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ABSTRACT

Context. To take full advantage of upcoming large-scale spectroscopic surveys, it will be necessary to parameterize millions of stellar
spectra in an efficient way. Machine learning methods, especially convolutional neural networks (CNNs), will be among the main
tools geared at achieving this task.
Aims. We aim to prepare the groundwork for machine learning techniques for the next generation of spectroscopic surveys, such as
4MOST and WEAVE. Our goal is to show that CNNs can predict accurate stellar labels from relevant spectral features in a physically
meaningful way. The predicted labels can be used to investigate properties of the Milky Way galaxy.
Methods. We built a neural network and trained it on GIRAFFE spectra with their associated stellar labels from the sixth internal
Gaia-ESO data release. Our network architecture contains several convolutional layers that allow the network to identify absorption
features in the input spectra. The internal uncertainty was estimated from multiple network models. We used the t-distributed stochas-
tic neighbor embedding tool to remove bad spectra from our training sample.
Results. Our neural network is able to predict the atmospheric parameters Teff and log(g) as well as the chemical abundances [Mg/Fe],
[Al/Fe], and [Fe/H] for 36 904 stellar spectra. The training precision is 37 K for Teff , 0.06 dex for log(g), 0.05 dex for [Mg/Fe], 0.08 dex
for [Al/Fe], and 0.04 dex for [Fe/H]. Network gradients reveal that the network is inferring the labels in a physically meaningful way
from spectral features. We validated our methodology using benchmark stars and recovered the properties of different stellar popula-
tions in the Milky Way galaxy.
Conclusions. Such a study provides very good insights into the application of machine learning for the analysis of large-scale spec-
troscopic surveys, such as WEAVE and 4MOST Milky Way disk and bulge low- and high-resolution (4MIDABLE-LR and -HR). The
community will have to put substantial efforts into building proactive training sets for machine learning methods to minimize any
possible systematics.
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1. Introduction

The use of machine learning in the exploration of big data sets
in astronomy was predicted over three decades ago (Rosenthal
1988), however, the high computational costs of this method
? Based on observations made with the ESO/VLT, at Paranal

Observatory, under program 188.B-3002 (The Gaia-ESO Public Spec-
troscopic Survey, PIs G. Gilmore and S. Randich). Also based on ob-
servations under programs 171.0237 and 073.0234.

have delayed its advancement. Some of the first applications
of neural networks, a subfield of machine learning, include
the automatic detection of sources in astronomical images
(SExtractor, Bertin & Arnouts 1996), the morphological clas-
sification of galaxies (Lahav et al. 1996), and the classifica-
tion of stellar spectra (Bailer-Jones 1997). In recent years, the
increasing power of modern computer systems and the possi-
bilities of cloud computing have led to a growing popularity of
machine learning methods. Powerful open-source libraries such
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as TensorFlow (Abadi et al. 2015) and PyTorch (Paszke et al.
2019) for Python programming offer easy-to-use frameworks for
building and training various types of neural networks.

Spectroscopic surveys provide insights into the evolution
of individual stars, of large-scale structures such as globular
clusters, and of the Milky Way galaxy as a whole. Upcom-
ing projects, for example, the William Herschel Telescope
Enhanced Area Velocity Explorer (WEAVE, Dalton et al. 2018)
and the 4-m Multi-Object Spectroscopic Telescope (4MOST,
de Jong et al. 2019) will carry out observations of millions of
stars. Efficient automatic tools will be needed to analyze the
large number of spectra that such surveys will deliver.

To determine the atmospheric parameters and chemical com-
position of stars, classical spectroscopic methods either measure
equivalent widths of absorption lines or compare observed spec-
tra to synthetic spectra. These synthetic spectra can be gener-
ated on the fly or make up part of a precomputed spectral grid.
Jofré et al. (2019) provide an overview over classical spectral
analysis methods in the context of large spectroscopic surveys.

Convolutional neural networks (CNNs) have recently been
used to simultaneously infer multiple stellar labels (i.e., atmo-
spheric parameters and chemical abundances) from stellar spec-
tra. Every CNN contains convolutional layers that enable the
network to identify extended features in the input data. In stellar
spectra these features are absorption lines and continuum points.
In 2D images, such features could be eyes in a face or star clus-
ters in a spiral galaxy (Bialopetravičius & Narbutis 2020). Neu-
ral network methods are purely data-driven and therefore require
no input of any physical laws or models. Instead, during a train-
ing phase, the network learns to associate the strength of spec-
tral features with the values of the stellar labels. This requires
a training set of spectra with pre-determined labels, from which
the network can learn. Training sets for spectral analysis typ-
ically contain several thousand stellar spectra with high qual-
ity labels. Current spectral surveys, which provide ∼105 spectra
with labels, are an ideal testing ground for the CNN approach to
spectral parameterization.

The main benefit of using machine learning for spectra
parameterization is computation speed. While classical methods
typically take several minutes to determine parameters and abun-
dances from a single spectrum, a trained CNN can parameterize
several 104 spectra in the same amount of time. This speed is
crucial to fully utilize the capabilities of the upcoming spectra
surveys. For instance, 4MOST will observe ≈25 000 stars per
night, with the goal of measuring up to 15 abundances per star.
Machine learning will offer a way to manage such large amounts
of data every day.

Examples of stellar parameterization using CNNs can be
found in several recent studies. Fabbro et al. (2018) have devel-
oped StarNet, a CNN that is able to infer the stellar atmospheric
parameters directly from observed spectra in the APO Galac-
tic Evolution Experiment (APOGEE, Majewski et al. 2017). A
grid of synthetic spectra was used to train and test StarNet.
Purely observational data from APOGEE DR14 were used by
Leung & Bovy (2019) to train their astroNN convolutional net-
work. To mimic the methods of standard spectroscopic analysis,
astroNN is designed to use the whole spectrum when predicting
atmospheric parameters but is limited to individual spectral fea-
tures for the prediction of chemical abundances. Guiglion et al.
(2020) trained their CNN on medium-resolution stellar spectra
from the RAdial Velocity Experiment (RAVE, Steinmetz et al.
2020) together with stellar labels that were derived from high-
resolution APOGEE DR16 spectra. They also added absolute
magnitudes and extinction corrections for their sample stars as

inputs for the network. This information allowed their CNN to
put additional constraints on its predictions of the effective tem-
perature and surface gravity.

In this work, we propose to test a CNN approach in the
context of the Gaia-ESO survey (GES, Gilmore et al. 2012;
Randich & Gilmore 2013). We use GIRAFFE spectra with
labels from the sixth internal data release. The GES survey is
designed to complement the astrometric data from the Gaia
space observatory (Gaia Collaboration 2016). The goal of the
present project is to prepare the groundwork for machine learn-
ing techniques for the next generation of spectroscopic sur-
veys, such as 4MOST and WEAVE. This paper goes together
with Nepal et al. (2023) who focus on the chemical evolution of
lithium with CNNs from GES GIRAFFE HR15N spectra.

This paper is organized as follows: In Sect. 2, we present the
data that we used to train and test our CNN. Section 3 describes
the architecture of our network and explains the details of the
training process. The results of the training and the network pre-
dictions for the observed set are presented in Sect. 4. In Sect. 5,
we validate our results by investigating the CNN predictions for
a number of benchmark stars. For the further validation, we use
our results to recover several properties of the Milky Way galaxy.

2. Data

2.1. Data preparation

Our data set consists of the spectra, their associated stellar
parameters, and abundances from the GES iDR6 data set. In the
Gaia-ESO survey, atmospheric parameters and chemical abun-
dances are determined by multiple nodes that apply different
codes and methodologies to the same spectra. A summary of
the determination of atmospheric parameters from the GIRAFFE
spectra is given in Recio-Blanco et al. (2014). Further informa-
tion about the determination of chemical abundances can be
found in Mikolaitis et al. (2014). The spectra were taken with the
GIRAFFE spectrograph that covers the visible wavelength range
of 370−900 nm. Several setups divide the whole GIRAFFE spec-
tral range into smaller parts. For this study, we chose the HR10
(533.9−561.9 nm, R = 19 800) and HR21 (848.4−900.1 nm,
R = 16 200) setups because they cover important Mg and Al
absorption features.

