, b, c. Hence

P(12) ≤
′∑

a,b
(p(aab) + p(aba) + p(baa)) ≤ 3𝜇21𝜇32,

and P(111) ≤
∑′

a,b,cp(abc) ≤ 𝜇3

21
. Thus,

∑
t≥0

|𝜀1(t)| ≤ 3𝜇21𝜇32 + 𝜇3

21
.

Then denote

𝜀2(t) = P(𝑑 = t,∪kk) −
∑

k
P(𝑑 = t,k).

Bonferroni’s inequalities imply that 0 ≤ −𝜀2(t) ≤
∑′

k,k′P(𝑑 = t,k,k′ ), and hence, noting that

𝜇33 ≤ 𝜇32 ≤ 𝜇21,

∑

t≥0

|𝜀2(t)| ≤
′∑

k,k′
P(k,k′ ) =

′∑
k,k′

p33(k)p33(k′) ≤ 𝜇2

33
≤ 𝜇21𝜇32.

By combining this with the bound for 𝜀1(t), we conclude that

P(𝑑 = t,3) =
∑

k
P(𝑑 = t,k) + 𝜀1(t) + 𝜀2(t), (45)

where
∑

t≥0
(|𝜀1(t)|+ |𝜀2(t)|) ≤ 4𝜇21𝜇32+𝜇3

21
. Hence claim (i) follows by summing the above equality

over t, and noting that
∑

k P(k) = 𝜇33.

Proof of (ii). We start with (45) and approximate

∑

k
P(𝑑 = t,k) ≈

∑

k
P(𝑑−k + 𝑑k = t,k) (46)

=
∑

k

∑

r+s=t
P(𝑑−k = r) P(𝑑k = s,k)

≈
∑

k

∑

r+s=t
P(𝑑 = r) P(𝑑k = s,k). (47)

It follows from Lemma 7.2 that

∑

k
P(𝑑k = s,k) = mP(𝑑k∗ = s,Gk∗ ⊃ K3) (48)

= mP(𝑑k∗ = s|Gk∗ ⊃ K3)P(Gk∗ ⊃ K3) = 𝜇33Bin33(Pn)(s − 2).

Hence the last term above equals 𝜇33 f (n) ∗ g(n)
33
(t− 2), and to prove the claim it suffices to analyze

the approximation errors in (46)–(47).

The approximation error in (46) equals 𝜀3(t) =
∑

k 𝜀3k(t), where

𝜀3k(t) = P(𝑑 = t,k) − P(𝑑−k + 𝑑k = t,k).

By applying Lemma 11.2 with A = {k}, B = [n] ⧵ {k}, A = k, and B being the sure event, we see

that |𝜀3k(t)| ≤ cBtP(𝑑k ≤ t,k) ≤ cBtP(k), where cB = P(G−k ∋ 12) ≤
∑
𝓁≠k p21(𝓁) ≤ 𝜇21. Hence

|𝜀3(t)| ≤ t𝜇21

∑

k
p33(k) = t𝜇21𝜇33 ≤ t𝜇21𝜇32.
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304 BLOZNELIS AND LESKELÄ

The approximation error in (47) equals 𝜀4(t) =
∑

k 𝜀4k(t) where

𝜀4k(t) =
∑

r+s=t
(P(𝑑 = r) − P(𝑑−k = r))P(𝑑k = s,k).

By Lemma 11.1,
∑

t≥0
|𝜀4k(t)| ≤ 2P(𝑑k > 0)P(k). Because P(𝑑k > 0) ≤ p10(k) and P(k) = p33(k),

it follows that
∑

t≥0
|𝜀4(t)| ≤ 2𝜇10,33. Claim (ii) follows by combining the above estimates for the total

approximation error 𝜀(t) = 𝜀1(t) + 𝜀2(t) + 𝜀3(t) + 𝜀4(t). ▪

Theorem 7.4. We have

(i) |P(G ⊃ K12) − (𝜇32 + 𝜇2

21
)| ≤ 6𝜇21𝜇32 + 6𝜇

3

21
+ 𝜇4

21
+ 𝜇21,21.

(ii) P(degG(1) = t,G ⊃ K12) = 𝜇32 f (n) ∗ g(n)
32
(t − 2) + 𝜇2

21
f (n) ∗ g(n)

21
∗ g(n)

21
(t − 2) + 𝜀(t), where f (n) is

the degree distribution of G, and the approximation error is bounded by

|𝜀(t)| ≤ (6 + 3t)(𝜇21𝜇32 + 𝜇3

21
) + 𝜇4

21
+ 4𝜇10,32 + 4𝜇21𝜇10,21 + 𝜇21,21. (49)

Proof. Recall that K12 is the two-star with node set {1, 2, 3} and link set {e1, e2} ∶= {12, 13}. We

denote by 
ij
k the event that ij ∈ E(Gk) and we set k𝓁 = 12

k ∩ 13

𝓁 . We denote Gk𝓁 = Gk ∪ G𝓁 and

G−k𝓁 = ∪q∉{k,𝓁}Gq, and we set 𝑑 = degG(1), 𝑑k𝓁 = degGk𝓁
(1) and 𝑑−k𝓁 = degG−k𝓁

(1). We also denote

hk𝓁(s) = P(𝑑k𝓁 = s,k𝓁).
We start with an outline of the proof. First we approximate

P(𝑑 = t,12) ≈
∑

k,𝓁
P(𝑑 = t,k𝓁) (50)

≈
∑

k,𝓁
P(𝑑k𝓁 + 𝑑−k𝓁 = t,k𝓁) (51)

=
∑

k,𝓁

∑

r+s=t
P(𝑑−k𝓁 = r) hk𝓁(s)

≈
∑

k,𝓁

∑

r+s=t
P(𝑑 = r) hk𝓁(s), (52)

so that

P(𝑑 = t,12) ≈
∑

r+s=t
f (n)(r)

∑

k
hkk(s) +

∑

r+s=t
f (n)(r)

′∑

k,𝓁
hk𝓁(s). (53)

We note that

∑

k
hkk(s) = mP

(
degGk∗

(1) = s,12 ⊂ Gk∗
)

(54)

= mP

(
degGk∗

(1) = s|12 ⊂ Gk∗
)

P(12 ⊂ Gk∗ ) = 𝜇32 g(n)
32
(s − 2),

where the conditional probability is evaluated using Lemma 7.2. Hence the first term on the right of

(53) equals

∑

r+s=t
f (n)(r)

∑

k
hkk(s) = 𝜇32f (n) ∗ g(n)

32
(t − 2). (55)
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BLOZNELIS AND LESKELÄ 305

Next we approximate, denoting hk(s) = P(𝑑k = s,12

k ),

′∑

k,𝓁
hk𝓁(s) =

′∑

k,𝓁
P
(
𝑑k𝓁 = s,12

k ,
13

𝓁

)

≈
′∑

k,𝓁
P(𝑑k + 𝑑𝓁 = s,12

k ,
13

𝓁 ) (56)

=
′∑

k,𝓁

∑

s
1
+s

2
=s

hk(s1)h𝓁(s2)

≈
∑

k,𝓁

∑

s
1
+s

2
=s

hk(s1)h𝓁(s2). (57)

After noting (see Lemma 7.2) that
∑

k hk(s) = 𝜇21g(n)
21
(s − 1), we conclude that

∑

k,𝓁

∑

s
1
+s

2
=s

hk(s1)h𝓁(s2) = 𝜇2

21
g(n)

21
∗ g(n)

21
(s − 2),

and hence the second term on the right side of (53) is approximately

∑

r+s=t
f (n)(r)

′∑

k,𝓁
hk𝓁(s) ≈ 𝜇

2

21
f (n) ∗ g(n)

21
∗ g(n)

21
(t − 2). (58)

By combining (53), (55) and (58), we conclude that

P(𝑑 = t,12) ≈ 𝜇32f (n) ∗ g(n)
32
(t − 2) + 𝜇2

21
f (n) ∗ g(n)

21
∗ g(n)

21
(t − 2). (59)

The total approximation error in (59) can be written as 𝜀(t) = 𝜀1(t) + 𝜀2(t) + 𝜀3(t) + 𝜀4(t), where

𝜀1(t), 𝜀2(t), 𝜀3(t) are the approximation errors in (50), (51), (52), respectively, and the approximation

error in (58) equals

𝜀4(t) =
∑

r+s=t
f (n)(r) (𝜀41(s) + 𝜀42(s)) , (60)

where 𝜀41(s), 𝜀42(s) denote the errors made in (56), (57), respectively.

Now we give a rigorous proof of (i) and (ii), where we analyze the individual approximation errors

one by one.

Proof of claim (i). The union bound shows that the approximation error 𝜀1(t) in (50) is nonpositive

for all t, and hence
∑

t≥0
|𝜀1(t)| =

∑
k,𝓁 P(k𝓁) − P(

⋃
k,𝓁k𝓁). Bonferroni’s inequalities imply that

∑

t≥0

|𝜀1(t)| ≤
′∑

(k
1
,k

2
),(𝓁

1
,𝓁

2
)
P(k

1
k

2
,𝓁

1
𝓁

2
) =∶ Δ.

We split the right side above by Δ = Δ2 + Δ3 + Δ4, where Δi, i = 2, 3, 4, is the sum over layer pairs

(k1, k2) ≠ (𝓁1,𝓁2) such that the list (k1, k2,𝓁1,𝓁2) contains precisely i distinct elements. Denote

p(k1k2𝓁1𝓁2) = P(Gk
1
∋ e1,Gk

2
∋ e2,G𝓁

1
∋ e1,G𝓁

2
∋ e2).
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306 BLOZNELIS AND LESKELÄ

Then

Δ2 =
′∑

a,b
(p(aabb) + p(abba) + p(aaab) + p(aaba) + p(abaa) + p(baaa)) ,

Δ3 =
′∑

a,b,c
(p(aabc) + p(abac) + p(abca) + p(baac) + p(baca) + p(bcaa)) .

In the sum of Δ2, the terms p(aabb) and p(abba) equal p32(a)p32(b) and the other terms equal

p32(a)p21(b). Because p32(b) ≤ p21(b), it follows that Δ2 ≤ 6
∑′

a,b
p21(a)p32(b) ≤ 6𝜇21𝜇32. In

the sum of Δ3, the terms p(abac) and p(baca) equal p21(a)p21(b)p21(c) and the other terms equal

p32(a)p21(b)p21(c). Because p32(a) ≤ p21(a), it follows that Δ3 ≤ 6𝜇
3

21
. Furthermore, Δ4 =∑′

a,b,c,𝑑p(abc𝑑) ≤ 𝜇4

21
. As a conclusion, it follows that

∑

t≥0

|𝜀1(t)| ≤ 6𝜇21𝜇32 + 6𝜇
3

21
+ 𝜇4

21
. (61)

Claim (i) now follows by combining the above bound with the equality

∑

k,𝓁
P(k𝓁) =

∑

k
p32(k) +

′∑

k,𝓁
p21(k)p21(𝓁) = 𝜇32 + 𝜇2

21
− 𝜇21,21.

Proof of claim (ii). The approximation error in (51) equals 𝜀2(t) =
∑

k,𝓁 𝜀2k𝓁(t) where

𝜀2k𝓁(t) = P(𝑑 = t,k𝓁) − P(𝑑k𝓁 + 𝑑−k𝓁 = t,k𝓁).

By applying Lemma 11.2 with A = {k,𝓁}, B = [m] ⧵ {k,𝓁}, A = k𝓁 , and B being the sure event,

we see that

|𝜀2k𝓁(t)| ≤ tcBP(𝑑k𝓁 ≤ t,k𝓁) ≤ tcBP(k𝓁),

where cB ≤ P(G−k𝓁 ∋ 12) ≤ P(G ∋ 12) ≤ 𝜇21. Hence

|𝜀2(t)| ≤ t𝜇21

∑

k,𝓁
P(k𝓁) ≤ t(𝜇21𝜇32 + 𝜇3

21
). (62)

The approximation error in (52) equals 𝜀3(t) =
∑

k,𝓁 𝜀3k𝓁(t) where

𝜀3k𝓁(t) =
∑

r+s=t
(P(𝑑 = r) − P(𝑑−k𝓁 = r)) hk𝓁(s).

By applying Lemma 11.1 with g(s) = hk𝓁 (s)
P(k𝓁)

, it follows that
∑

t≥0
|𝜀3k𝓁(t)| ≤ 2P(k𝓁)P(𝑑k𝓁 > 0).

Observe now that P(𝑑k𝓁 > 0) ≤ p10(k) + p10(𝓁). Hence,

∑

t≥0

|𝜀3(t)| ≤ 2

∑

k,𝓁
(p10(k) + p10(𝓁)) P(k𝓁)

≤ 4

∑

k
p10(k)p32(k) + 4

′∑

k,𝓁
p10(k)p21(k)p21(𝓁)

≤ 4𝜇10,32 + 4𝜇21𝜇10,21. (63)
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BLOZNELIS AND LESKELÄ 307

The approximation error in (56) equals 𝜀41(s) =
∑′

k,𝓁𝜀4k𝓁(s) where

𝜀4k𝓁(s) = P(𝑑k𝓁 = s,k𝓁) − P(𝑑k + 𝑑𝓁 = s,k𝓁).

By applying Lemma 11.2 with A = {k} and B = {𝓁}, together with A = {12 ∈ Gk} and B = {13 ∈
G𝓁}, it follows that |𝜀4k𝓁(s)| ≤ sp21(k)p32(𝓁) + sp21(𝓁)p32(k). By summing the above inequality with

respect to k,𝓁, it follows that |𝜀41(s)| ≤ 2s𝜇21𝜇32.

The approximation error in (57) equals

|𝜀42(s)| =
∑

k

∑

s
1
+s

2
=s

P(𝑑k = s1,
12

k )P(𝑑k = s2,
12

k ),

where
∑

s≥0
|𝜀42(s)| =

∑
k p21(k)2 = 𝜇21,21. Hence, by (60),

|𝜀4(t)| ≤
∑

r+s=t
f (n)(r) (|𝜀41(s)| + |𝜀42(s)|) ≤ max

s≤t
|𝜀41(s)| +max

s≤t
|𝜀42(s)|

≤ 2t𝜇21𝜇32 + 𝜇21,21. (64)

Claim (ii) follows by collecting all the bounds in (61–64) together. ▪

Proof of Theorem 3.2. We evaluate the ratio 𝜏
(n) = P(

3
)

P(
12
)
. By Theorems 7.3 and 7.4,

P(3) = 𝜇33 + O
(
𝜇21𝜇32 + 𝜇3

21

)
,

P(12) = 𝜇32 + 𝜇2

21
+ O

(
𝜇21𝜇32 + 𝜇3

21
+ 𝜇4

21
+ 𝜇21,21

)
,

where𝜇rs = m(n)−1
r (Pn)rs. Now relations (Pn)21 ≲ 1 and (Pn)32 ≲ 1 imply𝜇21 ≲ m∕n2

and𝜇32 ≲ m∕n3
.

Hence 𝜇21𝜇32 ≲ m2n−5
, 𝜇

3

21
≲ m3n−6

, and 𝜇
4

21
≲ m4n−8

. Next, we note that 𝜇21,21 ≤ m(n)−2

2
(Pn)21,21 by

Jensen’s inequality. Note also that ((x)2q)2 ≤ 2x(x)3q2
for x ≥ 3. Hence, ((x)2q)2 ≤ 4 + 2x(x)3q2

, and

(Pn)21,21 ≤ 4 + 2(Pn)10,32. Furthermore, Lemma 7.1 implies that (Pn)10,32 ≪ n. Hence 𝜇21,21 ≪ mn−3
.

(i) Consider the case
m
n

→ 𝜇 ∈ [0,∞). Then 𝜇32 = ((P)32 + o(1))mn−3
and

𝜇

2

21
=
(
𝜇(P)2

21
+ o(1)

)
mn−3

imply that

P(12) = (P)32mn−3 + 𝜇(P)2
21

mn−3 + o
(
mn−3

)
.

Similarly, 𝜇33 = ((P)33 + o(1)) n−3m implies

P(3) = (P)33mn−3 + o(mn−3),

and hence the first two claims of Theorem 3.2 follow (the first claim corresponds to 𝜇 = 0).

(ii) Assume now that n ≪ m ≪ n2
. Then mn−3

,m2n−5
,m3n−6

≪ m2n−4
. Hence, P(3) ≪ m2n−4

.

