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Abstract: A high number of genome variants are associated with complex traits, mainly due to
genome-wide association studies (GWAS). Using polygenic risk scores (PRSs) is a widely accepted
method for calculating an individual’s complex trait prognosis using such data. Unlike monogenic
traits, the practical implementation of complex traits by applying this method still falls behind.
Calculating PRSs from all GWAS data has limited practical usability in behaviour traits due to
statistical noise and the small effect size from a high number of genome variants involved. From a
behaviour traits perspective, complex traits are explored using the concept of core genes from an
omnigenic model, aiming to employ a simplified calculation version. Simplification may reduce the
accuracy compared to a complete PRS encompassing all trait-associated variants. Integrating genome
data with datasets from various disciplines, such as IT and psychology, could lead to better complex
trait prediction. This review elucidates the significance of clear biological pathways in understanding
behaviour traits. Specifically, it highlights the essential role of genes related to hormones, enzymes,
and neurotransmitters as robust core genes in shaping these traits. Significant variations in core genes
are prominently observed in behaviour traits such as stress response, impulsivity, and substance use.

Keywords: behaviour traits; core genes; omnigenic model; complex inheritance; biological pathways;
hormones; neurotransmitters; enzymes

1. Introduction

Understanding complex behaviour traits is a very important part of human genomics
research. Behaviour traits, such as impulsivity, stress, depression, and addictive ten-
dencies, profoundly affect individual lives and social interactions. However, their mul-
tifactorial nature, influenced by both genetic and environmental factors and the vast
number of genetic variants involved, presents significant challenges in elucidating their
genetic underpinnings.

This review is grounded in a narrative approach, and it explores the emerging concept
of core genes and the omnigenic model, aiming to shed light on the genetic basis of
behavioural traits and providing an original perspective on the genetic architecture of
complex traits, moving beyond the traditional genome-wide association studies (GWAS)
and polygenic risk score calculations that have dominated the field. The interplay of core
genes within intricate biological pathways is investigated, with the goal of achieving a
deeper understanding of behaviour characteristics. This approach, focusing on genes
with clear biological pathways and significant influence on behaviour, suggests a more
standardised approach for the practical prediction of behaviour traits.

In the following sections, the review discusses the intricacies of genome-wide associa-
tion studies, the practical application of combined genome variants for complex traits, and
the implementation of the omnigenic model. The review also presents the significance of
biological pathways and the role of core genes in shaping behaviour traits. It is intended
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to provide a comprehensive understanding of the current state of attempts to predict
behavioural traits using genomics and the potential future directions in this field.

2. Complex and Monogenic Traits

Unlike a monogenic trait, complex traits are not explained by one or a few genes
but are characterised by polygenicity, where multiple genetic variants contribute to the
trait’s manifestation. Furthermore, studying complex traits is challenging because it is
determined by the combination of genetic and environmental factors [1].

The genomic variation in monogenic traits is widely used for practical purposes such
as genetic counselling, diagnostic testing, carrier screening, or personalised medicine. The
availability of such wide practical use comes due to the simplistic nature of monogenic trait
manifestation and the constantly improving quality of information collected by researchers,
which is stored in public databases such as ClinVar [2].

3. The Role and Limitations of Genome-Wide Association Studies

The field of complex inheritance genomics has experienced a substantial surge in
available data. A key contributing factor for associating thousands of genome variants
with complex traits has been the widespread implementation of genome-wide association
studies (GWAS) [3,4].

The usual way in which GWAS data are utilised on an individual level is by calculat-
ing the polygenic risk score (PRS). The PRS is a quantitative measure that combines the
effects of multiple genetic variants across the genome to estimate an individual’s genetic
predisposition to a particular trait. Researchers assign weights to each genetic variant based
on their association with the trait from the GWAS study, sum up the weighted effects of all
the genomic variants related to that trait, and the resulting single numeric value represents
the individual’s possible predisposition to the trait [5,6].

However, research has shown that in many cases of GWAS, it is challenging to replicate
results and genomic data retrieved from GWAS could have contradictory results. Most im-
portantly, having thousands of variants for one trait complicates the phenotypic prediction
from such genome data.