For our analysis, we used normalized 1D spectra from the
GES archive. We removed bad pixels and cosmic ray spikes
where necessary. To do so, we first calculated the median of
all spectrum flux values. We then identified cosmic ray spikes
by finding all pixels with flux values that exceeded this median
flux by five sigma. The spikes were removed by setting their
flux value to be equal to the spectrum median flux. Pixels with
zero flux values were also set to the median flux. Afterward, we
corrected the spectra for redshift based on the radial velocity
provided by GES. To reduce the number of pixels per spectrum
and therefore the computational cost of the further analysis, we
rebinned the spectra to larger wavelength intervals per pixel. The
HR10 spectra were resampled to 0.06 Å per pixel and the HR21
spectra to 0.1 Å per pixel. The original bin size for both setups
is 0.05 Å per pixel. After rebinning, the spectra were truncated
at the ends to ensure that all spectra from one setup share the
exactly same wavelength range. Eventually, we combined the
HR10 and HR21 spectra to create one input spectrum per star for
our network. The combined spectra are composed of 8669 pixels
each and cover the wavelength ranges from 5350−5600 Å and
8480−8930 Å.
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Fig. 1. t-SNE similarity map of our sample GIRAFFE spectra. The three panels show the same map, each color-coded with a different physical
parameter. While the relative distance of points in the map indicate the degree of similarity of the corresponding spectra, their X and Y coordinates
themselves have no physical meaning. The map in this figure has been computed with perplexity 30. For our data, perplexity values between 20
and 50 produce qualitatively identical results.

To build our training set, we performed several quality
checks to ensure that our network would be trained on high-
quality data. Spectra of a signal-to-noise ratio (S/N)< 30 and
large errors in atmospheric parameters and elemental abun-
dances (eTeff > 200 K, elog(g)> 0.3 dex, eA(element)> 0.2 dex)
were discarded, as well as spectra that were marked with the
TECH or PECULI flags or have rotation velocities >20 km s−1.
We also removed spectra that showed a difference larger than
0.2 dex between the provided metallicity [Fe/H] (as a stellar
atmospheric parameter) and the Fe i elemental abundance. Sim-
ilar to Guiglion et al. (2020), we tested the inclusion of lower
S/N spectra into our training set. This increases the number
of training spectra considerably, but the training performance
gets worse and the overall prediction quality of our network
decreases. While overly noisy spectra worsen the performance
of our network, a moderate degree of noise is beneficial because
it plays an important role in the regularization of the training
process (Bishop 1995, particularly Sect. 9.3 therein). To exclude
very noisy spectra, while still utilizing the regulatory effect of
noise in the training data, we set the lower S/N limit for our
training set to 30.

We further examined the remaining spectra to find possible
outliers and incorrect measurements. To investigate the similar-
ity between all the spectra, a t-distributed stochastic neighbor
embedding (t-SNE) analysis was employed. The t-SNE analysis
is a popular technique to visualize the internal relationships and
similarities in high dimensional data sets by giving each data
point a location in a two- or three-dimensional similarity map
(van der Maaten & Hinton 2008). In our case, the data points
are the individual spectra and the data set is n-dimensional,
where n is the number of pixels in each spectrum. Figure 1
shows a two-dimensional similarity map for our combined spec-
tra, obtained with the sklearn.manifold library for Python pro-
gramming (Pedregosa et al. 2011). Every point in the map cor-
responds to one spectrum, and the distance between the indi-
vidual points is determined by the similarity of the shapes of
the individual spectra. There are two main branches in the map
with several sub-structures. The two branches represent spectra
from stars in two distinct populations: Main sequence stars with
surface gravity log(g) & 3.5 and stars in the giant branch with
lower log(g) values. The different physical properties in stellar
atmospheres are reflected in the shapes of their spectra, which
in turn determine their locations on the t-SNE map. The connec-
tion between physical parameters and spectral features is what
our CNN learns during the training phase. It is worth to men-

tion that t-SNE on its own has also been used to classify spectra:
Traven et al. (2017), for example, used t-SNE as a tool to sep-
arate GALAH spectra into different, physically distinct classes;
Matijevič et al. (2017) used t-SNE to search for metal-poor stars
in the RAVE survey.

We see several outlier-spectra in our Fig. 1. Upon inspec-
tion, these spectra show signs of emission lines, have distorted
absorption features or have suffered from failed cosmic removal
or wrong normalization. We excluded these outliers from the fur-
ther analysis. For the analysis of future surveys such as WEAVE
and 4MIDABLE-HR surveys, including emission line stars will
be a necessity, as we expect many young stars to be observed. We
note that the initialization of our t-SNE application includes an
element of randomness, which results in slightly different shapes
of the map after every run. The map will also look different for
different sets of spectra. However, in all our t-SNE runs, the out-
lier spectra were clearly identifiable.

Every training spectrum has a set of associated stellar labels.
In our case these are the two atmospheric parameters Teff

and log(g) and the chemical abundances [Mg/Fe], [Al/Fe], and
[Fe/H]. In the GES iDR6 data set the elemental abundances are
given as absolute abundance values A(Element). We calculated
[Fe/H] and [Element/Fe] as follows: [Fe/H] = A(Fe)star−A(Fe)�
and [Element/Fe] = A(Element)star − A(Element)� − [Fe/H].
The absolute solar abundances were taken from Grevesse et al.
(2007), consistently with GES spectral analysis strategy. The
decision to use these relative abundances instead of abso-
lute abundances for the training of our network is justified in
Sect. 4.4.

Magnesium and aluminum abundances are known to be
sensitive to non-local thermodynamic equilibrium (NLTE)
effects (Bergemann et al. 2017; Amarsi et al. 2020; Lind et al.
2022). These effects were not considered by GES during the
parametrization of GIRAFFE spectra or during the homogeniza-
tion (Hourihane et al., in prep.). For dwarfs, NLTE corrections
are well below 0.05 dex for both Al and Mg, whereas for giants,
they are in the range of ∼0.05−0.15 (Amarsi et al. 2020). Strong
NLTE effects may then have some effects on the training labels,
but quantifying such an effect is beyond the scope of the present
paper.

After applying all the constraints mentioned above, we
were left with 14 634 combined spectra with associated high-
quality atmospheric parameters and elemental abundances. As
explained in Sect. 3.2.1, these 14 634 spectra will be randomly
split into a training set and a test set for the training of our CNN.
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Fig. 2. Kiel diagram containing the 14 634 stars that will be used to train
and test our neural network. The color-coding indicates the metallicity
gradient in the giant branch stars.

2.2. Parameter space of input labels

To assess the parameter space of our training set input labels,
we show the Kiel diagram and abundance plots in Figs. 2 and 3.
Effective temperatures range from Teff = 4000−6987 K, the sur-
face gravity log(g) is between 1.08 and 4.87 dex and [Fe/H]
spans a range of ∼2 dex, from −1.53 to 0.72 dex. The color-
coding in Fig. 2 reveals the metallicity sequence in the giant-
branch of the Kiel diagram.