Furthermore, m4n−8
≪ m2n−4

, and we conclude that P(12) = (P)2
21

m2n−4 + o(m2n−4). Hence,
P(

3
)

P(
12
)
→ 0 implies the third claim of Theorem 3.2. ▪

Proof of Theorem 3.3. We evaluate the ratio 𝜎
(n)(t) = P(𝑑=t, 

3
)

P(𝑑=t, 
12
)
. By Theorems 7.3 and 7.4,

P(𝑑 = t, 3) = 𝜇33 f (n) ∗ g(n)
33
(t − 2) + 𝜀A(t),

P(𝑑 = t, 12) = 𝜇32 f (n) ∗ g(n)
32
(t − 2) + (𝜇21)2f (n) ∗ g(n)

21
∗ g(n)

21
(t − 2) + 𝜀B(t),
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308 BLOZNELIS AND LESKELÄ

where the remainder terms 𝜀A(t) and 𝜀B(t) are upper bounded in (44) and (49) respectively. The condi-

tions m∕n → 𝜇 and (Pn)rs → (P)rs imply 𝜇rs = (𝜇 + o(1))(P)rsn1−r
for rs = 21, 32, 33. Invoking these

relations in (44), (49) and using the bounds 𝜇10,33 ≪ n−2
, 𝜇10,32 ≪ n−2

and 𝜇21,21 ≪ n−2
(the latter

bound is shown in the proof of Theorem 3.2 above) we upper bound the remainders 𝜀A(t) ≪ n−2
and

𝜀B(t)≪ n−2
. We obtain

𝜇33 f (n) ∗ g(n)
33
(t − 2) = (P)33𝜇n−2f (n) ∗ g(n)

33
(t − 2) + o(n−2),

𝜇32 f (n) ∗ g(n)
32
(t − 2) = (P)32𝜇n−2f (n) ∗ g(n)

32
(t − 2) + o(n−2),

𝜇

2

21
f (n) ∗ g(n)

21
∗ g(n)

21
(t − 2) = (P)2

21
𝜇

2n−2f (n) ∗ g(n)
21
∗ g(n)

21
(t − 2) + o(n−2).

Now the claim follows by the fact that f (n)
w
−→ f = CPoi(𝜇(P)10, g10) (see Theorem 3.1) and g(n)rs

w
−→ grs

for rs = 21, 32, 33. ▪

8 CLUSTERING AND DEGREE IN POWER-LAW MODELS

Here we prove Theorems 4.1 and 4.2. In the proof we use the fact that a compound Poisson distribution

CPoi(𝜆, h) is heavy-tailed whenever the increment distribution h is [23, Theorem 4.30]. Namely, for a

subexponential distribution h we have as t → +∞

CPoi(𝜆, h)(t) ∼ 𝜆h(t). (65)

Furthermore, we show below that for P satisfying (15), (16) the mixed binomial distribution (5) follows

a power law

Binrs(P)(t) ∼ 𝑑rsL(t1∕(1−𝛽)t−𝛿rs
, (66)

with parameters

𝛿rs = 1 + 𝛼 + s𝛽 − r − 1

1 − 𝛽
and 𝑑rs =

bs

(P)rs
b𝛿rs−1

1 − 𝛽
. (67)

It is an immediate consequence of (65) and (66) that the limiting degree distribution f = CPoi(𝜇(P)10,

Bin10(P)) obeys a power law (17). We similarly establish respective power law asymptotics for the

distributions f ∗ g33, f ∗ g32 and f ∗ g21 ∗ g21 that appear in (10). Now a simple analysis of the ratio

(10) as t → +∞ shows the asymptotics of Theorem 4.2.

Proof of Theorem 4.1. Statements (i) and (ii) are immediate consequences of (65), (66) as described

above. To prove (iii) we note that 𝛽 ≥ 1 implies XQ = Xg(X) ≤ B almost surely. Denote for short

𝜆 = 𝜇(P)10 and let H be a random variable with the distribution Bin10(P) and Λ be a Poisson random

variable with parameter 𝜆. We have

∑

t≥0

estf (t) = E
(
EesH)Λ = e(EesH−1)𝜆

,

where

EesH =
∑

h≥0

esh
E

((X − 1

h

)
Qh(1 − Q)X−1−h X

(P)10

)
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BLOZNELIS AND LESKELÄ 309

= E

(
(1 + Q(es − 1))X−1 X

(P)10

)

≤ E

(
eQ(X−1)(es−1) X

(P)10

)
.

The almost sure inequality QX ≤ B together with the identity (P)10 = EX complete the proof. ▪

Proof of Theorem 4.2. Theory of discrete subexponential densities [23, Lemmas 4.9 and 4.14],

implies that (f1 ∗ f2)(t) ∼ f1(t) + f2(t) for all probability densities on the positive integers such that

fi(t) ∼ ait−𝛼i with ai > 0 and 𝛼i > 1. By Theorem 4.1, we know that f (t) ∼ 𝜇(P)10𝑑10t−𝛿10 , and by (66),

we find that grs(t) = Binrs(P)(t) ∼ 𝑑rst−𝛿rs with parameters given by (67). Because 𝛿32 < 𝛿21 < 𝛿10, it

follows that

(f ∗ g32)(t) ∼ f (t) + g32(t) ∼ g32(t)

and

(f ∗ g21 ∗ g21)(t) ∼ f (t) + g21(t) + g21(t)≪ g32(t).

Hence by formula (10),

𝜎(t) ∼ (P)33

(P)32

f (t) + g33(t)
g32(t)

∼ (P)33

(P)32

𝜇(P)10𝑑10t−𝛿10 + 𝑑33t−𝛿33

𝑑32t−𝛿32

.

Because 𝛿33 − 𝛿10 = 3𝛽−2

1−𝛽
, we see that 𝜎(t) follows a power law with density exponent 𝛿33 − 𝛿32 = 𝛽

1−𝛽

for 𝛽 ≤
2

3
, and density exponent 𝛿10 − 𝛿32 = 2 for 𝛽 ≥

2

3
. The constant term of the power law is

determined by (67). ▪

Let us prove (66). Given r ∈ Z+, let H(r) be a mixed binomial random variable with the distribution

P(H(r) = t) = E (Bin(X − r, g(X))(t)) , t = 0, 1, 2, … , (68)

where the distribution p(x) = P(X = x) of X and function g are given by (16). In Lemma 8.1 below we

show that the distribution of H(r) follows a power law

P(H(r) = t) ∼ b
𝛼−1

1−𝛽

1 − 𝛽
L
(
t1∕(1−𝛽)

)
t−1− 𝛼−1

1−𝛽 as t → +∞. (69)

Next we observe that the distribution Binrs(P) can be written in the form

Binrs(P)(t) = E
(
Bin( ̃X − r, g( ̃X)(t)

)
=

∞∑

x=0

Bin(x − r, g(x))(t) p̃rs(x),

where the random variable ̃X has the power law distribution

P( ̃X = x) = p̃rs(x) =
(x)rg(x)sp(x)

(P)rs
∼ bs

(P)rs
L(x)x−(𝛼+s𝛽−r)

.
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310 BLOZNELIS AND LESKELÄ

Hence (69) yields (66). It remains to prove (69). In the proof we use the fact that binomial distribution

is highly concentrated around its mean. We apply this fact to mixed binomial random variable H(r)
conditionally, given the mixing random variable X.

Lemma 8.1. Let 𝛼 ≥ 1, 0 ≤ 𝛽 < 1 and b > 0. Assume that (15), (16) hold. For 𝛽 = 0 we assume,
in addition, that b ≤ 1. Then for each r ∈ Z+ (69) holds.

Proof of Lemma 8.1. For 𝛽 = 0, b = 1 relation (69) follows from the identity P(H(r) = t) = P(X =
t+ r), which holds for large t. Indeed, for large t the second relation of (16) implies q(x) ≡ 1 for x ≥ t.
Hence Bin(x − r, g(x))(t) = I{x−r=t}, and thus P(H(r) = t) = P(X = t + r).

In what follows we assume that either 0 < 𝛽 < 1 or 𝛽 = 0 and b < 1. We only consider the case

where r = 0. The proof for r ≥ 1 is much the same.

In the proof limits are taken as t → +∞. Let Hk ∼ Bin(k, g(k)) be a binomial random variable. We

use the shorthand notation

𝜇k = EHk = kg(k), 𝜎

2

k = VarHk = kg(k)(1 − g(k)), p̃k = P(X = k).

Given t, let 𝛿t = t1∕2
ln

4t. We split the probability

P(H(0) = t) =
∑

k≥t
P(Hk = t)p̃k = I1 + I2 + I3, Ij ∶=

∑

k∈Aj

P(Hk = t)p̃k,

where

A1 = {k ≥ t ∶ 𝜇k < t − 𝛿t}, A2 = {k ∶ |t − 𝜇k| ≤ 𝛿t}, A3 = {k ∶ 𝜇k > t + 𝛿t}.

We assume that t is large enough so that g(k) = bk−𝛽 for k > t. Then 𝜇k = bk1−𝛽
and A1 ≠ ∅. To prove

(69) we show that

I2 =
1

1 − 𝛽
b
𝛼−1

1−𝛽 L
(
t1∕(1−𝛽) t−1− 𝛼−1

1−𝛽 (1 + o(1)) and I1, I3 = O(e−0.5ln
8t). (70)

Let us evaluate I2. By the local limit theorem [39], [50] we approximate uniformly in k ∈ A2

P(Hk = t) = 1√
2𝜋𝜎k

e
− (t−𝜇k )2

2𝜎
2

k (1 + o(1)). (71)

Furthermore, we have p̃k = L
(
t1∕(1−𝛽)) (b∕t)𝛼∕(1−𝛽)(1 + o(1)) uniformly in k ∈ A2. In what follows we

consider the cases 0 < 𝛽 < 1 and 𝛽 = 0 separately.

For 0 < 𝛽 < 1 we have 𝜎
2

k = 𝜇k(1 − g(k)) = t(1 + O(𝛿t∕t) + O(t−𝛽∕(1−𝛽))) uniformly in k ∈ A2.

Now (71) implies

I2 = (1 + o(1))
∑

k∈A
2

1√
2𝜋𝜎k

e
− (t−𝜇k )2

2𝜎
2

k p̃k = (1 + o(1)) S√
2𝜋t

L
(
t1∕(1−𝛽)) (b∕t)𝛼∕(1−𝛽),
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BLOZNELIS AND LESKELÄ 311

where S =
∑

k∈A
2

e−
(t−𝜇k )2

2t . Next we approximate

S = I + O(1), I =
∫|t−by1−𝛽 |≤𝛿t

e−(t−by1−𝛽 )2∕(2t)
𝑑y

and use the substitution x = (by1−𝛽 − t)∕
√

t to write the integral in the form

I = 1

1 − 𝛽
b−

1

1−𝛽 t
1

1−𝛽 −
1

2 I1, I1 ∶=
∫|x|<ln

4t
e−x2∕2

(
1 + xt−1∕2

) 𝛽

1−𝛽
𝑑x.

Now it is easily seen that the integral I1 converges to

√
2𝜋 as t → +∞. Hence,

S = (1 + o(1)) 1

1 − 𝛽
b−

1

1−𝛽 t
1

1−𝛽
− 1

2

√
2𝜋 as t → +∞.

We have arrived to the first relation of (70).

For 𝛽 = 0 and b < 1 we have 𝜎
2

k = t(1 − b)(1 + O(𝛿t∕t)). Now (71) implies

I2 =
S′√

2𝜋t(1 − b)
L(t)(b∕t)𝛼(1 + o(1)), where S′ =

∑

k∈A
2

e−
(t−𝜇k )2

2t(1−b)
.

Invoking the approximation S′ = I′ + O(1), where

I′ =
∫|t−by|≤𝛿t

e−(t−by)2∕(2t(1−b))
𝑑y =

√
2𝜋t(1 − b) b−1(1 + o(1)),

we obtain the first relation of (70).

We derive the bounds on the right of (70) from the upper bounds

P(Hk = t) ≤ e−0.5ln
8t(1 + o(1)). (72)

that hold uniformly in k ∈ A1 ∪A3. Indeed, (72) follows from the well-known exponential inequalities

for Binomial probabilities see for example, Theorem 2.1 of [30],

P(Hk ≥ 𝜇k + s) ≤ e−
s2

2(𝜇k+s∕3)
, P(Hk ≤ 𝜇k − s) ≤ e−

s2

2𝜇k , s > 0. (73)

We only show (72) for k ∈ A3. Let 𝜇 = min{𝜇k ∶ k ∈ A3}. The function h(x) = (x − t)2x−1
is

increasing for x > t. Hence h(𝜇k) ≥ h(𝜇) for k ∈ A3. The second inequality of (73) implies

P(Hk = t) ≤ P (Hk ≤ 𝜇k − (𝜇k − t)) ≤ e−0.5h(𝜇k) ≤ e−0.5h(𝜇) = e−0.5ln
8t(1 + o(1)).

▪

9 GIANT COMPONENT

Here we prove Theorem 3.4. We start with an outline of the proof. In the proof we apply the approach

developed in [15]: we approximate the number N1(G(n)) of vertices in the largest connected component

of G(n) by the number of vertices u with the property that the breadth first search (BFS) tree rooted
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312 BLOZNELIS AND LESKELÄ

at u contains at least 𝜔 vertices, where 𝜔 = 𝜔(n) → +∞ as n → +∞. Then the BFS exploration

process rooted at u is approximated by respective branching process and the fraction of vertices u
having large BFS trees (of size at least 𝜔) is approximated by the survival probability 𝜌 = 𝜌(f+) of the

branching process. Hence N1(G(n))∕n
P

−→ 𝜌. We briefly comment on the branching process, which is

much different from that of [15]. Let us consider the BFS exploration process at the moment when it

enters a new layer, say, Gn,i. The first vertex of Gn,i detected by BFS will be included into the BFS

tree together with the component of Gn,i the vertex belongs to. The other members of the component

are called children of the vertex. Since the vertex may belong to several layers, it can have children

from the other layers as well. Consequently, the total number of children is approximated by the sum

of degrees of the vertex in the transitive closures Gn,i of layers Gn,i that cover this vertex. Accordingly,

the offspring distribution is approximated by f +. We note that layers do not need to be connected.

Each layer Gn,i may split into components, but for moderately growing 𝜔 = 𝜔(n) the BFS exploration

process will not visit the same layer twice within the first O(𝜔) steps with high probability. Therefore

the offspring numbers are approximately independent.

The proof is organized as follows. We start with Lemma 9.1 which establishes the result in the

special case where the layer types are deterministic, that is, ∀n P((Xn,Qn) = (xn, qn)) = 1 for some

xn = (xn,1, … , xn,m) and qn = (qn,1, … , qn,m). Furthermore, we assume that the distribution of (X,Q)
has a finite support, say, A ⊂ {0, 1, 2, … ,M}×[0, 1], where M ≥ 2 is an integer. Hence, P(X = t,Q =
q) > 0 whenever (t, q) ∈ A. Moreover, we assume in Lemma 9.1 that the set

A0 = {(t, q) ∶ t ≥ 2, q > 0, (t, q) ∈ A}

is nonempty and

∀ n ≥ 1 ∀ 1 ≤ i ≤ mn (xn,i, qn,i) ∈ A. (74)

Note that for each (xn,i, qn,i) ∈ A ⧵ A0
respective layer Gn,i has no edges. Next, in Lemma 9.2 we relax

condition (74) by allowing a negligible fraction of layer types (xn,i, qn,i) to take their values outside A.

In the last step of the proof we reduce the general case to that considered in Lemma 9.2. To this aim

we truncate the layer sizes Xn,i (at level M) and 𝜀-discretize the edge densities Qn,i as in (20). Then we

apply Lemma 9.2 conditionally given the truncated and discretized layers

(
X[M]n ,Q±

n

)
. Here we use

notation (21) and for xn = (xn,1, … , xn,m) we denote x[M]n = (x[M]n,1 , … , x[M]n,m), where x[M] = xI{x≤M}.

Finally, letting 𝜀 ↓ 0 and M ↑ ∞ we approximate the distribution of (X,Q) and survival probability 𝜌

by respective characteristics of (X[M],Q±) thus completing the proof of Theorem 3.4.

Notation. Before the proof we introduce some notation. Given a Galton-Watson (G-W) branching

process  we denote by || the total progeny of  , 𝜌
(k)() = P(|| ≥ k) and 𝜌() = P(|| = ∞).

Let T(t, q) = degHt,q
(𝓁) be the degree of a randomly selected vertex 𝓁 in the transitive closure Ht,q of

Bernoulli random graph Ht,q on t vertices and with edge density q. Let  = {Ts(t, q),T (j)s (t, q) ∶ q ∈
[0, 1], j, s, t ∈ N} be a collection of independent random variables such that Ts(t, q) and T (j)s (t, q) have

the same distribution as T(t, q).
Let Cv ⊂ V be the vertex set of the connected component of G = G(n) = G(Xn,Qn)

containing

vertex v ∈ V . Let 𝜔 ∶ N → N be a function satisfying 𝜔(n) → ∞, 𝜔(n) = o(n) as n → +∞. Let

Bk = {v ∶ |Cv| ≥ k} ⊂ V be the set of vertices belonging to connected components of G of size at

least k. We write B𝜔 = B𝜔(n). Let C ⊂ V denote the vertex set of the largest connected component of

G. Note that for each integer k ≥ 1

|C| ≤ max{k, |Bk|}. (75)
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BLOZNELIS AND LESKELÄ 313

In Lemma 9.1 below we assume that the distribution of (X,Q) has a finite support A and denote

q0 = min{q ∶ (t, q) ∈ A0} and ht,q = P(X = t,Q = q), (t, q) ∈ A.

Given 0 < 𝛿 < 1∕4, let +
𝛿

, −
𝛿

,  be G-W processes with the offspring numbers

Y+
𝛿

=
∑

(t,q)∈A0

Λ+t,q∑

s=1

Ts(t, q), Y−
𝛿

=
∑

(t,q)∈A0

Λ−t,q∑

s=1

Ts(t, q), Y =
∑

(t,q)∈A0

Λt,q∑

s=1

Ts(t, q). (76)

Here Λt,q ∼ Poi(𝜆t,q) and Λ±t,q ∼ Poi(𝜆±t,q) with 𝜆t,q = tht,q𝜇 and 𝜆
±
t,q = 𝜆t,q(1 ± 𝛿). Furthermore, we

assume that the collection of random variables {Λt,q,Λ+t,q,Λ−t,q, (t, q) ∈ A0} and  are independent.

