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LT-51368 Kaunas, Lithuania
* Correspondence: mykolas.akulauskas@ktu.lt

Abstract: Computer-guided dynamic navigation systems have elevated dental implant surgery into a
more patient-friendly and efficient procedure. However, commercially available systems use displays
as an output for guidance. This implies that surgeons have to take their eyes off the surgery site
frequently in order to accurately adjust surgical instruments. The solution for such an issue is to
use augmented reality (AR) head-mounted devices to showcase all necessary guiding instructions
without any distractions. In this work, the implementation of augmented reality in dental surgery
using the HoloLens 2 AR headset for the assessment of accuracy is described. The experiments
were performed in vitro with two implementation steps, evaluating calibration and perspective
of the virtual dental model alignment accuracies using a newly created marker. The calibration
results showed overall accuracy and precision surpassing the 1 mm threshold in distance-related
measurements. Dependency on the side on which the marker was observed and the movement of the
user’s head were considered to be the most influential factors regarding the perspective of the virtual
dental model alignment accuracy estimate.

Keywords: augmented reality; markers; dental surgery; accuracy; digital dentistry

1. Introduction

Computer-guided dynamic navigation systems have emerged as an alternative to
conventional template guidance techniques. The system functionality relies on capturing
reference markers rigidly placed on the patient and on the surgical instruments with the
use of sensors (mainly cameras) capable of capturing the environment in real time [1]. The
preparation of the system to be used in the surgery involves several steps, such as taking
a cone-beam computed tomography (CBCT) scan of the patient, planning the guidance,
calibrating the implant drill, and pairing the CBCT data with the tracking marker placed on
the patient. Guidance during the operation is usually carried out by the surgeon focusing
on the display on which the patient’s CBCT data are shown along with the current position
of the surgical instrument in relation to the patient’s marker. By examining the display,
the surgeon can adjust the implant drill position and angle based on guidance indicators
overlayed on the patient’s CBCT data. However, the guidance using such systems requires
the surgeon’s frequent distraction from the patient to the display of the system, increasing
the risk of accidental implant drill positional changes [2]. In addition, some operating sites
might be too confined for currently available systems, such as Navident (ClaroNav, Toronto,
ON, Canada), ImplaNav (ImplaNav, BresMedical, Sydney, Australia), X-Guide (X-Nav
Technologies, Lansdale, PA, USA), or AqNavi (AQNavi, TITC Ltd., Kaohsiung, Taiwan).
These inconveniences can be eliminated by replacing the display with an augmented
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reality (AR) headset, which has been the subject of research in various other medical fields:
neurosurgery [3], urology [3], ophthalmology [4], orthopedic [5], and plastic [6] surgery. AR
allows superimposing digital information into the physical surrounding, thereby enhancing
the user’s perception of their environment [7]. In terms of a computer-guided dynamic
navigation system, it would allow surgeons to concentrate on both the operating site and
guiding instructions given by the system without the need for redundant movement. More
importantly, depth sensors that are integrated into headsets can offer an alternative to bulky
camera setups that are commonly used in conventional systems.

Similarly, as in conventional dynamic navigation systems, real and digital world
interaction also remains a crucial component in AR systems. Two common approaches
used in AR systems for tracking and registering the environment are marker-based and
marker-less methods. Each method provides its own benefits and drawbacks. In the
marker-based approach, factors such as simplicity and computational performance play a
major role in their prevalent choice among researchers [8]. Here, the selection of markers to
be tracked can encompass a range of options, including IR-reflective markers, fiducials, or
landmark-based markers. In the medical field, these landmark-based markers can refer
to any rigid anatomical landmark, which could be easily identifiable with an AR tracking
system. The utilization of a marker-less approach can offer benefits in scenarios where
marker occlusion is expected. Furthermore, it provides a more sterile method since tracking
relies solely on the objects present in the scene, eliminating the need for additional objects.
Nonetheless, a significant advantage of the marker-based approach over the marker-less
method is its superior precision [9]. This advantage is of utmost importance for the success
of surgical procedures, and it was chosen as the primary rationale for employing the
marker-based approach in this study.

