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Simple Summary: Cryopreservation of ovarian tissue and transplantation are the only available
fertility techniques to preserve fertility and endocrine function for prepubertal girls with cancer
who require immediate cancer treatment. The primary objective of this systematic review was to
identify and critically appraise the existing evidence regarding targeted minimal infiltrative disease
detection in harvested ovarian tissues and identify markers that may be of value for assessment
before autotransplantation, thereby facilitating fertility restoration in childhood cancer survivors.
While the majority of malignancies were found to be at low risk of containing malignant cells in
ovarian tissue, more studies are needed to ensure safe implementation of future fertility restoration
in clinical practice.

Abstract: Background: Ovarian tissue cryopreservation and transplantation are the only available
fertility techniques for prepubertal girls with cancer. Though autotransplantation carries a risk of
reintroducing malignant cells, it can be avoided by identifying minimal infiltrative disease (MID)
within ovarian tissue. Methods: A broad search for peer-reviewed articles in the PubMed database
was conducted in accordance with PRISMA guidelines up to March 2023. Search terms included
‘minimal residual disease’, ‘cryopreservation’, ‘ovarian’, ‘cancer’ and synonyms. Results: Out of
542 identified records, 17 were included. Ovarian tissues of at least 115 girls were evaluated and
categorized as: hematological malignancies (n = 56; 48.7%), solid tumors (n = 42; 36.5%) and tumors of
the central nervous system (n = 17; 14.8%). In ovarian tissue of 25 patients (21.7%), MID was detected
using RT-qPCR, FISH or multicolor flow cytometry: 16 of them (64%) being ALL (IgH rearrangements
with/without TRG, BCL-ABL1, EA2-PBX1, TEL-AML1 fusion transcripts), 3 (12%) Ewing sarcoma
(EWS-FLI1 fusion transcript, EWSR1 rearrangements), 3 (12%) CML (BCR-ABL1 fusion transcript,
FLT3) and 3 (12%) AML (leukemia-associated immunophenotypes, BCR-ABL1 fusion transcript)
patients. Conclusion: While the majority of malignancies were found to have a low risk of containing
malignant cells in ovarian tissue, further studies are needed to ensure safe implementation of future
fertility restoration in clinical practice.

Keywords: fertility restoration; ovarian tissue; cryopreservation; cancer survivors; pediatric patients;
minimal infiltrative disease; minimally residual disease
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1. Introduction

Substantial improvements in childhood cancer treatment, as well as enhanced strat-
ification and refinement of supportive care, have resulted in a five-year survival rate of
over 80% in high-income countries [1]. Hence, substantial growth in the childhood cancer
survivor population is currently observed, which urges attention toward treatment-related
late sequelae. Impaired fertility is one of the relevant long-term adverse effects of pediatric
cancer treatment, which is mainly caused by gonadotoxic chemotherapy and/or radiother-
apy. Alkylating agents are especially notorious for gonadotoxicity and can lead to delayed
puberty, premature menopause, and ovarian insufficiency due to a substantial decrease in
the follicle pool [2]. Nowadays, fertility issues among young cancer survivors are gaining
increasing attention. The involvement of a multidisciplinary fertility specialist team is
crucial to ensure a timely assessment of the gonadal damage risk and a proper fertility
preservation decision process to improve the quality of life in remission [3].

Cryopreservation of ovarian tissue (OT) is one of the options to preserve fertility in
prepubertal and adolescent female patients who require immediate cancer treatment [3].
To preserve follicles, ovarian tissue cryopreservation (OTC) is the only option since ovarian
stimulation cannot be performed. OTC provides the opportunity to store ovarian tissue
and to autotransplant it once the patient is disease-free and has a child-wish. According
to recent data, 1019 OTC procedures have been performed in children and young adults
with cancer (0–20.4 years), of whom 298 were younger than 13 years. Eighteen of them
received an ovarian tissue (OT) transplant in adulthood, resulting in eleven pregnancies,
of which nine resulted in a live birth [4,5]. In addition, hormonal function restoration was
observed in 17 (94%) patients who had undergone OT transplantation [5]. In 2018, it was
shown that 95% of 318 women who had OT transplantation worldwide had successful long-
term restoration of ovarian and endocrine functions as adults [6]. Currently, alternatives
to OT transplantation are being developed, such as in vitro activation and/or ex vivo
growth and maturation of primordial follicles [7,8], construction of artificial ovaries [9]
or developing oocytes from stem cells [10,11]. Unfortunately, the biological principles of
follicular development are still not fully understood [8]. To give rise to high-quality oocytes,
OT freezing should ideally be performed before treatment [12].

