ŠIAULIŲ UNIVERSITETAS
 TECHNOLOGIJOS FAKULTETAS MECHANIKOS INŽINERIJOS KATEDRA

Egidijus Janavičius

Veleno tipo detalių plokštumų padėčių paklaidų formavimas
 Magistro darbas

Vadovas
doc.dr.J.Rimkus

ŠIAULIŲ UNIVERSITETAS
 TECHNOLOGIJOS FAKULTETAS MECHANIKOS INŽINERIJOS KATEDRA

TVIRTINU

Katedros vedèjas ,
Z.Ramonas

VELENO TIPO DETALIU PLOKŠTUMU PADĖČIU FORMAVIMASIS

Magistro darbas

Vadovas:
doc. J.Rimkus
Recenzentas:
doc.A.Povilionis

MM-4 gr. magistrantas
\qquad E.Janavičius

TURINYS

IVADAS 3

1. MATMENŲ GRANDINĖS. 4
1.1. Apdirbamos detalès tikslumas 4
1.2. Pagrindinės matmenų grandinių sąvokos. 6
1.3. Konstrukcinių ir technologinių matmenų grandinių sudarymas. 7
1.4. Technologinių matmenų grandinių sprendimas grafų pagalba. 9
1.5. Technologinės paklaidų grandinės 11
2.DETALĖS PLOKŠTUMŲ PADĖČIƯ PAKLAIDŲ GRAFAI 15
2.1. Tekinimo ir šlifavimo operacijos 16
2.2. Plokštumų padečių paklaidų nustatymas pagal incidentinę matricą. 23
IŠVADOS. 28
REZIUME 29
SUMMARY 30
LITERATŪRA 31

Ivadas

Mechaninio apdirbimo metu gaunamos, specifinės detalių plokštumų padėčių paklaidos, kurios priklauso nuo jų konstrukcijos, tai yra nuo paviršių tarpusavio padėties. Ruošiniai, dèl konstruktyvinės formos ypatumo, turintys skirtingą standuma, veikiant pjovimo jėgoms technologinio proceso metu patiria ivairius persislinkimus, kurie iššaukia detalės formos pasikeitimą. Tokios formos paklaidos turi ypatingą reikšmę apdirbant aukšto tikslumo detales, nes šios paklaidos pagal dydi gali būti lygios užduotoms tolerancijoms.

Daugelis uždavinių, susijusių su tikslumu, sprendžiami remiantis matmenų grandinėmis. Apdirbant detales metalo pjovimo staklèmis susidaro sudètingi matmeniniai ryšiai tarp detalės elementų (plokštumų), kurie turi savo specifiką, ị kurią būtina atsižvelgti atliekant tiksluminius skaičiavimus. Ilgio matmenų paklaidų grandinės yra jau pakankamai išnagrinėtos, o ryšiai tarp plokštumų padèčių paklaidų mažai ištirti.

Sudarant technologines paklaidų grandines dažnai atsiranda netikslumai dèl to, kad neteisingai surandami grandinių sudarantieji nariai. Norint teisingai nustatyti matmeninius ryšius, kurie susidaro mechaninio apdirbimo metu, reikia pasinaudoti detalės geometrinių elementu padėčių paklaidų grandinėmis. Nors šios paklaidų grandinės nesudaro uždaro kontūro, galima sudaryti uždarą grandinę grafo pagalba. Remiantis šiomis grandinėmis galima tiksliai nustatyti dedamuosius ir uždarančiuosius paklaidų grandinių narius.

Tyrimo objektas. Detalės plokštumų padèčių paklaidos.
Tyrimo tikslas. Veleno tipo detalių plokštumų padéčių paklaidư, susiformuojančių technologinio proceso metu, susidarymas.

1. MATMENŲ GRANDINĖS

1.1. Apdirbamos detalės tikslumas

Gamybos procese, kada yra apdirbamos detalės, atsiranda detalių rodiklių paklaidos. Jas sukelia daug atsitiktinių faktorių. Tarp reikalaujamų reikšmių brėžinyje ir pagamintos detalės reikšmių susidaro tam tikras skirtumas, o matuojant bet kokị detalès kokybės rodiklị jis nustatomas su tam tikra paklaida.

Skiriami keturi bet kokio rodiklio reikšmių tipai:

1) normali (teorinė) $\boldsymbol{K}_{\boldsymbol{n}}$ gauta skaičiavimo metu, nuo jos atidedami nuokrypiai;
2) vidurinė $\boldsymbol{K}_{\boldsymbol{v}}$ reikšmė, kurią norime gauti gamybos procese, tai gali būti normali arba vidurinė ar kitos reikšmės;
3) tikra objektyviai egzistuojanti $\boldsymbol{K}_{\boldsymbol{t}}$ reikšmé, gauta atlikus technologinị procesą;
4) išmatuota $\boldsymbol{K}_{\boldsymbol{m}}$ reikšmé, gauta išmatavus detalę nurodytų tikslumu.

1.1 pav. Rodiklio reikšmių žymėjimas

Rodiklio \boldsymbol{K} matavimo tikslumas - tai išmatuoto dydžio $\boldsymbol{K}_{\boldsymbol{m}}$ priartèjimas prie tikro realaus $\boldsymbol{K}_{\boldsymbol{t}}$. Apdirbant detales neišvengiama paklaidų ir todèl absoliutaus tikslumo pasiekti neịmanoma. Tad detalès kokybės rodiklių reikšmès nustatomos tam tikrais intervalais, kuriems esant detalès pasižymi reikiama kokybe. Nustatyti rodiklių kitimo intervalai vadinami tolerancijomis.

Mašinų gamyboje susiduriama su skaliariniais ir vektoriniais dydžiais. Skaliarinio lauko tolerancijos laukas užduodamas šiais būdais:

1) rodiklio viršutinė $\Delta \boldsymbol{S}$ ir tarpinė $\Delta \boldsymbol{I}$ nuokrypa;
2) tolerancijos lauko \boldsymbol{T} ir vidurio koordinatès $\boldsymbol{\delta}_{\boldsymbol{O}}$;
3) rodiklio mažiausia $\boldsymbol{K}_{\text {min }}$ ir $\boldsymbol{K}_{\text {max }}$ reikšmès.

1.2 pav. Skaliarinio lauko tolerancijos laukas.

Dvimačio vektoriaus dydžio tolerancija užduodama kokia nors figūra, kurios ribose gali būti atsitiktinio vektorius spindulys, tokia figūra vadinama hodografu. Figūros forma ir padėtis priklauso nuo sprendžiamo uždavinio pasirinktoje koordinačių sistemoje.

1.3 pav. Dvimačio vektoriaus dydžio tolerancija.