With the introduction of HoloLens 1 (Microsoft, Redmond, WA, USA), which is
considered to be the first commercially available autonomous optical see-through AR
headset, a shift towards more self-contained system development has gained substantial
popularity among researchers [10]. The advantages of utilizing commercially available
headsets lie in their ease of use and development environments, which can be effortlessly
deployed. Additionally, their hardware incorporates various embedded tracking sensors,
which has the possibility to eliminate reliance on external devices. For example, the second
iteration of HoloLens has four head-tracking cameras, one time-of-flight and one 8-MP
RGB camera, which compose the system, capable of registering and tracking the markers.
Commonly, the selection of markers for AR applications often involves choosing from
widely utilized options such as ArUco [11] and its variants or the popular Vuforia library
(PTC Inc, Boston, MA, USA). While there is plenty of research on the use of HoloLens with
marker-based tracking in medicine [12], the same cannot be said for dentistry applications,
particularly in the field of implantology (see Section 2).

The objective of this in vitro study is to assess the suitability of utilizing the AR
headset HoloLens 2 for marker tracking in the dentistry scenario, preferring application
in dynamic navigational guidance, and determine its accuracy. Accuracy in this sense is
defined as the combination of trueness and precision [13]. Trueness explains how close
the measured values are to actual ones, and precision defines the closeness of agreement
between repeated values. A few null hypotheses of accuracy in different experimental
scenarios were stated. The first hypothesis was that there is no accuracy difference between
locations in the dental arch that were identified as appropriate for the calibration procedure.
The second hypothesis was that there is no accuracy difference in virtual model perspective
in different view positions and settings.

The rest of the paper is organized as follows. In Section 2. we explore AR headset imple-
mentation in the implantology-related literature. In Section 3, we describe the experimental
design of the calibration and virtual dental model alignment setups for accuracy evaluation.
Section 4 presents the results obtained from each experimental setup. In Section 5, we discuss
the results and their applicability in addressing the raised problem. Finally, Section 6 presents
the conclusions of our study.
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2. Related Work

One of the few pilot studies investigating the use of AR headsets in implant planning
and navigation was published by Wanschitz et al., who, with the help of a modified
commercially available AR headset, achieved a 1 mm distance and 3◦ angle deviation from
preplanned implant positions [14]. Vigh et al. in their in vitro study compared information
outputs from both headset- and monitor-based approaches, demonstrating similar levels of
accuracy in angular- and distance-related implant measurements for each case [15]. Lin
et al. in their study achieved satisfactory results sufficient to implement in clinical practice
with the use of a self-made augmented reality system [16]. The commercially available
optical see-through system Magic Leap One (Magic Leap Inc., Miami, FL, USA) was used
in Kivovics et al.’s in vitro study, where the utilized system achieved results comparable to
those obtained with the physical template guidance technique [17].

While studies with HoloLens can be found in numerous medical fields, there is a
noticeable lack of extensive research within the dental field, especially with the latest version
of HoloLens. Existing studies employing HoloLens for the study of dental applications
can be grouped into two categories: focused on training [18,19] or monitoring [20,21] and
interaction based [22]. The first one focuses on displaying virtual content, while the latter
involves the interaction between virtual content and real objects, which is the category with
which guided implant placement studies are associated.

One of the clinical studies by Pellegrino et al. successfully used HoloLens 1 to screen
dynamic navigation system output in an AR headset, without the need for the surgeon to
look at the system display [23]. Liu et al. utilized HoloLens 1 in a mixed-reality-based dental
implant navigation method and showed improvement over the hand-free approach [24].
In a recent study by Tao et al., a comparison was made between the computer-guided
dynamical navigational system and the use of HoloLens 2. The study indicated similar
accuracy in implant distance-related measurements. However, it revealed that the AR
system exhibited higher angular deviations (3.72◦) compared to the conventional dynamic
navigational system (3.1◦) [25].

3. Materials and Methods

The study was implemented with the use of a commercially available augmented
reality device Microsoft HoloLens 2. For marker recognition and tracking, Vuforia (10.5)
library in the Unity (2020.3.17) game engine was used. Additionally, to control the different
stages of the experiment, a graphical user interface (GUI) was developed with the use of
the Mixed Reality Toolkit (MRTK). The digital dental model was used as a basis for the
experiments. For tracing the dental model, a “Γ”-shape marker was designed. Both the
dental model and the “Γ”-shape marker were manufactured additively using the resin-
based 3D printer MAX UV385 (Asiga, Sydney, Australia). For the calibration procedure,
a pencil-like positioning probe with known dimensions was modeled and printed with a
resin-based Ember 3D printer (Autodesk, San Rafael, CA, USA). One of the pencil ends
was modeled as a 30 × 30 × 30 mm cube to represent the tracking part. The other end of
the probe was designed as a cone with the intention to use its tip as a contact area with the
touched dental model surface.