Note that offspring numbers (76) have compound Poisson distributions. In particular, Y has the prob-

ability distribution CPoi(𝜆,(T∗)), where 𝜆 = 𝜇x∗ with x∗ = E(XI{X≥2}) and the random variable T∗
has the probability distribution

P(T∗ = 𝓁) = x−1
∗ E

(
P(T(X,Q) = 𝓁|X,Q)XI{X≥2}

)
(77)

= x−1
∗ E

(
Bin

+(X − 1,Q)(𝓁)XI{X≥2}
)
, 𝓁 = 0, 1, … .

By the same reasoning as in (30) above, we obtain the equality of distributions

CPoi(𝜆,(T∗)) = CPoi(𝜇(P)10,Bin
+
10
(P)), (78)

where the increment distribution Bin
+
10
(P) is defined by (6).

We recall that Di denotes the vertex set of layer Gn,i, 1 ≤ i ≤ m. With a little abuse of notation we

also refer to Di as the layer Gn,i. Furthermore, we assign label Di to the edges of Gn,i. In particular, an

edge of G may receive several labels if it is present in several layers. Given n and (t, q) ∈ A, let Dt,q
be the collection of layers Di having size xn,i = t and edge density qn,i = q. Put D0 = ∪(t,q)∈A0Dt,q. For

every Di ∈ D0 the probability that a randomly chosen vertex of Di has a neighbor in Di connected by

an edge labeled Di is

1 − (1 − qn,i)xn,i−1 ≥ min
{

1 − (1 − q)t−1 ∶ (t, q) ∈ A0
}
=∶ q̂.

Note that q̂ ≥ q0.

Lemma 9.1. Let 𝜇 > 0. Let M ≥ 2 be an integer. Let n,m → +∞. Assume that m∕n → 𝜇. Let 𝜀n ↓ 0

be a positive sequence. Assume that P(X ≤ M) = 1 and (X,Q) has a finite support denoted by A.
Assume that A0 = {(t, q) ∈ A ∶ t ≥ 2, q > 0} is nonempty. Assume that (74) holds and the numbers

mt,q ∶= #
{

i ∈ {1, … ,m} ∶ (xn,i, qn,i) = (t, q)
}

satisfy

∀ n max
(t,q)∈A0

|||ht,q − mt,q∕m||| ≤ 𝜀n. (79)

Assume that 𝜔(n) ≤ nln
−2 n and

∀n |m∕n − 𝜇| < 𝜀n. (80)
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314 BLOZNELIS AND LESKELÄ

There exists sequences 𝜀′n ↓ 0, 𝜀
′′
n ↓ 0 (depending on {𝜀n}, 𝜔 and 𝜇, A0

, {ht,q, (t, q) ∈ A0}) such that
for each n we have

max
v∈V

|||P (|Cv| ≥ 𝜔(n)) − 𝜌()
||| ≤ 𝜀

′
n, (81)

P

(||||B
𝜔| − n𝜌()||| > 𝜀

′′
n n
)
≤ 𝜀′n. (82)

There exists sequences 𝜀′n ↓ 0, 𝜀
′′
n ↓ 0 (depending on {𝜀n}, 𝜇, A0

, {ht,q, (t, q) ∈ A0}) such that for each
n we have

P

(||||C| − n𝜌()||| > 𝜀
′′
n n
)
≤ 𝜀′n. (83)

We note that A0 ≠ ∅ implies q0 > 0 and q̂ > 0.

Proof of Lemma 9.1. We recall that the idea of the proof is outlined in the first paragraph of the

section above. Proofs of (81), (82), (83) are given in separate steps.

Proof of (81). Note that the distribution of |Cv| is the same for each v ∈ V . Hence, it suffices to

approximate P(|Cv| ≥ 𝜔(n)) for v = v1.

Before the proof we introduce some notation. Given 0 < 𝛿 < 4
−1

we denote

mt,q(𝛿) = mht,q(1 − 𝛿) and p−t,𝛿 = t(1 − 𝛿)n−1
. (84)

We assume that n,m are large enough so that mt,q > mt,q(𝛿), for (t, q) ∈ A0. Let 𝜔
′ ∶ N → N be such

that 𝜔
′(n) = o(

√
n), 𝜔′(n) → +∞, 𝜔

′ ≤ 𝜔. We write, for short, 𝜌
(𝜔) = 𝜌

(𝜔(n))(), 𝜌(𝜔′) = 𝜌

(𝜔′(n))().
Let

 + = {N+
t,q, 2 ≤ t ≤ M},  − = {N−

t,q, 2 ≤ t ≤ M},
̃
+
= {Ñ+t,q, 2 ≤ t ≤ M}, ̃

−
= {Ñ−t,q, 2 ≤ t ≤ M}

be collections of independent random variables having binomial and Poisson distributions:

N+
t,q ∼ Bin

(
mt,q, t∕(n − 𝜔′(n))

)
, N−

t,q ∼ Bin(mt,q(2𝛿), p−t,𝛿), (85)

Ñ+t,q ∼ Poi
(
tmt,q∕(n − 𝜔′(n))

)
, Ñ−t,q ∼ Poi

(
mt,q(2𝛿)p−t,𝛿

)
. (86)

Note that EN+
t,q = EÑ+t,q and EN−

t,q = EÑ−t,q. We assume that  is independent of −
, +

,
̃
−

,
̃
+

.

Let Z± (respectively ̃Z±) be defined as Y±
𝛿

in (76), but with Λ±t,q replaced by N±
t,q (respectively Ñ±t,q). Let

± and ̃
±

be Galton-Watson processes with the offspring numbers Z± and ̃Z± respectively.

Using the total variation distance bound 𝑑tv (Bin(n, p),Poi(np)) ≤ p, see (1.23) in [6], we show by

coupling the offspring numbers of ± and ̃
±

that

|||𝜌
(k) (−) − 𝜌(k)

(
̃
−) ||| ≤ Mkn−1

, (87)

|||𝜌
(k) (+

)
− 𝜌(k)

(
̃
+
) ||| ≤ Mk(n − 𝜔(n))−1

.

From (79), (80), (87) we obtain for k = k(n) = o(n) as m, n → +∞

𝜌

(k) (−
3𝛿

)
≤ 𝜌(k)

(
̃
−)
≤ 𝜌(k) (−) +Mkn−1 = 𝜌(k) (−) + o(1), (88)
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BLOZNELIS AND LESKELÄ 315

𝜌

(k) (+
2𝛿

)
≥ 𝜌(k)

(
̃
+
)
≥ 𝜌(k)

(
+

)
−Mk(n − 𝜔(n))−1 ≥ 𝜌(k)

(
+

)
− o(1). (89)

To show the first inequality of (88) we couple the offspring numbers Y−
3𝛿
≤ ̃Z−. The coupling is feasible

whenever 𝜆t,q(1 − 3𝛿) ≤ mt,q(2𝛿)p−t,q ∀(t, q) ∈ A0
or, equivalently, 𝜇(1 − 3𝛿) ≤ (m∕n)(1 − 3𝛿 + 2𝛿

2).
In view of (80) the latter inequality holds true for sufficiently large n, say, n > n∗, where n∗ depends

on 𝛿 and {𝜀n}. Similarly, the first inequality of (89) holds whenever 𝜆t,q(1 + 2𝛿) ≥ tmt,q∕(n − 𝜔′(n))
∀(t, q) ∈ A0

. In view of (79), (80) the latter inequality holds for sufficiently large n, say, n > n∗∗, where

n∗∗ depends on 𝛿 and {𝜀n}.
Furthermore, we show in (101), (109) below that

𝜌

(𝜔)(−) − o(1) ≤ P(|Cv| ≥ 𝜔(n)) ≤ P(|Cv| ≥ 𝜔′(n)) ≤ 𝜌(𝜔
′)(+) + o(1) (90)

(the second inequality follows by 𝜔 ≥ 𝜔′). We note that o(1) on the left of (90) depends on 𝛿, 𝜔, M,

𝜇, |A0|, and {𝜀n}, while o(1) on the right depends on 𝜔
′
, M and q̂. (88), (89), (90) imply

𝜌

(𝜔) (−
3𝛿

)
− o(1) ≤ P(|Cv| ≥ 𝜔(n)) ≤ 𝜌(𝜔

′) (+
2𝛿

)
+ o(1). (91)

Finally, letting 𝛿 ↓ 0 we obtain as n → +∞

P(|Cv| ≥ 𝜔(n)) = 𝜌() + o(1), (92)

where the remainder o(1) depends on M, A0
, {ht,q, (t, q) ∈ A0}, 𝜇, {𝜀n} and function 𝜔. Indeed the

lower bound of (92) follows from 𝜌

(𝜔)(−
3𝛿
) ≥ 𝜌(−

3𝛿
) → 𝜌() as 𝛿 ↓ 0. More precisely, given 𝜏 > 0

we choose 𝛿
𝜏
> 0 such that 𝛿 ≤ 𝛿

𝜏
implies 𝜌(−

3𝛿
) ≥ 𝜌() − 𝜏 and then letting n → ∞ we apply the

left inequality of (91) to get

P(|Cv| ≥ 𝜔(n)) ≥ 𝜌(𝜔)(−3𝛿) − 𝜏 ≥ 𝜌() − 2𝜏.

For the upper bound we push 𝜌
(k)(+

2𝛿
) arbitrarily close to 𝜌() choosing large k and small 𝛿.

Indeed, given 𝜏 > 0 we find large k
𝜏
> 0 such that 𝜌

(k
𝜏

)() ≤ 𝜌() + 𝜏. Next, we find small 𝛿
′
𝜏

such

that 𝛿 ≤ 𝛿′
𝜏

implies 𝜌
(k
𝜏

)(+
2𝛿
) ≤ 𝜌(k𝜏 )() + 𝜏. For 𝛿 ≤ 𝛿′

𝜏
and k > k

𝜏
we have

𝜌

(k) (+
2𝛿

)
≤ 𝜌(k𝜏 )

(
+

2𝛿

)
≤ 𝜌(k𝜏 )() + 𝜏 ≤ 𝜌() + 2𝜏. (93)

Now letting n → ∞ we apply the right inequality of (91) to get

P (|Cv| ≥ 𝜔(n)) ≤ 𝜌(𝜔′)
(
+

2𝛿

)
+ 𝜏 ≤ 𝜌() + 2𝜏.

Finally, we note that (92) implies (81). It remains to prove the first and the last inequality

of (90).

Proof of (90). We fix an order v1 < v2 < · · · < vn of elements of V . Let m′ =
∑
(t,q)∈A0 mt,q be the

number of sets in the collection D0. We can assume without loss of generality that D0 = {D1, … ,Dm′ }
and |D1| ≤ |D2| ≤ · · · ≤ |Dm′ |.

Upper bound (the last inequality of (90)). Given v ∈ V , define the list Lv of vertices using a BFS

type exploration procedure. In the beginning all vertices are uncolored, all sets Di ∈ D0 are unmarked,

and Lv = ∅. After a vertex is added to Lv the vertex is colored white. We add v to the list. Next we pro-

ceed recursively. We choose the oldest (with respect to inclusion to Lv) white vertex, say u, from Lv.
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316 BLOZNELIS AND LESKELÄ

For i = 1, 2, … ,m′
such that u ∈ Di and Di is not marked, we mark Di (we say that Di is marked by u)

and add to Lv (in increasing order) all uncolored vertices of Di that are connected to u by paths of edges

labelled Di. We say that Di brings these vertices to the list and attach label Di to each of them. After-

wards we color u black. Vertices added to Lv in this step are called children of u. We then chose the

oldest white vertex from Lv, add to Lv its children and color this vertex black etc. We stop when there are

no more white vertices in Lv or there are no more unmarked sets Di left. We denote Lv = {u1, u2, … },
where elements are listed in the order of their inclusion to the list (ui is older than uj for i < j and

u1 = v). We denote Lv,k = {u1, … , uk} the set of k oldest vertices of Lv. Note that Lv is a subset of

Cv. For any ui ∈ Lv with i ≥ 2 there is unique i∗ ∈ [1, i) such that ui is a child of ui∗ (equivalently,

ui∗ is the parent of ui). While constructing the list Lv we keep track of the sets Di
1
,Di

2
, … that have

been marked one after another (Dis was marked before Dit for s < t). For uj ∈ Lv the number r = r(j)
tells us that uj was brought to the list by Dir , the rth member of the sequence {Di

1
,Di

2
, … } =∶ Dv.

A set Dis marked by u ∈ Lv is called void if u has no neighbors in Dis linked to u by edges labeled Dis
(in this case Dis brings no children to u). Note that any Dij is void with probability at most 1 − q̂. A

set Dis ∈ Dv is called regular if ∪s−1

j=1
Dij and Dis intersect in a single point. Vertex v is called k-regular

if |Lv| ≥ k and each Dij is regular for j = 2, 3, … , r(k). The set of k-regular vertices of G is denoted

Vk = {v ∈ V ∶ v is k − regular}. Note that the events {|Cv| ≥ k, v ∈ Vk} and {|Lv| ≥ k, v ∈ Vk} are

equivalent.

We observe that the number of vertices brought to the list Lv by a regular set Dis ∈ Dt,q has the

same distribution as T(t, q). For a nonregular set this number may be smaller, since white vertices of

a nonregular set Dis that have been colored in previous steps of the exploration cannot be brought to

Lv by Dis . Therefore as long as k ≤ 𝜔

′(n) a coupling of the exploration process with the branching

process + shows that

P(|Lv| ≥ k) ≤ P(|+| ≥ k). (94)

Next we show that

P(|Lv| ≥ k, v ∉ Vk) ≤ ̂k
2M2n−1 + 2k−1

, (95)

where ̂k ∶= 2k∕q̂. For v with |Lv| ≥ k the event {v ∉ Vk} implies that one or more nonregular sets

have been marked during the exploration. Then either the first marked nonregular set Dis has index s
satisfying s ≤ ̂k (we denote this eventk) or we have s > ̂k. In the latter case there are at least ̂k−k+2

void sets Dil with l ≤ ̂k (this event we denote k). Indeed, on the event k ∩ {v ∉ Vk} ∩ {|Lv| ≥
k} we have that the index s of the first observed nonregular set Dis satisfies ̂k < s ≤ r(k). But the

inequality ̂k < r(k) implies that among the first ̂k sets from Dv there are less than k − 1 nonvoid

ones as each nonvoid set contributes at least one new vertex to the list. Now (95) follows from the

inequalities

P(k) ≤ P(Y < k − 1) ≤ 2k−1
, (96)

P(k) ≤
∑

2≤s≤̂k

P(Dis is non regular) ≤ (̂k − 1) (
̂k − 1)M2

n
. (97)

Here, Y ∼ Bin(̂k, q̂) and (96) follows by Chebyshev’s inequality. In (97) we estimated P(Dis is

non regular) ≤ (̂k − 1)M2∕(n − (̂k − 1)). Indeed, given Hs−1 = ∪1≤𝓁≤s−1Di𝓁 , the size |Dis | = t and

the event that Dis is marked by uj, the probability that Dis is non regular is the conditional probability
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BLOZNELIS AND LESKELÄ 317

p∗ = P
(
|Hs−1 ∩ D∗| ≥ 2 |uj ∈ D∗)

, where D∗
is a random subset of size t of the set V ⧵{u1, … , uj−1}.

For |Hs−1| = h we have

p∗ =
P(|Hs−1 ∩ D∗| ≥ 2, uj ∈ D∗)

P(uj ∈ D∗)
≤
(h − j)(t − 1)

n − j
. (98)

The last fraction upper bounds the probability that D∗ ⧵ {uj} of size t − 1 intersects with

Hs−1 ⧵{u1, … , uj} of size h− j. Note that (h− j)∕(n− j) ≤ h∕n and h ≤ (̂k−1)M and t ≤ M. Therefore

the right side of (98) is at most (̂k − 1)M2∕n. This shows (97) and we arrive to (95). It follows from

(95) that for k = kn → +∞

k = o(
√

n) ⇒ P(|Lv| ≥ k, v ∉ Vk) = o(1). (99)

We similarly show that

k = o(
√

n) ⇒ P(|Cv| ≥ k, v ∉ Vk) = o(1). (100)

Namely, given v with |Cv| ≥ k, the event v ∉ Vk implies that either |Lv| < k or |Lv| ≥ k and Dij is

nonregular for some 2 ≤ j ≤ r(k). The probability of the latter event is bounded by (99). Now we show

that the remaining event k ∶= {|Cv| ≥ k, |Lv| < k} has probability P(k) = o(1). We observe
3

that

event k implies that a nonregular set Dis has been marked by some ur ∈ Lv, where r < k. Next we

consider two alternatives: either the index s of the first marked nonregular set Dis satisfies s ≤ ̂k (the

probability of such event is upperbounded in (97) and is o(1)) or s > ̂k. But the inequality s > ̂k implies

that at most k − 1 elements of the list Lw have marked at least ̂k − k + 2 void sets before a nonregular

set was marked. The probability of such event is upperbounded by (96) and is o(1).
Finally, we observe that the events {|Cv| ≥ k, v ∈ Vk} and {|Lv| ≥ k, v ∈ Vk} are equal. Now (99),

(100) combined with (94) imply

P(|Cv| ≥ k) = P(|Lv| ≥ k) + o(1) ≤ P(|+| ≥ k) + o(1). (101)

Lower bound (the first inequality of (90)). We modify a bit our exploration procedure. Given v ∈ V ,

we construct the list L∗v = {u1, u2, … } similarly as Lv above, but now each uj ∈ L∗v only accepts

children brought by regular sets. Moreover, not every regular set is allowed to contribute to the list L∗v .