An important concern of OTC is the risk of reintroducing malignant cells that may be
harbored within the OT [13–15]. Methods of identification of minimal infiltrative disease
(MID) in cryopreserved OT are of crucial importance to prevent iatrogenic transplantation
of cancer cells and subsequent relapse [6]. MID in cryopreserved OT can be identified
using (a combination of) histology, immunohistochemistry (IHC) and currently available
molecular technologies. Subsequently, purging strategies for residual cells in intact OT
are being developed [16–19]. All of which aim to eliminate the risk of autotransplanting
residual cancer cells.

This systematic review was pursued as part of The Twinning in Research and Educa-
tion to Improve Survival in Childhood Solid Tumours in Lithuania (TREL) project, which
is an EU Horizon 2020-funded project that aims to improve various aspects of childhood
cancer care, including quality of survivorship, by the twinning of researchers from different
institutions. We aimed to answer the following questions:

• Which targets are currently being used to screen for MID in cryopreserved OTs of
pediatric patients?

• Which techniques were used for MID detection in OT in the relevant subgroups and
may be used for assessment of the graft before autotransplantation?

2. Materials and Methods

This systematic review was conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (www.prisma-
statement.org/ (accessed on 18 July 2023)).

www.prisma-statement.org/
www.prisma-statement.org/
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2.1. Search Strategy

Using the PubMed database, a broad search for peer-reviewed articles was carried out
in February 2022 and updated on 7 March 2023. In this search, terms including ‘minimal
residual disease’, ‘cryopreservation’, ‘ovarian’ and ‘cancer’ and their synonyms were
used (Table A1). Papers addressing the presence or absence of malignant cells in human
OT harvested for cryopreservation were included, as were all papers describing human–
animal and human–human ovarian transplantation after malignant disease. The selection
and filtering of relevant articles were performed by two independent authors (M.G. and
M.E.M.v.d.P.) using the systematic review web application Rayyan (http://rayyan.qcri.org
(accessed on 6 February 2022)) [20] (Figure 1). The reference list of identified articles was
also screened to identify additional important articles.

1 
 

 
Figure 1. Flow diagram of the study selection process. The total number of full-text articles screened
was 195; 17 of them were included in the systematic review and 178 were excluded. Assembled
according to PRISMA guidelines [21].

2.2. Selection Criteria

For both aims, the inclusion and exclusion criteria can be found in Table A2. Briefly,
all articles in English with fully available text on cryopreserved OT of female childhood
(<18 years) cancer patients which included assessments of potential biomarkers for cancer
cells in OT were included in this systematic review.

Excluded articles described adults or pediatric male patients, research solely including
cancer cell lines or markers measured only in the origin tissue of the cancer, blood or serum,
reviews, comments and guidelines.

2.3. Data Extraction

The information extracted from every identified article included the author and year
of publication, study type, number and characteristics of patients (cancer diagnosis, age at
the cryopreservation, received cancer treatment before OTC), MID markers and methods
used to detect them and outcomes—presence/absence of MID.

http://rayyan.qcri.org
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2.4. Quality of Evidence Assessment

Two authors (M.G. and M.E.M.v.d.P.) evaluated the methodological quality of the
included studies using the Quality in Prognosis Studies (QUIPS) tool criteria indepen-
dently [22] and evaluated the overall quality of evidence in every study using the GRADE
criteria (Table S1) [23]. The following six domains of the QUIPS tool were used: (1) study
participation; (2) study attrition; (3) prognostic factor measurement; (4) outcome measure-
ment; (5) study confounding; and (6) statistical analysis and reporting. Each domain was
assessed as having a low, moderate or high risk of bias and subsequently an overall risk of
bias was established. The most important domains for our systematic review were study
participation, prognostic factor measurement, outcome measurement and study confound-
ing since we aimed to evaluate which markers and methods can be used to detect MID
in OT. The most important influential confounders for detection of MID included cancer
treatment before OTC, no availability of original tumor material or markers and survival or
disease recurrence. Disagreement between the authors was resolved by consensus.