Triju matavimų atsitiktinio vektoriaus paklaidos apibrėžiamos erdvès dalimi, kurios padètis ir dydis nustatomas tam tikrais dydžiais. Toleranciją galima išplėsti n-matei erdvei.

Tikslumas skirstomas ị reikalaujamą ir faktinị. Reikalaujamas mašinos detalių rodiklių tikslumas nustatomas iš mašinų paskirties ir matmenų grandinių uždarančiu̧jų narių. Faktinis tikslumas gaunamas kaip atitinkamo apdirbimo proceso rezultatas.

Faktinị tikslumą galima apibrežti trim būdais:

1) rodiklio reikšmių didžiausia max ir mažiausia min nuokrypa;
2) sklaidos lauko dydžiu ir sklaidos lauko vidurio koordinate;
3) didžiausia max ir mažiausia min rodiklio reikšme.

Detalių kokybės geometriniu požiūriu nusakoma šiomis charakteristikomis:

1) matmenų tikslumas,
2) paviršiu geometrinès formos,
3) paviršių tarpusavio padèties tikslumas,
4) paviršiaus glotnumas.

Tarp šių charakteristikų būtina išlaikyti tokị santykị: paviršių tarpusavio padėties paklaidos turi būti mažesnès už matmenų paklaidas, o tarpusavio padėties paklaidų dydị. Jei nebūtų išlaikomas toks dèsningumas, būtų sunku ịvertinti aukštesnio rango rodiklio paklaidą.

1.2. Pagrindinės matmenų grandinių sąvokos

Projektuojant technologinius procesus, konstruojant mašinas ir prietaisus, parenkant matavimo metodus ir priemones, turi būti analizuojami matmenų ryšiai, nustatomos matmenų tolerancijos ir jų ribinès nuokrypos. Tai nustatoma sprendžiant matmenų grandines. Mašina,be sutrikimu veikia tada, kai ją sudarančios detalės užima reikiamą padėtị. Tai pasiekiama tinkamai parinkus detalių matmenis.

Matmenų betarpiškai dalyvaujančių uždavinio sprendime ir sudarančių uždarą kontūrą visuma vadinama matmenų grandinę. Matmenų grandinių pavyzdžiai parodyti (1.5 pav.). Kiekvienas matmenų grandinės matmuo ir jo tikslumas turi būti parenkamas atsižvelgus ị kitus matmenis ir jų tikslumą. Sprendžiant matmenų grandines, galima nustatyti keliụ surinktų detalių ašių ir paviršių tarpusavio padėties tikslumą.

Kiekvieną matmenų grandinę sudaro uždarantysis narys ir du ar daugiau sudarančiujų narių. Uždarantysis narys yra matmuo, kuris gaunamas paskutinis, gaminant detale ar surenkant mašinos dalị (žymimas $\boldsymbol{A}_{\boldsymbol{0}}, \boldsymbol{B}_{0}$ arba $\boldsymbol{A}_{\Delta} \ldots$). Nariai, kurie lieka grandinèje atmetus uždarantijị narị vadinami sudarančiaisiais (žymimas $\boldsymbol{A}_{\boldsymbol{l}}, \boldsymbol{A}_{\boldsymbol{2}}, . . \boldsymbol{A}_{\boldsymbol{m}-\boldsymbol{I}}$).

a)

b)
1.5 pav. Matmenų grandinių pavyzdžiai

Priskiriamos tokios matmenų grandinės: konstrukcinės, technologinės, metrologinės.

1.3. Konstrukcinių ir technologinių matmenų grandinių sudarymas

Konstrukcinių ir technologinių matmenų grandinių dedamieji ir uždarantieji nariai skiriasi savo esme. Konstrukcinių matmenų grandinių dedamieji nariai yra atitinkamų detalių matmenys, o uždarantysis narys- atstumas tarp skirtingų detalių paviršių. Pavyzdžiui (1.5 pav. b), pavaizduota matmenụ grandiné, kur \boldsymbol{B}_{1} ir \boldsymbol{B}_{2} dedamieji nariai, o $\boldsymbol{B}_{\Delta}-$ uždarantysis. Daugeliu atveju uždarantieji nariai konstrukcinėse matmenų grandinėse būna tarpeliais tarp dviejų paviršių arba ìvaržos dydis.

Technologinėse matmenų grandinėse uždarantieji nariai yra galutiniai detalių matmenys, operaciniai matmenys ir užlaidų dydžiai. Apdirbimo procese keičiasi matmens dydis, kuris paprastai užduodamas tarp 2 plokštumų. Užduoto matmens pasikeitimą nusako abiejų plokštumų, tarp kurių užduotas matmuo padéčiu paklaidos.

Paveiksle 1.6 parodytas detalės apdirbimas. Panagrinėsime plokštumų apdirbimą pagal vieną aši. Šiuo atveju apdirbamos 1,2 ir 3 plokštumos, taip yra suformuojami A, B ir C matmenys.

1.6 pav. Detalès apdirbimas pagal vienaaší.

Nagrinèjant detalės apdirbimą pagal vieną aší (1.6 pav.) galima parašyti tris matmenų lygtis:

$$
\begin{aligned}
& A=D+B ; \\
& D=A-B ; \\
& B=A-D .
\end{aligned}
$$

Nei viena iš šių matmenų lygčių nėra matmenų grandinė, nes nėra uždarančiojo nario. Šiuo atveju visi trys matmenys $\boldsymbol{A}, \boldsymbol{B}$ ir \boldsymbol{D} yra uždarantieji nariai, nes matmens \boldsymbol{A} paklaidą sudaro plokštumų 1 ir 3 padėčių paklaidų suma. Matmens \boldsymbol{B} paklaida lygi 1 ir 2 plokštumų padéčių paklaidų sumai, o matmens \boldsymbol{D} paklaida lygi 2 ir 3 plokštumų padėčių paklaidų sumai. Sudarant matmenų grandines, dedamuosius narius sudaro, atstumai nuo laisvai pasirinktos koordinačių sistemos ašies \boldsymbol{X} iki kiekvienos apdirbamos plokštumos $\boldsymbol{G}, \boldsymbol{F}$ ir \boldsymbol{E}. Gaunamos šios matmenų grandinès.

$$
\begin{aligned}
& A=E-G ; \\
& B=E-F ; \\
& D=F-G .
\end{aligned}
$$

Matmenų $\boldsymbol{G}, \boldsymbol{F}$ ir \boldsymbol{E} paklaidos lygios plokštumų atitinkamai 3, $\mathbf{2}$ ir $\mathbf{1}$ padéčị paklaidoms, nes koordinatės sistemos padėtis yra pastovi:

$$
\begin{aligned}
& W_{A}=W_{E}+W_{M}=W_{I}+W_{3} \\
& W_{B}=W_{E}+W_{F}=W_{I}+W_{2} \\
& W_{D}=W_{F}+W_{G}=W_{2}+W_{3}
\end{aligned}
$$

Kadangi detalės apdirbamos per keletą operacijư, technologinių matmenų grandinę galima rasti pasinaudojus geometrinių elementų (plokštumư ašių ir kt.) padèčių paklaidų grandinėmis.