Both the positioning probe cube (Figure 1, left) and the “Γ”-shape marker (Figure 1,
middle) were covered with contrasting black and white labels to be trained in the Vuforia
environment. Training is the procedure for selected tracers to be paired with their markers
or objects. The marker and probe tools were trained in Vuforia as object and model targets,
respectively. Model target technology allows the object to be recognized based on its
existing digital model. The object target, on the other hand, was trained with the help of the
phone camera in which various tracking points describing the object are collected and then
trained to recognize the marker. The “Γ”-shape marker was connected to the dental model
via inflexible wire with the use of self-curing acrylic resin as an adhesive at both ends of the
wire (Figure 1, right). For better durability during the experiments, the marker and dental
model were attached onto a plastic plate. The study was divided into two procedures:
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calibration and virtual dental model accuracy experiments. Only the HoloLens 2 optical
system was employed to track both the dental marker and the probe.
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Figure 1. Designed calibration probe (left) and dental model marker (middle) with their respective
measurements. Three-dimensional (3D)-printed dental model with the marker (right).

3.1. Calibration Accuracy Setup

The calibration procedure is necessary to accurately link the digital dental model to its
marker. During calibration, the user wearing the HoloLens 2 headset focuses their gaze
on the physical dental model and calibration probe markers with the intention of correctly
recognizing them. The correct recognition and the beginning of the tracking are indicated
for the user on the headset display with a visibly seen superimposed digital probe on
the physical probe and four virtual points appearing on the corners of the dental model
marker. If all conditions are met, the user can start the calibration by pinpointing predefined
intrinsic surface points in sequence on the physical dental model with the probe. Four
points were chosen for the calibration procedure. The location where the user must place
the probe tip can be seen on the auxiliary digital dental model for reference throughout
the entire calibration duration. For user convenience, an auxiliary dental model is fixed on
the left side of the headset display. The tracked probe tip coordinate is saved and linked
to the dental model marker using the HoloLens voice recognition system by saying the
word “save”. The saved probe tip coordinate is calculated from the averaged data samples
(size of 120), which are recorded in a couple of seconds after the saving command is given.
Furthermore, after each saved coordinate, the reference point location in the auxiliary model
is updated. Finally, after all predefined points are marked and paired with the marker, an
automatic superimposition of the digital to the physical model occurs. Therefore, using
the AR headset digital dental model after the calibration procedure can be seen as an
overlay of its physical counterpart. After each calibration procedure, all predefined and
unaggregated (120) calibration point coordinates with known location indices with the
inclusion of marker points are saved in .csv file format. The predefined points are positioned
relative to their paired calibration points without changing their interconnection distance.
All data were imported into MATLAB 2020b software (MathWorks, Natick, MA, USA)
for further analysis. The calibration data annotation and measurement scheme is shown
in Figure 2. Measurements of the Euclidean distance (∆D) between the average of the
calibration points and the coordinates of the marker point in each position were made.
Angular measurements were evaluated using the angle (α) between the plane normal
defined using the averages of calibration points and predefined points. Both angle (α) and
distance (∆D) measurements were chosen as trueness descriptors. Furthermore, to evaluate
the calibration (∆K) and marker (∆C) precision values, the Euclidean distances between
each data point and the respective coordinate averages were measured.
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Figure 2. Scheme of data and measurements gathered during calibration procedure. The blue, red,
and cyan colors represent calibration, predefined, and marker points, respectively (left). ∆C (marker
data) and ∆K (calibration data) blurred shapes indicate measurements between scattered data points
(120 samples) acquired in 2 s duration after saying word “save” and their respective average (white
dot). Numbers indicate the respective marker and calibration data gathering position. ∆D-distance error
between predefined point and its respective averaged calibration point. Blue (K) and red (M) colors in
the (right) figure indicate planes, respectively, defined with four calibration and four predefined point
coordinates. Angle measurement between normals of defined planes is annotated as α.

