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Abstract: In this study, we review some aspects of the application of free randomly moving (RM) 
electron density and its probability density function distribution to the main free electron transport 
characteristics of elemental metals. It is shown that metal atom thermal vibrations not only produce 
free RM electrons, but also produce the same number of electronic defects (weakly shielded ions). 
The general expressions for the drift mobility, diffusion coefficient, and mean free path of ran-
domly moving electrons are presented. It is shown that the scattering of free RM electrons is mainly 
due to electronic defects, which cause the distortion of the periodic potential (or the charge density) 
distribution in the periodic lattice. The resistivity of the elemental metal is caused by electronic 
defect scattering, taking into account the exchange in the thermal energies between phonons and 
free RM electrons. Special attention is paid to the analysis of the Hall effect measurement data: the 
Hall coefficient is presented for two types of RM electrons and holes, taking into account elec-
tron-like and hole-like densities of states. The paramagnetism and diamagnetism of the free RM 
electrons are simply explained using the definition of free RM electron density. 

Keywords: density of free randomly moving (RM) electrons; probability density function;  
density of states (DOS); mean free path of electrons; resistivity of metals; diffusion coefficient;  
drift mobility; Hall effect; Hall mobility 
 

1. Introduction 
The foundations of electron transport were laid at the beginning of the last century 

by the Drude–Lorentz–Sommerfeld free electron theory [1–3]. The main achievement of 
the Drude–Lorentz theory was the prediction of the Wiedemann–Franz law. Sommerfeld 
solved the electronic heat capacity problem by considering the Fermi–Dirac statistics of 
electrons in metals. The main limitations of the Sommerfeld model of free electrons are 
related to the suggestion that all of the valence electrons in the metal are free, as a result 
of which the estimates of the free electron density, their mobility, the Hall coefficient, and 
the Fermi-level energy are not correct. Later, very important works on the electron theory 
of metals were published [4–17], but they did not solve the mentioned limitations. Even 
recently [18], explanations of electrical conductivity in metals have been proposed based 
on the Drude–Sommerfeld model in which all valence electrons are free, which is com-
pletely inapplicable to metals. 

According to quantum mechanics, in the ideal periodic lattice of a metal with peri-
odic potential energy distribution, free electrons can move without any scattering by 
lattice atoms as Bloch waves [5,12]. The scattering of the free electrons can take place in 
spots of chemical and structural imperfection. These defects cause the metal’s residual 
resistivity at very low temperatures. It is a well-known fact that at temperatures above 
the Debye temperature, the resistivity of elemental metals changes linearly with tem-
perature, while it usually changes as T-5 below it [11]. This has been thought to be caused 
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by lattice atom vibrations [6; 8; 9], but this cannot explain why the real electron mean free 
path is many orders of magnitude greater than the interatomic distance. As shown in [19–
23], the lattice vibrations play another role. In this study, the estimation of the density of 
free randomly moving (RM) electrons and their probability density distribution as a 
function of electron energy and the applications of these characteristics to free electron 
transport in elemental metals are presented. 

Section 2 deals with free electron effective density and the probability density dis-
tribution of free electrons on energy; Section 3 deals with the mean free path of free RM 
electrons and resistivity temperature dependences of elemental metals; Section 4 deals 
with the Hall effect in elemental metals; Section 5 deals with the magnetic properties 
caused by free RM electrons in elemental metals; and Section 6 deals with the plasma 
frequency of free RM electrons. 

2. The Effective Density of Free RM Electrons and Their Probability Density Distri-
bution as a Function of Energy 

As shown in [19–23], the effective density neff of the free RM electrons can be ex-
pressed as  𝑛ୣ୤୤ = ׬ 𝑔(𝐸)𝑓(𝐸)𝑓ଵ(𝐸)d𝐸 = 𝑘𝑇 ׬ 𝑔(𝐸)[−𝜕𝑓(𝐸)/𝜕𝐸]ஶ଴ஶ଴ d𝐸,   (1) 

where g(E) is the density of states (DOS) in the conduction band; f(E) is the Fermi distri-
bution function; and f1(E)=1-f(E) is the probability that at a given temperature T, an elec-
tron can be thermally scattered or change its energy state due to the external field. 

Such a description of free RM electrons is valid for any degree of degeneracy of the 
electron gas in materials, and it is valid for semiconductors, metals and superconductors 
in the normal state. From Equation (1), it follows that the function 𝑝(𝐸) = −𝜕𝑓(𝐸)/𝜕𝐸 = 𝑓(𝐸)[1 − 𝑓(𝐸)/𝑘𝑇    (2) 
is the probability density function of the free RM electron distribution as a function of 
energy, which fulfils all the requirements of probability theory [24,25] and is consistent 
with the Pauli exclusion principle. It should be noted that the probability density func-
tion allows us to determine the average value of any random function x(E) as a function 
of energy: < 𝑥(𝐸) >= ׬ 𝑥(𝐸)𝑝(𝐸)𝑔(𝐸)d𝐸ஶ଴ .     (3) 