1.4. Technologinių matmenų grandinių sprendimas grafų pagalba

Grafų teorija - viena iš matematikos disciplinu aiškinančiu sudėtinga detalès geometrinę sandara, susidedančią iš daugelio elementų ir ryšių tarp jų. Detalių apdirbimo procesą galima nagrinėti kaip geometrinę struktūra, susidedančią iš daugelio paviršių ir ryšių (matmenụ) tarp jų. Todèl tokią struktūrą tikslinga nagrinėti grafų pagalba. Grafu vadinama figūra susidedanti iš taškų ir linijų jungiančių tuos taškus. Taškai vadinami viršūnėmis, o linijos - lankais arba grafo briaunomis. Briaunos vadinamos orientuotomis jei yra rodyklé parodanti iš kokios viršūnės ji išeina ir ị kurią viršūnę nueina. Jei ant briaunos nėra rodyklès tai ji - neorientuota. Pav. 1.7, a pavaizduotos orientuotos ir neorientuotos briaunos \boldsymbol{E} pavyzdžiai. Priklausomai nuo briaunu pavadinimo grafas vadinamas orientuotu arba neorientuotu. Briauna yra kartotinė, jei dvi viršūnės sujungtos keletu briaunų (1.7 pav., b). Dvi viena po kitos sekančios briaunos turinčios bendrą viršūnę vadinamos maršrutu \boldsymbol{U}. Pav. 1.7, C briaunos $\boldsymbol{E}_{\boldsymbol{1}}$ ir $\boldsymbol{E}_{\mathbf{2}}$ turi bendrą viršūnę 2, o briaunos $\boldsymbol{E}_{\mathbf{2}}$ ir $\boldsymbol{E}_{\mathbf{3}}-3$, taip gaunamas maršrutas:

a)
b)
c)
1.7 pav. Grafo briaunos:
a) - neorientuotos ir orientuotos grafo briaunos;
b) - kontrolinès briaunos;
c) - grafo kelias.

Jei maršruto pradžia ir pabaiga yra vienoje viršūnėje, tai toks kelias vadinamas cikliniu (1.8 pav.), jei kiekvieno maršruto kiekviena briauna susiduria tik po vieną karta, tai toks maršrutas vadinamas grandine. Jei grandine uždara, tai yra prasideda ir baigiasi toje pačioje
viršūnėje, tai ji sudaro ciklą. Jei kiekvieną viršūnę galima sujungti su bet kuria kita viršūne, tai grafas vadinamas sujungtu.

a
1.8 pav. Ciklinio maršruto schema.

Sujungtas grafas nesudarantis ciklų ir neturintis pasikartojančių briaunų vadinamas medžiu. Kiekvienai viršūnių porai egzistuoja vienintelė juos jungianti grandinė. Norint sudaryti medị reikia pasirinkti kokia nors viršūnę $\boldsymbol{A}_{\boldsymbol{0}}$ (1.9 pav.) ir iš jos išvesti linijas ị viršūnes $\boldsymbol{A}_{\boldsymbol{1}} \boldsymbol{A}_{2}$ ir $\boldsymbol{A}_{\boldsymbol{3}}$, o iš jų išvesti linijas í $\boldsymbol{A}_{11} \boldsymbol{A}_{12}$ ir \boldsymbol{A}_{13} ir taip toliau. Pradžioje parinkta viršūne $\boldsymbol{A}_{\boldsymbol{3}}$ vadinama medžio kamienu. Kiekvieno grafo šaka turi turèti paskutinę briauną iš kurios jau neišeina nei viena šaka. Todèl medis su n viršūnèmis turi ($\boldsymbol{n} \boldsymbol{- 1}$) briauną.

1.9 pav. Dvi grafo-medžio schemos

Jei viršūnes sudaro detalės ir ruošinio paviršiai, tai detalės brėžinị su konstrukciniais ir technologiniais matmenimis galima atvaizduoti dviem medžiais. Sutapdinus šiuos medžius gaunamas sutapdintas grafikas, leidžiantis užkoduota forma atvaizduoti geometrinę technologinio proceso struktūrą apdirbant detales, ir yra jo matematinis modelis. Tokiame grafe technologinès matmenų grandinės iš neaiškių tampa aiškiomis. Galima nenaudoti brėžinio ir visą būtiną informaciją ir skaičiavimus gali suteikti grafas. Bet koks uždaras kontūras sutapdintame grafe susidedančiame iš pradinio ir išvestinio medžio, sudaro technologinę matmenų grandinę.

Kiekvienas medis turi atitikti šiuos reikalavimus:

1) kiekvieno medžio viršūnių skaičius turi būti lygus paviršių skaičiui technologinio proceso matmenų grandinėse,
2) kiekvieno medžio briaunų skaičius turi būti vienodas ir lygus briaunų skaičiui atemus vieneta,
3) ị kiekvieną išvesto medžio viršūnę turi ateiti tik viena orientuotos briaunos rodyklė, o viršūnėje-nei vienos rodyklès.
4) medžiai negali turėti nutrūkimų ir uždarų kontūrų.

1.5. Technologinės paklaidų grandinės

Nors detalès geometrinių elementų (plokštumos) padėčiu paklaidų grandinės nesudaro uždaro kontūro, matmenų ir paklaidų grandinę galima sudaryti grafụ pagalba. Grafų pagalba galima teisingai nustatyti matmenų grandines ir atlikti jų analizę. Panagrinėsime paklaidų grafo sudarymą.
1.10 pav. parodytas ruošinys, frezavimo operacijos ir detalès apdirbtų plokštumų pasisukimas apie ašit Y paklaidų grafas.

b)
1.10 pav. Ruošinys (a); frezavimo operacijos (b); plokštumų pasisukimo apie aši Y paklaidų grafas.