3.2. Virtual Dental Model Accuracy Assessment Setup

To evaluate the accuracy of the designed marker and HoloLens system, videos of
the virtual dental model augmented onto its physical model after successful calibration
were recorded with the addition of point data. Two experimental settings were chosen:
static and dynamic. In both cases, the plate with the attached dental model and marker
was fixed on the table. The HoloLens headset was positioned at a moderate distance from
the plate and directed towards the model at a slightly inclined angle in both scenarios. In
the dynamic setting, the user wore the headset, while in the static setting, it was placed
on a plastic head model. Three data registration positions were chosen: front, left, and
right of the model (Figure 3). To evaluate the virtual perspective seen through the headset,
4 points were marked on both the virtual and physical dental model’s distinct surface
areas. Two data types were gathered: videos from the HoloLens integrated camera saved
in .mp4 file format and tracked camera and marker point coordinates saved in .csv file
format (Figure 4). All data were imported into MATLAB software for further analysis.
For relationship establishment between physical and virtual model points, all physical
model point coordinates, marked as black dots, were manually selected and saved in the
first video frame. Due to observed jitters in the virtual model, the Kanade–Lucas–Tomasi
algorithm was used for automatic virtual point tracking, which are represented as red
spheres in the right of Figure 4. In every video frame, the algorithm detects each virtual
point movement by highlighting it with several characteristic points denoted with green
crosses in the red sphere’s area.
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physical points, and green points are average coordinates of Kanade–Lucas–Tomasi algorithm results
(green crosses). Red lines annotate distance between green and black points (∆V) and the numbers
indicate the respective data gathering position.

The average coordinates of these “cross” canters are considered as detected virtual
points. Additional consideration was given to dynamic settings to mitigate possible head
movement by using video stabilization methods present in the used software. The Eu-
clidean distance (∆V) was measured between detected virtual and manually selected points
in their respective locations. To establish pixel size in units, the ratio between the measured
edge in pixels and the known real values of the upper marker base was calculated. A
similar procedure was utilized as in calibration for precision measurements from data
gathered from marker (Q) and camera (F) points: the distances between each marker and
camera point and their respective coordinate averages were measured.

3.3. Statistical Analysis

The scheme for all gathered data types is shown in Figure 5. For statistical analysis
of the calibration distance measurements, the data comparison between different point
locations (∆D1 . . . 4) was evaluated. The same principle was applied for precision data
analysis, where comparisons of calibration (∆K1 . . . 4) data sets were evaluated. Furthermore,
comparisons were made between the positional data of marker point precision values (∆Q)
for each setting. Additionally, a comparison between each trueness data point location
(∆V1 . . . 4) in different settings and positions was estimated.
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Data sets were subjected to the Shapiro–Wilk normality test with additional considera-
tions of the results presented with quantile–quantile (Q-Q) plots. To verify the homogeneity
of variance between data sets, Levene’s test was used. For data comparison the non-



Appl. Sci. 2023, 13, 8315 7 of 11

parametric Kruskal–Wallis test was used followed by Dunn’s post-hoc test. For all used
statistical tests, the level of significance α = 0.05 was chosen.

4. Results
4.1. Calibration Results

The number of calibration procedures conducted amounted to 20 in total. Angulation
measurements (α) resulted in a mean of 10.5◦ and a standard deviation (SD) of ±4.1◦ within
the range of 4.4–18.8◦. The distance between the averaged calibration points and the marker
points at each location (∆D) is shown in Figure 6. The deviation of averaged calibration
points from marker points is seen to exponentially increase from Locations 1 to 4, while the
distribution of values (interquartile range) in all locations does not change significantly.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 12 
 

 
Figure 5. Scheme of gathered variables in each experimental situation. Numbers in ∆D, ∆K, and ∆V 
variables annotate location in dental model (see Figures 1 and 2). 

4. Results 
4.1. Calibration Results 

The number of calibration procedures conducted amounted to 20 in total. Angulation 
measurements (α) resulted in a mean of 10.5°  and a standard deviation (SD) of ±4.1° 
within the range of 4.4–18.8°. The distance between the averaged calibration points and 
the marker points at each location (∆D) is shown in Figure 6. The deviation of averaged 
calibration points from marker points is seen to exponentially increase from Locations 1 
to 4, while the distribution of values (interquartile range) in all locations does not change 
significantly. 

 
Figure 6. Distance values between averaged calibration and marker points in each location. 
Asterisks imply statistically significant difference between data sets. 

The overall deviation of distance between the calibration and the marker points is 
1.97 (±1.17) mm. The precision measurement values for the calibration setup are shown in 
Figure 7. The average distance between the calibration points and their respective 
averages (∆K1…4) and SD values noticeably decrease from Locations 1 to 4. The calibration 
point average in Location 4 is the closest to the marker point value (Δ = 0.14 mm) out of 
all four locations. The overall precision of the calibration points is 0.88 (1.39) mm. 