Figure 3 shows density maps of the [Mg/Fe] and [Al/Fe]
distribution of our training set. The [Mg/Fe] values range from
−0.25 to 0.80 dex, [Al/Fe] values have a large spread of almost
2 dex, from −0.95 to 1.00 dex. The Mg distribution reveals two
distinct regions of enhanced density, separated by a narrow
region of lower density. These two regions reflect the separa-
tion of Milky Way stars into a thin-disk (low [Mg/Fe]) and
a thick-disk (enhanced [Mg/Fe]) population. Magnesium abun-
dances are the best probe for this chemical separation between
the thin- and thick-disk of our Galaxy (e.g. Fuhrmann 1998;
Gratton et al. 2000). As expected, we did not observe this sepa-
ration in the [Al/Fe] plot. Our training set is dominated by nearby
stars, due to the S/N cut and other quality criteria that we applied
to the entire GES iDR6 data set. Therefore, our data does not
cover some of the Milky Way properties that become apparent
when investigating a larger volume of our galaxy. Queiroz et al.
(2020), for example, found two detached [Al/Fe] sequences for
stars close to the galactic center (RGal < 2 kpc) in their sam-
ple of APOGEE stars. At low [Fe/H], several groups of stars
can be observed in both the Mg and Al plots. The stars in
these patches belong to different globular clusters. In the [Al/Fe]
plot, the scatter of Al abundances in the globular clusters is
considerably higher than the scatter of Mg at equal metallici-
ties. This large spread of Al abundances, especially in globu-
lar clusters at low metallicities, has already been observed in
earlier GES releases (Fig. 4 in Pancino et al. 2017a) and indi-
cates the existence of multiple stellar populations within the
clusters.

2.3. Observed sets

In addition to the training and test sets, we constructed an
“observed” set. This set is used to test the performance of our
CNN on spectra that were not used in the training process. In this

Fig. 3. Density plots of [Mg/Fe] vs. [Fe/H] (top panel) and [Al/Fe] vs.
[Fe/H] (bottom panel) for the 14 696 stars in the training and test sets.
Brighter colors indicate a higher density of data points (linear color
scale).

way, we can mimic the application of our CNN method to newly
observed spectra, which have not yet been analyzed spectroscop-
ically. The full observed set therefore contains spectra without
any applied quality constraints and spans wider S/N and label
ranges than the training set. As we show in Sect. 4, our network
is not able to accurately label spectra that are outside the training
set limits. Because of this, we had to find a way to identify spec-
tra that are similar to our training spectra, as the labels of these
spectra are likely to fall into the training set limits. We already
demonstrated in Sect. 2.1 that t-SNE is able to show the simi-
larity between spectra. We therefore employed t-SNE to identify
those spectra in the observed set whose labels are likely to be
within the training set limits. A depiction of this method can be
seen in Fig. 4. In the left panel, we show a t-SNE map that was
calculated for all spectra in our data set. After constructing the
t-SNE projection, we identified the training spectra in the map.
The middle panel shows those spectra in the observed set that
cover the same area in the t-SNE map as the training spectra in
the left panel. This was done by limiting the distance between
training set data points and observed set data points in the t-SNE
map. The observed spectra that are close to the training spectra in
the map are similar to the training spectra. We call this set in the
middle panel our “inner” observed set. Finally, the right panel
shows those spectra that are not similar to the training spectra,
and their distance from the training spectra in the map exceeds
our chosen maximum distance. This set of spectra is our “outer”
observed set, and we use it to test our network on spectra which
are unlike the spectra in the training set. Because the labels for
the observed set have already been determined by GES, we can
quantify the effectivity of this t-SNE approach: About 20% of all
observed spectra have GES labels outside the training set limits.
The situation improves for our inner observed set, with 12% of
its spectra labels falling outside the training limits. When we
additionally require the S/N of the inner set to be ≥30 (to match

A46, page 4 of 17



Ambrosch, M., et al.: A&A 672, A46 (2023)

the S/N range of the training set), less than 10% of these high
S/N inner set spectra have labels exceeding the training limits.
In a situation where the labels of an observed spectrum are not
yet known, we therefore recommend validating if the spectrum
is similar to the training set spectra.

Our full observed set contains 22 270 spectra, with a mini-
mum S/N of 10 and including spectra with different shapes than
those in the training set. The outer observed set contains 3877
spectra. The inner observed set then consists of the remaining
18 393 spectra which are covering the same area in the t-SNE
map as the training spectra. Of the inner observed spectra, 4916
have S/N ≥ 30.

3. Network architecture and training

A CNN acts as a function with many free parameters. In our
case, this function takes stellar spectra as an input and outputs
the associated atmospheric parameters and abundances. The net-
work architecture then describes the shape of this neural net-
work function. The goal of the training process is to find the
optimal values of the free CNN parameters to accurately param-
eterize the input stellar spectra. In the following subsections, we
describe how a neural network can “learn” how to accurately
parameterize stellar spectra. Our CNN was built and trained in
a Python programming environment with the open-source deep-
learning library Keras (Chollet et al. 2015) using the TensorFlow
back-end (Abadi et al. 2015). The following subsections give an
overview of the key concepts of network architecture and train-
ing that form the basis of this study. There are numerous text-
book sources, articles, and online resources that provide more
detailed information, both from a theoretical and practical point
of view, such as Roberts et al. (2022), Giancarlo & Md. Rezaul
(2018), and Alzubaidi et al. (2021).

3.1. Network architecture

The different parts of a neural network architecture, namely, the
“layers”, serve different purposes in the process of parameter-
izing stellar spectra. Our neural network consists of two main
types of layers: Convolution layers that identify features and
patterns in the input spectra and dense layers, which associate
those spectral features to the output stellar parameters. Finding
the optimal network architecture for a given task requires some
experimentation. We built and tested several networks with dif-
ferent hyper-parameters (number and size of the convolution and
dense layers, type of weight initialization, dropout rate, etc.). We
did this until we arrived at an architecture that provided the best
trade-off between computation time, reached precision, and con-
vergence for our sample spectra. A visualization of the network
architecture, which produced the lowest final loss (see Sect. 3.2),
can be seen in Fig. 5. We adopted this architecture for the rest of
the current study.

3.1.1. Convolution layers

To identify the spectral features that are correlated with the stel-
lar labels, our CNN is composed of convolution layers. These
layers convolve the input spectra with a number of 1D filters. The
filters move across the input spectra and produce feature maps,
which are the results of the spectrum-filter convolutions. While
the length and number of filters is fixed, the purpose of each filter
is learned during the training phase. The neural network learns
how to adjust the filter values to achieve the best label predic-

tions. Multiple convolution layers with multiple filters each can
be put in sequence in a neural network architecture. Filters in
one convolution layer then extract features in the feature maps
that were produced by the previous convolution layer. Our CNN
has three convolution layers with an increasing number of filters
in each layer.

3.1.2. Dense layers

In order to build a high-dimensional complex function between
the feature maps from the last convolution layer and the labels,
so-called dense layers are necessary. Each dense layer consists of
a fixed number of artificial neurons. An artificial neuron receives
inputs from a previous layer, multiplies every input with its asso-
ciated weight and then passes the result to the neurons of the next
dense layer. In this way, every neuron in one dense layer is con-
nected to all neurons of the previous layer and to all neurons of
the following layer (this is the reason why dense layers are also
called “fully connected” layers). The last layer in a CNN is a
dense layer where the number of neurons is equal to the number
of labels that the network is designed to predict (in our case 5).

3.1.3. Activation function

The relations between spectral features and physical stellar
labels are non-linear. To reflect this non-linearity in our network
training process, activation functions are used. Activation func-
tions transform the output of the convolution filters and the artifi-
cial neurons before they are passed on to the next layer. In some
recent machine learning applications, the “Leaky ReLU” acti-
vation function is most frequently used. It leaves positive and
zero output values unchanged, while multiplying negative out-
puts with a small positive value – or, as per the mathematical
notation (Maas et al. 2013):

f (x) =

{
a · x if x < 0
x otherwise,

where x is a filter or neuron output value before it is passed to
the next layer. For our network, we adopted a Leaky ReLU acti-
vation function with a = 0.3 for all layers.

3.1.4. Max-pooling and dropout

Overfitting occurs when the network is very accurate in predict-
ing the labels of the training set, but shows a poor performance
when predicting labels for the test set or an external observed
set. In this case, the network is not generalizing well for inputs
outside the training data. This is often the case when the network
architecture is complex and the number of weights and biases is
too large. In this context, max-pooling and dropout are popu-
lar regularization devices used to prevent overfitting during the
training of a CNN.