Grafu plane priimtos koordinatinės plokštumos $\boldsymbol{Y O Z}$ atžvilgiu detalės plokštumos keičia savo padėti pagal aši \boldsymbol{Y}. Linijos (rodyklès) jungiančios apskritimus parodo plokštumos padèties paklaidą pagal aši \boldsymbol{Y}. Plokštumos padèties paklaida - tai atstumas tarp dvieju ribinių plokštumos padėčių pagal ašị \boldsymbol{Y}. Iš apskritimo $\boldsymbol{Y}_{\boldsymbol{0}}$ vedamos rodyklès iki ruošinio plokštumų $\mathbf{1 , 2 , 3} \mathbf{i r} 4$. Rodyklės parodo šių ruošinio plokštumų pasislinkimą pagal aší \boldsymbol{Y}, ruošinio formavimo metu. $\boldsymbol{W}_{a b}$-plokštumos padèties paklaida po apdirbimo; pirmas indeksas a parodo operacijos numerí; antras indeksas \boldsymbol{b}-plokštumos numerị. Toliau iš apskritimo 3 vedama linija iki apskritimo \boldsymbol{Y}. Ši linija pažymima ε_{1} - parodo technologinės bazės $\mathbf{3}$ pasislinkimą pagal \boldsymbol{Y} ašį ruošinio tvirtinimo metu, indeksas prie $\boldsymbol{\varepsilon}$ parodo operacijos numeri. Po to iš apskritimo \boldsymbol{Y} vedamos linijos \mathfrak{i} du apskritimus 1^{\prime} ir 2^{\prime}. Šios linijos parodo apdirbtų ruošinio plokštumų 1^{\prime} ir 2^{\prime} pasislinkimą pagal aši \boldsymbol{Y}. Apdirbtos plokštumos žymimos $\mathbf{1}^{\prime}$ ir $2^{\prime \prime}$ (skaičiumi su vienu apostrofu). Gautas paklaidų grafas vadinamas medžiu (1.10 pav.). Šiame grafe visos paklaidos (rodyklės) yra technologinių paklaidu grandinių dedamieji nariai. Uždarantieji nariai yra detalės galutinių matmenų ir užlaidų paklaidos, kurios atvaizduojamos grafais.

Detalès matmenų paklaidų grafas sudaromas sekančiai: matmuo \boldsymbol{A} užduotas tarp $\mathbf{3}$ ir $\boldsymbol{1}^{\prime}$ plokštumos, matmuo $\boldsymbol{B} \operatorname{tarp} \mathbf{1}^{\prime}$ ir $\mathbf{2}^{\prime}$ plokštumu, matmuo $\boldsymbol{C} \operatorname{tarp} 4$ ir $\mathbf{1}^{\prime}$ plokšstumų. Todèl brěžiami
keturi apskritimai, kurie sujungiami linijomis $\boldsymbol{W}_{\boldsymbol{A}}, \boldsymbol{W}_{\boldsymbol{B}}$ ir $\boldsymbol{W}_{\boldsymbol{C}}$ (1.11 pav., a). Analogiškai sudaromas užlaidų paklaidų grafas, tai yra sujungiami apskritimai tarp 1 ir 1' paviršių, 2 ir 2' paviršių, o grafas sujungiamas linija atitinkamai $\boldsymbol{W}_{z I 1}, \boldsymbol{W}_{z 22}$ (1.11 pav., c). Norint sudaryti paklaidų grandines reikia matmenų paklaidų ir užlaidos paklaidų grafus uždėti ant detalės plokštumų padėčių paklaidų grafo. Gaunamas pilnas paklaidų grafas (1.11 pav., d).

1.11 pav. Detalė (a); matmenų paklaidų grafas (b); užlaidų paklaidų grafas (c); pilnas paklaidų grafas (d).

Paklaidų grandinę sudaro kelias grafe, kurị užduoda uždarantysis narys. Uždarantysis narys matmens \boldsymbol{A} yra paklaida \boldsymbol{W}_{A} jungianti apskritimus $\mathbf{3}$ ir $\boldsymbol{1}$, , o kelias tarp šių apskritimų $\boldsymbol{W}_{1 \boldsymbol{I}}$ ir ε_{1}. Uždarantysis narys matmens \boldsymbol{B} yra paklaida $\boldsymbol{W}_{\boldsymbol{B}}$ jungianti apskritimus $\boldsymbol{1}$, ir
$\mathbf{2}^{\prime}$, o kelias tarp apskritimų yra lygus $\boldsymbol{W}_{\boldsymbol{I I}}$ ir $\boldsymbol{W}_{\mathbf{I 2}}$. Uždarantysis narys matmens \boldsymbol{C} yra paklaida $\boldsymbol{W}_{\boldsymbol{c}}$ jungianti apskritimus $\boldsymbol{1}^{\prime}$ ir 4^{\prime}, o kelias tarp apskritimų yra lygus $\boldsymbol{W}_{04}, \boldsymbol{W}_{03}, \varepsilon_{1}$ ir \boldsymbol{W}_{11}.

Gaunamos šios paklaidų grandinių lygtys:

$$
\begin{aligned}
& W_{A}=\varepsilon_{1}+W_{11} \\
& W_{B}=W_{11}+W_{12} \\
& W_{B}=W_{04}+W_{03}+W_{11}+\varepsilon_{1} \\
& W_{z 11}=W_{01}+W_{03}+\varepsilon_{1}+W_{11} \\
& W_{z 22}=W_{02}+W_{03}+\varepsilon_{1}+W_{12}
\end{aligned}
$$

Šios lygtys parodo, kurias dedamąsias reikia ìvertinti, kad būtų surasta uždarančio nario reikšmè. Dydžiai $\boldsymbol{W}_{a b}$ ir ε_{a} sumuojami kaip atsitiktiniai dydžiai, kurie gali turèti tik teigiamas reikšmes.

2 . DETALĖS PAVIRŠIŲ PLOKŠTUMŲ PADĖČIŲ PAKLAIDŲ GRAFAI

Nagrinėjant detalių apdirbimo tikslumo klausimus reikalinga išskirti dvi paviršių grupes: pirma - cilindriniai paviršiai ir antra - plokštumos. Cilindrinių paviršių matmenys matuojami tarp dviejų to pačio paviršiaus taškų. Tuo tarpu apdirbant plokštumas matmuo matuojamas tarp dviejų skirtingų plokštumų. Kiekvienai iš plokštumų apdirbimo metu susidaro padèties paklaidos atžvilgiu laisvai pasirinktos koordinačių sistemos. Todèl, nagrinėjant ilgio matmenų tiksluma, būtina išsiaiškinti atskirai kiekvienos plokštumos padėties paklaida, t.y. koki „indèlị" ji ịneša ị bendrą matmens paklaidą.

Kitas dalykas - užlaidų skaičiavimas. Kadangi užlaidos skaičiuojamos atskirai kiekvienai plokštumai, būtina žinoti atskiros plokštumos padėties paklaidą prieš ir po apdirbimo. Tik tokiu atveju galėsime nustatyti didžiausią užlaidos reikšmę, kuri priimama kaip pjovimo gylis \boldsymbol{t}.

Išnagrinėsime, kaip formuojasi detalių plokštumų padéčių paklaidos apdirbimo metu, kai apdirbama detalių partija. Paimame veleno tipo detalę (2.1 pav.), kurios ruošinys gaunamas štampuojant. Detalé apdirbama per tris operacijas - dvi tekinimo ir vieną šlifavimo. 2.2 pav. parodytos detalių plokštumų padèčių paklaidų formavimosi schemos.