Figure 6. Distance values between averaged calibration and marker points in each location. Asterisks
imply statistically significant difference between data sets.

The overall deviation of distance between the calibration and the marker points is
1.97 (±1.17) mm. The precision measurement values for the calibration setup are shown in
Figure 7. The average distance between the calibration points and their respective averages
(∆K1 . . . 4) and SD values noticeably decrease from Locations 1 to 4. The calibration point
average in Location 4 is the closest to the marker point value (∆ = 0.14 mm) out of all four
locations. The overall precision of the calibration points is 0.88 (1.39) mm.
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In both the precision (∆K1 . . . 4) and the trueness (∆D1 . . . 4) cases, Kruskal–Wallis tests
resulted in χ2(3) = 23.18, p < 0.001 and χ2(3) = 228.79, p < 0.001, respectively, indicating statis-
tically significant differences between the data sets in each case. Post-hoc tests in the trueness
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case comparisons signified difference only between Location 4 and the others (p < 0.001). In
the precision case, post-hoc tests did not show a significant difference only in the ∆K1,2 pair
(p = 0.12).

4.2. Virtual Dental Model Accuracy Assessment Results

Videos and point recordings of the superimposed virtual dental model into physical
were recorded for 20 s in each case, with three positions for each setting. In total, six videos
with corresponding point recording cases were acquired. Camera (∆F) and marker (∆Q)
point distance deviations from their respective coordinate averages are shown in Table 1.

Table 1. Precision data (mean and ±SD, mm) for camera and marker points at different positions.

Front Right Left

Camera
(∆F)

Marker
Point (∆Q)

Camera
(∆F)

Marker
Point (∆Q)

Camera
(∆F)

Marker
Point (∆Q)

Stationary 0.20 (0.08) 0.15 (0.07) 0.14 (0.05) 0.09 (0.03) 0.16 (0.07) 0.22 (0.16)

Dynamic 4.74 (3.22) 0.37 (0.19) 0.88 (0.42) 0.36 (0.21) 2.83 (4.39) 1.19 (1.00)

Theoretically, no camera movement should be recorded (mean values ≈ 0) in a station-
ary setting. However, gathered data showed mean distance values in the range of 0.14 mm
and 0.2 mm. Camera movement in the dynamic setting was in the range of 0.88 mm
and 4.74 mm. The marker point in the left position showed significantly higher mean
and standard deviation values in stationary (0.22 (0.16) mm) and dynamic (1.19 (1.0) mm)
settings compared with the other positions. One of the lowest distance mean values can
be observed in the right position for both settings: stationary (0.09 mm) and dynamic
(0.36 mm). The minimal average difference between stationary and dynamic settings can
reach up to 0.22 mm (front position). Trueness measurements (∆V) acquired from video
data are presented in Table 2.

Table 2. Trueness data by location (mean and ±SD, mm) for stationary and dynamic settings at
different positions.

Setting Stationary Dynamic

Position Front Left Right Front Left Right

∆V1 3.28 (0.01) 4.25 (0.02) 5.53 (0.03) 2.86 (0.61) 8.39 (1.46) 3.65 (0.83)
∆V2 2.90 (0.01) 3.29 (0.04) 5.11 (0.03) 3.61 (0.63) 7.14 (1.57) 3.47 (1.04)
∆V3 2.87 (0.03) 1.01 (0.02) 4.58 (0.02) 2.70 (0.58) 7.40 (1.60) 4.41 (0.89)
∆V4 1.49 (0.02) 0.72 (0.02) 5.51 (0.01) 2.60 (0.56) 6.66 (1.51) 4.39 (0.83)

Due to possible calibration inaccuracies, the mean values of respected point locations
can reach up to 8.39 mm in dynamic and 5.53 mm in stationary settings. When scenarios are
compared, dynamic SD values are significantly higher (<1.6 mm) than stationary (<0.04 mm).
In the stationary setting, SD values do not exceed 0.03 mm in all positions. The dynamic setting
frontal position’s SD values are shown to be the lowest of all three, ranging between 0.56 mm
and 0.61 mm. The highest SD values in the dynamic setting can be seen in the left position
(1.46–1.6 mm). The highest contrast between stationary and dynamic settings is showcased
by their SD values in any position and location. Nevertheless, in the right position, dynamic
mean values are observed to be smaller than in the stationary position. In both precision
(∆Q) and trueness (∆V1, . . . ,4) cases, Kruskal–Wallis tests displayed a significant difference
(p < 0.001) between the data sets in all proposed comparisons. Furthermore, only one post-hoc
test comparing the ∆Q right and front data sets out of all did not show a statistically significant
difference (p = 0.18).
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5. Discussion

The advancement in augmented reality headsets has the potential to improve or even
replace computer-aided dynamic navigational systems in implantology, making them more
approachable for practitioners. This statement can be backed by the recent study by Mai
et al., suggesting that the accuracy of dental implant navigation with the use of AR is
comparable to conventional implant-guided techniques [26].