For materials that have a non-degenerate electron gas, the probability f1(E)=1-f(E)≈1, 
and Equation (1) adopts the classical view. Thus, all electrons in the conduction band n 
are free and participate in conduction: 𝑛ୣ୤୤ = 𝑛 = ׬ 𝑔(𝐸)𝑓(𝐸)d𝐸ஶ଴ .      (4) 

Equation (4) is not appropriate for describing free RM electrons in metals. For met-
als, the probability density function p(E) has a sharp maximum at the Fermi energy E=EF. 
Under these conditions, Equation (1) becomes  𝑛ୣ୤୤ = 𝑔(𝐸୊)𝑘𝑇 ≪ 𝑛,      (5) 
where g(EF)=g(E) at E=EF. The DOS at Fermi-level energy g(EF) can be obtained from the 
electronic heat capacity data for elemental metals [7]. The DOS g(EF) values of the ele-
mental metal distribution in the periodic table are shown in Figure 1. As can be seen from 
Figure 1, the smallest g(EF) values are those for Be and alkali metals, while the largest 
ones are those for V, Ni, Pd, and Nb. 

Figure 2 provides a schematic hypothetical illustration of the DOS for noble- and 
transition-group metals at room temperature, as described in [26]. In the case of noble 
metals (Figure 2a), the area beneath the curve gs(E)f(E) in yellow is obtained using Equa-
tion (4) and represents the total density of valence electrons in the conduction band; the 
red area corresponds to the effective density of free RM electrons evaluated using Equa-
tion (1). It can be seen that the d-band is not created in noble metals, because this band is 
lower by 2 eV than the Fermi-level energy. For transition metals, the d-band is not en-
tirely filled, and the total effective density of the free RM electrons can be described as 𝑛ୣ୤୤=𝑔(𝐸୊)𝑘𝑇 = [𝑔௦(𝐸୊) + 𝑔ௗ(𝐸୊)]𝑘𝑇, where 𝑔(𝐸୊) is obtained from the electronic heat 
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measurements. As can be seen from Figure 1, the DOS g(EF) at the Fermi surface for 
transition-group metals is much larger than that for alkali and noble metals. 

 
Figure 1. The DOS g(EF) values of elemental metal distribution in the periodic table. 

  
(a) (b) 

Figure 2. Schematic illustration of the energy dependence of the functions g(E), g(E)f(E), and 
g(E)f(E){1-f(E)] for noble (a) and transition-group (b) metals at room temperature. The yellow area 
represents the total density n of valence electrons in the conduction band and the red area repre-
sents the effective density neff of free RM electrons; gΣ(E)=g5s(E)+g4d(E). 

Since only free RM electrons neff electrons participate in the conduction of metals, the 
other parts of the valence electrons (n-neff) cannot change their energy because all 
neighbor energy levels are occupied, and also because of the Pauli exclusion principle. 
Therefore, those parts of the electrons have a constant energy and can only move around 
the native ions. It is essential to emphasize that free RM electrons in equilibrium condi-
tions do not interact with these (n-neff) electrons as they cannot change their energy.  
 The valence electrons of a given elemental metal are distributed in the conduction 
band from 0 to the Fermi level energy EF. Those atoms whose valence electrons have en-
ergies close to the Fermi level energy due to lattice thermal vibrations can be excited and 
leave the native atoms, becoming free and able to move randomly. The atoms that lose 
their valence electrons partially are shielded by the valence electrons of neighboring 
atoms. Such partially shielded ions, which are referred to as electronic defects, cause a 
distortion of the periodic potential in the periodic lattice. Therefore, thermal vibrations of 
lattice atoms produce free RM electrons and the same number of electronic defects, as 
well as the local distortion spots in the potential periodicity. In Figure 3, there is pre-
sented a schematic illustration of a two-dimensional lattice pattern of metal atoms. The 
waves of valence electrons partially overlap with those of neighboring atoms, and they 
move in the field of a central force of the native ions [27]. When a particular atom, due to 
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its thermal vibration, excites a free RM electron, as shown in Figure 3A in the row (b), it 
also produces a distortion of the potential U(x) periodicity, as shown schematically in 
Figure 3B in case (b). Therefore, atoms that produce free RM electrons produce the same 
number of ionic spots (electronic defects), which are not completely screened by the 
neighbor valence electrons. Considering that the density of free RM electrons is equal to 
neff=g(EF)kT, this means that the average density of electronic defects can be estimated as 
[23]:  𝑁ୣ୤୤ = 𝑛ୣ୤୤ = 𝑔(𝐸୊)𝑘𝑇.      (6) 

The other parts of the atoms (N-Neff) (where N is the total atom density) do not have 
enough vibrational (phonon) energy to produce free RM electrons close to the Fermi level 
energy. It is worth pointing out that the thermal vibrations of the lattice atoms play an-
other role, as described in [4,6–12]. 