Kai gaminamas ruošinys, kiekviena plokštuma (1,2 ir 3) formuojasi nepriklausomai viena nuo kitos ir kiekviena iš jų turi savo padèties paklaidą - $\boldsymbol{\omega}_{10}, \omega_{20}$ ir ω_{30}.

Priimame, kad tekinimo metu detalès bazuojamos plokštuma 3 (pagal ilgi). Iš pradžių priimame, kad bazavimo metu detaliụ plokštumos 3 užims pastovią padėti. Tuomet likusiụ plokštumų 2 ir 1 paděčių paklaidos susidarys iš savo padėties paklaidos, t.y. ω_{10} ir ω_{20} ir bazinès plokštumos padėties paklaidos ω_{30}, kuri susidaro štampuojant. Vadinasi, bazuojant detales, plokštumos 2 padèties paklaida bus lygi :

$$
\omega_{2}=\omega_{20}+\omega_{30}
$$

, o plokštumos 1 :

$$
\omega_{1}=\omega_{10}+\omega_{30}
$$

Detalės tvirtinimo metu bazinė plokštuma, o kartu ir visa detalė keis savo padėti tvirtinimo paklaidos ε_{1} dydžiu. Tokiu būdu, po tvirtinimo bazinės plokštumos 3 padèties paklaida bus lygi ε_{1}, plokštumos $2-\omega_{20}+\omega_{30}+\varepsilon_{1}$ (2.2 c2 pav.)

Po plokštumų 1 ir 4 apdirbimo jų padèties paklaidos bus lygios atitinkamai ω_{11} ir ω_{41}, t.y. šias paklaidas nusako apdirbimo salygos. Plokštumų 2 ir 3 padéčių paklaidos, aišku, palieka tokios pat kaip po detalių užtvirtinimo.

2.1 Tekinimo ir šlifavimo operacijos

Toliau panagrinėsime kaip plokštumų padėčių paklaidų grafas atspindi paklaidų struktūra, kuri susidaro mechaninio apdirbimo metu. Iš viso galimi tokie atvejai:

1. Plokštumos padėties paklaida po apdirbimo,
2. Bazinės plokštumos padėties paklaida,
3. Apdirbamos plokštumos (po detalès ittvirtinimo) padèties paklaida,
4. Matmens tarp dviejų apdirbtų plokštumų vienoje operacijoje paklaida,
5. Matmens tarp apdirbtos ir bazinės plokštumos paklaida,
6. Matmens tarp apdirbtos ir bet kurios kitos plokštumos paklaida,
7. Užlaidų paklaidos.

1. Plokštumos padėties paklaida po apdirbimo

Plokštumos padėties paklaidos dydis po apdirbimo priklauso nuo apdirbimo metodo tikslumo. Ji susideda iš pirminių paklaidų, tokių kaip technologinès sistemos tampriosios deformacijos, pjovimo įrankio dilimas, technologinès sistemos šiluminès deformacijos ir kt. Šiuo atveju apdirbimo tikslumą galima padidinti tik technologinėmis priemonėmis.

Paklaidų grafe šią paklaidą nusako grafo briauna, kuri ateina iš $\boldsymbol{x}_{\boldsymbol{i}}$ (indeksas i nusako operacijos numerị) ì apdirbamą paviršių. Pavyzdžiui, plokštumos 1 padėties paklaida po šlifavimo nusako briauna, kuri išeina iš $\boldsymbol{x}_{\boldsymbol{i}}\left(\right.$ trečia operacija) i $\mathbf{1} "$, t.y. briauna ω_{13}.
a) Ruošinys
c) detalė

b) mechaninis apdirbimas

1. Tekinimas

3. Šlifavimas
d) detalės plokštumų paviršių paklaidų grafas.

2.1 pav. Ruošinys (a), ruošinio technologinė apdirbimo schema (b), detalé (c) ir detalės plokštumu padèčių paklaidų grafas.

c) Tekinimas.

1. Ruošinio plokštumų padėčių paklaidu geometrinė struktūra po bazavimo (neatsižvelgiant i tvirtinimo paklaidą).

2. Ruošinio plokštumų padėčių paklaidų geometrinė struktūra po ruošinio tvirtinimo.
3. Detalės plokštumų padèčių paklaidų geometrinė struktūra po detalès tvirtinimo.

4. Detalės plokštumų paděčiu pa-
klaidų geometrinė struktūra po tekinimo operacijos.

5. Detalė po tekinimo operacijos.

e) Šlifavimas.
6. Ruošinio plokštumų paděčių paklaidų geometrinė struktūra po bazavimo (be tvirtinimo paklaidos).

7. Detalės plokštumų padėčių paklaidų geometrinė struktūra po detalès tvirtinimo.

8. Detalės plokštumų padėčių paklaidų geometrinė struktūra po šlifavimo

2.2 pav. Detalės plokštumų paděčių paklaidų geometrinių struktūrư formavimas mechaninio apdirbimo metu.

2. Bazinės plokštumos padėties paklaida

Tvirtinant detalę bazine plokštuma atsiremia \mathfrak{i} atramą ir šios plokštumos padeties paklaida yra lygi tvirtinimo paklaidai ε_{i} (indeksas i nurodo operacijos numerị). Galima išskirti dvi tvirtinimo paklaidų rūšis. Pirma - kai bazinė plokštuma pasislenka dèl kontaktinės deformacijos tarp bazinės plokštumos ir atramos. Šis atvejis gaunasi tuomet, kai užspaudimo jèga veikia statmenai bazinei plokštumai. Antra - kai bazinė plokštuma tvirtinimo metu atsitraukia nuo atramos. Šis atvejis būdingas apdirbant veleno tipo detales, nes jas tvirtinant triju kumšteliu griebtuvuose, bazinė plokštuma (kartu ir visa detalė) atsitraukia nuo atramos.

Paklaidų grafe tvirtinimo paklaida pažymèta simboliu ε_{i}. Briauna ε_{i} išeina iš apskritimo su numeriu, kuriuo pažymèta bazinė plokštuma ir ateina ị apskritimą $\boldsymbol{x}_{\boldsymbol{i}}$ (i) operacijos numeris).

3. Apdirbamos plokštumos padėties paklaida po detalès tvirtinimo.

Ši paklaida susidaro iš dviejų sudaromuju:
a) paklaida matmens, kuris jungia bazinę plokštumą ir apdirbamą plokštuma.
b) tvirtinimo paklaida.