Max-pooling helps to prevent overfitting by reducing the
complexity of the feature maps that are produced by the convo-
lution layers. This is achieved by keeping only the highest value
within a defined interval in every feature map. In this way, the
less important pixels of a feature map are discarded and the net-
work is able to focus on pixels that show a strong response to the
convolution filters.

Applying dropout after a dense layer randomly deactivates
the output of a fraction of the layer neurons (these neurons are
“dropped”). The weights associated with dropped neurons are
therefore not updated for one training epoch (one passage of the
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Fig. 4. t-SNE maps of different subsets of spectra. Left panel: all spectra in our GIRAFFE data set (dark blue), containing the training set spectra
(green). Extreme outlier spectra have been removed. Middle panel: “inner” observed set, defined as the subset of observed spectra that cover the
same area in the t-SNE map as the training set spectra. Right panel: spectra in the observed set that do not cover the same area in the map as the
training set. This is our “outer” observed set.

entire training set through the network; see Sect. 3.2.2). After
every epoch, all neurons are reactivated and a new collection of
neurons is dropped for the next epoch. As a consequence, the
network architecture changes slightly after every epoch during
the training. This prevents the network from relying too much
on individual parts of the architecture and therefore individual
features in the input spectrum. In this way, the network is forced
to learn from the whole spectrum, which leads to a good gener-
alization for different input spectra.

3.2. Network training

When the network architecture is designed, the values of the
convolution filter cells and the weights and biases in the dense
layers are unknown. During the training phase, these values are
“learned” by the neural network. Training means to repeatedly
pass many spectra with known labels (training set) through the
network and to compare the output of the network to the known
input labels of the training set. At the start of the training phase,
the filter values, weights and biases are initialized randomly.
Therefore, the predictions of the untrained network will differ
strongly from the labels of the input spectra. The difference
between the network predictions for the labels and their known
values from the input is called “loss” and it is calculated with a
loss-function. The loss-function calculates the overall difference
between input and output values across all labels. Therefore, the
loss is a measure of the overall accuracy of the network predic-
tions. An optimization algorithm is used to slightly change the
weights and biases in the network in such a way that, when the
training sample is passed through the network again, the loss will
be slightly smaller than in the first iteration. Over the course of
many iterations of passing the training spectra through the net-
work, calculating the loss and updating the weights and biases
for optimization, the loss steadily decreases and the network pre-
dictions get more precise (Figs. 6 and 7). In the following sub-
sections, we explain in detail the key concepts involved in the
training of our neural network.

3.2.1. Training set and test set

Training relies on many stellar spectra (several thousand) with
their associated stellar labels. In our case, the labels are previ-

ously determined stellar atmospheric parameters and chemical
abundances (see Sect. 2). The available data are split randomly
into a training set that is used to train the network and a test
set. During training, the test set is passed through the network as
often as the training set, but it is not used in the optimization cal-
culations that update the weights and biases. Instead, the test set
is used to monitor the performance of the network on data that it
was not trained on. The loss calculated from the label predictions
for the test set is used to determine when to stop the training: If
the test loss does not increase any more over a specified num-
ber of training iterations, the weights and biases are assumed to
have reached their optimal values for the given network archi-
tecture and the training ends. Comparing the performance of the
network on the training and test sets also helps to determine if
the network is overfitting. We found that assigning 40% of our
available data to the test set yields the best training results for
our application. That means that of our 14 696 spectra, 8817
spectra are assigned to the training set and 5879 to the test set.
Training and test spectra are chosen randomly before the train-
ing and it is assured that their labels cover the same parameter
space.

3.2.2. Epochs and batches

One iteration of passing the entire training set through the net-
work is called an epoch. The number of epochs that are necessary
to train a network to achieve good results depends on the model
architecture.

In one epoch, the training data that is passed through the
network is divided into equally sized batches. For example,
for a training set of 6400 spectra and a batch size of 64, 100
batches pass through the network in one epoch. After every
batch that passes through the network, the weights and biases
are updated based on the current loss-function in an attempt to
decrease the loss after the next batch. This means that in the
above example the weights and biases are updated 100 times
before the training set has fully passed through the network. This
speeds up the overall training because less computer memory is
required to process the smaller number of spectra for one update.
Using batches can also help to prevent overfitting. The train-
ing spectra are shuffled and assigned to new batches after every
epoch.
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Fig. 5. Architecture of our CNN. The input layer reads in the flux infor-
mation of the stellar spectra. It is followed by three pairs of convolution
and max-pooling layers. The filter outputs from the third convolution
and max-pooling pair are then flattened to serve as inputs for the dense
layers. Three dense layers (with a dropout layer after each) interpret the
spectral features, found by the convolution layers, into output labels.
The outputs from a last dense layer are the values of our five stellar
labels (atmospheric parameters and elemental abundances).

4. Training results

We performed ten training runs, which resulted in ten slightly
different CNN models. The results of the training runs vary
slightly because the weights and biases of the network are ini-
tialized randomly before every run (the network architecture
remains the same). In addition, the assignment of spectra to
batches for the training also happens randomly. The training
and test sets remained unchanged for each of the ten training
runs. We checked the label distributions for both the training and
test set and found that both span the same label ranges and are
equally distributed. They also span the same area in the t-SNE
map in Fig. 4. We therefore do not expect that keeping the train-
ing and test sets constant will add any large uncertainties or train-
ing biases.

On average, one training run lasted for 159 epochs and took
∼45 min to complete1. We removed the two CNN models with
the largest remaining test losses at the end of their training phase.
The remaining eight CNN models were then used to predict the
labels for the spectra in the training, test, and observed sets.

1 On a desktop PC, using only CPU (Intel Core i7-9700 CPU @
3.00 GHz× 8).

The label prediction was very fast: the parameterization of the
∼37 000 spectra in our data set took less than 20 s per CNN
model. The averages of the eight sets of labels are reported here
as our results.

4.1. Training and test sets

In Fig. 8, we show a direct comparison between the input GES
measurements and the CNN predictions for the training and test
sets. There is a good agreement between the GES measurements
and CNN predictions across all labels and for the two sets. Both
the CNN predictions for the training set and test set show the
same offset (if any) and a small dispersion around the 1:1 rela-
tion. This indicates that the network performs well on spec-
tra which it was not directly trained on and does not overfit.
The dispersion around the 1:1 relation is uniform across most
of the value ranges of all five labels. We use the dispersion of
the training set as a measure for the training precision of our
network: The training precision is 37 K for Teff , 0.06 dex for
log(g), 0.05 dex for [Mg/Fe], 0.08 dex for [Al/Fe], and 0.04 dex
for [Fe/H]. However, our CNN does not accurately reproduce the
highest and lowest GES measurements. This is especially appar-
ent in the case of [Al/Fe], where the CNN predictions overesti-
mate the lowest [Al/Fe] measurements by ∼0.5 dex, while the
highest values are underestimated by approximately the same
amount. We explain this behavior by noting that only a few spec-
tra with these extreme measurements were available for the net-
work training. The CNN therefore predicts more moderate labels
for these spectra.