Permission to contribute is granted at random. The construction of L∗v is described in the algorithm A,

which uses a slightly modified definition of regular set.

In the algorithm A we use the following notation. D∗
1
,D∗

2
, … denote the regular marked sets that

were allowed to contribute to the list L∗v one after another during the exploration; H∗
s = {u1} ∪(

∪1≤l≤sD∗
l
)
, s ≥ 1. We set H∗

0
= {u1}. Furthermore, M(1)

,M(2)
, … denote the numbers of sets marked

by u1, u2, · · · ∈ L∗v respectively; M(j)
t,q denotes the number of sets from Dt,q marked by uj (so that M(j) =

∑
(t,q)∈A0 M(j)

t,q). For each (t, q) ∈ A0
we define the integer sequence m(j)

t,q = mt,q(𝛿) − (j − 1)⌊3 ln m⌋,

j ≥ 1. For integers h, t we denote, see (84),

p∗(h, t, j) =
p−t,𝛿

p∗
1
(h, t, j)

, p∗
1
(h, t, j) =

(n − h
t − 1

)(n − j + 1

t

)−1

. (102)

3
Indeed, we always have Lv ⊂ Cv. The opposite, Lv ≠ Cv, may happen if, for example, some ur ∈ Lv marks a nonregular set

Dis containing a white vertex ur+j (which is already on the list Lv) and vertices ur+j and ur belong to distinct components of the

layer corresponding to Dis . The set Dis once marked by ur will not be allowed to bring children to ur+j.
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318 BLOZNELIS AND LESKELÄ

Algorithm A

1. for (t, q) ∈ A0
set ̃D

(0)
t,q ∶= Dt,q;

2. L∗v ← v, color[v] = white, j ← 0;

3. while L∗v contains a white vertex:

4. j ← j + 1, uj ← the oldest white vertex of L∗v , color[uj] = black,

5. for (t, q) ∈ A0
:

6. select a subset D
(j)
t,q ⊂ ̃D

(j−1)
t,q of size |D(j)

t,q| = m(j)
t,q,

7. examine each D ∈ D
(j)
t,q: mark D whenever uj ∈ D, and if D is regular

4
then accept D with

probability p∗(h, t, j), where t = |D| and where h = |H∗
s | refers to the union H∗

s of regular sets accepted

so far. Color white the children of uj brought by D and insert them to the list L∗v . Set ̃D
(j)
t,q to be the

family of unmarked sets from the collection D
(j)
t,q. Stop if either (a) |L∗v | = k or (b) M(j)

t,q > ⌊3 ln m⌋.

Let us show that for any sequence k = kn → +∞, kn ≤ nln
−2n we have

P(|L∗v | ≥ k) ≥ P (|−| ≥ k) + o(1). (103)

More precisely, we show that there exist integer n′∗ depending on 𝛿 and {ht,q, (t, q) ∈ A0} such that for

n > n′∗ we have P(|L∗v | ≥ k) ≥ P(|−| ≥ k) + r∗n, where the sequence r∗n = o(1) may depend on M,

𝜇, {𝜀n} and |A0|.
We firstly show that the acceptance probability p∗(h, t, j) of step 7 is well defined, that is, for suffi-

ciently large n,m it is always less than 1. Indeed, while deciding whether to accept a regular set D in step

7 we know that |L∗v | < k. Hence, the number of sets marked so far is at most
∑

uj∈L∗v
M(j)

< k|A0|3 ln m
as each M(j)

contribute at most |A0|3 ln m. The number of marked regular accepted sets is even less.

Hence h ≤ Mk|A0|3 ln m = O(nln
−1n). Here we used the fact that the layer sizes |D∗

l | ≤ M, the set A0

is finite and m∕n → 𝜇 ∈ (0,+∞). Now for j = O(nln
−2n) and 2 ≤ t ≤ M we have

p∗
1
(h, t, j) = t

(
n − O(nln

−1n)
)

t−1(
n − O(nln

−2n)
)

t

= (1 + o(1)) t
n
> (1 − 𝛿) t

n
= p−t,𝛿 .

In the inequality above we use n > n′∗. A similar reasoning shows that each time we perform step 6 the

collection ̃D
(j−1)
t,q has more than mt,q(2𝛿) members. Indeed, we have for j < nln

−2n

| ̃D(j)
t,q| = |D(j)

t,q| −M(j)
t,q ≥ m(j)

t,q − ⌊3 ln m⌋ ≥ mt,q(𝛿) − j⌊3 ln m⌋ ≥ mt,q(2𝛿).

In the last inequality above we use n > n′∗.
We secondly show (see (105), (106) below) that the probability that algorithm A stops for the

reason (b) is negligibly small. Introduce the event

r = {M(j)
t,q > 3 ln m, for some 1 ≤ j ≤ r and some (t, q) ∈ A0}.

If the algorithm did not stop before uj started exploring its children in the layers of size t and strength

q, then M(j)
t,q has binomial distribution Bin

(
m(j)

t,q, t∕(n − j + 1)
)

. In this case we have for some constant

c depending on 𝜇 and M

P(M(j)
t,q > ⌊3 ln m⌋) ≤ cm−2

. (104)

4
A set D marked by uj is called regular if uj is the only common vertex shared by D and the union of previously marked and

accepted regular sets.
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BLOZNELIS AND LESKELÄ 319

To show (104) we couple M(j)
t,q with binomial random variable M∗

j ∼ Bin(m, t∕(n − j + 1)) so that

P
(
M(j)

t,q ≤ M∗
j
)
= 1. Then we apply exponential Markov inequality P(M∗

j > x) ≤ e−xEeM∗
j with

x = ⌊3 ln m⌋ and use the bound
5 EeM∗

j ≤ c, where c depends on 𝜇,M and the sequence {𝜀n}. If the

algorithm stops before uj starts exploring its children in the layers of size t and strength q, then we set

M(j)
t,q ≡ 0. In the latter case (104) is obvious. For r ≤ k we obtain from (104) by the union bound that

P(r) ≤ P(k) ≤ c|A0|m−1 = O(m−1). (105)

By i∗(k) and r∗(k) we denote the positive integers such that uk ∈ L∗v is a child of ui∗(k) ∈ L∗v and uk is

brought to the list by the set D∗
r∗(k). Observe that r∗(k) ≤ M1 + · · · + Mi∗(k) and i∗(k) < k. Therefore

(105) implies

P( i∗(k)) = 1 − O(m−1), P
(
|L∗v | ≥ k |  i∗(k)

)
= P(|L∗v | ≥ k) + O(m−1). (106)

Here, the second relation follows from the first one. The conditioning on  i∗(k) means that the algorithm

has not stopped for the reason (b).

We now are ready to prove (103). We consider the probability P
(
|L∗v | ≥ k |  i∗(k)

)
. We claim

that as long as the algorithm does not stop for the reason (b), we have for each 1 ≤ j ≤ i∗(k), each

(t, q) ∈ A0
and each D ∈ D

(j)
t,q that the probability that D is marked by uj, D is regular and it is allowed

to contribute to L∗v is p−t,𝛿 . To show this we examine the probability p∗(h, t, j) of step 7. Note that

p∗
1
(h, t, j) is the probability that given H ⊂ W of size |H| = h and u1, … , uj ∈ H, a random subset

D ⊂ V ⧵ {u1, … , uj−1} of size t intersect with H and the intersection D ∩ H = {uj} (i.e., p∗
1
(h, t, j) is

the probability that D is marked by uj and it is regular). The random acceptance of D with probability

p∗(h, t, j) (in step 7) makes the final acceptance probability equal p−t,𝛿 . Now we can write the total

number of children of uj, 1 ≤ j ≤ i∗(k), in the form

∑

(t,q)∈A0

𝜂

(j)
t,q∑

s=1

I
(j)
s (t, q)T (j)s (t, q). (107)

Here, I
(j)
s (t, q) is a Bernoulli random variable (independent of all the other random variables) with

success probability

p′j,𝛿 ∶=
p−t,𝛿

P(D is marked by uj)
=

p−t,𝛿
t∕(n − j + 1)

= (1 − 𝛿)n − j + 1

n

(note that p′j,𝛿 is the conditional probability that D ∈ D
(j)
t,q is allowed to contribute to L∗w given that D

is marked by uj). Furthermore, by 𝜂
(j)
t,q we denote the random variable M(j)

t,q conditioned on the event

M(j)
t,q ≤ ⌊3 ln m⌋.

Let us compare the exploration process L∗v (conditioned on the event  i∗(k)) with the branching

process , which produces an ordered list of particles {u1, u2, … } and where the offspring number

5
We have EeM∗

j =
(

1 + (e − 1) t
n−j−1

)m
≤ em t(e−1)

n−nln−2n ≤ em M(e−1)
n−nln−2n ≤ e3M m

n , for n ≥ 5.
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320 BLOZNELIS AND LESKELÄ

of uj is defined by (107), but with 𝜂
(j)
t,q replaced by M(j)

t,q. Note that the total variation distance between

their distributions (𝜂(j)t,q) and (M(j)
t,q)

𝑑tv

(

(
𝜂

(j)
t,q
)
,

(
M(j)

t,q
))
≤ P

(
M(j)

t,q > 3 ln m
)
≤ cm−2

.

Here, the second inequality is shown in (104) and the first one follows from the inequality
6 |P(A|B) −

P(A)| ≤ P(B), which holds for any events A,B with P(B) > 0. Hence, we have

P
(
|L∗v | ≥ k |  i∗(k)

)
= P(|| ≥ k) + O(k∕m2). (108)

Furthermore, we have P(|| ≥ k) ≥ P(|−| ≥ k}. Indeed, we can represent the offspring number of

 as

∑

(t,q)∈A0

M(j)
t,q∑

s=1

I
(j)
s (t, q)T (j)s (t, q) =

∑

(t,q)∈A0

M
(j)
t,q∑

s=1

T (j)s (t, q),

where M(j)
t,q ∼ Bin(m(j)

t,q, p−t,𝛿), and then couple M(j)
t,q with N−

t,q so that P

(
M(j)

t,q ≥ N−
t,q

)
= 1. Now (106),

(108) imply (103). Finally, (103) together with the simple inequality P(|Cv| ≥ k) ≥ P(L∗v | ≥ k) shows

P(|Cv| ≥ k) ≥ P(|−| ≥ k} + o(1). (109)

Proof of (82). We use the shorthand notation Iv ∶= I{|Cv|≥𝜔(n)}. We have

|B𝜔| =
∑

v∈V
Iv,

(|B𝜔|
2

)
=

∑

{u,v}⊂V
IuIv. (110)

The first identity combined with (81) yield

E|B𝜔| = n𝜌() + o(n). (111)

For 𝜌() = 0 this implies (82). For 𝜌() > 0 we establish (82) by showing that |B𝜔| concentrates

around its mean E|B𝜔|.
We first consider the special case of 𝜔 = 𝜔, where 𝜔(n) = ln n. Let {x, y} ⊂ V denote a pair of

vertices selected uniformly at random. We show below that

E(IxIy) ≤ 𝜌() × 𝜌() + o(1), (112)

where the remainder o(1) only depends on M, A0
and {𝜀n}. (112) combined with (110), (111) imply

E|B𝜔|2 ≤ (E|B𝜔|)2 + o(n2). From the latter inequality we conclude that Var|B𝜔| = o(n2). Now

Chebyshev’s inequality implies

∀𝛾 > 0 P

{||||B
𝜔| − E|B𝜔|||| > 𝛾n

}
≤ (𝛾n)−2

Var(|B𝜔|) = o(1). (113)

Letting 𝛾 ↓ 0 we obtain (82). It remains to prove (112).

6
ForΔ ∶= P(A|B)−P(A) > 0 we haveΔ ≤ P(A|B)−P(A,B) = P(A|B)P(B) ≤ P(B). ForΔ ≤ 0 we have |Δ| = P(A)−P(A|B) ≤

P(A) − P(A,B) ≤ P(B).
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BLOZNELIS AND LESKELÄ 321

Proof of (112). We start with an outline. Denote for short k = 𝜔(n). We select y and perform explo-

ration Ly (as in the proof of the upper bound of (90)). We stop the exploration after the first k elements

of the list Ly are discovered. Let Dy denote the collection of sets marked during this exploration and

H(y) = ∪D∈Dy D. We will show that |H(y)| = OP(k) (see (115) below). Next we select x. The event

x|y ∶= {x ∉ H(y)} has probability 1 − O(k)∕n = 1 − o(1) (see (116) below). We then consider the

exploration Lx (until the first k elements of the list Lx are discovered) conditionally on the event x|y.

Using the fact that |H(y)| = OP(k) we show that the sets marked during the exploration Lx do not

intersect with H(y) with high probability (see (118)). Hence the event x ∶= {|Lx| ≥ k} is asymp-

totically independent of y ∶= {|Ly| ≥ k}. Finally, we establish (112) by approximating P(y) and

P(x|y) = P(x)(1+ o(1)) by the survival probabilities of related branching processes. The rigorous

argument below adds the details.

Recall that Vk denotes the set of k-regular vertices. Denote the events

y = {|H(y)| ≤ M ̂k, |Dy| ≤ ̂k}, +z = z ∩ {z ∈ Vk}, z = x, y,

where
̂k = 2k∕q̂. (100) and the fact that events {|Cv| ≥ k, v ∈ Vk} and +v are equal imply

E(IxIy) = E
(
IxIyI{x∈Vk}I{y∈Vk}

)
+ o(1), E

(
IxIyI{x∈Vk}I{y∈Vk}

)
= P{+x ∩ +y }. (114)

Note that event +y ∩ {|Dy| > ̂k} implies that among the first
̂k sets marked by Ly less than k − 1 are

nonvoid. The probability of such event is o(1), see (96). Since |Dy| ≤ ̂k implies y we conclude that

P(+y ∩y) = o(1). (115)

Combining the latter bound with the obvious bound

P(x|y|y) ≤ M ̂k∕n = o(1) (116)

we obtain

P{+x ∩ +y } = P
{
+x ∩ +y ∩y

}
+ o(1) = P

{
+x ∩ +y ∩y ∩ x|y

}
+ o(1). (117)

In the last step we used the inequalities

P
{
+x ∩ +y ∩y ∩ x|y

}
≤ P

{
y ∩ x|y

}
≤ P(x|y|y) = o(1).

Let Dx = {Di
1
,Di

2
, … } denote the sets marked during the exploration Lx (Dis is marked before Dis+1

).

We call Dis healthy whenever Dis ∩ H(y) = ∅. Exploration Lx is called healthy if all marked sets Dis
are healthy (recall that we stop marking the sets after Lx collects k elements). Introduce events

x = {Lx is healthy}, ∗x = {there is no nonhealthy Dis with s ≤ ̂k}.

Next we show that

P
{
+x ∩ +y ∩y ∩ x|y

}
= P

{
+x ∩ +y ∩y ∩ x|y ∩ x

}
+ o(1). (118)
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322 BLOZNELIS AND LESKELÄ

Given integer 0 < t ≤ M, let D ⊂ V be a random set of size |D| = t. Assuming that D and H(y) are

independent we estimate the conditional probability

P
(
D ∩ H(y) ≠ ∅|H(y), x ∉ H(y), x ∈ D

)
≤ (t − 1)|H(y)|(n − 1)−1

. (119)

Now we consider the exploration Lx conditionally, given the eventy∩x|y. The conditional probability

that Di
1

marked by x is not healthy is at most (M − 1)M ̂k(n − 1)−1
. Here, we applied (119) and used

the fact that x ∉ H(y) implies Di
1
∉ Dy and therefore Di

1
and H(y) are (conditionally) independent.

Furthermore, for s = 1, 2, … , given the event that Di
1
, … ,Dis are all healthy and that Dis+1

was

marked by the jth element (where j < k) of the list Lx, the probability that Dis+1
is not healthy is at most

(M − 1)M ̂k(n − j)−1 ≤ (M − 1)M ̂k(n − k)−1
. Here we used the fact that uj ∉ H(y) implies Dis+1

∉ Dy.

By the union bound applied to ∗x = ∪
1≤s≤̂k

{Di
1
, … ,Dis−1

are healthy and Dis is not healthy}, we have

P
{
∗x |y, x ∉ H(y)

}
≤
̂k ⋅ (M − 1)M ̂k(n − k)−1 = o(1).