3. Results

A total of 515 hits were identified in the PubMed database and 14 additional articles
were included from studies’ references or were recommended (Figure 1). The updated
search on 7 March 2023 revealed 27 new hits. After the removal of duplicates and screening
of titles and abstracts, 358 articles were excluded. Based on title–abstract screening, a
full-text screen was performed on 195 articles and 17 articles dated from 2010–2022 were
included in the qualitative synthesis.

The studies were grouped into three categories: (1) solid tumors including EWS, rhab-
domyosarcoma, osteosarcoma, synovial sarcoma and clear cell sarcoma (n = 7); (2) hema-
tological malignancies including acute lymphoblastic leukemia (ALL), acute myeloid
leukemia (AML), chronic myeloid leukemia (CML), juvenile myelomonocytic leukemia
(JMML) and Burkitt’s lymphoma (n = 8); (3) tumors of the central nervous system (CNS)
and brain tumors including astrocytoma, ependymoma, germinoma, glioblastoma, medul-
loblastoma and primitive neuroectodermal tumors (n = 2). No studies describing patients
with Wilms tumors, hepatoblastomas, retinoblastomas or Hodgkin lymphomas were iden-
tified. Evaluation of the articles is shown in Tables 1–3 and S2. The markers and methods
described in the included articles are presented in Tables 1–3. In this systematic review,
ovarian tissue from 115 to 122 girls (some studies recorded the age of patients in a range
that included patients older than 18 years) was reported to be analyzed by histology, IHC,
several types of polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH)
or multicolor flow cytometry (MFC). For 62 of the patients, additionally, OT was xenotrans-
planted in immunodeficient mice and evaluated for MID using histology, IHC, PCR or
MFC methods [16,24–29]. The main cryopreservation technique used was slow freezing
(used for 87 patients, 5 of them had additionally snap frozen OT pieces, while for the others
the used technique was not reported). The risk of bias in most studies was moderate to
high and was based primarily on study participation, inconsequent use of the methods to
detect MID and insufficiently taking possible confounders into account. The overall quality
of evidence was very low, primarily due to the study type (case reports and retrospective
studies) and low number of participants.
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Table 1. Summary studies on minimal infiltrative disease in cryopreserved ovarian tissue of girls with solid tumors.

Ref. Study Type Pt (n) Type of Cancer
Markers and Methods (1–5) Detected by

Methods
(1–5)

Positive
Patients, n (%)

Potential Bias Overall
Bias

Histology (1) IHC (2) FISH (3) PCR $ (4) Xeno (5) SB AB MB DB SC SA*

[30] Retrospective
study 7 Ewing sarcoma n = 6 CD99

n = 6 - EWS-FLI 1 FT
n = 5 - 4 method4:

1/5 (20%)

1 
 

 
  

 

2 

 
  

 

2 

 
  

 

2 

 
  

 

3 

 
  

 

2 

 
  

 

2 

 
  

[31] Retrospective
study 5 Ewing sarcoma n = 5 - EWSR1

n = 5
EWS-FLI 1 FT

n = 5 - ND -

1 
 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

2 

 
  

[32] Case report ‡ 1 Ewing sarcoma - - - EWS-FLI 1 FT
n = 1 - ND -

1 
 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

1 
 

 
  

[15] Case reports 2 Ewing sarcoma - CD99
n = 2

EWSR1
n = 2 - - 2, 3

method2:
2/2 (100%)
method3:

2/2 (100%)

1 
 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

1 
 

 
  

[24] Retrospective
study 9

Ewing sarcoma,
synovial sarcoma,

osteosarcoma
n = 9 - - EWS-FLI 1 FT

n = 6 n = 9 ND -

1 
 

 
  

 

3 

 
  

 

2 

 
  

 

2 

 
  

 

3 

 
  

 

2 

 
  

 

2 

 
  

[33] Retrospective
study 2–9 † Ewing sarcoma,

osteosarcoma n = 5 CD99
n = 2 - EWS-ERG FT

n = 2 - ND -

1 
 

 
  