4.2. Observed sets

To evaluate the ability of our network to parameterize new spec-
tra that have not been involved in the training process at all, we
compare the GES input labels to the CNN predictions for three
different observed sets. The definitions of our inner and outer
observed sets are given in Sect. 2.3. The left panel of Fig. 9
shows the GES input to CNN output comparison for the inner
observed set spectra with S/N ≥ 30. In this subset, 90% of the
GES labels lie within the training limits. Most of the remaining
10% of spectra are outside the [Mg/Fe] and [Al/Fe] limits. The
reason for this lies in the way how we find our inner observed
set. This set contains only stars that occupy the same area in
a t-SNE map as the training spectra (Fig. 4). The shape of a
spectrum, and therefore its position in the t-SNE map, depends
strongly on the labels Teff , log(g), and [Fe/H], while changes in
[Al/Fe] only have a small effect on the overall spectrum. The
same is true for [Mg/Fe], but to a lesser extent. This is because
there are more Mg absorption lines than Al lines in our sample
spectra (Heiter et al. 2021). The accuracy of the network predic-
tions stars to degrade with the low S/N inner observed set (mid-
dle panel of Fig. 9). This set contains spectra that are similar to
the training spectra, but have lower S/N (we recall here that the
minimum S/N of the training spectra is 30). The low-resolution
inner set contains more spectra that are outside the training lim-
its. It is clear that our CNN is not able to accurately param-
eterize spectra whose GES labels lie outside the training set
range. The right panel shows the results for the outer observed
set. Network predictions for this set are increasingly inaccu-
rate, even for spectra inside the training set limits. The differ-
ence between GES input and CNN output for the outer observed
set is most prominent in [Al/Fe] and [Fe/H], where extremely
low and high GES labels are not accurately predicted by our
network.
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Fig. 6. Evolution of the prediction-based Kiel diagram during the network training. The far-left panel shows the Kiel diagram based on the GES
input values of Teff and log(g). Succeeding panels show the Kiel diagram based on network predictions after 1, 10, and 150 training epochs. The
color-coding, indicating the [Fe/H] values of each data point, is on the same scale as in Fig. 2.

Fig. 7. Evolution of the training and test losses during the network train-
ing phase. The loss of the test set is closely following the training loss.
The small difference between training and test sets at the end of the
training phase shows that the network is not overfitting.

The comparison of the CNN predictions for the different
observed sets highlight the importance of pre-selecting spectra
that are likely to fall within the training set limits. Network pre-
dictions for spectra that are dissimilar to the training spectra or
have lower S/N are likely to be inaccurate.

4.3. Estimation of internal precision

As described, the label predictions from our eight trained CNN
models vary slightly. This variation can be used to estimate the
internal precision of our methodology. We define the internal
uncertainty of our results as the dispersion between the label pre-
dictions from the eight CNN models. In Fig. 10 we display the
distribution of the internal uncertainty of our five labels relative
to the predicted label values and to the spectra S/N. This analy-
sis is done for both the inner observed set with S/N ≥ 30, the
inner observed set with S/N < 30, and for the outer observed set.
The boxplots show the spread and median of the uncertainties in
S/N bins of 10, for the entire observed set. Where S/N ≥ 30,
the uncertainties are small, with near constant mean and spread
across all bins. Towards lower S/N, both the median uncertainty
and the spread in the bins increase. The mean uncertainties of the
label predictions for the high S/N inner observed set are small:
27 K for Teff , 0.04 for log(g), and 0.03 dex for [Mg/Fe], [Al/Fe],
and [Fe/H] alike. The GES label errors for this set show little to
no dependence on the absolute label value and S/N. Their mean

values are 63 K for Teff , 0.15 for log(g), 0.22 dex for [Mg/Fe],
0.19 dex for [Al/Fe], and 0.18 dex for [Fe/H].

The CNN predictions with large uncertainties for one label
also show large uncertainties for all other labels, while precise
predictions are precise across all five labels. The internal pre-
cision of our Teff and log(g) is highest where the training set
density is highest. For Teff , this is the case between ∼4500 and
5775 K, for log(g) at ∼2.5 and 4.5 dex. Here, the uncertainties
of the predictions for these two labels is lowest. Except for
[Fe/H], the precision of the abundance predictions show no clear
trends with the absolute label value. For [Fe/H], the uncertainty
increases with lower [Fe/H] abundances. This is presumably due
to the smaller number of stars in the metal-poor regime com-
pared to the main bulk of the sample. Also, our CNN struggles
to provide precise predictions due to the weak spectral features
present in this [Fe/H] regime. We find that the uncertainties of
the predictions for all five labels increase as the S/N of the spec-
tra decreases.

The mean prediction uncertainties for the low S/N inner set
and for the outer set are higher than for the high S/N inner
observed set. Precision for these sets also show strong trends
with the absolute label value, especially for Teff and [Fe/H].

We also tested how the uncertainty distributions change
when we change the composition of the training and test sets
for every training run. The resulting label uncertainties are simi-
lar to the uncertainties from our original approach. We leave the
detailed investigation of the effect of varying train and test sets
for a future work.

4.4. Learning from spectral features

The purpose of the convolution layers in our CNN is to find spec-
tral features. These spectral features are then interpreted into the
labels by the dense layers. This approach is also used by clas-
sical spectral classification methods, where individual spectral
features are investigated to derive the stellar parameters. How-
ever, since machine learning is purely data-driven, the predic-
tions of our CNN could merely be the result of our network
learning correlations between labels in our data set. Individual
elemental abundances for example are correlated with the iron
abundance: stars with low iron generally show low abundances
of other elements as well. Inferring stellar parameters from cor-
relations such as these can lead to satisfying results for some
spectra. However, stars with exotic chemical compositions (e.g.,
stars with a non-solar mixture of elements, such as old thick-disk
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Fig. 8. One-to-one comparison of labels from GES iDR6 and the values
predicted by our CNN. The two columns show results for the training
and test sets. Each row contains the results for a different label. In every
panel, the horizontal axis stands for the GES input labels, the vertical
axis represents the labels predicted by our CNN. Brighter colors indi-
cate a higher density of data points (linear color scale). The average
bias and the standard deviation (scatter) of the results around the 1:1
relation are given in every panel. Solid diagonal lines indicate the 1:1
relation.

stars) do not follow such trends and will not be parameterized
well. We therefore want to show that our CNN is indeed able to
identify spectral lines and to associate them with the right labels.

In order to visualize where our CNN is active for a given
label, we computed sensitivity maps using GradientTape from
TensorFlow. In general, CNN established a mapping between
input spectra and output labels in a differentiable way, so CNN
can be optimized using gradient descent. Using automatic differ-
entiation, we can compute the gradients, ∂ Label/∂ λ, that is, the
sensitivity of the CNN to each pixel for every label. A large abso-
lute gradient value at a wavelength bin then means that the net-
work is very sensitive to flux changes in that bin. In Fig. 11, we
show the network gradients for our five labels across the whole
wavelength range of the input spectra. The gradients are scattered
randomly around zero for most of the wavelength range. It is only
at certain wavelength bins that the network is sensitive to flux

changes. Here, the gradients show individual, narrow spikes. This
is especially apparent in the gradients for [Mg/Fe] and [Al/Fe] in
the HR21 part of our input spectra. The [Mg/Fe] gradients show
two clear spikes at 8736.0 and 8806.8 Å. These are the locations
of two Mg i absorption lines. The largest spike in the [Al/Fe] gra-
dients mark the location of the Al i double feature at ∼8773 Å.
We therefore see that our network is able to identify absorption
lines in the input spectra. The negative gradient values at these
wavelengths means that if the flux at the absorption lines are low,
the predicted abundance is high, and vice versa. This reflects the
fact that stronger absorption features in spectra indicate higher
elemental abundances in stellar atmospheres. The CNN label pre-
dictions are therefore directly based on the strength of the relevant
absorption lines in the input spectra.