As shown in [19–23], the conductivity σ of a homogeneous material can be ex-
pressed as 

 = 𝑞ଶ𝑛ୣ୤୤𝐷/𝑘𝑇 = 𝑞𝑛ୣ୤୤ୢ୰୧୤୲,       (7) 
where q is the electron charge, D is the diffusion coefficient, and µdrift is the drift mobility 
of free RM electrons. From this expression follows the Einstein relation D/ୢ୰୧୤୲=kT/q, 
which is valid for materials with any degree of the degeneration of electron gas with one 
type of free charge carriers (electrons and holes). The relationship between the electrical 
conductivity and both the diffusion coefficient and the drift mobility is described by 
Equation (7) and is shown in Figure 4. Considering that values of the electrical conduc-
tivity and the electronic heat capacity are well known and are available from the Hand-
book [28], values of the diffusion coefficient and the drift mobility of free RM electrons 
were calculated using Equations (6) and (7). 

Accounting for the total effective density of free RM electrons being equal to 𝑛ୣ୤୤=𝑔(𝐸୊)𝑘𝑇 = [𝑔௦(𝐸୊) + 𝑔ௗ(𝐸୊)]𝑘𝑇, and free charge carriers at the Fermi surface having 
the same Fermi energy, the same diffusion coefficients and the same velocities and re-
laxation times, thus, each quasi-particle (electron or hole) carries in the same contribution 
to the electronic heat capacity and conductivity. Moreover, each quasi-particle makes the 
same contribution to the energy fluctuation variance: < ଵଶ >= ழ(ாିழாவ)మவ௡౛౜౜ = ׬ (ாିாಷ)మ௚(ா)௙(ா)[ଵି௙(ா)]ୢாಮబ ௡౛౜౜ ,    (8) 

where < (𝐸 − 𝐸ி)ଶ >= 𝑔(𝐸ி)(𝑘𝑇)ଷ ׬ ( − ிஶ଴ )ଶ𝑓()[1 − 𝑓()]d = (ଶ/3)𝑔(𝐸ி)(𝑘𝑇)ଷ, (9) 
and here, ε=E/kT. Then,  < ଵଶ >= (ଶ/3)(𝑘𝑇)ଶ.       (10) 
 

  
(A) (B) 

Figure 3. (A) Schematic representation of a two-dimensional pattern of metal atoms, and (B) a 
schematic potential U(x) distribution. In row b) one atom excites the RM electron, causing the dis-
tortion of the potential periodicity in row (b) in Figure 3B. 

This result is consistent with the theory of energy fluctuations of free randomly 
moving particles [29]. It also shows that quasi-particle scattering in metals is an inelastic 
process. Therefore, the term free electron can be used here as a quasi-particle. 
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Figure 4. The diffusion coefficient and the drift mobility relation with the conductivity of elemental 
metals at room temperature (the right scale has been chosen to correspond to the left scale, so that 
the positions of the points in the pattern are the same for both scales). 

3. The Mean Free Path of RM Electrons and the Temperature Dependence of the Re-
sistivity of the Elemental Metals 

The mean free path is the most important parameter characterizing the scattering 
mechanism of randomly moving charge carriers [30].  

The mean free path of free RM electrons in metals can be estimated as 𝑙୊ = 𝑣୊୊ = ଵ
౛౜౜ே౛౜౜ = ଵ

౛౜౜௚(ாూ)௞் ,     (11) 
and the average relaxation time as 

୊ = ଵ
౛౜౜௩ూே౛౜౜ = ଵ

౛౜౜௚(ாూ)௩ూ௞் ,      (12) 
where σeff is the effective scattering cross-section of free RM electrons by electronic de-
fects. It should be noted that above the Debye temperature, the effective electron scat-
tering cross-section σeff is temperature independent. Thus, the statement that the scat-
tering cross-section is proportional to temperature in the mentioned temperature range 
[4–7,11,12] contradicts the probability density function of free RM electrons. Equation 
(11) directly shows that the electron mean free path at temperatures above the Debye 
temperature is inversely proportional to both the temperature and the DOS at the Fermi 
surface. 

The electron-scattering cross-section of elemental metal distribution on DOS at the 
Fermi level is shown in Figure 5a at room temperature. The product 𝑙୊ୣ୤୤ = 1/𝑛ୣ୤୤ =𝑉ଵୣ୪, where 𝑉ଵୣ୪ is the volume for one free RM electron. The dependence of the volume 𝑉ଵୣ୪ on the periodic table is shown in Figure 5b at room temperature. The largest volume 𝑉ଵୣ୪ has Be and alkali metals and the smallest one has V, Ni, and Pd. 

  
(a) (b) 

Figure 5. (a) The effective scattering cross-section σeff of free RM electrons caused by electronic de-
fects and the relation with DOS at the Fermi surface at room temperature; (b) the volume for one 
free RM electron distribution on the periodic table at room temperature. 
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Figure 6 shows the electric resistivity of Al, Cu, and Pd as a function of temperature 
from 1 K to 1000 K. As has been mentioned, the resistivity at temperatures above the 
Debye temperature is proportional to temperature T, and it is not related to the scattering 
cross-section dependence on temperature. What are the effects that cause a steep resis-
tivity decrease with temperatures below the Debye temperature Θ? The electric resistiv-
ity below 10 K is independent and caused by the scattering of free RM electrons by 
chemical and structural imperfections. Since each free electron absorbs or excites one 
phonon during scattering, the scattering cross-section depends on the ratio of the thermal 
energy exchange between free RM electrons and electronic defects.  