The genetics of physical performance is an excellent example of too many associated
variants from GWAS data. Bray and colleagues reviewed numerous studies from the year
2007 and compiled a list of 214 genetic markers associated with physical performance [7].
However, Varillas-Delgado et al. highlighted the limited reproducibility of reported associ-
ations and many “false positive” findings. Similar conclusions were raised in a publication
by Rankinen et al. in the Journal of Physiology, where the authors noted that while the
number of genes and polymorphisms associated with physical performance continues to
grow, the predictive power of these genetic markers is limited, and it is problematic to
translate genetic research from GWAS into practical use [8,9]. A 2023 study by Semenova
and colleagues reported that out of 251 DNA polymorphisms related to athlete status,
only 128 markers consistently showed positive associations in at least two separate studies.
Moreover, they provided a timeline of athletic-performance-associated genome variants,
highlighting that numerous variants previously linked to physical performance were not
included in the 2023 list [10].

Due to this, commercial genetic companies in their sports genetic testing tend to focus
only on the main known genes, such as ACTN3 and ACE, which have very clear biological
pathways related to physical performance, instead of calculating polygenic risk scores from
associated variants from many genes [11].

4. Practical Application of Combined Genome Variants for Complex Traits

One of the better practical examples of utilising a combined genomic variation of com-
plex traits for practical purposes is the forensic DNA Snapshot™ developed by Parabon
NanoLab [12]. The DNA Snapshot™ system, which received funding from the US Depart-
ment of Defense, uses machine learning algorithms to analyse complex trait-associated
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genetic variation. This advanced technology enables the system to predict various physical
features, including genetic ancestry; eye, hair, or skin colour; freckling; and face shape.
Combining these predictions, the system generates a composite profile known as a “genetic
photo robot,” estimating an individual’s physical characteristics. While it is just a prediction
tool to predict the physical appearance of complex traits from individual DNA data, the
prediction is accurate and has direct practical use in forensics [12,13].

Just as the DNA Snapshot™ system predicts physical appearance traits from DNA data,
a similar approach could be taken to predict behaviour traits. By analysing the genomic
variation associated with behaviour characteristics, such as impulsivity, risk taking, or
addictive tendencies, this tool could provide insights into an individual’s behaviour profile.

Understanding human behaviour involves a complex interplay of genetic and environ-
mental factors. Genetic information can offer valuable insights into a person’s behaviour
predispositions and vulnerabilities, providing a tool, e.g., for awareness and self-education
to improve personal well-being. By being aware of the genetic component of their be-
haviour, individuals can control and avoid environmental triggers associated with those
specific behaviour traits [14]. This knowledge empowers individuals to make informed
choices and encourages them to choose environmental aspects, ultimately helping them
manage and shape their behaviour more effectively.

However, complex behaviour traits pose even more significant challenges compared
to physical appearance traits due to the more decisive influence of environmental factors
and the involvement of a higher number of genetic variants. The conventional approach of
calculating PRSs from all available GWAS data has limited practical usability in the case
of behaviour traits due to statistical noise and the small effect size from a high number of
genome variants involved.

5. Omnigenic Model Implementation

Creating a personal behaviour profile from GWAS data is very challenging. An
omnigenic model suggested in 2017 by Boyle and his colleagues could be applied to
predicting complex traits from genomic data, which expands the view of complex traits
from polygenic to omnigenic [15].

The omnigenic model attempts to explain this observation by suggesting that dis-
eases can be thought of as networks, where genes directly involved in complex traits are
named “core genes”, while peripheral genes are spread through whole-genome interaction
networks. The omnigenic model represents a paradigm shift in our understanding of the
genetic basis of complex traits.

Some researchers criticised this model as although it looks appealing, it oversimplifies
complex traits, underestimates their biological complexity, and should not be focused on
discovering only core genes [16].

Despite receiving some criticism, the omnigenic model has demonstrated its useful-
ness in various studies. For instance, Ratnakumar and his colleagues utilised the omnigenic
model and successfully identified novel disease-associated core genes [17]. Studies of
Populus nigra and Drosophila melanogaster support the omnigenic model [18,19]. The om-
nigenic model contributed to suggesting causes for disorders such as schizophrenia and
autism [20,21].

From the perspective of complex traits in behaviour genetics, narrowing the fo-
cus solely to core genes and disregarding peripheral genes with very small effect sizes
may reduce the accuracy compared to a full polygenic risk score encompassing all trait-
associated variants. However, this simplification enables a more straightforward and easier
practical implementation.

6. Biological Pathways for Behaviour Traits

When discussing core genes in the context of behaviour, we are referring to genes that
possess well-defined biological pathways and play significant roles in critical processes
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associated with behaviour. These genes substantially influence behaviour by modulating
various intricate biological mechanisms and pathways.