This bound implies

P(∗x ∩y ∩ x|y) = P(y ∩ x|y) − o(1). (120)

Furthermore, on the event ∗x the exploration Lx does not encounter H(y) and therefore Lx is deter-

mined solely by the sets Dx = {Di
1
,Di

2
, … } (which are subsets of V ⧵ H(y)). The same argument as

that of (96), (97) above yields that the event +x ∩ {|Dx| > ̂k} has probability o(1), that is, we have

P

{
+x ∩ {|Dx| > ̂k}|∗x ,x|y,y

}
= o(1). Consequently,

P

{
+x ∩ {|Dx| ≤ ̂k} ∩ ∗x ∩ x|y ∩y

}
= P

{
+x ∩ ∗x ∩ x|y,y

}
− o(1). (121)

In view of the fact that the event {|Dx| ≤ ̂k} ∩ ∗x implies x and event x implies ∗x we obtain from

(121) that

P
{
+x ∩ x ∩ x|y ∩y

}
= P

{
+x ∩ ∗x ∩ x|y,y

}
− o(1).

This relation together with (117), (120) imply (118).

In the last step of the proof of (112) we estimate

P
{
+x ∩ +y ∩y ∩ x|y ∩ x

}
≤ P

{
+x |x ∩ +y ∩y ∩ x|y

}
P(+y ) (122)

and

P(+y ) ≤ 𝜌() + o(1), P
{
+x |x ∩ +y ∩y ∩ x|y

}
≤ 𝜌() + o(1). (123)

The first bound of (123) follows from (89,93,94). The second one is obtained by a similar argument, but

now we perform exploration Lx in the subgraph of G induced by the vertex set V ⧵H(y). In particular,

we set N+
t,q ∼ Bin(mt,q, p∗t ) and Ñ+t,q ∼ Poi(mt,qp∗t ) in (85), (86). Here p∗t = t∕(n− k−M ̂k) upperbounds

the probability P(uj ∈ D) that uj ∈ Lx = {u1, u2, … } with j < k marks a “healthy” random set

D ⊂ V ⧵ ({u1, … , uj−1} ∪ H(y)) of size |D| = t. Note that 2 < t ≤ M implies p∗t = tn−1(1 + o(1)).
Relation (112) follows from (114), (117), (118), (122), and (123). We have shown (82) in the special

case of 𝜔 = 𝜔, where 𝜔(n) = ln n.
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BLOZNELIS AND LESKELÄ 323

Next we prove (82) for general 𝜔. To this aim we show that
||||B

𝜔|− |B𝜔|||| = op(n). Let 𝜔1 = 𝜔∨𝜔

and 𝜔2 = 𝜔 ∧ 𝜔 so that
||||B

𝜔| − |B𝜔|||| = |B𝜔2 | − |B𝜔1 | ≥ 0. Now (111) implies

E
||||B

𝜔| − |B𝜔|||| = E (|B𝜔2 | − |B𝜔1 |) = o(n).

Hence
||||B

𝜔| − |B𝜔|||| = op(n).
Proof of (83). The upper bound P

(
|C| ≤ n𝜌() + 𝜀′′n n

)
≥ 1 − o(1) follows from (82). Indeed, we

can assume without loss of generality that 𝜀
′′
n from (82) satisfies 𝜀

′′
n n ≥ ln

2n. For𝜔(n) = ln n we obtain

from (75) for large n,m that

P
(
|C| > n𝜌() + 𝜀′′n n

)
≤ P

(
max{𝜔(n), |B𝜔|} > n𝜌() + 𝜀′′n n

)

= P
(
|B𝜔| > n𝜌() + 𝜀′′n n

)
= o(1). (124)

For 𝜌() = 0 relation (83) follows from (124). It remains to prove (83) for 𝜌() > 0. To this aim

we show the matching lower bound |C| ≥ 𝜌()n + oP(n). Fix (t, q) ∈ A0
. Choose 𝛿 = 𝛿n > 0 such

that 𝜌(−
𝛿

) > 0. We select a subset D
𝛿

t,q ⊂ Dt,q of size |D𝛿

t,q| = ⌊𝛿mt,q⌋ and color sets from D
𝛿

t,q blue.

The collection D
∗
0
= D0 ⧵ D

𝛿

t,q is obtained from D0 by removal of the blue sets. Let G𝛿

(respectively

G∗
) be the overlay graph on the vertex set V defined by the collection of layers D

𝛿

t,q (respectively D
∗
0
).

We color edges of G𝛿

blue. We couple G, G𝛿

and G∗
so that G = G𝛿 ∪ G∗

. Let 𝜔(n) = n2∕3
and let

B∗ ⊂ V be the set of vertices belonging to connected components of G∗
having at least 𝜔(n) vertices.

Clearly, there are at most n1∕3
such components. Given a pair of such components C′

,C′′
⊂ V , for any

D ∈ D
𝛿

t,q, the probability that C′
,C′′

are connected by a blue edge labeled D is at least

p⋆ ∶= P
(
D ∩ C′

,D ∩ C′′ | C′
,C′′) ⋅ q ≥ 2n4∕3n−2q.

Indeed, P
(
D ∩ C′

,D ∩ C′′ | C′
,C′′)

, the probability that a randomly selected pair of elements of D
intersects with C′

and C′′
simultaneously, is at least n2∕3 × n2∕3∕

(
n
2

)
. Furthermore, by Chernoff’s

bound (see formula (2.6) of [30]), for any c̃ > 0 the probability that there are less than c̃ ln n blue edges

between C′
and C′′

is at most

P
{

X⋆

< c̃ ln n
}
≤ e−c𝛿n1∕3

, (125)

where the random variable X⋆

has binomial distribution Bin(⌊𝛿mt,q⌋, p⋆). Furthermore, the constant

c > 0 in (125) depends on ht,q, constant c̃ > 0 and the sequence mn∕n → 𝜇. Next, by the union bound,

the probability that there exists a pair of components connected by less than c̃ ln n blue edges is at most

(
⌈n1∕3⌉

2

)
e−c𝛿n1∕3 = o(1), (126)

provided that 𝛿n1∕3 ≥ ln
2n.

We let 𝛿 = n−1∕6
and apply (82) to the set B∗ of vertices of G∗

. In view of (126) these ver-

tices belong to the same connected component of G = G𝛿 ∪ G∗
with high probability. Hence,

|C| ≥ |B∗| ≥ n𝜌() + oP(n). ▪

In the next Lemma, we relax condition (74) by allowing a negligible fraction of layer types (xn,i, qn,i)
to take their values outside A.
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324 BLOZNELIS AND LESKELÄ

Lemma 9.2. Statements (82), (83) of Lemma 9.1 remain true if we replace condition (74) by the
condition

∀ n ≥ 1 ∀ 1 ≤ i ≤ mn xn,i ≤ M.

and condition (79) by the condition

∀ n max
(t,q)∈A

|||ht,q − mt,q∕m||| ≤ 𝜀n. (127)

Proof. Given n and (xn, qn) we color a pair (xn,i, qn,i) red whenever (xn,i, qn,i) ∈ A. Otherwise we

color (xn,i, qn,i) blue. The layers defined by red (blue) pairs are colored red (blue) as well. By (127),

the number mB of blue layers satisfies mB = o(m). The overlay graphs defined by the families of red

(blue) pairs are denoted by GR (GB). Then G = G(xn,qn) is the union G = GB ∪GR. Let CR and C be the

vertex sets of the largest components of GR and G.

We first show that (83) holds (under conditions of Lemma 9.2). We observe that results (81),

(82), (83) of Lemma 9.1 apply to GR because mB = o(m). In particular, (83) remains true with C
replaced by CR. This observation together with the simple inequality |C| ≥ |CR| yields the lower bound

|C| ≥ n𝜌() + oP(n). To prove the matching upper bound we apply the inequality

|Bk| ≤ |Bk
R| + mBMk, (128)

where Bk
R is the set of vertices that belong to components of GR of sizes at least k. Let us show inequality

(128). We observe that each v ∈ Bk ⧵ Bk
R belongs to a component of GR of size less than k and this

component intersects with some blue layer. Furthermore, each blue layer (being of size at most M)

may intersect with at most M distinct components. Hence each blue layer may contribute at most kM
vertices to Bk ⧵ Bk

R. Consequently, blue layers altogether contribute at most mBMk vertices. From (75)

and (128) we obtain

|C| ≤ max
{

k, |Bk|
}
≤ |Bk

R| + mBMk + k. (129)

Choosing k = kn → +∞ so that

mBkn = o(n) (130)

we obtain |C| ≤ |Bkn
R | + o(n). Finally we apply (82) to |Bkn

R | and obtain |C| ≤ n𝜌() + oP(n).
Next we show that (82) holds (under conditions of Lemma 9.2). For kn satisfying (130) the upper

bound |Bkn | ≤ n𝜌()+oP(n) follows from (128) and relation (82) applied to Bkn
R . We extend this upper

bound to arbitrary 𝜔. Fix some {kn} satisfying (130). Then 𝜔2(n) = 𝜔(n) ∧ kn satisfies (130) and the

upper bound applies to |B𝜔2 | ≥ |B𝜔|.
The lower bound |B𝜔| ≥ n𝜌()+oP(n)makes sense when 𝜌() > 0. For 𝜌() > 0 the lower bound

follows from the lower bound |C| ≥ |CR| ≥ n𝜌() + oP(n) (see (83)) and the fact that |B𝜔| ≥ |C|
provided that 𝜔(n) = o(n) and |C| ≥ 0.5n𝜌(). ▪

Proof of Theorem 3.4. The proof of Theorem 3.4 rests on Lemma 9.1. With the aid of truncation

and discretization we reduce the general case to the case of a finite set of layer types considered in

Lemma 9.1.

We start with some notation. Let M ≥ 2 be a positive integer. Recall the notation x[M] and x[M]n :

given xn = (xn,1, … , xn,m) we denote x[M]n =
(
x[M]n,1 , … , x[M]n,m

)
, where x[M] = xI{x≤M}. Furthermore,

given 0 < 𝜀 < 1 and Qn = (Qn,1, … ,Qn,m) we denote Q±
n = (Q±

n,1, … ,Q±
n,m) the 𝜀-discretization as
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BLOZNELIS AND LESKELÄ 325

in (20). Let A±
𝜀

denote the support of (X[M],Q±). That is, A±
𝜀

is a subset of {0, 1, … ,M}×{s0, … , sr},
where s0, … , sr are possible values of Q±

, and (t, q) ∈ A±
𝜀

whenever h±t,q,𝜀 > 0. Here,

h±t,q,𝜀 ∶= P
(
(X[M],Q±) = (t, q)

)
, (t, q) ∈ {0, 1, … ,M} × {s0, … , sr}.

We consider the overlay random graphs G+
[M] = G

(X
[M]
n ,Q

+
n )

and G−
[M] = G

(X
[M]
n ,Q

−
n )

defined by the

sequences of layer types
(
X[M]n ,Q+

n
)

and
(
X[M]n ,Q−

n
)

respectively. We can couple G±
[M] with G[M] =

G
(X
[M]
n ,Qn)

so that P
(
G−
[M] ⊂ G[M] ⊂ G+

[M]
)
= 1. Furthermore, we couple G[M] and G = G(Xn,Qn)

so that

P(G[M] ⊂ G) = 1. Let C±
[M] and C[M] denote the vertex sets of the largest components of G±

[M] and G[M]
respectively. The couplings above imply the couplings

P
(
|C−

[M]| ≤ |C[M]| ≤ |C+
[M]|

)
= 1 and P

(
|C[M]| ≤ |C|

)
= 1. (131)

Denote 𝜆[M] = 𝜇x∗[M], where x∗[M] = E(XI{2≤X≤M}). Let T∗[M] be a random variable with the

distribution

P
(
T∗[M] = 𝓁

)
= x−1

∗[M]E
(
Bin

+(X − 1,Q)(𝓁)XI{2≤X≤M}
)
, 𝓁 = 0, 1, … .

Note that T∗[M] has the same distribution as (77) above, but with (X,Q) replaced by (X[M],Q). Let M
be a G-W process with the offspring number YM ∼ CPoi(𝜆[M],(T∗[M])).

Now we are ready to prove the theorem. We will assume that P(X ≥ 2,Q > 0) > 0. (The case

where P(X ≥ 2,Q > 0) = 0 is treated at the very end of the proof.) Let M be large enough so that

P(2 ≤ X ≤ M,Q > 0) > 0 and 𝜀 > 0 is small enough so that A+
𝜀

and A−
𝜀

are both nonempty (this will

ensure the condition A0 ≠ ∅ of Lemma 9.1).

In the first step of the proof we show that as n → +∞

|||C[M]
||| = n𝜌(M) + oP(n). (132)

We note that the remainder term oP(n) depends on M. To prove (132) we apply Lemma 9.2 to overlay

graphs G+
[M] and G−

[M] conditionally, given their layer types (X[M]n ,Q+
n ) and (X[M]n ,Q−

n ) respectively. We

will show below that as n → +∞

|||C
±
[M]

||| = n𝜌
(

±
M
)
+ oP(n), (133)

where oP(n) depends on M, 𝜀, A±
𝜀

, {ht,q,𝜀, (t, q) ∈ A±
𝜀
}, the sequence m∕n → 𝜇, and sequences 𝛿

±
n ↓ 0

constructed below. Here 
±
M is a G-W processes with offspring numbers Y±M ∼ CPoi

(
𝜆[M],

(
T±∗[M]

))
,

where T±∗[M] is a random variable with the probability distribution

P
(
T±∗[M] = 𝓁

)
= x−1

∗[M]E
(
Bin

+(X − 1,Q±)(𝓁)XI{2≤X≤M}
)
, 𝓁 = 0, 1, … .

Letting 𝜀 ↓ 0 we obtain 𝜌
(

±
M
)
→ 𝜌 (M). Now (133) together with the first identity of (131) yield

(132). We explain the implication (131), (133)⇒ (132) in more detail. Given 𝜏 > 0 we choose small 𝜀

so that |𝜌(±M) − 𝜌(M)| < 𝜏. Then we build sets A±
𝜀

, {ht,q,𝜀, (t, q) ∈ A±
𝜀
} and sequences 𝛿

±
n (depending

on 𝜀 and M, see the proof of (133) below) and apply (133). We obtain

||||C
±
[M]| − n𝜌 (M)

||| ≤ 𝜏n + ||||C
±
[M]| − n𝜌

(

±
M
) ||| ≤ 𝜏n + oP(n).

This yields (132): ∀ 𝜏 > 0 we have P

(||||C
±
[M]| − n𝜌 (M)

||| > 2𝜏n
)
= o(1) as n → +∞.
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326 BLOZNELIS AND LESKELÄ

Let us show (133). We only consider C+
[M]. For (t, q) ∈ A+

𝜀
denote

mt,q = #
{

i ∶ (X[M]n,i ,Q
+
n,i) = (t, q)

}
.

Let n(𝛿) denote the event that max(t,q)∈A+
𝜀

|h+t,q,𝜀 − mt,q∕m| ≤ 𝛿. We claim that there exists a positive

sequence 𝛿
+
n ↓ 0 such that

P(n(𝛿+n )) = 1 − o(1) as n,m → +∞. (134)

Indeed, for each (t, q) ∈ A+
𝜀

we have

E(mt,q∕m) − h+t,q,𝜀 = P

(
(X[M]n,𝜋 ,Q+

n,𝜋) = (t, q)
)
− P

(
(X[M],Q+) = (t, q)

)
= o(1). (135)

In the very last step we use the fact that our assumption Pn
w
−→ P implies 

(
(X[M]n ,Q+

n )
) w
−→


(
(X[M],Q+)

)
. Noting that mt,q is a sum of independent Bernoulli random variables (some of them

may be degenerate) we have, by Chebyshev’s inequality, for any 𝛿 > 0

P
(
(mt,q − Emt,q) > m𝛿

)
≤

Var(mt,q)
m2
𝛿

2
≤

1

m𝛿2
. (136)

Combining (135) and (136) we obtain (134). Now we are ready to derive (133) from Lemma 9.2. We

apply (83) of Lemma 9.2 to G+
[M] conditionally, given the eventn(𝛿+n ). By (83) there exists a sequence

𝜀

′′
n ↓ 0 (depending on M, A+

𝜀
, {h+t,q,𝜀, (t, q) ∈ A+

𝜀
} and the sequences 𝛿

+
n and m∕n → 𝜇) such that

P

(||||C
+
[M]| − n𝜌(+[M])| > 𝜀′′n n|||n(𝛿+n )

)
= o(1).

Combining this bound with (134) we obtain (133).

In the second step of the proof we let M → +∞. Denote 𝜆 = 𝜇x∗, where x∗ = E(XI{X≥2}), and let

T∗ be a random variable with the distribution

P (T∗ = 𝓁) = x−1
∗ E

(
Bin

+(X − 1,Q)(𝓁)XI{2≤X}
)
, 𝓁 = 0, 1, … .

Note that T∗ has the same distribution as (77) above, but now we drop the restriction on (X,Q) of having

a finite support. Let  be a G-W process with the offspring number Y ∼ CPoi(𝜆,(T∗)). We mention

that the equality of distributions (78) extends to the general setup (where we drop the restriction on

(X,Q) of having a finite support). Consequently, the respective survival probabilities 𝜌() and 𝜌(f+)
are the same.

To prove the first relation of Theorem 3.4 we show that

|C| = n𝜌() + oP(n).