1 
 

 
  

1 
 

 
  

1 
 

 
  

 

2 

 
  

1 
 

 
  

1 
 

 
  

[34] Retrospective
study 16

Ewing sarcoma,
PNET, clear cell

sarcoma, synovial
sarcoma,

rhabdomyosarcoma

n = 16

CD99, MDM2,
myogenin,

S100, MyoD 1,
melanoma

cocktail
n = 16

-

EWS-FLI 1, EWS-ERG,
PAX3-FOXO1,

PAX7-FOXO1, SYT-SSX,
EWS-ATF1 FTs,
MyoD1 n = 12

- ND -

1 
 

 
  

 

3 

 
  

 

2 

 
  

 

2 

 
  

 

2 

 
  

 

3 

 
  

 

2 
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Table 1. Cont.

Grade assessment
Study design Low Retrospective cohort studies in 5/7; case reports in 2/7

Study limitations −2 Important limitations: SB high in 7/7; AB low in 5/7, moderate in 1/7, high in 1/7; MB is low in 3/7, moderate in 3/7, high in 1/7; DB is low in 3/7, moderate in 3/7, high in 1/7; SC is low
in 5/7, moderate in 2/7; SA is low in 4/7, moderate in 2/7, high in 1/7

Consistency 0 Little inconsistency: 6/7 (1/6 studies detected MID) studies used PCR and 4/7 IHC (1/4 studies detected MID) to detect MID; FISH detected MID in 1/2, and markers used were mostly the
same across all the studies for a specific method)

Directness −1 Though results are direct, population and outcomes cannot be generalized
Precision −1 Low number of patients
Publication bias 0 Unlikely
Effect size 0 NA
Dose–response 0 NA
Plausible confounding +1 Treatment as plausible confounder may seriously influence the effect

Quality of evidence

 

4 

⊕⊖⊖⊖  Very low

Conclusion Detection of MID in ovarian tissues from solid tumor patients is unlikely despite various attempts to identify it but the results cannot be generalized (7 studies, 42–49 † participants)
 

3 

 
  

= low risk of bias;

 

2 

 
  

= moderate risk of bias;

1 
 

 
  

= high risk of bias;

 

4 

⊕⊖⊖⊖  = very low quality of evidence. AB = attrition bias (the study data available (i.e., participants
not lost to follow up) adequately represent the study sample), DB = detection bias (the outcome of interest is measured in a similar way for all participants), FISH = fluorescence in
situ hybridization, FT = fusion transcript, IHC = immunohistochemistry, L = low risk, M = moderate risk, MB = measurement bias (the prognostic factor is measured in a similar
way for all participants), ND = not detected, OT = ovarian tissue, OTC = ovarian tissue cryopreservation, PCR = polymerase chain reaction, PNET = primitive neuroectodermal
tumor, Pt = patients, SA* = no statistical analysis performed, all primary outcomes are reported, SB = selection bias (the study sample adequately represents the population of interest),
SC = study confounding (important potential confounding factors are appropriately accounted for), Xeno = xenotransplantation (and evaluation after). ‘$’ includes all types of PCR: PCR,
RT-PCR, quantitative RT-PCR, digital droplet RT-PCR, nested PCR; ‘-’ means the method was not used in the specific study; † OS: n = 7 (mean age 15, range 13–18 y) EW: n = 4 (mean 19,
range 17–21 y), it is unclear how many patients were <18 years; ‡ letter to the editor about a case report.
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3.1. Solid Tumors

Seven studies investigated MID in different solid tumors such as Ewing sarcoma,
primitive neuroectodermal tumor (PNET), osteosarcoma, rhabdomyosarcoma, synovial
sarcoma and clear cell sarcoma. In total, the OT of at least 42 patients with a mean age at
the time of cryopreservation of 12.2 ± 3.6 years (median 13 years, range 1–17 years) was
analyzed. Eleven patients had metastatic disease, twenty-four had localized disease and
seven patients did not have metastasis status reported. Thirty patients had their OT frozen
using slow freezing technique, five additionally had their OT snap frozen, while for twelve
patients the used technique was not specified. EWS was the most common malignancy
(27 out of 42 patients). The primary tumor or blood was used as a positive control to find
MID markers in the OT, if possible. Histology, IHC, reverse transcription quantitative
PCR (RT-qPCR), FISH and xenotransplantation were used for MID detection (Table 1). In
summary, in 3 OT samples from 27 (11%) EWS patients, an infiltration of cancer cells was
found while infiltrations were absent in the OT samples of patients with other solid tumors
(n = 15). Twenty-nine patients had OTC performed before treatment initiation, ten after
treatment initiation and for three patients it was not reported.