Several biological processes contribute to the complex interplay of factors influenc-
ing behaviour, such as neurotransmission, synaptic plasticity, hormone regulation, and
neuronal signalling [22,23].

To elaborate further, it is important to underscore the roles of particular biochemical
elements, which are fundamental to these processes. Enzymes, hormones, and neuro-
transmitters are essential components within an organism’s chemical communication and
regulation systems, constituting vital contributors to the manifestation of behaviour traits.
An enzyme is a protein that acts as a catalyst, facilitating and speeding up biochemical
reactions in the body. It plays crucial roles in various metabolic processes, helping to break
down substances, build new molecules, and regulate cellular activities [24]. A hormone is
a biological compound that serves as a regulatory messenger in multicellular organisms,
organising, coordinating, and controlling cellular and tissue functions. These chemical
messengers are crucial in various physiological processes, including metabolism and be-
haviour [25]. While hormones may modulate the expression of behaviour, they are not
the cause of behaviour itself. Different behaviours are driven by a variety of internal
and environmental stimuli, with hormones playing a prominent role in regulating and
influencing behaviour responses [26].

A neurotransmitter is a chemical messenger that is synthesised and released by neu-
rons and is used in the process of synaptic communication between neurons. It is involved
in the process of sensory information and motor behaviour control [27].

While hormones and neurotransmitters share the role of chemical messengers, hor-
mones exert systemic effects by being released into the bloodstream, whereas neurotrans-
mitters act locally within the nervous system to transmit signals between neurons. Nev-
ertheless, the distinction between hormones and neurotransmitters can be ambiguous, as
certain substances like epinephrine and dopamine can serve dual roles as hormones and
neurotransmitters [28].

7. Core Genes of Behaviour

A good example of core behaviour genes with clear biological pathways related to
enzymes can be found in genes associated with substance abuse. The aldehyde dehydroge-
nase (ALDH) enzyme is involved in the metabolism of alcohol, and gene variations related
to it have been found to influence the risk of alcohol dependence [29].

Risk of alcohol dependence, while being a complex trait, can be influenced by only two
known genome variants that significantly impact its risk. Such variants are also interesting
due to their distinct frequencies in East Asia compared to other populations worldwide,
leading to a lower risk of alcohol dependence in East Asia [30,31].

rs1229984 is a single-nucleotide polymorphism (SNP) in the ADH1B gene, which
encodes a subunit of the alcohol dehydrogenase enzyme, a crucial catalyst in hepatic
ethanol metabolism. The T allele of this SNP enhances the enzyme’s activity, accelerating
the metabolism of alcohol to acetaldehyde, a toxic by-product. Elevated acetaldehyde
levels may cause symptoms such as facial flushing, nausea, and elevated heart rate, which
deter individuals from heavy drinking and thus lower the risk of developing alcohol
dependence. Similarly, rs671 is an SNP in the ALDH2 gene, known for its impact on the
alcohol metabolism process. The A allele leads to a Glu504Lys substitution that significantly
impairs enzyme activity. This results in an accumulation of acetaldehyde when alcohol
is consumed, provoking symptoms that deter heavy drinking and may lower the risk
of alcohol dependence [29,30,32]. In the genome aggregation database (gnomAD), the
frequency of the rs1229984 T allele in the East Asia (A) population is 73.9%, compared
with only 3.8% in the European population, and the rs671 A allele is 25.4% compared with
0.003% [33].

Figure 1 represents the interplay of genetic and environmental factors in alcohol de-
pendence. The manifestation of complex behaviour traits is influenced by the interaction
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between core and peripheral genes, with variations in core genes having a significantly
higher impact. Specific alleles of rs1229984 and rs671 in the ADH1B and ALDH2 genes,
accordingly, lead to physical reactions like facial flushing and nausea after alcohol con-
sumption, lowering the risk of alcohol dependence. In contrast, alternative alleles that
do not cause these physical discomforts increase the likelihood of individuals becoming
alcohol-dependent, as they lack these immediate negative physical deterrents post alcohol
consumption. Environmental factors, which can be modulated, significantly influence
alcohol consumption and dependence, particularly in groups with a higher genetic pre-
disposition to alcohol dependence. These factors can either promote alcohol consumption,
thereby increasing dependence risk, or discourage it, consequently reducing the risk of
alcohol dependence.
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Figure 1. The diagram illustrates the interplay of genetic and environmental factors in alcohol
dependence. “Core Genes” represent the primary genes associated with alcohol consumption, while
“Core Genes Main Variation” displays the main genome variants of ADH1B and ALDH2 genes and
their allele distribution in different populations. “Peripheral Genes” and “Peripheral Genes Variation”
indicate the multitude of genes that influence this complex trait, albeit with a lesser impact. Black
arrows indicate interactions between different elements or factors. The green arrows point to factors
associated with a decreased risk of alcohol dependence. The red arrows highlight factors that increase
the risk of alcohol dependence.