We have, by continuity, that 𝜌(M) → 𝜌() as M → +∞. Now the second identity of (131) together

with (132) yield the lower bound |C| ≥ n𝜌()+oP(n) as n → +∞. Indeed, given 𝜏 > 0 we choose large

M such that |𝜌(M)−𝜌()| < 𝜏. Then we apply (131), (132) to get |C| ≥ |C[M]| ≥
(
𝜌()−𝜏

)
n+oP(n).
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BLOZNELIS AND LESKELÄ 327

To show the matching upper bound |C| ≤ n𝜌() + oP(n) we use the inequalities

|C| ≤ max{k, |Bk|} ≤ |||B
k
[M]

||| + k
∑

1≤i≤m
Xn,iI{Xn,i>M} + k. (137)

Here, Bk
(respectively Bk

[M]) is the set of vertices of G (respectively G[M]) that belong to components

of size at least k. The first inequality of (137) is obvious. The second one is obtained in the same way

as (128), (129) above.

Now we upper bound
|||B

k
[M]

|||. An inspection of the proof of (82) in Lemmas 9.1 and 9.2 shows that

(82) remains true if we replace B𝜔 and 𝜌() by Bk
and 𝜌

(k)(), respectively, where integer k ≥ 1 is

fixed. (Note that sequences 𝜀
′
n ↓ 0, 𝜀

′′
n ↓ 0 of (82) now depends on k (instead of 𝜔). Using this fact and

proceeding as in the proof of (132) above we show that as n → +∞

|||B
k
[M]

||| = n𝜌(k)(M) + oP(n). (138)

Note that the remainder term oP(n) depends on k and M.

Next we upper bound the sum
∑
(· · · ) on the right of (137). We observe that as M → ∞

ZM,n ∶= m−1
∑

1≤i≤m
Xn,iI{Xn,i>M}

P

−→ 0 (139)

uniformly in n. Indeed, our conditions Pn
w
−→ P and (Pn)10 → (P)10 imply the uniform integrability of

the sequence {Xn,𝜋 , n ≥ 1}. That is, we have

𝜑M ∶= sup
n

E
(
Xn,𝜋I{Xn,𝜋>M}

)
→ 0 as M → +∞.

Then for any 𝜏 > 0 and n we have, by Markov’s inequality, that

P
(
ZM,n > 𝜏

)
≤ 𝜏−1

EZM,n = 𝜏−1
E
(
Xn,𝜋I{Xn,𝜋>M}

)
≤ 𝜏−1

𝜑M .

Hence (139) holds uniformly in n.

Finally, combining (137), (138) and invoking the simple inequality 𝜌
(k)(M) ≤ 𝜌(k)() we obtain

for any k,M as n,m → +∞

|C| ≤ n𝜌(k)() + kmZM,n + k + oP(n),

where oP(n) depends on k and M. Now, by choosing large k, we can make 𝜌
(k)() arbitrarily close to

𝜌(). Then, by choosing large M, we can make kZM,n arbitrarily close to zero whp. In this way we

obtain the desired upper bound |C| ≤ n𝜌() + op(n). For readers convenience we explain these steps

in more detail. From the fact that m∕n → 𝜇 we conclude that the sequence {m∕n} is bounded, that is,

m∕n < C
⋆

for some C
⋆
> 0 and all n (recall that m = mn). Given 𝜏 > 0 we choose (sufficiently large)

k such that 𝜌
(k)() ≤ 𝜌() + 𝜏. Then we choose (sufficiently large) M such that 𝜑M < 𝜏

2∕(C
⋆

k).
Now (137), (138) yields

|C| ≤ n𝜌() + 𝜏n + kmZM,n + k + nrk,M,n,
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328 BLOZNELIS AND LESKELÄ

where nrk,M,n stands for the remainder oP(n) in (138). In particular, rk,M,n = oP(1) as n → +∞.

Consequently,

P(|C| > n𝜌() + 4𝜏n) ≤ P(kmZM,n > 𝜏n) + P(k > 𝜏n) + P(rk,M,n > 𝜏).

The first probability on the right

P(kmZM,n > 𝜏n) ≤ (km∕𝜏n)EZM,n ≤ (km∕𝜏n)𝜑M ≤ 𝜏,

by Markov’s inequality. Furthermore, P(k > 𝜏n) + P(rk,M,n > 𝜏) = o(1) as n → +∞. Hence

P(|C| > n𝜌() + 4𝜏n) ≤ 𝜏 + o(1). The latter inequality yields the bound |C| ≤ n𝜌() + op(n).
It remains to show that N2(G(n)) = oP(n). We write for short Ni = Ni(G(n)). For 𝜌 = 0 we have

N2 ≤ N1 = oP(n). For 𝜌 > 0 we use the simple inequality N1 + N2 ≤ |Bk| + 2k ∀k = 2, 3, … . From

(138) and the second inequality of (137) we obtain N1 +N2 ≤ n𝜌(k)() + kmZM,n + 2k + oP(n). Hence

N1 +N2 ≤ n𝜌+ op(n). Now N2 = oP(n) follows from the relation N1 ≥ n𝜌+ oP(n) shown above (recall

that N1 = |C|).
Now we consider the case where P(X ≥ 2,Q > 0) = 0. In this case the distribution f + =

CPoi(𝜇(P)10,Bin
+
10
(P)) is degenerate, f +(0) = 1, and the theorem claims that Ni(G(n)) = oP(n), for

i = 1, 2. To prove this claim we show that E|N1(G(n))| = o(n). Note that the asymptotic degree dis-

tribution f = CPoi(𝜇(P)10,Bin10(P)) defined by Theorem 3.1 is degenerate as well. In particular, we

have f (n)(0)→ f (0) = 1. Consequently, we have

E|N1(G(n))| ≤ E

(
∑

i∈V
I{degG(n)

(i)≥1}

)

=
∑

i∈V
P(degG(n)

(i) ≥ 1) = n(1 − f (n)(0)) = o(n).

▪

10 PERCOLATION MODELS

Proof of Theorem 3.5. The site-percolated graph ̌G is an instance of the overlay graph model (1) with

ň = |S| nodes and m layers ̌G1, … ,
̌Gm where ̌Gk is the subgraph of Gk induced by vertices belonging

to S, and G1, … ,Gm are the original layers generating the overlay graph G. The layer types ( ̌Xk,Qk)
in the site-percolated model are mutually independent, and ( ̌Xk |Xk = xk) is hypergeometric with

probability mass function

Hyp(n, ň, xk)(t) =

(
ň
t

)(
n−ň
xk−t

)

(
n
xk

) .

We consider the sequence of site-percolated graphs ( ̌G(n)) defined by a sequence of overlay graphs

(G(n)) and sets (Sn). For each n, the site-percolated graph ̌G(n) is an instance of the overlay model with

|Sn| = ň = ňn nodes, m = mn layers, and averaged layer type distribution

̌Pn(A) =
∫
(Hyp(n, ň, x) × 𝛿q)(A) Pn(𝑑x, 𝑑q).
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BLOZNELIS AND LESKELÄ 329

We claim that ̌Pn
w
−→ ̌P as n → +∞. In the proof of the claim we use the following bounds

𝑑tv

(
Hyp(n, ň, x),Bin

(
x, ň

n

))
≤ 4

x
n
, 𝑑tv

(
Bin

(
x, ň

n

)
,Bin(x, 𝜃)

)
≤
||||
ň
n
− 𝜃

||||
x. (140)

The first bound is shown in [20, Theorem 4]. The second one is obtained by coupling of coin flips.

Recall that (Xn,𝜋 ,Qn,𝜋) is a bivariate random variable with the distribution Pn. Let S∗n be a random

subset of {1, … , n} = V of size ň independent of (Xn,𝜋 ,Qn,𝜋). Then the random variable ̌Xn,𝜋 =
|{1, … ,Xn,𝜋} ∩ S∗n| has the mixed hypergeometric distribution P( ̌Xn,𝜋 = t) = E

(
Hyp(n, ň,Xn,𝜋)(t)

)

and the random vector ( ̌Xn,𝜋 ,Qn,𝜋) has the distribution ̌Pn. Let ( ̌X,Q) be a random variable with the

distribution ̌P. To prove the weak convergence ̌Pn
w
−→ ̌P we show for every (t, s) ∈ Z+ × [0, 1] that

Δ ∶= ̌Pn(t × [0, s]) − ̌P(t × [0, s]) = o(1). We split

Δ = E
(
Hyp(n, ň,Xn,𝜋)(t)I{Qn,𝜋≤s}

)
− E

(
Bin(X, 𝜃)(t)I{Q≤s}

)
= Δ1 + Δ2,

where

Δ1 = E
(
Hyp(n, ň,Xn,𝜋)(t)I{Qn,𝜋≤s}

)
− E

(
Bin(Xn,𝜋 , 𝜃)(t)I{Qn,𝜋≤s}

)

= E
((

Hyp(n, ň,Xn,𝜋)(t) − Bin(Xn,𝜋 , 𝜃)(t)
)

I{Qn,𝜋≤s}
)

and

Δ2 = E
(
Bin(Xn,𝜋 , 𝜃)(t)I{Qn,𝜋≤s}

)
− E

(
Bin(X, 𝜃)(t)I{Q≤s}

)
.

By (140), we have |Δ1| ≤

(
| ň

n
− 𝜃| + 4

n

)
EXn,𝜋 . Our assumption (Pn)10 → (P)10 implies

limsupnEXn,𝜋 < ∞. Hence Δ1 = o(1). Furthermore, the assumption Pn
w
−→ P implies Δ2 = o(1). We

obtain Δ = o(1) thus proving the claim.

Next we observe that ( ̌Pn)10 = ň
n
(Pn)10 → 𝜃(P)10 = ( ̌P)10, and

m
ň
→ 𝜇̌ = 𝜃−1

𝜇. Theorem 3.5(i)–(ii)

now follow by applying Theorems 3.1 and 3.4 to ̌G(n) and noting that 𝜇̌( ̌P)10 = 𝜇(P)10.

Now assume that (Pn)rs → (P)rs ∈ (0,∞) for rs = 21, 32, 33. A direct computation shows that

( ̌P)rs = 𝜃r(P)rs. Theorem 3.5(iii) now follows by applying Theorem 3.2 to conclude that the clustering

coefficient 𝜏( ̌G(n)) converges to
( ̌P)

33

( ̌P)
32
+𝜇̌( ̌P)2

21

= (P)
33

(P)
32
+𝜇(P)2

21

= 𝜏. Theorem 3.5(iv) follows similarly from

Theorem 3.3. ▪

Proof of Theorem 3.6 for the layerwise bond-percolated graph ̃G(n). The graph ̃G(n) is an

instance of the overlay model with n nodes and m layers ̃Gn,1, … ,
̃Gn,m where ̃Gn,k has size Xn,k

and strength 𝜃Qn,k. The layers ( ̃Gn,k,Xn,k, 𝜃Qn,k) are mutually independent, with averaged layer type

distribution

̃Pn(A) =
∫
(𝛿x × 𝛿

𝜃q)(A) Pn(𝑑x, 𝑑q) (141)

converging according to ̃Pn
w
−→ ̂P and ( ̃P)10 → ( ̂P)10. Furthermore, a direct computation shows that

( ̂P)rs = 𝜃

s(P)rs. Statements (i)–(ii) of Theorem 3.6 now follow by Theorems 3.1 and 3.4, and noting

that ( ̂P)10 = (P)10. Statements (iii)–(iv) follow analogously by Theorems 3.2 and 3.3.
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330 BLOZNELIS AND LESKELÄ

Proof of Theorem 3.6 for overlay bond percolated graph ̂G(n). In the proof we use a cou-

pling argument. We will utilize the fact that the overlay bond-percolated graph does not differ

much from the layerwise bond-percolated graph ̃G(n), for which the theorem has already been

proved. The conditional distribution of ̂G(n) given the layers (Gn,k,Xn,k,Qn,k) is an inhomogeneous

Bernoulli graph on {1, … , n} where each node pair ij is linked with probability p̂ij = 𝜃(Mij ∧ 1)
where Mij =

∑
k I(E(Gn,k) ∋ ij) is the number of layers linking a node pair ij. The corresponding

conditional distribution of ̃G(n) is a similar inhomogeneous Bernoulli graph with link probabilities

p̃ij = 1 − (1 − 𝜃)Mij . Because p̂ij ≤ p̃ij, this suggest the following coupling construction:

(i) Sample the layers (Gn,k,Xn,k,Qn,k), k = 1, … ,m.

(ii) Sample independent inhomogeneous Bernoulli graphs ̃H and H∗
with link probabilities p̃ij and

p∗ij =
p̂ij

p̃ij
with the convention

0

0
= 1. Note that p∗ij ≥ 𝜃.

(iii) Define ̂G(n) = G(n) ∩ ̂H and ̃G(n) = G(n) ∩ ̃H with G(n) defined by (1) and ̂H = ̃H ∩H∗
. Note the

identity ̂G(n) = ̃G(n) ∩ H∗
.

Then ( ̂G(n), ̃G(n),G(n)) constitutes a coupling of the overlay bond-percolated, layerwise

bond-percolated, and nonpercolated graphs such that

̂G(n) ⊂ ̃G(n) ⊂ G(n) almost surely. (142)

Proof of Theorem 3.6(i). Let us denote by ̂
𝑑n = deg ̂G(n)

(i) and ̃
𝑑n = deg ̃G(n)

(i) the degrees of node i in

the overlay bond-percolated and layerwise bond-percolated graph, respectively. By the coupling (142),

we have ̂
𝑑n = ̃

𝑑n on the event Mi ≤ 1, where Mi = maxj≠i Mij. Hence 𝑑tv(( ̂𝑑n),( ̃𝑑n)) ≤ P(Mi > 1).
The union bound implies that

P(Mij > 1) ≤
′∑

k,𝓁
P(E(Gn,k) ∋ ij) P(E(Gn,𝓁) ∋ ij) ≤

(
∑

k
P(E(Gn,k) ∋ ij)

)2

.

By noting that P(E(Gn,k) ∋ ij) = E
(Xn,k)2
(n)

2

Qn,k, we conclude that

P(Mij > 1) ≤
(
m(n)−1

2
(Pn)21

)2

, (143)

Another union bound shows that P(Mi > 1) ≤
∑

j≠i P(Mij > 1) and hence

𝑑tv(( ̂𝑑n),( ̃𝑑n)) ≤ (m∕n)2(Pn)221
(n − 1)−1

. (144)

In the particular case, where there the layer sizes are bounded, that is, there exists constant M > 0 such

that

P(Xn,k ≤ M) = 1 ∀ n = 1, 2, … and k = 1, … ,mn, (145)

the right side of (144) is o(1) as n → +∞. Now (144) together with the weak conver-

gence (shown above) ( ̃𝑑n)
w
−→ CPoi(𝜇(P)10,Bin10( ̂P)) yields the weak convergence ( ̂𝑑n)

w
−→

CPoi(𝜇(P)10,Bin10( ̂P)).
Finally, to treated the general case we revoke the boundedness condition (145) in the same way as

in the proof of Theorem 3.1. The proof of Theorem 3.6(i) is complete.

 10982418, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21140 by V

ilnius U
niversity, W

iley O
nline L

ibrary on [07/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BLOZNELIS AND LESKELÄ 331

Proof of Theorem 3.6(iii). By the fact that random overlay graph G(n) is independent of the

percolating graph H, see (12), for any distinct nodes i, j, k, we have

P
(
̂G(n)(ij), ̂G(n)(ik), ̂G(n)(jk)

)
= 𝜃3

P
(
G(n)(ij),G(n)(ik),G(n)(jk)

)
,

P
(
̂G(n)(ij), ̂G(n)(ik)

)
= 𝜃2

P
(
G(n)(ij),G(n)(ik)

)
.

Hence 𝜏( ̂G(n)) = 𝜃𝜏(G(n)) and the claim follows by applying Theorem 3.2 to the nonpercolated model.

Proof of Theorem 3.6(iv). The proof is similar to that of Theorem 3.3, but it is a bit more technical.

For reader’s convenience we give it in the Appendix (Section A) below.

Proof of Theorem 3.6(ii). Let Ñ1 and Ñ2 (respectively, ̂N1 and ̂N2) denote the number of vertices of

the largest and second largest component of ̃G(n) (respectively ̂G(n)). Let 𝜌̃ = 𝜌(̂f+) denote the survival

probability of the Galton-Watson branching process with the offspring distribution ̂f +.

We observe that coupling (142) yields a coupling of ̂N1 and Ñ1 such that Pr( ̂N1 ≤ Ñ1) = 1. Further-

more, an application of Theorem 3.4 to the sequence of overlay graphs ( ̃G(n)) yields the approximation

Ñ1 = 𝜌̃n+ oP(n). These two facts taken together imply the upper bound ̂N1 ≤ 𝜌̃n+ oP(n). To show the

matching lower bound ̂N1 ≥ n𝜌̃ + oP(n) and the bound ̂N2 = oP(n) we use the same argument as that

of the proof of Theorem 3.4. The only place where we need a minor modification of the argument is

the proof of Lemma 9.1. In what follows we review the proof of Lemma 9.1 and pinpoint the changes

needed to be made.