Ewing sarcoma—OTs of at least 27 pediatric EWS patients were analyzed and in 3 pa-
tients cancer cells were found by immunostaining or molecular testing (Table 1). Two out of
three MID-positive patients did not have distant metastasis at the time of OTC reported [15]
and for the third one the disease spread was not mentioned [30]. Seven of the twenty-four
MID-negative patients had metastatic disease, for six patients it was not described and eleven
patients had localized disease. Positive identification of MID included CD99-positive tumor
islets, EWS-FLI1 fusion transcript and EWSR1 rearrangements detected by IHC, RT-qPCR
and FISH analysis, accordingly. Histological evaluation or xenotransplantation did not detect
infiltration of malignant cells. Interestingly, in peripheral blood of one EWS patient the result
was positive for fusion transcript though OT evaluation showed the absence of MID [30].

PNET (Ewing family)—OTs of three patients with localized PNET of the Ewing family
were found to be negative for MID [34]. OTs were analyzed by histology, IHC or RT-qPCR
using CD99 and NSE or EWS-FLI1, accordingly.

Osteosarcoma—In OTs from osteosarcoma (OS) patients (n = 2–7 (girls were presented
in an age range including patients >18 years; precise number is not known)), only histology
was used to check for MID and no malignant cells were found [24,33]. Two patients were
reported to have metastatic disease.

Soft tissue sarcomas—Malignant cells were absent in all ten patients, though two had
metastatic disease (both deceased) and one had recurrence [34]. Detection of MID for rhab-
domyosarcoma included myogenins, MyoD1 and PAX-FOXO1 fusion transcript, for syn-
ovial sarcoma—Bcl-2 protein and SYT-SSX fusion transcript, for clear cell sarcoma—S100
and melanoma cocktail and EWS-ATF1 fusion transcript by IHC and RT-qPCR [34]. Histo-
logical evaluation after xenotransplantation showed no MID infiltration [24].

3.2. Hematological Malignancies

Eight studies performed MID analysis in OT in different hematological malignancies
including ALL, AML, CML, JMML and Burkitt’s lymphoma. In total, 56 harvested OTs were
analyzed from patients with a mean age at the time of cryopreservation of 10.4 ± 5.0 years
(median 13 years, range 1–17 years). All patients except one (not reported) had their
OTs frozen using the slow freezing technique, in addition, 5 of those patients had their
OT frozen by snap freezing technique as well. Bone marrow or a blood sample from
each patient was used as a positive control and analyzed to find specific markers for
MID detection, if possible (Table 2). Methods included histology, IHC, RT-PCR, MFC
or xenotransplantation into immunodeficient mice. In summary, in 22 out of 56 (39%)
analyzed patients, the infiltration of malignant cells was found. The OTC was performed at
various time points, 10 patients showed positive MID before chemotherapy and 12 after the
initiation of the treatment, while 15 out of 34 MID-negative patients had OTC performed
before chemotherapy and 19 after having initiated the treatment.
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Table 2. Summary studies on minimal infiltrative disease in cryopreserved ovarian tissue of girls with hematological malignancies.