Pavyzdžiui, paimame šlifavimo operacijas, detalę ittvirtinus, plokštumos 1' padėties paklaida prieš šlifavimą susidės iš matmens \boldsymbol{K}, kuris jungia bazinę plokštumą $\mathbf{2}^{\prime}$ ir apdirbamą paviršių 1 ' paklaidos ir tvirtinimo paklaidos ε_{3}. Kadangi matmuo K jungia paviršius 2 ' ir $\mathbf{1}$ ', 'iš grafo surandame paklaidų grandine, kuri jungia plokštumas $\mathbf{2}^{\prime}$ ir $\mathbf{1}^{\prime}$, t.y:

$$
\omega_{K}=\varepsilon_{2}+\omega_{22}
$$

Tuomet plokštumos $\boldsymbol{1}^{\prime}$ padèties paklaida prieš apdirbimą lygi:

$$
\omega_{1}^{\prime}=\varepsilon_{2}+\omega_{22}+\varepsilon_{3}
$$

Ši paklaida įeina ì paviršiaus 1^{\prime} užlaidos paklaidą prieš apdirbimą ir todèl ja, kiek galima, reikia mažinti.

4. Matmens tarp dviejų apdirbtų plokštumų paklaida.

Ši paklaida yra lygi vienos ir kitos apdirbtos plokštumos padėčių paklaidų sumai t.y. operacinio matmens paklaidai. Pavyzdžiui, pirmoje tekinimo operacijoje apdirbamos dvi plokštumos: plokštuma 1^{\prime} - tekinimo peiliu, plokštuma 4 - ištekinimo peiliu. Matmens tarp plokštumų 1 ' ir 4 paklaida bus lygi atskirų plokštumų 1 ' ir 4 padéčių paklaidų sumai arba tiesiog šio operacinio matmens paklaidai.

Paklaidų grafe šias paklaidas nusako dvi briaunos, išeinančios iš apskritimo $\boldsymbol{X}_{\boldsymbol{I}}$ (pirma operacija) í apskritimus 1 ' ir 4, t.y. briaunos ω_{11} ir ω_{41}.

Vadinasi, matmens tarp plokštumų l' ir 4 paklaida yra lygi:

$$
\omega_{1^{\prime}-4}=\omega_{11}+\omega_{41} ;
$$

5. Matmens tarp apdirbtos ir bazinės plokštumos paklaida.

Šio matmens paklaida yra lygi nurodytų plokštumų paděčių paklaidų sumai, t.y. apdirbtos plokštumos padėties paklaidos ir bazinės plokštumos tvirtinimo paklaidos sumai. Toje pačioje pirmojoje operacijoje matmens tarp bazinés plokštumos 1 ' padèties paklaidos sumai.

Paklaidų grafe briauna, nusakanti tvirtinimo paklaida, žymima ε_{i}. Nurodytu atveju tvirtinimo paklaida, bazuojant plokštuma 3, pažymèta ε_{1}, kuri išeina iš apskritimo 3. Plokštumos padėties paklaidą nusako briauna $\boldsymbol{\omega}_{\boldsymbol{I}}$, išeinanti iš apskritimo $\boldsymbol{x}_{\boldsymbol{1}}$ ị apskritimą $\boldsymbol{1}$ ’. Vadinasi:

$$
\omega_{3-1}=\varepsilon_{1}+\omega_{11}
$$

6. Matmens tarp apdirbtos ir bet kurios kitos plokštumos paklaida.

Ši paklaida yra lygi apdirbtos plokštumos ir bet kurios kitos plokštumos padèties paklaidos sumai. Pavyzdžiui, panagrinėkime šlifavimo operaciją. Detalę įtvirtinus, plokštumos $\boldsymbol{1}^{\prime}$ padèties paklaidą prieš šlifavimą susidės iš matmens \boldsymbol{k}, kuris jungia plokštumą $\mathbf{3}^{\prime}$ ir apdirbamą paviršių 1'. Iš grafo surandame paklaidų grandinę, kuri jungia plokštumas 3 ' ir 1 't.y.

$$
\omega_{K}=\varepsilon_{2}+\omega_{32} ;
$$

Tuomet matmens \boldsymbol{k}, tarp apdirbtos ir bet kurios kitos plokštumos paklaida lygi:

$$
\omega_{K}=\omega_{32}+\omega_{22}+\varepsilon_{3}+\omega_{13} ;
$$

7.Užlaidų paklaidos.

Užlaidụ paklaidos žymimos $\omega_{\text {zji }}$ kur indeksas \boldsymbol{i} - parodo plokštumos numerí, o \boldsymbol{j} operacijos numerị. Paklaidų grafe šią paklaidą nusako grafo tiesé, kuri eina iš apdirbamos plokštumos paviršiaus prieš apdirbimą ir eina \mathfrak{i} apdirbamos plokštumos paviršiu po apdirbimo. Pavyzdžiui norime pasiskaičiuoti kam lygi $\omega_{z 13}$ užlaidos paklaida. Grafe susirandame tarp kurių paviršių ši užlaida yra. Šiuo atveju tai paviršiai 1 ’ ir $\mathbf{1}$ ". Tad keliaudami nuo 1 ' iki $\mathbf{1}$ " paviršiaus susumuojame visas paklaidas ir gauname $\operatorname{kad} \boldsymbol{\omega}_{\mathbf{z 1 3}}$:

$$
\omega_{z 13}=\varepsilon_{2}+\omega_{22}+\varepsilon_{3}+\omega_{13} ;
$$

2.2 Plokštumų padėčių nustatymas pagal incidentinę matricą

Iš plokštumu padėčių paklaidų grafiko galima aiškiai matyti, kad kokių dedamuju susideda atskiros plokštumos padėties paklaidos, atskirų matmenų ir užlaidų paklaidos. Tačiau šiuo grafu galima pasinaudoti tik rankinio skaičiavimo atveju.

Norint automatizuoti anksčiau nurodytą tikslumo analize, paklaidu grafą reikia pakeisti incidentine matrica. Šioje matricoje (1.3 pav.) eilutès atitinka grafo viršūnes, o stulpeliai - grafo briaunas. Susikirtimuose, kur briauna išeina iš viršūnės, rašomas -1, o susikirtimuose, kur
briauna ateina \mathfrak{i} viršūnę, rašomas 1. Panagrinėkime, kaip matricos pagalba surandamas anksčiau nurodytos plokštumų paklaidos.

Briaunos Viršūnés	ω_{20}	ω_{30}	ω_{10}	ε_{1}	ω_{11}	ω_{41}	ε_{2}	ω_{32}	ω_{22}	ε_{3}	ω_{13}
X_{0}	-1	-1	-1								
1			1								
2	1										
3		1		-1							
X_{1}				1	-1	-1					
1^{6}					1		-1				
4						1					
X_{2}							1	-1	-1		
2^{6}									1	-1	
3^{6}								1			
X_{3}										1	-1
$1^{\prime \prime}$											1

1.3 pav. Incidentinė matrica.