Our network does not only learn from the correlation
between spectral features and stellar labels in individual stars,
but also from correlations between labels across the whole
training set. These data-wide correlations are of astrophysical
origin, showing for example that stars with high iron abundance
generally also have high abundances of other metals. To inves-
tigate how astrophysical correlations in the input data influence
the network gradients, we trained our CNN with different com-
binations of input labels. We found that the gradients of a com-
bination of Teff , log(g), and one or all of the abundances show no
gradient correlations – meaning the CNN learns mainly from the
spectral features. If the network is trained only with the highly
correlated labels A(Mg), A(Al), and A(Fe), which are absolute
abundances, the gradients for the three labels are almost iden-
tical (Fig. 12). In this case the CNN is still able to identify the
locations of the Mg, Al and Fe absorption lines, but the network
predictions for one element is also very sensitive to absorption
lines of the other two elements. In addition, the quality of the
CNN predictions starts to degrade, leading to larger differences
between GES input labels and CNN predictions. This is because
the network relied too much on the label correlations within the
training set instead of the connection between spectral features
and labels of individual spectra. For future surveys, we there-
fore recommend to carefully inspect the training data for strong
correlations because they can influence the CNN performance.

Further investigation of the gradient peaks gives interesting
insights into the behavior of our CNN. Some spectral lines influ-
ence the network predictions for only one of the labels. An exam-
ple in the HR10 setup is a Cr i line at ∼5410 Å, that corresponds
to a peak in the gradient for Teff . Other lines have an effect on
multiple, uncorrelated labels. For deriving Teff and log(g), our
CNN is sensitive to the Ni i line in the red end of the HR10 setup.
While this line coincides with the strongest peak in the log(g)
gradient, only a minor peak is present in the Teff gradient. A Fe i
line at ∼8805 Å is also important for both the Teff and log(g)
predictions, but not for the [Fe/H], likely due to its blend with a
Mg line. The infrared calcium triplet (the three most prominent
absorption lines in the HR21 setup) does not have a significant
influence on the network predictions for any of the labels, but
the Ca ii line beyond 8900 Å causes a very strong response of
the Teff and [Fe/H] gradients. A deeper investigation of the CNN
gradients could be done to search for complementary spectral
features that could be used by standard spectroscopic pipelines,
but this is beyond the scope of the present paper.

5. Validation of results

In this section, we validate our results in three ways. First,
we compare our CNN results to the GES labels for a set of
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Fig. 9. One-to-one comparison of labels from GES iDR6 and the values predicted by our CNN. The three columns show results for the inner
observed set in two different S/N ranges, and for the outer observed set. Each row contains the results for a different label. In every panel, the
horizontal axis stands for the GES input labels, the vertical axis represents the labels predicted by our CNN. Brighter colors indicate a higher
density of data points (linear color scale). The average bias and the standard deviation (scatter) of the results around the 1:1 relation are given in
every panel. Solid diagonal lines indicate the 1:1 relation. Shaded areas indicate GES label values that are outside the training set limits.

benchmark stars. Then we compare our log(g) predictions to
CoRoT log(g) values that were derived using asteroseismology.
In this way, we can validate, both with an internal and an exter-
nal data set, the assumption that our CNN can accurately param-
eterize individual spectra. Finally, we investigate the label pre-
dictions for spectra from stars in different stellar populations to
confirm that our results recover important Milky Way proper-
ties. Our validation covers the results from our whole sample of
spectra, combining training, validation, and observed sets.

5.1. Benchmark stars

The GES iDR6 data set contains a number of benchmark stars with
high quality spectra and precise stellar labels (Heiter et al. 2015).

This benchmark set covers stars in different evolutionary stages
with a wide range of stellar parameters and abundances suited for
the verification and calibration of large data sets (Pancino et al.
2017b). Our data set contains 25 benchmark stars, including the
Sun (see Fig. 13). As for the rest of our data set, the labels for
the benchmark stars were determined spectroscopically by GES.
We note that none of the benchmark stars are present in the train-
ing or test sample. Five of the benchmark stars are not part of the
inner observed set, meaning that their spectra are different from
the training set spectra. Four of them have the lowest [Fe/H] of
all benchmark stars, while the fifth is the benchmark star with
the highest [Fe/H] in our data set. The CNN predictions for these
five stars do not match the GES input values well. The CNN pre-
dictions of the remaining 20 benchmark stars, which are part of
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Fig. 10. Internal precision of our CNN results for the inner observed set with S/N ≥ 30 (light blue), with S/N < 30 (dark blue) and the outer
observed set (red). The left panels show the internal precision relative to the absolute CNN label values, the right panels show the precision relative
to the spectra S/N. The boxplots in the right panels show the median and spread of the uncertainties of the whole observed set, in S/N bins of width
10, starting at S/N = 10.

the inner observed set, agree well with the GES values across all
five labels. The largest differences occur for stars on the edges
of the parameter space, where the network predicts more mod-
erate values compared to the extreme GES values. An example
is HD 49933, the benchmark star with the highest Teff , for which
our network predicts ∼350 K less than what is reported by GES.
This star remains one of the hottest in our benchmark set, even
with this reduction in Teff . Despite the large difference in one label,
the CNN predictions for the other labels of HD 49933 agree well
with the GES measurements. The label-specific bias and scatter
between GES and CNN labels for the benchmark stars in the inner
observed set is comparable to the bias and scatter that we found
for the training and test sets in Fig. 8.

The CNN predicts similar label values for repeat spectra of
our benchmark stars, often predicting identical labels for multi-
ple repeats. The dispersions between repeated label predictions

can be interpreted as the uncertainties of the CNN results. These
CNN uncertainties are within the GES label uncertainties for the
benchmark stars.

We conclude that our CNN is able to accurately pre-
dict multiple labels of individual stars, as long as their spec-
tra are similar to the training set spectra. However, the most
extreme CNN results should be used cautiously because they
are likely to be underestimating high values and overestimating
low values.

5.2. Comparison to asteroseismic surface gravities

Asteroseismology is an extremely powerful tool that provides
accurate surface gravities, based on stellar oscillations. This
method is massively used by spectroscopic surveys for validation
or calibration purposes (RAVE, Valentini et al. 2017; APOGEE,
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Fig. 11. Network gradients for our five labels as a function of wavelength (black). Top panel shows the gradients across the GIRAFFE setup HR10.
Bottom panel shows the same for the HR21 setup. An average input spectrum is shown in gray as the top line in both panels. The locations of
selected absorption lines of different elements are marked with vertical colored lines. The highlighted Mg and Al lines were used by GES for
the determination of our input Mg and Al abundances. Their wavelengths are 5528.41, 8717.81, 8736.02, and 8806.756 Å for Mg and 5557.06,
8772.87, and 8773.90 Å for Al (Heiter et al. 2021).

Pinsonneault et al. 2018). Our aim here is to compare the log(g)
values of our GES input data and our CNN results to GES-
CoRoT log(g) values from Valentini et al. (2016). The Convec-
tion, Rotation and planetary Transits (CoRoT) mission was a
space observatory dedicated to stellar seismology. Contrary to
the labels of the benchmark stars, the asteroseismic surface grav-
ities are not derived from stellar spectra. The CoRoT measure-
ments therefore offer a good opportunity to validate our CNN
predictions with a completely external data set. We show this
comparison in Fig. 14. The one-to-one relation between GES
log(g) values and asteroseismic CoRoT results shows no residual

trend, with a low dispersion of 0.08 dex. The CNN log(g) values
show also no residual trend compared to GES-CoRoT log(g) and
a similarly small dispersion.

5.3. Globular clusters

Our data set covers stars that belong to a number of differ-
ent globular clusters. We identified member stars of five sepa-
rate clusters based on their position in the sky and their scatter
in [Fe/H] and radial velocities that are reported in GES iDR6.
The position of the cluster members in the [Mg/Fe] and [Al/Fe]
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Fig. 12. CNN sensitivity maps when trained only on the highly corre-
lated labels A(Mg), A(Al), and A(Fe). For clarity, this figure focuses on
a wavelength range in the GIRAFFE HR21 setup that contains two Mg
and one Al line.

plots is displayed in Fig. 15. The CNN predictions reproduce the
grouping of cluster members in the plots, with a small spread
of [Fe/H] within each cluster. However, the CNN predictions
show a smaller scatter in [Element/Fe] compared to the GES val-
ues, especially for Al. This reduced scatter is a reflection of the
results that we saw in Figs. 8 and 9, where the CNN predicts
more moderate labels for spectra with extreme GES labels.