Ref. Study Type Pt
(n)

Type of
Cancer

Markers and Methods (1–5) Detected by
Methods (1–5)

Positive
Patients, n (%)

Potential Bias Overall
Bias

Histology (1) IHC (2) PCR $ (3) Xeno (4) MFC (5) SB AB MB DB SC SA*

[35] Case report 1 CML n = 1

Glycophorin
A, MPO,

CD34,
CD68,

LCA/DC45,
Factor VIII

n = 1

BCR-ABL FT
n = 1 - - 3 1/1 (100%)

1 
 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

1 
 

 
  

[25] Retrospective
study 8 ALL, AML n = 8 -

ETV6-RUNX1,
BCR-ABL1 FTs,
IGH, TCR, FLT3
rearrangements

n = 6

n = 8 - 1, 3, 4

method1:
1/8 (12.5%)

method3:
5/6 (83%)
method4:
2/8 (25%)

1 
 

 
  

 

3 

 
  

 

2 

 
  

 

2 

 
  

 

2 

 
  

 

3 

 
  

1 
 

 
  

[36] Case report 1 ALL - - BCR-ABL FT
n = 1 - - ND -

1 
 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

1 
 

 
  

[37] Retrospective
study 14 ALL, AML,

CML, JMML n = 14

CD34,
CD10,
CD20,
CD79a,

CD3, TdT,
CD117,

MPO, CD68
n = 14

TEL-AML1,
BCR-ABL b2a2,
BCR-ABL b2a2,

CBFB-MYH11 type
A FTs
n = 5

- - 3 3/5 (60%)

1 
 

 
  

 

3 

 
  

1 
 

 
  

1 
 

 
  

 

2 

 
  

 

3 

 
  

1 
 

 
  

[26] Retrospective
study 8 B-ALL,

T-ALL, AML - - - n = 6

CD19, CD34,
CD10-, negative

for myeloid
markers/CD45,

HLA-DR2, CD10,
CD19, CD22,
CD33/CD19,
CD10, CD22,
CD38/CD45,
CD10, CD19,
CD22, CD34,

HLA-DR2/CD2,
cyCD3, CD5, CD7,
CD10, CD33, CD34,

CD45RA, CD123
n = 8

4, 5

method4:
1/6 (12.5%)

method5:
2/8 (25%)

1 
 

 
  

 

3 

 
  

 

2 

 
  

 

3 

 
  

 

2 

 
  

 

3 

 
  

 

2 
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Table 2. Cont.

Ref. Study Type
Pt
(n)

Type of
Cancer

Markers and Methods (1–5) Detected by
Methods (1–5)

Positive
Patients, n (%)

Potential Bias Overall
Bias

Histology (1) IHC (2) PCR $ (3) Xeno (4) MFC (5) SB AB MB DB SC SA*

[38] Retrospective
study 9

ALL, AML,
Burkitt’s

lymphoma
n = 9 -

E2A-PBX1,
TEL-AML1,
MLL-AF4,

AML1-ETO FTs,
IgK Kde, IgH,
TCRD, TCRB

n = 9

- - 3 2/9 (22%)

1 
 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

2 

 
  

[27] Retrospective
study 10 ALL, CML n = 10 -

BCR-ABL1, Ig
and/or TCR-gama
rearrangements

n = 8

n = 10 - 3, 4

method3:
5/8 (62.5%)
method4:

4/10 (40%)

1 
 

 
  

 

3 

 
  

 

2 

 
  

 

2 

 
  

 

3 

 
  

 

3 

 
  

 

2 

 
  

[16] Retrospective
study 5 ALL n = 5

CD20,
CD79a,

CD3, TdT
n = 5

IgH
rearrangements,

EA2-PBX1 FT n = 4
n = 5 - 3 4/4 (100%)

1 
 

 
  

 

3 

 
  

 

3 

 
  

 

2 

 
  

 

3 

 
  

 

3 

 
  

 

2 

 
  

Grade assessment
Study design Low Retrospective cohort studies in 6/8; case reports in 2/8
Study limitations −1 Some limitations: SB high in 8/8; AB low in 8/8; MB is low in 4/8, moderate in 3/8, high in 1/8; DB is low in 4/8, moderate in 3/8, high in 1/8; SC low in 5/8, moderate in 3/8; SA low in 8/8

Consistency −1 Though MID was detected by PCR in 6/7 studies and by xenotransplantation in 3/4, IHC detected MID in 0/3 and histology in 1/6 studies. The markers analyzed were very different across
the studies

Directness −1 Though results are direct, population and outcomes cannot be generalized
Precision −1 Low number of events
Publication bias 0 Unlikely
Effect size 0 NA
Dose–response 0 NA
Plausible confounding +1 Treatment as plausible confounder may seriously influence the effect

Quality of evidence

 