At this point we need some notation. Let ̂C, ̂Cv, ̂Bk
and ̃C, ̃Cv, ̃Bk

denote the largest component,

the component containing vertex v and the set of vertices belonging to components of size at least k in

̂G(n) and ̃G(n) respectively. Recall the notation 𝜆 = 𝜇x∗ and x∗ = E(XI{X≥2}), and let ̃T∗ be a random

variable with the distribution

P( ̃T∗ = 𝓁) = x−1
∗ E

(
Bin

+(X − 1, 𝜃Q)(𝓁)XI{X≥2}
)
, 𝓁 = 0, 1, … ,

which is obtained from (77) by attaching the factor 𝜃 to Q. We note the equality of distributions ̂f + =
CPoi(𝜆,( ̃T∗)), which is shown by the same argument as (30) above. In particular, 𝜌̃ is the survival

probability of the Galton-Watson branching process with the offspring distribution CPoi(𝜆,( ̃T∗)).
We claim that the results (81), (82), (83) of Lemma 9.1 hold true if we replace C, Cv, B𝜔, 𝜌() by

̂C, ̂Cv, ̂B𝜔, 𝜌̃, respectively. In the proof we use the fact that the coupling ̂G(n) ⊂ ̃G(n) implies couplings

̂C ⊂
̃C, ̂Cv ⊂ ̃Cv, ̂B𝜔 ⊂ ̃B𝜔, and that the results of Lemma 9.1 hold true for ̃C, ̃Cv, ̃B𝜔, 𝜌̃.

Proof of (81). We apply Lemma 9.1 to ̃G(n) and obtain the upper bound of (81) via the coupling

̂Cv ⊂ ̃Cv:

P
(
| ̂Cv| ≥ 𝜔(n)

)
≤ 𝜌̃ + 𝜀′n.

The corresponding lower bound

P
(
| ̂Cv| ≥ 𝜔(n)

)
≥ 𝜌̃ − 𝜀′n

is obtained by the same argument as in the proof of respective result of Lemma 9.1 (note that regular

exploration will not detect any difference between the coupled graphs ̂G(n) ⊂ ̃G(n)).

Proof of (82). In the proof we take a shortcut (compared to the original argument of Lemma 9.1)

while establishing the analog of the main intermediate inequality (112). For the overlay graph ̃G(n) the

inequality (112) holds and it reads as follows

E

(
I{| ̃Gx|≥𝜔(n)}I{| ̃Gy|≥𝜔(n)}

)
≤ 𝜌̃ × 𝜌̃ + o(1).
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332 BLOZNELIS AND LESKELÄ

The coupling ̂Cx ⊂ ̃Gx, ̂Cy ⊂ ̃Gy implies

E

(
I{| ̂Cx|≥𝜔(n)}I{| ̂Cy|≥𝜔(n)}

)
≤ E

(
I{| ̃Gx|≥𝜔(n)}I{| ̃Gy|≥𝜔(n)}

)
.

Hence

E

(
I{| ̂Cx|≥𝜔(n)}I{| ̂Cy|≥𝜔(n)}

)
≤ 𝜌̃ × 𝜌̃ + o(1).

This is the analogue of (112) that yields (82) for ̂G(n). The rest of the proof of (82) goes without changes.

Proof of (83). The upper bound

P(| ̂C| ≤ n𝜌̃ + 𝜀′′n n) ≥ 1 − o(1)

follows from the respective upper bound for | ̃C| combined with the coupling ̂C ⊂
̃C. To show the

matching lower bound

P(| ̂C| ≥ n𝜌̃ − 𝜀′′n n) ≥ 1 − o(1)

we use the coupling ̂G(n) ⊂ ̃G(n) and slightly modify the corresponding argument of the proof of

Lemma 9.1. Recall that ̂G(n) is obtained from ̃G(n) by deleting certain edges at random and the proba-

bility of deletion is at most 1−p. We call this process thinning. Let ̂C′
, ̂C′′

be connected components of

̂G(n) that have at least n2∕3
vertices each. We show that for any pair of such components ̂C′

, ̂C′′
there is

at least one blue edge of ̃G(n) (blue edges are defined in the proof of Lemma 9.1 when applied to ̃G(n))

connecting ̂C′
and ̂C′′

that has not been removed when we intersect H∗
with ̃G(n) to get ̂G(n) = ̃G(n)∩H∗

in our coupling construction (142). For this purpose we choose c̃ = 10𝜃
−1

in (125). Now the probabil-

ity that all blue edges of ̃G(n) connecting a given pair ̂C′
, ̂C′′

have been removed by the intersection of

̃G(n) with H∗
is at most (1 − 𝜃)c̃ ln n ≤ n−10

. As the number of pairs does not exceed

(
⌈n1∕3⌉

2

)
the prob-

ability that at least one pair ̂C′
, ̂C′′

is not connected by a blue edge is at most

(
⌈n1∕3⌉

2

)
n−10 = o(1), by

the union bound. The rest of the proof of the lower bound of (83) goes without changes. Hence (83)

holds. □

11 SUPPLEMENTARY RESULTS

Recall the overlay graph G defined by (1). Given A ⊂ [m], we consider the subgraph GA ⊂ G on the

vertex set V(GA) = V(G) = {1, … , n} defined by the layers (Ga,Xa,Qa), a ∈ A. Thus, the edge set of

GA is E(GA) = ∪a∈AE(Ga). In the following two results, we denote by NA the set of neighbors of node

i in GA, and we set DA = |NA| to denote the degree of i in GA.

Lemma 11.1. Let g be a probability density on Z+. Let

𝜀(t) =
∑

r+s=t
(P(DA∪B = r) − P(DA = r)) g(s).

Then
∑

t≥0
|𝜀(t)| ≤ 2P(DB > 0).
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BLOZNELIS AND LESKELÄ 333

Proof. Denote the densities of the degrees by fA∪B = (DA∪B) and fA = (DA). Then

∑

t≥0

|𝜀(t)| = ||fA∪B ∗ g − fA ∗ g||1 = 2𝑑tv(fA∪B ∗ g, fA ∗ g) ≤ 2𝑑tv(fA∪B, fA).

Further, 𝑑tv(fA∪B, fA) ≤ P(DA∪B ≠ DA) ≤ P(DB > 0). ▪

Lemma 11.2. Assume that G1, … ,Gm are mutually independent, let A,B ⊂ [m] be disjoint, and let
A, B be events determined by (Ga)a∈A and (Gb)b∈B, respectively. Then

P(DA∪B = t, A, B) = P(DA + DB = t, A, B) + 𝜀(t),

where the error term is bounded by |𝜀(t)| ≤ cBtP(DA ≤ t, A), and where cB = maxj≠i P(ij ∈
E(GB), B). In the particular case where i = 1, A = {k}, B = {𝓁}, A = {12 ∈ Gk}, B = {13 ∈ G𝓁}
we have |𝜀(t)| ≤ tP(12, 13 ∈ Gk)P(13 ∈ G𝓁) + tP(12, 13 ∈ G𝓁)P(12 ∈ Gk).

Proof. Because DA∪B = DA + DB outside the event  = {|NA ∩ NB| > 0}, we see that

𝜀(t) = P(DA∪B = t, A, B, ) − P(DA + DB = t, A, B, ).

Hence, it follows that |𝜀(t)| ≤ P(DA ≤ t, A, B, ), where the upper bound can be expressed as

P(DA ≤ t, A, B, ) =
∑

U∶|U|≤t,i∉U
P(NA = U, A) P (|U ∩ NB| > 0, B) .

Because P(|U ∩ NB| > 0, B) ≤
∑

j∈U P(ij ∈ E(GB), B) ≤ cBt whenever |U| ≤ t, the inequality

|𝜀(t)| ≤ cBtP(DA ≤ t, A) follows.

To show the remaining bound we note that NA ∩ NB ≠ ∅ implies that at least one of the events

{3 ∈ NA} and {∃j ∈ NA ∩ NB, j ≠ 3} occurs. Hence

P(DA ≤ t, A, B, ) = P(A, B, 13 ∈ Gk)

+
∑

U∶|U|≤t,i∉U
P(NA = U, A)

∑

j∈U,j≠3

P(B, 1j ∈ G𝓁).

By symmetry, the inner sum is at most tP(12, 13 ∈ G𝓁). Consequently, the second term on the right is

at most P(A)P(12, 13 ∈ G𝓁). The first term equals P(12, 13 ∈ Gk)(P(13 ∈ G𝓁). ▪
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APPENDIX

Here, we prove Theorem 3.6(iv). The proof is similar to that of Theorem 3.3 above. In particular, we

use notation of section 7. Furthermore, for a graph F ⊂ G(n) we denote by ̂F = F ∩ H the percolated

graph, where each edge of F is retained independently with probability 𝜃, see (12). We write ̂G = ̂G(n),
̂
𝑑 = deg

̂G(1). We also denote g̃(n)rs = Binrs( ̃Pn), where ̃Pn is defined in (141) and where the mixed

binomial distribution Binrs is defined in (5). The degree distribution ̂f (n) of ̂G is defined as in (7), but

with degG(n)
(i) replaced by deg

̂G(n)
(i). Introduce events ̂3 = { ̂G ⊃ K3} and ̂12 = { ̂G ⊃ K12} and

denote

Δrs =
m3

((n)2)3
(Pn)rs(Pn)21(Pn)21,

̂Δrs =
m2

(n)3(n)2
(Pn)rs(Pn)21. (A1)

We derive Theorem 3.6(iv) from the relations
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(i) P( ̂𝑑 = t, ̂3) = 𝜃3
𝜇33

̂f (n) ∗ g̃(n)
33
(t − 2) + 𝜀̂(t), where

|𝜀̂(t)| ≤ 4𝜇21𝜇32 + 𝜇3

21
+ 𝜇10,33 + 2 ̂Δ44 + 4 ̂Δ33;

(ii) P( ̂𝑑 = t, ̂12) = 𝜃2
𝜇32

̂f (n) ∗ g̃(n)
32
(t − 2) + 𝜃2

𝜇

2

21
̂f (n) ∗ g̃(n)

21
∗ g̃(n)

21
(t − 2) + 𝜀(t), where

|𝜀(t)| ≤ 10𝜇21𝜇32 + 6𝜇
3

21
+ 𝜇4

21
+ 4𝜇10,32 + 4𝜇21𝜇10,21 + 𝜇21,21 + 2(n − 3)𝜇2

32

+ 2 ̂Δ43 + 4( ̂Δ32 + Δ32 + Δ21).

We first show (i) and (ii). Afterwards we prove Theorem 3.6 (iv). Introduce events ̂k = { ̂Gk ⊃ K3}
and ̂k𝓁 = ̂

12

k ∩ ̂
13

𝓁 , where ̂
ij
k is the event that ij ∈ E( ̂Gk) . Recall the overlay graphs G−k = ∪k′≠kGk′ ,

Gk𝓁 = Gk ∪ G𝓁 and G−k𝓁 = ∪q∉{k,𝓁}Gq and denote

̂
𝑑k = deg ̂Gk

(1), ̂
𝑑−k = deg ̂G−k

(1), ̂
𝑑k𝓁 = deg ̂Gk𝓁

(1), ̂
𝑑−k𝓁 = deg ̂G−k𝓁

(1),

𝛿k = degGk∩G−k
(1), 𝛿k𝓁 = degGk𝓁∩G−k𝓁

(1), 𝛿k𝓁 = degGk∩G𝓁
(1).

We also denote ̂hk𝓁(s) = P( ̂𝑑k𝓁 = s, ̂k𝓁), and hki(s) = P( ̂𝑑k = s, ̂1i
k ).

Proof of (i). The proof is similar to that of Theorem 7.3 (ii): we denote

𝜀̂1(t) = P( ̂𝑑 = t, ̂3) − P( ̂𝑑 = t,∪k ̂k), 𝜀̂2(t) = P( ̂𝑑 = t,∪k ̂k) −
∑

k
P( ̂𝑑 = t, ̂k)

and estimate (cf. proof of Theorem 7.3 (ii))

0 ≤ 𝜀̂1(t) ≤ P(12) + P(111) ≤ 3𝜇21𝜇32 + 𝜇3

21
,

0 ≤ −𝜀̂2(t) ≤
′∑

k,k′
P( ̂𝑑 = t,k,k′ ) ≤

′∑

k,k′
P(k,k′ ) ≤ 𝜇21𝜇32.

Hence
|||P(

̂
𝑑 = t, ̂3) −

∑
k P( ̂𝑑 = t, ̂k)

||| ≤ 4𝜇21𝜇32 + 𝜇3

21
. We next approximate

∑

k
P( ̂𝑑 = t, ̂k) ≈

∑

k

∑

r+s=t
P( ̂𝑑−k = r) P( ̂𝑑k = s, ̂k) (A2)

≈
∑

k

∑

r+s=t
P( ̂𝑑 = r) P( ̂𝑑k = s, ̂k) (A3)

and observe that
∑

k P( ̂𝑑k = s, ̂k) = 𝜃

3
𝜇33g̃(n)

33
(s − 2) (the identity follows from Lemma 7.2 applied

to ̂Gk∗ = Gk∗ ∩ H, cf. (48)). Hence the right side of (A3) equals 𝜃
3
𝜇33

̂f (n) ∗ g̃(n)
33
(t − 2), and to prove

(i) it suffices to analyze the approximation errors in (A2), (A3).

To upper bound the approximation error in (A2), denoted 𝜀̂3(t), we apply the first inequality of

Lemma A.1 with F = K3, A = {k}, B = [m] ⧵ {k} ∀k. We obtain

|𝜀̂3(t)| ≤
∑

k
2P(k, 𝛿k > 0) ≤ 2 ̂Δ44 + 4 ̂Δ33,

where in the last step we apply inequality (A12) of Lemma A.2.
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The approximation error in (A3) equals 𝜀̂4(t) =
∑

k 𝜀̂4k(t) where

𝜀̂4k(t) =
∑

r+s=t

(
P( ̂𝑑 = r) − P( ̂𝑑−k = r)

)
P( ̂𝑑k = s, ̂k).

Noting that degGk
(1) = 0 implies ̂

𝑑 = ̂
𝑑−k we estimate

|||P(
̂
𝑑 = r) − P( ̂𝑑−k = r)||| ≤ P(degGk

(1) > 0) ≤ P(1 ∈ V(Gk)) = p10(k) (A4)

and subsequantly

|𝜀̂4k(t)| ≤ p10(k)
t∑

s=2

P( ̂𝑑k = s,k) ≤ p10(k)P(k) = p10(k)p33(k).

Hence, |𝜀̂4(t)| ≤
∑

k p10(k)p33(k) = 𝜇10,33. Claim (i) follows by combining the above estimates for the

total approximation error 𝜀̂(t) =
∑4

i=1
𝜀̂i(t).

Proof of (ii). The proof is similar to that of Theorem 7.4 (ii): we approximate

P( ̂𝑑 = t, ̂12) ≈
∑

k,𝓁
P( ̂𝑑 = t, ̂k𝓁), (A5)

≈
∑

k,𝓁

∑

r+s=t
P( ̂𝑑−k𝓁 = r) ̂hk𝓁(s), (A6)

≈
∑

k,𝓁

∑

r+s=t
P( ̂𝑑 = r) ̂hk𝓁(s), (A7)

so that

P( ̂𝑑 = t, ̂12) ≈
∑

r+s=t

̂f (n)(r)
∑

k

̂hkk(s) +
∑

r+s=t

̂f (n)(r)
′∑

k,𝓁

̂hk𝓁(s). (A8)

Invoking identity
∑

k
̂hkk(s) = 𝜃2

𝜇32 g̃(n)
32
(s − 2) (which follows by Lemma 7.2 applied to ̂Gk∗ , cf. (54))

we write the first term on the right of (A8) in the form 𝜃

2
𝜇32

̂f (n) ∗ g̃(n)
32
(t − 2).

Next, we approximate the second inner sum on the right of (A8)

′∑

k,𝓁

̂hk𝓁(s) ≈
′∑

k,𝓁

∑

s
1
+s

2
=s

hk2(s1)h𝓁3(s2), (A9)

≈
∑

k,𝓁

∑

s
1
+s

2
=s

hk2(s1)h𝓁3(s2). (A10)

Invoking identities
∑

k hk2(s) =
∑
𝓁 h𝓁3(s) = 𝜃𝜇21g̃(n)

21
(s − 1) (the first one follows by symmetry;

the second one follows by Lemma 7.2 applied to ̂Gk∗ , cf. (54)) we write the right side of (A10) in

the form 𝜃

2
𝜇

2

21
g̃(n)

21
∗ g̃(n)

21
(s − 2). Hence, the second term on the right side of (A8) is approximately

𝜃

2
𝜇

2

21
̂f (n) ∗ g̃(n)

21
∗ g̃(n)

21
(t − 2). Finally, we conclude that

P( ̂𝑑 = t, ̂12) ≈ 𝜃

2
𝜇32

̂f (n) ∗ g̃(n)
32
(t − 2) + 𝜃2

𝜇

2

21
̂f (n) ∗ g̃(n)

21
∗ g̃(n)

21
(t − 2),
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where the total approximation error can be written as 𝜀(t) =
∑4

i=1
𝜀i(t). Here 𝜀1(t), 𝜀2(t), 𝜀3(t) are the

approximation errors in (A5), (A6), (A7), respectively, and

𝜀4(t) =
∑

r+s=t

̂f (n)(r) (𝜀41(s) + 𝜀42(s)) ,

where 𝜀41(s) and 𝜀42(s) denote the errors made in (A9) and (A10).