1. Plokštumos padėties paklaida po apdirbimo.

Surasti matricos stulpeli, kuris atitinka plokštumos padėties paklaidą po apdirbimo, gana paprasta, kadangi paklaida žymima $\omega_{i j}$, kur indeksas \boldsymbol{i} parodo plokštumos numerí, o \boldsymbol{j} operacijos numerị. Pavyzdžiui, pirmos plokštumos padèties paklaidą po trečios (šlifavimo) operacijos nusako stulpelis ω_{13}.

2. Bazinės plokštumos padėties paklaida.

Šios plokštumos padėties paklaidą (tvirtinimo paklaidą) surandame panašiai kaip ir pirmu atveju. Tvirtinimo paklaida žymima ε_{1} randame, kai -1 yra penktoje eilutèje, kuri yra pažymèta skaičiumi 3. Čia tik reikalinga surasti, kuri plokštuma yra bazinė atskiroje operacijoje. Tai padaroma tokiu būdu. Stulpelyje $\boldsymbol{\varepsilon}_{1}$ ieškome $\mathbf{- 1}$. Toje eilutėje, kur buvo rasta $\mathbf{- 1}$, randame bazinės
plokštumos numerị. Pavyzdžiui , pirmoje operacijoje, stulpelyje ε_{1} randame, kad -1 yra penktoje eilutèje, kuri yra pažymėta skaičiumi 3 . Vadinasi, plokštuma 3 ir yra bazé pirmoje operacijoje.

3. Apdirbamos plokštumos padėties paklaida po įtvirtinimo.

Šios plokštumos padėties paklaida susideda mažiausiai iš dviejų dedamujų: tai plokštumos padèties paklaida, susidariusi prieš tai buvusiuose apdirbimuose ir kuri, savo ruožtu, gali būti sudėtiné, ir tvirtinimo paklaidos. Pagal matricą ji randama tokiu būdu. Priimame, kad reikia susirasti \boldsymbol{k} plokštumos padėties paklaida, kuri prieš apdirbimą bus žymima \boldsymbol{k}, , o po apdirbimo \boldsymbol{k}^{*}. Matricoje surandame eilutę su $\boldsymbol{k}^{\text {" }}$ ir einame ta eilute iki 1. Tą stulpeli, kur yra 1, atitinka tam tikra paklaida, priimame $\omega_{a, b}$. Šiame stulpelyje ieškome eilutès, kur bus -1. Toje eilutèje, kur radome -1 , vèl ieškome stulpelio su 1 . Priimame, kad stulpelio paklaida yra ε_{c}. Toliau stulpelyje su 1 ieškome eilutès su -1 ir t.t. Taip tęsiame paiešką tol, kol patenkame ị eilutę su $\boldsymbol{k}^{\boldsymbol{6}}$. Priimame, kad paskutinis stulpelis buvo ε_{z}. Tuomet visas surastas briaunas (paklaidas) surašome it eilutę paeiliui: $\omega_{a, b}, \varepsilon_{c} \ldots \varepsilon_{z}$. Atmetame pirmają dedamają $\omega_{a, b}$, o likusios dedamosios sudarys plokštumos padèties paklaidą prieš apdirbima. Pavyzdžiui, ieškome plokštumos 1 padèties paklaidą prieš šlifavimą, t.y. turime, kad prieš šlifavimą yra plokštuma 1 ', o po šlifavimo - 1 ". Surandame matricoje eilutę su 1 " ir einame šia eilute iki 1 . Tai yra eilutè \boldsymbol{x}_{3}. Šioje eiluteje surandame 1 . Atitinkamas stulpelis pažymètas ε_{3}. Šiame stulpelyje randame -1 ir einame šia eilute iki 1 . Šis stulpelis pažymètas ε_{2}. Eidami šiuo stulpeliu ì viršų randame $\mathbf{- 1}$. Ši eilute pažymèta $\boldsymbol{1}^{\prime}$. Todèl paieška baigiama. Surašome visas paklaidas iš eilès:

$$
\omega_{13}, \varepsilon_{3}, \omega_{22}, \varepsilon_{2}
$$

Atmetame pirmą elementą ω_{13} ir tuomet plokštumos 1 padèties paklaida ω_{1} ‘ prieš apdirbimą yra lygi:

$$
\omega_{1}^{\prime}=\varepsilon_{3}+\omega_{22}+\varepsilon_{2}
$$

Tą patvirtina ir paklaidų geometriné struktūra (1.2 pav.). Pirmoji paklaida ω_{13} yra plokštumos 1 padėties paklaida po apdirbimo.

4. Matmens tarp dviejų apdirbtų plokštumų paklaida.

Ši paklaida, kaip jau minėta, lygi dviejų apdirbtų plokštumų paděčių paklaidų sumai t.y. operacinio matmens paklaidai. Pavyzdžiui, antroje tekinimo operacijoje apdirbamos $\mathbf{2}^{\prime}$ ir $\mathbf{3}^{\prime}$ plokštumos. Matmens tarp šių plokštumų paklaida bus lygi atskirų plokštumų 2’ ir 3' padéčių paklaidų sumai. Taigi šios sumos dedamiesiems rasti pasinaudosime incidentine matrica. Pradėsime nuo plokštumos 3' apdirbimo. Matricoje susirandame plokštumą 3' ir eilute keliaujame iki to
stulpelio kuriame yra įrašytas 1 . Stulpeliu kuriame ịrašytas 1 , kylame aukštyn kol randame eilute su -1. Nusirašome stulpelio reikšmę ε_{3}. Toliau nuo langelio su reikšme -1 keliaujame í dešinę kol randame langelị su 1 . Visa šita procedūra pakartojame kol atkeliaujame iki eilutés kurios reikšmė yra $\boldsymbol{x}_{\boldsymbol{0}}$. Rezultate gauname:

$$
\begin{aligned}
& \omega_{32}, \varepsilon_{2}, \omega_{11}, \varepsilon_{1}, \omega_{30} ; \\
& \omega_{22}, \varepsilon_{2}, \omega_{11}, \varepsilon_{1}, \omega_{30}
\end{aligned}
$$

Elementai kurie kartojasi atmetame ir tuomet gauname:

$$
\omega_{B}=\omega_{32}+\omega_{22}
$$

5. Matmens tarp apdirbtos ir bazinės plokštumos paklaida.

Paklaida bus lygi apdirbtos ir bazinės plokštumos padéčių paklaidų sumai, t.y. apdirbtos plokštumos padėties paklaidos ir bazinės plokštumos tvirtinimo paklaidos sumai. Kaip pavyzdị galime imti pirmą tekinimo operaciją. Bazinés plokštumos 3 ir apdirbtos plokštumos $\boldsymbol{1}^{\prime}$ padéties paklaida yra lygi tvirtinimo paklaidos ir plokštumos 1 ' padėties paklaidos sumai.