The average thermal energy [5] of the free electrons estimated for one free RM elec-
tron is: 𝐸ଵୣ୪ = (ଶ/6)𝑔(𝐸୊)(𝑘𝑇)ଶ/𝑛ୣ୤୤≈1.64kT.     (13) 

The average phonon thermal energy at T > Θ is 3kT because all the lattice vibration 
waves are excited, but at T < Θ only the low-frequency phonons become excited. The 
average thermal energy of a single phonon accounting for the excitation and annihilation 
of the phonon can be described as [12,23,31,32]: 𝐸ଵ୮୦ = 3𝑘𝑇(𝑇/)ସ ׬ 4𝑥ହ/்଴ /[(𝑒௫ − 1)(1 − 𝑒ି௫)]d𝑥.    (14) 
Then, 𝐸ଵ௣௛/𝐸ଵ௘௟1.83୮୦(𝑇/),     (15) 
where 

୮୦(𝑇/)=(𝑇/)ସ ׬ 4𝑥ହ/்଴ /[(𝑒௫ − 1)(1 − 𝑒ି௫)]d𝑥   (16) 
is the phonon mediation factor for free RM electron scattering. Then, the resultant scat-
tering cross-section σres of free RM electrons can be described as 

୰ୣୱ = ୣ୤୤௣௛(𝑇/),     (17) 
where σeff can be obtained from Equation (11) at room temperature. 

At temperatures above the Debye temperature, the resistivity of the elemental metal 
is given by 

 = 1/ = 1/[𝑞ଶ𝑔(𝐸ி)𝐷 (𝑇) = (𝑇଴)(𝑇/𝑇଴),    (18) 
where T0=300 K, and (𝑇଴) = 1/[𝑞ଶ𝑔(𝐸ி)𝐷 (𝑇଴)]. The resultant relaxation time τres of the 
free RM electrons now can be expressed as 1/୰ୣୱ = (1/ୣ୤୤) + (1/ୢୣ୤),      (19) 
where 1/ୣ୤୤ = ୰ୣୱ𝑁ୣ୤୤𝑣୊ = ୰ୣୱ𝑔(𝐸୊)𝑣୊𝑘𝑇,     (20) 
and 1/ୢୣ୤ = ୢୣ୤𝑁ୢୣ୤𝑣୊,       (21) 
where ୢୣ୤ is the average scattering cross-section of the residual defects (impurities), 
and Ndef is their density. Thus, the resistivity of elemental metals in the temperature 
range from 1 K to 1000 K can be expressed as 

 = ଴ + (𝑇଴)(𝑇/𝑇଴)௣௛(𝑇/).     (22) 
The calculated resistivity dependences on temperature by Equation (22) are shown 

in Figure 6 as solid lines with T0=300 K. Here, the calculations have been performed using 
the constant Debye temperature values Θ. Considering that the Debye temperature is not 
completely constant [29], there may be a small difference between calculated and ex-
perimental data in some temperature ranges. It can be seen that Equation (22) describes 
the resistivity temperature dependence well enough, though the metals presented have 
very different Fermi surfaces and different DOS at the Fermi surface. 
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Figure 6. The resistivity dependence on temperature for Pd, Cu, and Al. The points are experi-
mental data taken from [28], the number in brackets near the chemical symbol is the Debye tem-
perature Θ in K used to calculate resistivity, and the solid lines are calculated with Equation (22). 

4. Hall Effect of Metals 
The Hall coefficient RH, when the direct current flows in the x-direction and the 

magnetic field is directed along the z-axis, is given by 𝑅ு = ா೤௝ೣ஻೥ = ாౄ
ாೣ஻೥,       (23) 

where jx is the direct current density in the x-direction, Bz is the magnetic flux density in 
the z-direction, Ey=EH=UH/w, and here UH is the Hall voltage in a material plate with di-
mensions d×w×l (thickness × width × length). Ex=Ux/l is the applied electric field strength 
in the x-direction, and σ is the conductivity of the material wafer. The Hall effect for the 
small direct current and weak magnetic fields can also be characterized by the Hall angle 
ϕ: 

 = 𝐸௬/𝐸௫ = 𝐸ୌ/𝐸௫.       (24) 
On the other hand, the Hall angle can be expressed in terms of the electron cyclotron 

angular frequency ௖ = 𝑞𝐵௭/𝑚∗ [33]: 
 = ௖ < ଶ >/<  >= (𝑞𝐵௭/𝑚∗) <  > 𝑟ு,      (25) 

where 𝑟ு =< ଶ >/<  >ଶ is the Hall factor, which depends on the free charge carrier 
scattering mechanism. For highly degenerate electron gas 𝑟ு = 1, it can be noted that ௖ 
is independent of the kinetic energy of the particle, and it does not depend on the radius 
of motion of the electrons and on their velocity. 