Prominent among the robust core genes associated with behaviour are those involved
in hormone regulation. A compelling illustration of such genes is those related to stress. The
FKBP5 gene is primarily associated with regulating the stress response and is important in
releasing stress hormones, including cortisol. Its variants are highly associated with stress
response, for example, the rs1360780 variant in which the G allele has been linked with
impaired regulation of the stress hormone cortisol and, due to this, has been associated with
increased vulnerability to stress-related disorders [34,35]. The CRHR1 gene, which encodes
the corticotropin-releasing hormone receptor 1, is associated with increased reaction to
stress. A good example of this gene is the T allele of rs110402, which causes increased
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sensitivity to stress hormone signalling [34,36]. The NR3C1 gene encodes the glucocorticoid
receptor, which is involved in binding and responding to glucocorticoid hormones. Its
variant, rs6195, plays a role in regulating and responding to cortisol. The C allele of rs6195
has been associated with increased stress sensitivity and a higher risk for stress-related
disorders [34,37].

Many genes are intricately linked to their functioning within the neurotransmitters
domain, making them highly relevant as core determinants of behaviour traits. The
CHRNA5/CHRNA3/CHRNB4 gene cluster could represent the core genes for nicotine
abuse and addiction. These genes encode the nicotinic acetylcholine receptor subunits,
which are involved in synaptic neurotransmission. Genome variants such as rs16969968 in
CHRNA5 have been strongly associated with increased nicotine dependence and with a
higher risk of developing a nicotine addiction. As well as rs578776, rs1051730 variants in
the CHRNA3 gene are likewise associated with developing nicotine addiction [38].

Another example of core genes related to neurotransmitters is those related to impul-
sivity. The COMT gene is involved in the metabolism of catecholamine neurotransmitters,
such as dopamine, epinephrine, and norepinephrine. Its variant rs4680 is known to be asso-
ciated with impulsive behaviour [39,40]. The rs25531 variant of the SLC6A4 gene, which
encodes the serotonin transporter protein, is also associated with impulsivity [41]. This
particular gene, and even the same rs25531 variant, is also associated with other behaviour
traits such as anxiety, depression, and suicide [42,43]. These and other examples of the core
genes and their variants associated with different behaviour traits can be found in Table 1.
The behaviour traits included in Table 1 were selected based on their relevance to the topic
of this review and the robustness of the scientific evidence linking them to specific core
genes and genomic variants.

Table 1. Core genes and variants associated with behaviour traits.

Behaviour Trait Core Genes Genome Variants References

Alcohol Use ADH1B, ADH1C, ALDH2 rs1229984, rs698, rs671 [30,31,44]

Smoking CHRNA5, CHRNA3, CHRNB4 rs16969968, rs1051730 [38,45–47]

Drug Use DRD2, OPRM1, ABCB1 rs1800497, rs1799971, rs1045642 [48–50]

Stress FKBP5, CRHR1, NR3C1 rs1360780, rs110402, rs6195 [51–53]

Anxiety SLC6A4, HTR1A, HTR2A rs6295, rs6311, rs6313 [54–56]

Fearfulness SLC6A4, COMT, MAOA rs4680, rs6323, rs6354 [57–59]

Impulsivity DRD4, SLC6A4, COMT, HTR2A rs1800955, rs25531, rs4680 [40,41,60]

Lack of Sleep ABCC9, PER2, PER3, CRY1 rs11046209, rs934945, rs228697 [61–63]

Depression SLC6A4, BDNF, HTR2A rs25531, rs6265, rs6313 [42,64,65]

8. Core Genes: Ethnic and Gender Perspectives

The primary emphasis of this review is to simplify and standardise the prediction of
complex behavioural traits considering genetic factors. To achieve this, priority is given to
the variation observed in the core genes. The core genes are characterised by their direct
biological pathways and the coding genes responsible for producing specific products. Any
variation within these genes directly influences the associated biological processes and is
likely to have a universal effect across all individuals [66]. By focusing solely on the core
genes, we can minimise the scope of factors under consideration, thereby streamlining
our analysis and creating a more uniform approach to predicting behaviour traits from
genetic factors. However, even in the case of the core genes, it is important to consider
additional factors, such as gender or ethnicity, which are considered to have a high impact
on behaviour manifestation.