Matricoje susirandame viršūnę 3 ir eilute keliaujame iki 1 . Stulpeliu kylame aukštyn iki langelio, kuriame irašytas - 1. Nusirašome stulpelio reikšmę ω_{30}. Sekantis žingsnis susirandame eilute su viršūnės reikšme 1 '. Eilute keliaujame iki 1 . Tada stulpeliu kylame aukštyn kol randame reikšmę $\mathbf{- 1}$. Nusirašome stulpelio reikšmę $\boldsymbol{\omega}_{11}$. Eilute keliaujame kol randame $\mathbf{1}$. Kylame stulpeliu aukštyn kol randame reikšmę $\mathbf{- 1}$. Vèl nusirašome stulpelio reikšmę $-\boldsymbol{\varepsilon}_{\boldsymbol{1}}$. Keliaujame stulpeliu kol sutinkame 1. Kylame stulpeliu aukštyn kol sutinkame reikšmę -1. Šio stulpelio reikšmę užsirašome - ω_{30}. Kadangi reikšmès ω_{30} kartojasi, jas abi atmetame. Rezultate gauname kad:

$$
\omega_{3-1}=\omega_{11}+\varepsilon_{1} .
$$

6. Matmens tarp apdirbtos ir bet kurios kitos plokštumos paklaida.

Ši matmens paklaida taipogi lengvai randama pasinaudojus incidentine matrica. Kaip pavyzdị galime panagrinėti šlifavimo operaciją. Detalė tvirtinama paviršiumi 2', o apdirbamas bus paviršius 1’. Kad sužinotume matmens tarp paminėtu plokštumų paklaida,turėsime surasti sudarančiuosius narius. Susirandame matricoje plokštumą 2^{\prime}, ir keliaudami link $\boldsymbol{x}_{\boldsymbol{0}}$ susirašome dedamuosius narius:

Taip pat surandame ir paviršiaus $\boldsymbol{1}$ ' dedamuosius narius:

$$
\omega_{11} \varepsilon_{1} \omega_{30}
$$

Kadangi nariai $\omega_{11} \varepsilon_{1} \omega_{30}$ kartojasi, juos mes išbraukiame ir susirašome likusiuosius narius:

$$
\omega_{22} \varepsilon_{2}
$$

Matmens tarp apdirbtos ir bet kurios kitos plokštumos paklaidą susidės iš likusių nariụ sumos. Tai yra :

$$
\omega_{2^{\prime}=1^{\prime}}=\omega_{22}+\varepsilon_{2} ;
$$

7. Užlaidụ paklaidos.

Užlaidų paklaidos tai paklaidų suma kuri susidaro apdirbant viena paviršiụ. Kaip pavyzdį galime panagrinėti $\boldsymbol{\omega}_{z ı 1}$ užlaidos paklaida. Ji susidaro tekinant paviršių 1. Matricoje susirandame paviršių 1’ ir keliaudami lentele susirašome narius:

$\omega_{11} \varepsilon_{1} \omega_{30}$

Tą patị pakartojame su paviršiumi 1 :

$$
\omega_{10}
$$

Susumavus visas paklaidas sužinome kam lygi užlaidos paklaida:

$$
\omega_{1-1}=\omega_{11}+\varepsilon_{1}+\omega_{30}+\omega_{10}
$$

IŠVADOS

1. Gaminant veleno tipo detales ilgio matmenų paklaidoms turi itakos tvirtinimo paklaida.
2. Pasinaudojus grafais galima rasti optimalụ detalès bazavimo varianta, kurio dèka gautume mažiausias plokštumų padèčių paklaidas.
3. Incidentinės matricos pagalba galime paklaidų skaičiavimą pritaikyti elektroniniam duomenų apdorojimui.

REZIUMĖ

Janavičius E., Veleno tipo detalių plokštumų padėčių paklaidų formavimas. Mechanikos inžinerijos magistro tezės / vadovas doc. J. Rimkus; Šiaulių universitetas, Mechanikos technologijos katedra. - Šiauliai, 2006. - 31p.

Tiriamaji darbą „, Veleno tipo detalių plokštumų padėčiụ paklaidų formavimas" sudaro 28 iliustracijos, 5 bibliografiniai šaltiniai.

Tyrimo objektas - detalès plokštumų padėčių paklaidos.
Tyrimo tikslas - plokštumų padėčių paklaidų formavimasis apdirbimo proceso metu.
Darbe pateiktos veleno tipo detalės plokštumų padèčių paklaidų formavimasis apdirbimo metu. Plokštumų padéčių paklaidų grandinės sudarytos pasinaudojus grafú pagalba. Detalės apdirbimo procese atsiranda paklaidos, todèl sunku nustatyti kokie galutiniai matmenys gausis pilnai detalę apdirbus. Darbe nagrinėta kokios plokštumų padéčiu paklaidos apdirbimo procese susidaro ir išnyksta, o kurios išlieka baigus apdirbimo procesą. Atskiri plokštumų padéčių paklaidų atvejai buvo išnagrinėti pasinaudojus grafais ir incidentine matrica.

SUMMARY

E. Janavičius „Surface position errors formation for axel type parts". Mechanical Engineering Master's Theses / Leader ass.prof J.Rimkus; Siauliai University, Chair of mechanical Technology. - Siauliai, 2006-31p.

The investigation work „Surface position errors formation for axle type parts" consists of 28 figures, 5 references.

Subject of investigation is surface position errors of the parts.
Aim of the investigation is formation of surface position errors in manufacturing process.

Axel type parts surface position errors formation during treatment, are presented in the work. The surface position error chains are made with a help of graphs. It is hard to estimate what will be the eventual measurement after the part is fully made, because of the errors that appear in the manufacturing process. In this work were analyzed what surface position errors appears and disappears and witch stays after manufacturing process is over. Using graphs and incidentic matrix were analyzed different surface position errors occasions.

LITERATŪRA

1. Stasiūnas R. Naginevičienė L., Markšaitis D. Technologinių matavimų pagrindai, tolerancijos ir suleidimai.- Kaunas.: Technologija, 1994.-155p.
2. Солонин И. С., Солонин С.И. расчёт сборочных и технологических размерных цепей. - М.: Машиностроение, 1980-.110с.
3. Размерный анализ технологических процесов/ В.В. Матвеев, М.М. Тверской, Ф.И. Бойков и др. - М.: Машиностроение, 1962.-324с.
4. V. Vetkeris, A .Kasparaitis, S. Stasiūnas, R. Kanapinas. Matavimų teorija ir praktika. Vilnius.: Žiburio leidykla, 2000.-380p.
5. М. Свами. К. Тхуласираман. Графы, сети и алгоритмы.
6. Сайт: Хабаровского института инженеров железнодорожного транспорта http//www.dvgups.ru/METDOC/ENF/PRMATEM/DISK_MATEM/METOD/