Such a general expression for materials with one type of the free charge carriers 
follows from Equations (23)–(25): 𝑅ୌ = (𝑞 <  >/𝑚∗)𝑟ୌ = ୌୟ୪୪.      (26) 

Considering that the quantity ୌ has the same dimension as the drift mobility of 
the free charge carriers, it is called Hall mobility. Equation (26) is valid for both 
non-degenerate and degenerate electron gas materials with one type of the free RM 
charge carriers. 

In the general case, the absolute value of the drift mobility ୢ୰୧୤୲ for one type of 
charge carriers can be described as 

ୢ୰୧୤୲ = ௤஽௞் = ௤ழவ௠∗  ழாவ(ଷ/ଶ)௞் = ௤ழவ௠∗  ,     (27) 
where the coefficient  indicates by how many times the average kinetic energy <E> of 
the free RM electron is higher than the classical particle thermal energy (3/2)kT. Ac-
counting that the conductivity can be described by such a general expression: 

 = 𝑞𝑛ୣ୤୤ ௤ழவ௠∗  ,        (28) 
then the Hall coefficient is described by the following general relationship: 𝑅ு = 𝑟ு/(𝑞𝑛ୣ୤୤),       (29) 
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which is valid for any degree of degeneration of the electron gas with one type of free 
charge carrier. In the case of a material with non-degenerate electron gas,  = 1 and the 
Hall coefficient takes the classical form: 𝑅ு = 𝑟ு/(𝑞𝑛ୣ୤୤) =  𝑟ு/(𝑞𝑛).     (30) 

Considering that for metals rH=1, 𝑛ୣ୤୤ = 𝑔(𝐸୊)𝑘𝑇 and  = 𝐸୊/[(3/2)𝑘𝑇], the Hall 
coefficient for metals with one type of free randomly moving charge carrier can be ex-
pressed as [20–23]: 𝑅ୌ = 3/[2𝑞𝑔(𝐸୊)𝐸୊].       (31) 

For an ideal spherical Fermi surface, the product 𝑔(𝐸୊)𝐸ி=3n/2 [5], and one can ob-
tain the classical relation 𝑅ୌ = 1/(𝑞𝑛), where n is the total density of electrons in the 
conduction band, but this does not mean that all the electrons in the conduction band 
are free, and can move randomly and participate in conduction. Many elemental metals 
do not have spherical Fermi surfaces; they have very complex Fermi surfaces [5,7,26]. 

The experimental data of the Hall coefficient distribution in the periodic table for 
elemental metals at room temperature is shown in Figure 7a.  

 
(a) (b) 

Figure 7. (a) The Hall coefficient distribution on location in the periodic table for elemental metals 
at room temperature. Data are taken from [7,34,35]. (b) The free RM electron density neff, and their 
drift mobility μdrift and Hall mobility 𝜇ୌ (absolute values) as a function of temperature for copper. 

The magnetic flux density during the Hall coefficient measurement was in the 
range (0.5-1.3) T. As can be seen from Figure 7a, the Hall coefficient for different ele-
mental metals has different signs, i.e., in different elemental metals prevail in electron-
ic-type or hole-type charge carriers. 

The general expressions for conductivity and the Hall coefficient for two types of 
free charge carriers (electrons and holes) can be described as [12,36]: 

 = ୣ + ୦,        (32) 𝑅ୌଶ = ோౄ౛೐మାோౄ౞౞మ
మ = ౄ౛౛ାౄ౞౞

మ .     (33) 
Here, the relation 𝑅ୌୣ,୦ୣ,୦ = ୌୣ,୦ is fulfilled for each type of charge carrier. The 

total density of DOS obtained from the electronic heat capacity results is equal to 𝑔୲୭୲ୟ୪(𝐸ி)=𝑔ୣ୪(𝐸ி) + 𝑔୦୭୪ୣ(𝐸ி), where 𝑔ୣ୪(𝐸ி) and 𝑔୦୭୪ୣ(𝐸ி) are the DOS components 
caused by electron-like and hole-like DOS at the Fermi surface, respectively. The electri-
cal conductivity, the electronic heat capacity, and the thermal noise measurements [37] 
show that they do not depend on the quasi-particle origin (electron or hole); all these 
particles move randomly with the Fermi velocity. 