Considering the gender factor, gender-based genetic variation is a notable aspect. Sex
chromosomes (X and Y) hold some genes that are not present in the opposite gender, leading
to sex-specific genetic effects. For instance, the monoamine oxidase A (MAOA) gene located
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on the X chromosome is known to influence behavioural traits such as aggression and
impulsivity, impacting males and females differently. Namely, greater risky behaviour is
found in males [67]. Gender differences in hormone levels can also affect the expression and
functioning of core genes, thus affecting behaviour. For instance, the stress response, which
is influenced by variations in the FKBP5, CRHR1, and NR3C1 genes, can vary between
males and females due to the differences in the regulation of cortisol, a hormone that
plays a key role in the stress response [68,69]. Variants of the COMT gene, involved in
the metabolism of catecholamine neurotransmitters, have been implicated in impulsivity.
However, it has been suggested that the impact of COMT variants on impulsivity may
differ between genders, warranting further investigation into gender-specific effects [70].
However, it is important to note that gender differences in trait manifestation do not change
the underlying role of the core genes involved in particular traits.

In terms of ethnicity, given that core genes have a direct influence on corresponding
biological processes, the effect of a specific genomic variation within these genes tends to
be universal, irrespective of an individual’s ethnic group. While the impact of a specific
variant remains constant across various ethnic groups, the frequency of these variants can
differ significantly among different populations. Genetic diversity and unique evolutionary
histories among different populations can contribute to substantial variation in the fre-
quency of these variants without altering the effect of the specific variant. A clear example
of this is the distinct frequencies of previously described variants associated with alcohol
dependence, such as rs1229984 in the ADH1B gene and rs671 in the ALDH2 gene, observed
in East Asia compared to other populations worldwide [30,31].

9. Conclusions

The omnigenic model and the selection of core genes with clear biological pathways
present a promising approach to studying complex traits. Integrating core genes with other
behaviour datasets presents a more precise approach that avoids genome variation with
very small effect sizes. This approach could help to reduce statistical noise and the wide
range of statistical methodologies used, thereby paving the way for the standardisation of
complex trait analysis.

However, it is crucial to note that numerous studies have demonstrated that the
majority of the genetic variation associated with complex traits is located in non-coding
DNA regions and genes, which are not considered core genes. This may be attributed to the
fact that the associated variants are proximal to core genes, and genes have a direct pathway
with the main core genes [71–73]. For example, one of the strongest associations between
impulsivity and genetic variants is in the CADM2 gene, which mediates synaptic plasticity.
The gene is co-expressed with HTR2A and GABRA2, both of which are also implicated
in impulsivity. All three genes are involved in neurological processes, with HTR2A and
GABRA2 playing direct roles in neurotransmitter signalling pathways. Specifically, HTR2A
is a key component in the serotonin signalling pathway, while GABRA2 is integral to the γ-
aminobutyric acid (GABA) signalling pathway. This co-expression and shared involvement
in neurotransmission suggest potential synergistic roles in the modulation of impulsive
behaviours [74–76].

Direct pathogenic variants in core genes predisposing complex traits are relatively
rare, as important protein-coding sequences tend to be conservative. However, when
such variants occur in these genes, they can have a significant effect on trait manifesta-
tion. For instance, the hormone vasopressin gene AVPR1A variants are associated with
autism spectrum disorder [77]. In such cases, identifying core genes and genetic variants
can contribute to understanding different conditions and disorders as well as guide the
development of personalised interventions and treatments. Because of the drastic inter-
ference in traits, the majority of the genetic variation associated with particular traits is
not found directly within the core gene but rather in genes (and their variants) that are
interlinked with it. Publications on the omnigenic model have demonstrated that variants
identified in GWAS studies with the highest p values tend to be located in the proximity of
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the core gene rather than directly within it. This suggests the presence of intricate genetic
networks and interactions surrounding the core gene, contributing to the complexity of
trait manifestation [66].

Looking forward, it is worth considering the possibility that the focus should shift
from genome-wide association studies (GWAS) and genome-wide genotyping techniques
towards studies of the whole exome or genome. This could provide a more comprehensive
understanding of the genetic underpinnings of complex traits.
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