This study evaluated the capabilities of the commercially available AR headset HoloLens
2 in the application of dentistry practice, specifically in implantology, using a custom-designed
marker. Marker accuracy analysis was separated into two experimental setups: calibration
and virtual model perception analysis. In calibration experiments, the majority of trueness
and precision results surpass the 1 mm threshold in distance-related measurements (∆D
and ∆K, respectively). Angle results disperse in a wide range, implying that the calibration
results could contrast significantly after each calibration. In terms of dynamic navigation
system accuracy, these calibration results could double the error in the commonly presented
distance between the implant top (1.02 mm) and bottom bases (1.33 mm) or angle (3.59◦)-
related measures [27]. Therefore, the use of additive error mitigation techniques should be
applied for further use. The results of the perception accuracy of the virtual model showed
a significant dependence on the settings. However, it is more prominent in trueness data
than in precision data sets. This can be explained by complexity and made assumptions
about the trueness data measurement scheme where video recordings were chosen instead of
raw three-dimensional data. Furthermore, differences in positional data in both calibration
and virtual model perspectives are noticeable. The result of the statistical analysis confirms
it, which subsequently led to the rejection (p < 0.001) of both null hypotheses. It could be
explained in two possible ways: changes in marker distance from the headset or changes in
marker tracing reliability with changing angles.

One of the limitations of this study is the chosen marker and probe development
procedure, which involves the overreliance on the existing Vuforia library for the creation
of trackers. The choice of marker texture and dimensions was in accordance with the
presented library guidelines, which limit the usage in the context of accuracy research.
Although planar fiducial marker-based tracking is the most widely used method with
HoloLens among researchers [12], it is arguably not the only way for an AR headset to
interact with the real world, as mentioned in the Introduction section (Section 1). One
proposal was made by Gsaxner et al. [28], which involves retro-reflective spheres with a
measured root mean square error of 1.7 mm and 1.11◦ compared to fiducial ArUco markers
with 6.09 mm and 6.73◦ in distance- and angle-related measures. Another step further
for registration and tracking is to detect and track the objects without relying on prior
knowledge or the presence of predefined markers [29]. This marker-less approach is still in
the infant stage due to the current limited headset computational capabilities. However, the
possibility to track the object without the use of any other secondary objects is promising
since, in addition to the aforementioned sterility, it would free up the already confined
surgery space. Furthermore, the mentioned trueness measurements from video data may be
more conclusive if a reference measurement system was included. Lastly, the experiments
were carried out by only one person, which arguably shows bias in the presented results.

Nevertheless, the second iteration of HoloLens is observed to have restricted use in
applications that require high accuracy, as it barely reaches the millimeter range [12,30];
however, some promising results have begun to emerge [25]. In this context, substituting
existing dynamic navigation systems with the current HoloLens 2 headset is doubtful,
even though it has found some success in other fields of surgery [31]. However, there are
field-focused devices, such as xVision (Augmedics Inc., Arlington Heights, IL, USA), that
attempt to leverage technology to appropriate levels for medical use. Therefore, the safest
practical application of HoloLens 2 in dynamic navigation systems is currently limited to
merely displaying information translated from conventional systems [23], without the use
of its own sensors to track the scene during the surgery.
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Future work should account for the proposition of other more sophisticated AR
headsets with the inclusion of more appropriate tracking techniques. Since calibration is
particularly important for further procedures, a more versatile calibration probe should
also be prioritized.

6. Conclusions

In the presented study environment, the marker and calibration probe specifically
designed for the AR headset HoloLens 2 showed less than satisfactory results regarding
their accuracy in dental applications. Both null hypotheses of accuracy in different experi-
mental scenarios were rejected, leading to the following conclusions: (1) there is an accuracy
difference between the locations in the dental arch that were identified as suitable for the
calibration procedure; (2) there is an accuracy difference in the virtual model perspective
across different view positions and settings. Additional considerations should be taken in
regard to the choice of AR headset and tracking technology.
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