Our CNN results recover the Mg-Al anti-correlation, which
is used to investigate the chemical evolution of globular
clusters (Pancino et al. 2017a). Figure 16 shows the Mg-Al
anti-correlation in the clusters NGC 6752, NGC 6218, and
NGC 1851. The average [Fe/H] values of these three clusters
span a range of ∼0.5 dex. We see that the match between GES
input and CNN output is improving with increasing cluster
[Fe/H]. The cluster NGC 6752 contains stars with [Fe/H] val-
ues at the lower edge of the training set limit, where the den-
sity of training spectra is low. The density of the training set
increases with [Fe/H], which leads to better CNN predictions for
the cluster stars. Except for the star with the highest [Al/Fe], all
CNN predictions for the NGC 6218 agree with the GES results
within their reported uncertainties. For NGC 1851, which has the
highest average [Fe/H] value among the clusters in our sample,
we observe a good match between the Mg-Al anti-correlation as
measured by GES and our predicted anti-correlation.

5.4. Thin- and thick-disk populations

As discussed in Sect. 2.2, [Mg/Fe] values can be used to sepa-
rate the Milky Way stars into a thin-disk and a thick-disk popu-
lation. We performed this separation based on our CNN results

Fig. 13. Comparison of GES input labels with CNN predictions for the
benchmark stars. The five red data points represent benchmark stars that
are in the outer observed set. Blue data points are benchmark stars in the
inner observed set and have S/N ≥ 30. Different data point sizes have
no physical meaning and are for visualization purposes only.

Fig. 14. One-to-one comparison of input GES and output CNN labels
with log(g) values derived using asteroseismology (Valentini et al.
2016).

for the inner observed set with S/N ≥ 30 in combination with
the test set. We also attempted to perform the separation for
the combination of the low S/N inner observed set and outer
observed set. The top panel of Fig. 17 shows the distribution
of [Mg/Fe] versus [Fe/H] for the CNN predictions for the low
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Fig. 15. [Mg/Fe] and [Al/Fe] vs. [Fe/H] plots for stars in the training,
test, and observed sets. The panels on the left show the distributions
of the GES iDR6 values, panels on the right are the predictions of the
trained neural network. Cluster membership is indicated by differently
colored data-points.

Fig. 16. Mg-Al anti-correlation plots for three of our sample clusters
with decreasing cluster metallicity. Colored data points show the labels
predicted by the CNN, black points are the GES results. The colors for
the different clusters is the same as in Fig. 15. Average uncertainties of
the GES results are shown in the lower left corner.

S/N set plus the outer observed set. We can see that the stars
are not separated into the two distinct thin- and thick-disk pop-
ulations. The CNN predictions for both [Mg/Fe] and [Fe/H] are
strongly clustered around the label averages and it is not possi-
ble to clearly separate the stars into the two populations. The
bottom panels show the same plot for the inner observed set
with S/N ≥ 30 plus the test set. Here, we can see the separation
between the two disks: Thin-disk stars with [Mg/Fe] lower than
∼0.2 dex and thick-disk stars with enhanced [Mg/Fe]. To identify
the thick- and thin-disk stars, we used the clustering algorithm
HDBSCAN (Campello et al. 2013), which is implemented in the
hdbscan library for Python programming. This algorithm assigns
data points to different clusters, depending on the density of data
points in a distribution. Two clusters are identified that corre-
spond to the two stellar populations, as displayed in the bottom
panel of Fig. 17. About 35% of the stars do not fall into any of
the two clusters. Stars outside the two dense regions in the distri-
bution are considered to be “noise” by the HDBSCAN algorithm

Fig. 17. Chemical separation between thin- and thick-disk stars. Top
panel: density map of the [Mg/Fe] vs. [Fe/H] distribution of our CNN
results for the low S/N inner + outer observed sets. Brighter colors indi-
cate a higher density of data points (linear color scale). Bottom panels:
same plot as in the top panel, but for the stars in the test and inner
observed set with S/N ≥ 30. Thin and thick disk populations found by
the HDBSCAN algorithm are shown at the bottom. The two populations
correspond to the two dense regions in the panel above.

and are not assigned to any cluster. In the literature, the chem-
ical separation between thin and thick disk is often performed
by splitting the distribution into several [Fe/H] bins and finding
the [Mg/Fe] value in each bin where the density of stars is at
a minimum (e.g. Adibekyan et al. 2011; Mikolaitis et al. 2014).
Anders et al. (2018) use a sophisticated t-SNE approach to iden-
tify the different stellar populations. They include abundances
measurements from 13 chemical elements to further dissect the
thin and thick disk into additional subpopulations.
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To investigate the age distributions of the two populations,
we used the isochrone fitting code Unified tool to estimate
Distances, Ages and Masses (UniDAM). The UniDAM tool
(Mints & Hekker 2017) follows a Bayesian approach of isochrone
fitting. It compares stellar atmospheric parameters and absolute
magnitudes from simulated PARSEC isochrones (Bressan et al.
2012) to the corresponding values in observed stars. All PAR-
SEC isochrones also have stellar masses and ages associated with
them. For the isochrone fitting we used the CNN predictions for
the atmospheric parameters Teff and log(g) in combination with
[Fe/H]. Magnitudes of our sample stars in the J, H, and K bands
were taken from the 2MASS catalog (Skrutskie et al. 2006). In
order for UniDAM to calculate the absolute magnitudes, it is also
necessary to provide the parallax value for each sample star. We
used the parallaxes from Gaia EDR3 (Gaia Collaboration 2021).
We removed stars with negative parallaxes as well as stars with rel-
ative parallax errors >0.2. To get the most precise age estimates,
we only considered turn-off stars in this analysis. Turn-off stars
in our thin and thick disk samples were selected by their position
in the Kiel diagram. The resulting average age of the thin-disk
stars is 8.7 Gyr, the average thick disk age is 9.7 Gyr. This age
difference between the two populations has been found in numer-
ous studies and by using several different age determination meth-
ods. Kilic et al. (2017), for example, found ages from 7.4−8.2 Gyr
for the thin disk and 9.5−9.9 Gyr for the thick disk by analyz-
ing luminosity functions of white dwarfs in the two disks. Using
APOGEE spectra and precise age estimates based on asteroseis-
mic constraints, Miglio et al. (2021) also showed that the chemi-
cally selected thick disk stars are old, with a mean age of∼11 Gyr.
We note that the detailed age distribution of thin and thick disk
members is sensitive to several selection criteria such as metal-
licity, kinematic properties and the distance from the Milky Way
center. A detailed investigation of the two stellar populations is
out of the scope of this work.

We also investigated the kinematical properties of our thin
and thick disk samples. Based on the current positions and veloc-
ities of the stars, we integrated their orbits for 5 Gyr in a the-
oretical Milky Way potential, using the Python-based galactic
dynamics package galpy (Bovy 2015). For the integration we
used the gravitational potential MWPotential2014, which com-
bines bulge, disk, and halo potentials. Proper motions, sky coor-
dinates, and parallaxes of our sample were taken from the Gaia
EDR3. In Fig. 18, we show the trends of the orbital eccen-
tricities relative to [Fe/H] for our thick- and thin-disk stars. A
linear regression model shows that the eccentricity, e, of thick
disk orbits is decreasing with increasing [Fe/H]: ∆e/∆[Fe/H] =
−0.26. The eccentricities of thin-disk stars are (on average)
lower than the thick disk eccentricities and show a slight positive
trend (∆e/∆[Fe/H] = 0.02). These results are consistent with
the findings of Yan et al. (2019), who investigated the chemical
and kinematical properties of thin- and thick-disk stars from the
LAMOST data set (Zhao et al. 2012).