Now, we analyze individual approximation errors 𝜀i(t). The cases i = 1, 3 are treated similarly as

in the corresponding proof of Theorem 7.4 (ii) Bonferroni’s inequalities imply

|𝜀1(t)| ≤
′∑

(k
1
,k

2
),(𝓁

1
,𝓁

2
)
P( ̂k

1
k

2
,
̂𝓁

1
𝓁

2
) ≤

′∑

(k
1
,k

2
),(𝓁

1
,𝓁

2
)
P(k

1
k

2
,𝓁

1
𝓁

2
)

and therefore (61) extends to |𝜀1(t)|. Furthermore, invoking inequalities (cf. (A4))

|||P(
̂
𝑑 = r) − P( ̂𝑑−k𝓁 = r)||| ≤ P(1 ∈ V(Gk)) + P(1 ∈ V(G𝓁)) = p10(k) + p10(𝓁)

and
∑

r+s=t
̂hk𝓁(s) ≤ P(Âk𝓁) ≤ P(k𝓁) we obtain

|𝜀3(t)| ≤
∑

k,𝓁
(p10(k) + p10(𝓁))P( ̂k𝓁) ≤

∑

k,𝓁
(p10(k) + p10(𝓁))P(k𝓁).

Therefore (63) extends to |𝜀3(t)|.
To upper bound 𝜀2(t) we apply the first inequality of Lemma A.1 with F = K12, where we set

A = {k,𝓁}, B = [m] ⧵ {k,𝓁} for k ≠ 𝓁, and we set A = {k}, B = [m] ⧵ {k} for k = 𝓁. We obtain

|𝜀2(t)| ≤ 2

∑

k,𝓁
P(k𝓁 , 𝛿k𝓁 > 0) ≤ 2 ̂Δ43 + 4( ̂Δ32 + Δ32 + Δ21),

where the last inequality follows by inequality (A13) of Lemma A.2.

To upper bound 𝜀41(s) we apply the second inequality of Lemma A.1 with A = {k}, B = {𝓁} and

F, F′ being the edges 12, 13. We obtain

|𝜀41(s)| ≤
′∑

k𝓁
2P

(
k𝓁 , 𝛿k𝓁 > 0

)
≤ 2(n − 3)𝜇2

32
+ 2𝜇32𝜇21,

where the last inequality follows by inequality (A11) of Lemma A.2.

Finally the approximation error in (A10)

|𝜀42(s)| =
∑

k

∑

s
1
+s

2
=s

P
(
̂
𝑑k = s1,

̂
k
12

)
P
(
̂
𝑑k = s2,

̂
k
12

)

satisfies
∑

s≥0
|𝜀42(s)| =

∑
k
(
P
(
̂

12

k
))2 = 𝜃

2
∑

k
(
p21(k)

)2 = 𝜃

2
𝜇21,21. We conclude that |𝜀4(t)| ≤

2(n − 3)𝜇2

32
+ 2𝜇32𝜇21 + 𝜇21,21.

Claim (ii) follows by collecting the bounds for 𝜀i, i = 1, 2, 3, 4 altogether.
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Proof of Theorem 3.6(iv). We evaluate the ratio 𝜎( ̂G)(k) = P( ̂𝑑=t, ̂
3
)

P( ̂𝑑=t, ̂
12
)
. To this aim we invoke

approximations (i) and (ii) above, where respective leading terms

𝜃

3
𝜇33

̂f (n) ∗ g̃(n)
33
(t − 2) = ( ̂P)33𝜇n−2

̂f ∗ ĝ33(t − 2) + o(n−2)

and

𝜃

2
𝜇32

̂f (n) ∗ g̃(n)
32
(t − 2) + (𝜃𝜇21)2 ̂f

(n) ∗ g̃(n)
21
∗ g̃(n)

21
(t − 2)

= ( ̂P)32𝜇n−2
̂f ∗ ĝ32(t − 2) + ( ̂P)2

21
𝜇

2n−2
̂f ∗ ĝ21 ∗ ĝ21(t − 2) + o(n−2)

are of order Θ(n−2) as n → +∞. It remains to show that the remainders 𝜀̂(t) and 𝜀(t) of (i) and (ii) are

of order o(n−2). In the proof of Theorem 3.3 all the terms contributing to 𝜀̂(t) and 𝜀(t) are shown to be

o(n−2), but ̂Δ43, ̂Δ44, ̂Δ33, ̂Δ32, Δ32, Δ21, and (n − 3)𝜇2

32
.

Here, we only show that ̂Δ43 = o(n−2). The proof of o(n−2) bound for the remaining terms is

easy. We have ̂Δ4,3 ≲ n−3(Pn)43 = n−3E(X4
n,𝜋Q3

n,𝜋), where (Xn,𝜋 ,Qn,𝜋) is a bivariate random variable

with the distribution Pn. Our conditions (Pn)3,3 → (P)33 and Pn
w
−→ P implies that the sequence

{X3
n,𝜋Q3

n,𝜋 , n ≥ 1} is uniformly integrable. Note also that P(Xn𝜋 ≤ n) = 1 ∀n. Now fix 0 < 𝜏 < 1 and

split

(Pn)43 = E(X4
n,𝜋Q3

n,𝜋) = E
(
X4

n,𝜋Q3
n,𝜋)I{Xn,𝜋<𝜏n}

)
+ E

(
X4

n,𝜋Q3
n,𝜋I{Xn,𝜋≥𝜏n}

)

≤ 𝜏nE
(
X3

n,𝜋Q3
n,𝜋
)
+ nE

(
X3

n,𝜋Q3
n,𝜋I{Xn,𝜋≥𝜏n}

)
.

The last term above is o(n), by the uniform integrability property. Hence (Pn)43 = o(n). Consequently,

we have ̂Δ43 = o(n−2).
In the next lemma we use notation GA = (V(GA),E(GA)), A ⊂ [m], introduced in section 11. We

also denote NA the set of neighbors of vertex 1 in GA and write DA = |NA|. For A,B ⊂ [m] we denote

𝛿A,B = |NA ∩ NB|. We denote by ̂DA the degree of vertex 1 in the percolated graph ̂GA = GA ∩ H.

Given a graph F with the vertex set V(F) ⊂ V = {1, … , n} we denote by F,A and ̂F,A the events

that F ⊂ GA and F ⊂
̂GA respectively. Lemma A.1 is used in the proof of claims (i), (ii) above where

we take F = K3,K12.

Lemma A.1. Let A,B ⊂ [m]. Assume that A ∩ B = ∅. Assume that 1 ∈ V(F). Then

|||||
P( ̂DA∪B = t, ̂F,A) −

∑

r+s=t
P( ̂DB = r) P( ̂DA = s, ̂F,A)

|||||
≤ 2P(F,A, 𝛿A,B > 0).

Assume, in addition, that graph F′ has vertex set V(F′) ⊂ V and 1 = V(F) ∩ V(F′). Then

|||||
P( ̂DA∪B = t, ̂F∪F′,A∪B,F,A,F′,B) −

∑

r+s=t
P( ̂DB = r, ̂F′,B) P( ̂DA = s, ̂F,A)

|||||
≤ 2P(F,A,F′,B, 𝛿A,B > 0).

Proof. We only prove the first inequality. The proof of the second one is much the same.

In the proof we write, for short,  = F,A and ̂ = ̂F,A. We note that random variables DA
and DB are independent and 𝛿A,B = 0 implies DA∪B = DA + DB and, consequently, ̂DA∪B = ̂DA + ̂DB.
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340 BLOZNELIS AND LESKELÄ

Introduce Bernoulli random graph ̃H with V(H) = V and edge probability 𝜃, which is independent of

G1, … ,Gm and H. Let ̃DB denote the degree of vertex 1 in the percolated graph ̃GB = GB∩ ̃H. Clearly,

random variables ̂DB and ̃DB have the same probability distributions. Moreover, on the event 𝛿A,B = 0

the pairs
(
( ̂DA, ̂); ( ̂DB)

)
and

(
( ̂DA, ̂); ( ̃DB)

)
have the same distributions. Hence

P
(
̂DA∪B = t, ̂, 𝛿A,B = 0

)
= P

(
̂DA + ̂DB = t, ̂, 𝛿A,B = 0

)
= P

(
̂DA + ̃DB = t, ̂, 𝛿A,B = 0

)
.

Consequently, we obtain

|||P(
̂DA∪B = t, ̂) − P( ̂DA + ̃DB = t, ̂)||| ≤ 2P(, 𝛿A,B > 0).

Next, by the independence of ̃DB and ( ̂DA, ̂) we can factorize the probability P( ̂DA + ̃DB = t, ̂) =∑
r+s=t P( ̂DA = s, ̂)P( ̃DB = r). Now the identity ( ̃DB) = ( ̂DB) completes the proof.

To prove the second inequality of the lemma we note that V(F) ∩ V(F′) = 1 implies that F and F′
have no common edges. Therefore, given the event F ⊂ GA, F′ ⊂ GB and 𝛿A,B = 0, the percolation

process acts on F and F′ independently. The rest of the proof is much the same as above. ▪

Lemma A.2. For Δrs and ̂Δrs defined in (A1), we have

′∑

k𝓁
P(k𝓁 , 𝛿k𝓁 > 0) ≤ (n − 3)𝜇2

32
+ 2𝜇21𝜇32, (A11)

∑

k∈[m]
P(k, 𝛿k > 0) ≤ ̂Δ44 + 2 ̂Δ33, (A12)

∑

k,𝓁
P(k𝓁 , 𝛿k𝓁 > 0) ≤ ̂Δ43 + 2( ̂Δ32 + Δ32 + Δ21). (A13)

Proof. By P = P(Xn,Qn)
we denote the conditional probability given (Xn,Qn).

Proof of (A11). We write event {k𝓁 , 𝛿k𝓁 > 0} in the form

12

k ∩ 13

𝓁 ∩

(

13

k ∪ 12

𝓁 ∪
n⋃

s=4

(
1s

k ∩ 1s
𝓁

)
)

.

Invoking identities

P(12

k ,
13

𝓁 ,
13

k ) =
(Xk)3
(n)3

Q2

k
(X𝓁)2
(n)2

Q𝓁 , P(12

k ,
13

𝓁 ,
12

𝓁 ) =
(Xk)2
(n)2

Qk
(X𝓁)3
(n)3

Q2

𝓁 ,

P(12

k ,
13

𝓁 ,
1s
k ,

1s
𝓁 ) =

(Xk)3
(n)3

Q2

k
(X𝓁)3
(n)3

Q2

𝓁

we obtain, by the union bound and symmetry,

P(k𝓁 , 𝛿k𝓁 > 0) ≤ (Xk)3
(n)3

Q2

k
(X𝓁)2
(n)2

Q𝓁 +
(Xk)2
(n)2

Qk
(X𝓁)3
(n)3

Q2

𝓁

+ (n − 3) (Xk)3
(n)3

Q2

k
(X𝓁)3
(n)3

Q2

𝓁 .
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BLOZNELIS AND LESKELÄ 341

Consequently,

P
(
k𝓁 , 𝛿k𝓁 > 0

)
= EP

(
k𝓁 , 𝛿k𝓁 > 0

)

≤ p32(k)p21(𝓁) + p21(k)p32(𝓁) + (n − 3)p32(k)p32(𝓁).

Now, summing over k ≠ 𝓁 we obtain (A11).

Proof of (A12). We write 𝛿k = 𝛿

′
k + 𝛿

′′
k , where 𝛿

′
k (respectively 𝛿

′′
k ) is the number of vertices

s ∈ V(G) ⧵ {1, 2, 3} (respectively s ∈ {2, 3}) such that 1s ∈ E(Gk) ∩ E(G−k). Then P(k, 𝛿k > 0) ≤
P(k, 𝛿

′
k > 0) + P(k, 𝛿

′′
k > 0) and we estimate the probabilities on the right separately.

To evaluate P(k, 𝛿
′
k > 0) we write event {𝛿′k > 0} in the form

⋃

s∈V(Gk)⧵{1,2,3}

(

1s
k ∩

( ⋃

j∈[m]⧵{k}
1s

j

))

. (A14)

Then, using the union bound and symmetry, we upper bound the conditional probability

P(k, 𝛿
′
k > 0) ≤ (Xk − 3) (Xk)3

(n)3
Q4

k
∑

j∈[m]⧵{k}

(Xj)2
(n)2

Qj. (A15)

Here, Xk−3 is the number of vertices s ∈ V(Gk)⧵{1, 2, 3}. (Xk)3
(n)

3

is the probability that {1, 2, 3} ⊂ V(Gk).

Similarly,
(Xj)2
(n)

2

is the probability that {1, s} ⊂ V(Gj). Next, we take the expectation EP(k, 𝛿
′
k > 0) =

P(k, 𝛿
′
k > 0) and sum over k to obtain

∑

k
P(k, 𝛿

′
k > 0) ≤

′∑

kj

E((Xk)4Q4

k)
(n)3

E((Xj)2Qj)
(n)2

. (A16)

Note that, the right side is upper bounded by

∑

k

E((Xk)4Q4

k)
(n)3

×
∑

j

E((Xj)2Qj)
(n)2

= ̂Δ44. (A17)

Now, we evaluate P(k, 𝛿
′′
k > 0). We write event {k, 𝛿

′′
k > 0} in the form

k ∩
⋃

s∈{2,3}

( ⋃

j∈[m]⧵{k}
1s

j

)

and proceeding similarly as in (A15) above we obtain that

P(k, 𝛿
′′
k > 0) ≤ 2

∑

j∈[m]⧵k

E((Xk)3Q3

k)
(n)3

E((Xj)2Qj)
(n)2

≤ 2
E((Xk)3Q3

k)
(n)3

m (Pn)21

(n)2
. (A18)

Consequently, the sum
∑

k P(k, 𝛿
′′
k > 0) ≤ 2 ̂Δ33. The latter bound together with (A17) implies (A12).

Proof of (A13). We write 𝛿k𝓁 = 𝛿

′
k𝓁 + 𝛿′′k𝓁 , where 𝛿

′
k𝓁 (respectively 𝛿

′′
k𝓁) is the number of vertices

s ∈ V(G) ⧵ {1, 2, 3} (respectively s ∈ {2, 3}) such that 1s ∈ E(Gk𝓁) ∩ E(G−k𝓁).
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342 BLOZNELIS AND LESKELÄ

We split

∑

k,𝓁
P
(
k𝓁 , 𝛿k𝓁 > 0

)
=

′∑

k𝓁
P
(
k𝓁 , 𝛿k𝓁 > 0

)
+
∑

k
P
(
kk, 𝛿kk > 0

)
=∶ S1 + S2

and estimate

S1 ≤

′∑

k𝓁
P
(
k𝓁 , 𝛿

′
k𝓁 > 0

)
+

′∑

k𝓁
P
(
k𝓁 , 𝛿

′′
k𝓁 > 0

)
=∶ S′

1
+ S′′

1
.

In what follows we upper bound S′
1
, S′′

1
and S2. To estimate S′

1
we write event {𝛿′k𝓁 > 0} in the form

⋃

s∈V(Gk𝓁)⧵{1,2,3}

(
1s

k ∪ 1s
𝓁 ∩

( ⋃

j∈[m]⧵{k,𝓁}
1s

j

))

and upper bound the conditional probability P(k𝓁 , 𝛿
′
k𝓁 > 0) using the union bound and symmetry,

P(k𝓁 , 𝛿
′
k𝓁 > 0) ≤ (Xk)2Qk

(n)2
(X𝓁)2Q𝓁

(n)2
((Xk − 2)Qk + (X𝓁 − 2)Q𝓁) (A19)

×
∑

j∈[m]⧵{k,𝓁}

(Xj)2Qj

(n)2
.

Here,
(Xk)2Qk
(n)

2

(X𝓁)2Q𝓁

(n)
2

is the (conditional) probability of eventk𝓁; (Xk − 2)Qk counts s ∈ V(Gk) ⧵ {1, 2}
linked to 1 by the layer Gk; (X𝓁 − 2)Q𝓁 counts s ∈ V(G𝓁) ⧵ {1, 3} linked to 1 by the layer G𝓁 .

Furthermore, each such s is linked to 1 by G−k𝓁 with probability P(∪j∈[m]⧵{k,𝓁}
1s
j ) ≤

∑
j∈[m]⧵{k,𝓁}

(Xj)2Qj

(n)
2

.

It follows from (A19) that

S′
1
=

′∑

k𝓁
EP(k𝓁 , 𝛿

′
k𝓁 > 0) ≤ 2

m3

(n)3
2

(Pn)32(Pn)221
= 2Δ32.

We similarly setimate S′′
1

. The event 𝛿
′′
k𝓁 > 0 means that at least one link 12 or/and 13 is present in

G−k𝓁 . Hence

P(k𝓁 , 𝛿
′′
k𝓁 > 0) ≤ 2

(Xk)2Qk
(n)2

(X𝓁)2Q𝓁

(n)2
×

∑

j∈[m]⧵{k,𝓁}

(Xj)2Qj

(n)2
.

Consequently, S′′
1
≤
∑′

k𝓁EP(k𝓁 , 𝛿k𝓁 − 𝛿′k𝓁 > 0) ≤ 2
m3

(n)3
2

(Pn)321
= 2Δ21.

Finally, we show S2 ≤ ̂Δ43 + 2 ̂Δ32 in much the same way as (A12) above. Collecting the bounds

for S′
1
, S′′

1
, and S2 we obtain (A13). ▪
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