Considering that the Fermi energy for a given elemental metal is the same for free 
RM electrons and for free RM holes, this means that the average velocity 𝑣ி and the 
average relaxation time 𝜏ி at the Fermi surface are the same for all free RM charge car-
riers. Then, the absolute value of the drift mobility for each type of free RM charge carri-
er can be expressed as 

ୣ,୦ ୢ୰୧୤୲ = ୢ୰୧୤୲ = ௤஽௞் = ௤௩ూమూଷ௞் .      (34) 
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From this expression, it can be seen that for elemental metals the drift mobility of 
free RM charge carriers does not depend on the effective mass of the charge carrier, and 
changes with temperature as 1/T2, because 𝜏ி~1/𝑇. Therefore, the absolute value of the 
Hall mobility for free RM charge carriers can be expressed as 

ு௘,௛ = ୌ = 𝑅ு௘,௛௘,௛ = 𝑞ி/m.     (35) 
The Hall mobility is determined by the relaxation time and is independent of the 

energy of free charge carriers. An illustration of the effective density of free RM elec-
trons, and their absolute values of the drift and Hall mobility as a function of tempera-
ture for copper, is shown in Figure 7b. 

At temperatures higher than room temperature, the free RM electron density in-
creases with temperature as ~T, and the drift mobility decreases as ~1/T2, causing the re-
sistivity to increase with temperature as ~T. As can be seen from Figure 7b, the absolute 
value of the drift mobility in copper at cryogenic temperatures exceeds the Hall mobility 
by three orders. 

It follows from Equations (27) and (35) that the Hall mobility for a single type of free 
charge carriers can also be expressed as ୌ = ୢ୰୧୤୲/. The absolute values of the Hall 
mobilities of the free RM charge carriers of elemental metals’ distribution in the periodic 
table are shown in Figure 8a at room temperature. The Hall mobility values are distrib-
uted in the range 10–70 cm2/Vs. The highest Hall mobilities have Ag, Be, and Au, and the 
lowest ones have La, Sc, Y, and V. The absolute values of the drift mobilities of free RM 
charge carriers of the elemental metal distribution in the periodic table are shown in 
Figure 8b at room temperature. The drift mobility values for different elemental metals 
are distributed in a very wide range, from 30 cm2/Vs to 104 cm2/Vs, and this causes the 
very wide distribution of the conductivity values of elemental metals. The highest values 
of drift mobility have Ag, Be, Au, and Cu, and the lowest ones have Sc, Y, La, and V. 

  
(a) (b) 

Figure 8. (a) The absolute value of the Hall mobilities for a single type of free RM charge carrier of 
elemental metal distribution in the periodic table at room temperature; (b) the absolute value of the 
drift mobilities for a single type of free RM charge carriers of elemental metal distribution in the 
periodic table at room temperature. 

Since metals have electrons and holes, free RM charge carrier densities neff and peff 
can be expressed as follows: 𝑛ୣ୤୤ = 𝑔ୣ୪(𝐸୊)𝑘𝑇,        (36) 𝑝ୣ୤୤ = 𝑔୦୭୪ୣ(𝐸୊)𝑘𝑇,       (37) 
then, taking into account Equations (34) – (37), Equations (32) and (33) can be rewritten 
as 

 = 𝑞𝑛ୣ୤୤ୢ୰୧୤୲ + 𝑞𝑝ୣ୤୤ୢ୰୧୤୲ = 𝑞ௗ௥௜௙௧𝑔୲୭୲ୟ୪(𝐸ி)𝑘𝑇,   (38) 𝑅ୌଶ = 𝑅ୌଵ ቂ1 − 2 ௚౛ౢ(ாಷ)௚౪౥౪౗ౢ(ாಷ)ቃ = 𝑅ୌଵ,     (39) 
where gtotal (EF)=gel (EF)+ghole (EF), and RH1=3/[2qgtoal (EF)EF] is the Hall coefficient in the case 
of only a single type of randomly moving charge carriers in the sample, and 
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 = ோಹమோಹభ = 1 − 2 ௚౛ౢ(ாಷ)௚౪౥౪౗ౢ(ாಷ)      (40) 
is the quantity that plays the role of compensation in Hall voltages caused by electrons 
and holes in the Hall effect measurement. Thus, from the Hall coefficient RH2 data of 
metals (Figure 7a) and Equation (31) for RH1, it is possible to determine the compensation 
quantity η and the relative parts of electron-like or hole-like densities of states at the 
Fermi surface. The relative electron-like and hole-like DOS parts are shown in Figure 9a 
and Figure 9b, respectively. 

  
(a) (b) 

Figure 9. (a) Relative electron-like DOS part at the Fermi surface distribution in the periodic table of 
elemental metals; (b) relative hole-like DOS part at the Fermi surface distribution in the periodic 
table of elemental metals. The relative hole-like DOS part is determined as 
ghole(EF)/gtotal(EF)=1-gel(EF)/gtotal(EF). 

From Figures 9a and 9b, it can be seen that electronic-like DOS at the Fermi surface 
prevails for alkali metals, Ca, and Co. On the other hand, the hole-like DOS at the Fermi 
surface prevails for Be, Cr, and Ru. 