6. Caveats

During the network training, the GES input labels are considered
to provide the true parameterization of the training spectra. The
quality of the network predictions therefore depends entirely on
the quality of the training data. We limited the uncertainties and
errors in our training data by applying several quality constraints
(Sect. 2.1), but there is still a possibility that the input labels may
suffer from systematics. Inaccurate labels of a small number of
input spectra will not have a noticeable effect on the training pro-
cess. The cases with a large difference between GES input value

Fig. 18. Eccentricities e of stellar orbits as a function of [Fe/H] for our
thin-disk and thick-disk samples. Dashed lines show linear fits to the
thick-disk (black) and thin-disk data points (gray).

and CNN prediction could therefore be the result of the network
predicting accurate labels for spectra with inaccurate GES labels.
Future works may investigate whether and how CNNs can be
used for the quality control of classically derived stellar parame-
ters. Future surveys should also take care of including proper 3D
and NLTE modeling when deriving atmospheric parameters and
chemical abundances.

We are able to estimate the internal uncertainties of our net-
work predictions by training multiple CNN models on the same
data. These uncertainties, however, do not take into account the
uncertainties of the training labels themselves. Bayesian deep-
learning frameworks account for both the training data uncer-
tainties and model uncertainties (Kendall & Gal 2017). Future
works could benefit from implementing this Bayesian approach
into our CNN method.

The predictive power of our CNN is limited by the sparse
training data that is available at the edges of the parameter
space (Sect. 4). A more homogeneous coverage of the parame-
ter space, achieved by increasing the number of training spectra
with extreme parameter values, will increase the precision of the
CNN predictions. In this way, the training sample is pro-actively
built instead of relying on an existing set of labels.

During the training phase our CNN not only learns the cor-
relations between spectral features and stellar labels, but is also
sensitive to correlations within the training labels themselves.
The effect of this is discussed in Sect. 4.4, where we see, for
example, how the strength of Mg absorption lines also has an
effect on the network predictions for [Al/Fe]. These correlations
can never be avoided when training the network to predict multi-
ple abundances at once. The alternative then is to train a separate
network model for each abundance label. This strategy decreases
the efficiency of the CNN approach, especially when the goal is
to predict a large number of chemical elements. Therefore, care
has to be taken to reduce the correlations in the training data
without sacrificing the ability of the network to predict multiple
labels at once.

7. Conclusions

Here, we summarize the main results of our study and the steps
we carried out to find these results.
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– We built a training and a test set based on GES iDR6 spectra
with S/N ≥ 30. Together, these sets consist of 14 634 stellar
spectra with the associated atmospheric parameters and chem-
ical abundances. We applied several quality checks on these
sets to ensure that our network is trained on high quality spec-
tra and stellar labels. We use the parameters Teff and log(g)
and the abundances [Mg/Fe], [Al/Fe], and [Fe/H] as the input
labels for our neural network. We also built an observed set of
22 270 spectra to test the performance of our CNN on spectra
that were not involved in the training process.

– We used t-SNE to identify observed spectra that are similar
in shape to the training set spectra. In this way, we can iden-
tify spectra that are likely to have labels within the training
label range, without relying on their GES labels. Less than
10% of the observed spectra that are similar to the training
set spectra in shape and S/N range have GES labels outside
the training set limits. This pre-selection step is important
because neural networks are not able to accurately predict
labels outside the training range.

– We then built a convolutional neural network with the
Python-based library Keras. Our network architecture con-
tains three convolutional layers, designed to detect features
and absorption lines in input spectra. Three successive dense
layers then convert the found spectral features into the val-
ues of the five output labels. We performed ten training runs,
resulting in ten slightly different CNN models. We used the
eight best CNN models to predict the labels of the training,
test, and observed set spectra.

– On average, one training run took ∼45 min to complete on
a desktop PC, using only CPU. Label predictions with our
trained network are very fast: the parameterization of the
∼37 000 spectra in our data set took less than 20 s per CNN
model.

– The CNN label predictions for the training and test sets are in
good agreement with the GES input labels. The bias (average
offset) and scatter between CNN and GES labels are identi-
cal for the training and test sets, showing that our CNN is not
overfitting during the training. We use the scatter between
GES input and CNN output for the training set as a mea-
sure for the training precision of our network: The training
precision is 37 K for Teff , 0.06 dex for log(g), 0.05 dex for
[Mg/Fe], 0.08 dex for [Al/Fe], and 0.04 dex for [Fe/H]. The
results for the pre-selected observed set, with similar spec-
tral shape and S/N range as the training set, are also in good
agreement with the GES input values, albeit with a larger
scatter between CNN and GES values. We find that the qual-
ity of the CNN results degrades for spectra with S/N < 30,
especially for abundance predictions. Observed spectra that
are different from the training set spectra are not parameter-
ized accurately. We warn the community that machine learn-
ing on low-S/N spectra may not be sufficient for deriving
precise enough abundances. Surveys should therefore gather
spectra with high-enough S/N (depending on their science
goals).

– All the sets of spectra in this study are characterized by
the fact that the differences between CNN predictions and
GES values increase at the edges of the parameter space. At
the edges, the number of available training spectra is small.
Increasing the number of training spectra in these parame-
ter regimes would allow for an increase in the accuracy and
precision of the CNN predictions, as the number of sample
observations rises.

– The scatter between the predictions from the eight differ-
ent CNN models can be used to assess the internal preci-

sion of our network. This scatter is small: on average, it
is 27 K for Teff , 0.04 for log(g), and 0.03 dex for [Mg/Fe],
[Al/Fe], and [Fe/H] alike. However, the mean scatter may
overestimate the precision of our network predictions. We
find that the uncertainties increase at the edges of the param-
eter space. The uncertainties also increase as the spectra S/N
decreases. Therefore, the spectra S/N and the position of the
predicted labels in the parameter space should also be taken
into account when estimating the label precision for individ-
ual spectra.

– We use network gradients to demonstrate the sensitivity of
our network to different parts of the input spectra. The gra-
dients show that the network is able to identify absorption
lines in the input spectra and associates those lines to the
relevant stellar labels. Caution has to be applied when choos-
ing input labels, because strongly correlated input labels lead
to strongly correlated network gradients. The network then
predicts labels based on unrelated spectral features (e.g.,
Al abundances from Mg absorption lines). Inferring stel-
lar parameters from such correlations can lead to satisfying
results for some spectra. However, stars with exotic chemical
compositions will not be parameterized adequately.

– The validation of our results with 25 GES benchmark stars
shows that our CNN is able to precisely predict labels for
individual stars over a large range of label values. Network
predictions for repeat spectra of the benchmark stars show a
small scatter per star. This scatter is within the GES uncer-
tainties for the benchmark star labels.

– We investigated the Mg-Al anti-correlation in globular clus-
ters, ranging from −0.92 to −1.40 in metallicity. In the most
metal-poor regime, where our training set contains only a
few stars, our CNN mainly recovers the Al spread in the clus-
ters. The match between GES Mg-Al anti-correlation and
CNN anti-correlation is improving for clusters with higher
[Fe/H], where the training data is denser.

– We investigated the ages and chemical properties of the
galactic thin and thick disk populations. We identified thin-
and thick-disk stars based on their position in the [Mg/Fe]
versus [Fe/H] plane with the HBDSCAN algorithm. We find
the average age of the thin-disk stars to be 8.7 Gyr and
the thick-disk stars are on average 9.7 Gyr old. The orbital
eccentricities of the thick disk stars show a negative trend
with [Fe/H] (∆e/∆[Fe/H] =−0.26). The eccentricities of thin-
disk orbits are lower than those of the thick disk and show
no significant trend with [Fe/H]. These results, based on our
CNN predictions, are consistent with similar results in the
literature.

Our study is of significant importance for the exploitation
of future large spectroscopic surveys, such as WEAVE and
4MOST. We show that CNN is a robust methodology for stel-
lar parameterization. We also raised some caveats that should be
taken into account by the community for future applications of
machine learning algorithms overall.
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