The measurement results of the Hall coefficient show that its value depends on the 
magnetic field strength [38]. Figure 10a shows the Hall coefficient RH2 dependence of the 
magnetic field strength for aluminum, where the parameter of the magnetic field strength 
is expressed by the cyclotron frequency ௖ = (𝑞𝐵/𝑚), where B is the magnetic flux den-
sity and τ is the charge carrier mean free flight time. It can be seen that at low magnetic 
field strengths (௖ ≪ 0.1) the Hall coefficient is negative and electrons are the dominant 
free charge carriers, but with a high magnetic field ௖ ≫ 10 the Hall coefficient is posi-
tive and holes are the dominant free charge carrier. 

  
(a) (b) 

Figure 10. (a) The dependence of the Hall coefficient on ௖ = (𝑞𝐵/𝑚) for aluminum (prepared 
with respect to data from [37]); (b) the dependences of the electron-like gel(EF) and hole-like ghole(EF) 
DOS on the magnetic field for aluminum. 
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This means that the Fermi surface nonuniformity is affected by the magnetic field 
due to changes in the energy derivative 𝜕ଶ𝐸/𝜕𝑘ଶ at the Fermi surface. It causes the re-
distribution between electron-like and hole-like DOS at the Fermi surface. 

Thus, the measurement of the Hall coefficient does not give the total density of the 
electrons in the conduction band, either at low or at high magnetic field strengths. Using 
Equations (31) and (39), and g(EF) for Al, we have estimated the electron-like and 
hole-like DOS dependences on the magnetic field strength, which are shown in Figure 
10b. It can be seen that these DOS densities are strongly dependent on the magnetic field 
strength, and that there is no relationship with the total electron density in the conduc-
tion band. 

Equation (39) also allows us to explain the Hall mobility and the Hall coefficient 
measurement results in the normal state superconductor Yba2Cu3 O7-δ [39,40]. 

5. Magnetic Susceptibility of Free RM Electrons 
The magnetic susceptibility  is defined as 

 = ୰ୣ୪ − 1,       (41) 
where ୰ୣ୪ = /଴ is the relative permeability, and ଴ = 4⋅10ି଻H/m= 1.25710ି଺Vs/Am is the magnetic constant. The magnetization of the material is given by  𝑀 = (𝐵/𝐻) − 𝐻 = 𝐵/଴,      (42) 
where B is the magnetic flux density and H is the magnetic field strength. Thus, the elec-
tron behaves as a two-state system with energies of 𝐸௜ = ୆𝐵 (where ஻ = 𝑞ℏ/2𝑚 is 
the Bohr magneton), and the single electron partition function is given by 𝑍(1) = 𝑒ా஻/௞் + 𝑒ିా஻/௞் = 2cosh (୆𝐵/𝑘𝑇).    (43) 

The partition function for n free electrons per unit volume is 𝑍(𝑛) = [𝑍(1)]௡ = [2cosh (୆𝐵/𝑘𝑇)]௡.     (44) 
Then, the free energy F of the system is equal to [41]: 𝐹 = −𝑘𝑇ln𝑍(𝑛) = −𝑛𝑘𝑇ln[2cosh (஻𝐵/𝑘𝑇)].    (45) 
The total magnetic moment M of the n free electron system can be obtained by cal-

culating the derivative: 𝑀 = −(𝜕𝐹/𝜕𝐵)் = 𝑛୆tanh (୆𝐵/𝑘𝑇).     (46) 
For a small magnetic field (୆𝐵/𝑘𝑇) << 1, the paramagnetic susceptibility is 

୮ୟ୰ = బெ஻ = ௡మా௞் ,       (47) 
The conduction band electrons can be expected to make a Curie-type paramagnetic 

contribution to the magnetization of the metal [9,42]: 𝑀 = ଴𝑛୆ଶ 𝐵/𝑘𝑇.       (48) 
This formula is valid for free electrons. Considering the observed data of the M of 

the elemental non-ferromagnetic metals, the magnetization is almost independent of 
temperature, and it has been concluded that the Curie-type law is not valid for free elec-
trons in metals. However, this erroneous conclusion has been reached by considering 
that all valence electrons are free, but only RM electrons are free, whose density is equal 
to 𝑛ୣ୤୤=g (𝐸୊)𝑘𝑇. Therefore, the Curie-type law is fulfilled if the real density of the free 
RM electrons is taken into account. Then, the paramagnetic susceptibility of the free RM 
electrons for non-ferromagnetic metals is given by 

୮ୟ୰ = బ௡౛౜౜మా௞் = ଴୆ଶ 𝑔(𝐸୊)     (49) 
It is known that when electrons are freely moving in a magnetic field, in addition to 

the paramagnetic effect of their spin, they exhibit a diamagnetic effect due to their mo-
tion. In accordance with Lenz′s law this yields a magnetic field that is the opposite to the 
direction of an applied magnetic field. Considering that the rotational energy of the free 
randomly moving electron in a perpendicular magnetic field is 𝐸୰୭୲ = ℏ௖ = ℏ𝑞𝐵/𝑚, 
where ௖ is the electron cyclotron frequency, one can write an analogous expression for 
the electron partition function, taking into account the electron spin (1/2):  𝑍(1) = 𝑒ℏ௤஻/ଶ௠ + 𝑒ିℏ௤஻/ଶ௠ = 𝑒ా஻/௞் + 𝑒ିా஻/௞் = 2cosh (୆𝐵/𝑘𝑇).  (50) 



Metals 2023, 13, 1551 12 of 15 
 

 

Then, the diamagnetic susceptibility, taking into account the diamagnetic effect 
yielding a magnetic field opposed to the direction of the applied magnetic field, can be 
expressed as 

ୢ୧ୟ = − బ௡౛౜౜మా௞் = − ଵଷ଴୆ଶ 𝑔(𝐸୊),     (51) 
because the effective density of free RM electrons in the plane perpendicular to the 
magnetic field is equal to 𝑛ୣ୤୤ = (1/3) 𝑔(𝐸୊)𝑘𝑇. The absolute value of Landau diamag-
netism is thus equal to one-third that of Pauli paramagnetism in the free-electron model 
[9,42]. Therefore, it produces diamagnetic susceptibility: 

ୢ୧ୟ = − ଵଷ଴୆ଶ 𝑔(𝐸ி) = − ଵଷ ୮ୟ୰.     (52) 
Then, the resulting magnetic susceptibility of free RM electrons for 

non-ferromagnetic metals is equal to: 
୰ୣୱ = ଶଷ଴୆ଶ 𝑔(𝐸ி).       (53) 

Though the magnetic susceptibility of free RM electrons is proportional to the DOS 
at the Fermi surface (Equation (53)), as for the electronic heat capacity, it cannot be used 
as a suitable quantity for evaluating the DOS at the Fermi surface because the magnetic 
susceptibility measurement results also depend on the susceptibilities of the neutral at-
oms and ions (Figure 11). 

 
Figure 11. Magnetic susceptibility dependence on the DOS at the Fermi surface for 
non-ferromagnetic metals: the points are the experimental data from [35], the dashed curve χres is 
calculated with Equation (53), and the curve χres1 = (1/7)χres is plotted as an average value. 

In addition, diamagnetism is also present in all atoms and molecules, and in gases 
of atoms and molecules that do not carry permanent magnetic moments. This leads to an 
additional diamagnetism of the ions, comparable to the Landau diamagnetism. There 
are therefore three temperature-independent contributions to the magnetic susceptibility 
of non-ferromagnetic metals: the free electron Pauli paramagnetism, the Landau dia-
magnetism, and the diamagnetism of the metal ions. 

Therefore, the free RM electron model allows a very simple explanation of the dia-
magnetism and paramagnetism of non-ferromagnetic elemental metals. 

6. Plasma Frequency of the Free RM Electrons in Elemental Metals 
A.C. conductivity σ(ω) is usually presented in the following form [5]: 

() = ଵି௝ழவ ,       (54) 
and the relative permittivity at ω<τ> >> 1 as 

௥ = 1 − ೛మ
(ା௝ழவ)1 − ೛మ

మ ,     (55) 
where  

௣ଶ= 
బழவ ,        (56) 
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where ωp is the free electron oscillation plasma frequency. Taking into account Equation 
(28) for the d.c. conductivity, the plasma frequency for elemental metals can be described 
as: 

௣ଶ = ௤మ
బ௠∗ 𝑛௘௙௙=𝑞ଶ𝑔(𝐸ி)𝑣ிଶ/(3଴),    (57) 

It can be seen that the plasma frequency does not depend on the temperature. The 
dependence of the plasma frequency 𝑓௣ = ௣/2 on the DOS g(EF) at the Fermi surface 
for elemental metals is shown in Figure 12a. It can be seen that there is no correlation 
between plasma frequency and DOS at the Fermi surface for different metals. 

The dependence of the plasma frequency on the effective free electron scattering 
cross-section of elemental metals is shown in Figure 12b. This figure shows that the dis-
persion of the results in Figure 12a is due to the different free electron scattering 
cross-sections of different metals. 

  
(a) (b) 

Figure 12. (a) The dependence of the plasma frequency fp on the DOS g(EF) for elemental metals; (b) 
the dependence of the plasma frequency on the free electron effective scattering cross-section for 
elemental metals (Figure 5a). 

7. Conclusions 
A study of the main transport characteristics of the free electrons on the basis of the 

stochastic definition of the effective density of free RM electrons in elemental metals is 
presented. It is shown that thermal vibrations of the lattice atoms play a different role 
than has been explained in many publications: the thermal vibrations of the atom not 
only excite the free RM electrons, but also produce the same number of electronic defects 
(weakly shielded ions). The temperature dependence of the resistivity over a very wide 
temperature range is explained by the scattering of free RM electrons by the electronic 
defects accounting for the thermal energy exchange between the phonon and the free 
RM electron. The Hall coefficient of metals is explained by using electron-like and 
hole-like densities of states at the Fermi surface. The definition of the density of the free 
RM electrons allows a very simple explanation of the paramagnetism and diamagnetism 
of the free RM electron. It is shown that different values of the plasma frequency are 
caused by different values of the effective scattering cross-sections of different elemental 
metals. 
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