4 

⊕⊖⊖⊖  Very low

Conclusion Detection of MID in ovarian tissues from the patients of haematological malignancies is moderately likely, despite various attempts to identify it, the results cannot be generalized (8 studies,
56 participants)

 

3 

 
  

= low risk of bias;

 

2 

 
  

= moderate risk of bias;

1 
 

 
  

= high risk of bias;

 

4 

⊕⊖⊖⊖  = very low quality of evidence. AB = attrition bias (the study data available (i.e., participants not lost
to follow up) adequately represent the study sample), ALL = acute lymphoblastic leukemia, AML = acute myeloid leukemia, CML = chronic myeloid leukemia, DB = detection bias (the
outcome of interest is measured in a similar way for all participants), FISH = fluorescence in situ hybridization, FT = fusion transcript, IHC = immunohistochemistry, JMML = juvenile
myelomonocytic leukemia, L = low risk, M = moderate risk, MB = measurement bias (the prognostic factor is measured in a similar way for all participants), MID = minimally infiltrative
disease, MPO = myeloperoxidase, ND = not detected, OT = ovarian tissue, OTC = ovarian tissue cryopreservation, PCR = polymerase chain reaction, Pt = patients, SA* = no statistical
analysis performed, all primary outcomes are reported, SB = selection bias (the study sample adequately represents the population of interest), SC = study confounding (important
potential confounding factors are appropriately accounted for), Xeno = xenotransplantation (and evaluation after). ‘-’ means the method was not used in the specific study; ‘$’ includes
all types of PCR: PCR, RT-PCR, quantitative RT-PCR, digital droplet RT-PCR, nested PCR.
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ALL—OTs of 39 patients were analyzed in 7 studies, and in 16 of them (44%) leukemic
cells were found (Table 2). Eleven out of sixteen MID-positive patients had started
chemotherapy, while others (n = 5) received OTC before the start of the treatment. Fifteen
patients tested negative for MID after starting chemotherapy, while eight patients before
chemotherapy. PCR or RT-PCR were used for targeted immunoglobulin (Ig) gene rear-
rangements alone or in combination with T-cell receptor gamma, ETV6-RUNX1 [25,27],
EA2-PBX1 [16,38], BCR-ABL1 [27] or TEL-AML1 fusion transcript [37,38] detection in MID-
positive OTs. In half of those patients (n = 8), leukemic cells were detected in OTs prior to
and after xenotransplantation as well [16,25,27].

While, in some cases, MID was detectable in OT prior to transplantation into mice,
recovered grafts showed an absence of MID [25,27]. MFC targeting leukemia-associated
immunophenotype (LAIP) did not detect MID in five patients who received chemotherapy
prior to OTC [26]. Immunohistochemistry did not detect any markers in OT of seven
patients, though for one of them RT-PCR was positive [37]. One childhood cancer survivor
had her first autotransplantation in 2017 prior to receiving a negative result of BCR-ALB
transcript in analyzed OT [36].

AML—MID was evaluated using IHC, RT-qPCR, PCR or MFC in OT before and after
xenotransplantation in immunodeficient mice. Specific molecular markers identified MID
in 3 out of 10 analyzed pediatric AML patients using RT-qPCR and MFC [25,26]. Two of
them had started chemotherapy and one did not have treatment prior to OTC. BCR-ABL1
fusion transcript was found in one patient by RT-qPCR in the OT before but not after
long-term xenotransplantation (22 weeks) in immunodeficient mice [25]. MFC by LAIP
resulted in positive MID in ovarian cortical tissue of 2/3 patients (detected LAIPs: CD13,
CD33, CD117, CD65, CD7, HLA DR2, CD34, CD38 or CD13, CD33, CD65, CD117, CD11c)
before but not after xenotransplantation (24 weeks) in immunodeficient mice [26]. For the
remaining 7/10 patients, PCR, RT-qPCR, IHC or xenotransplantation did not show the
presence of cancer cells in OT, though only 1 of them had initiated the treatment before OTC.

CML—MID was analyzed in the OTs of five CML patients in three studies (Table 2).
All had their OTs cryopreserved prior to chemotherapy. Malignant cells were identified
by BCR-ABL fusion transcript using quantitative RT-PCR in three out of five patients
(60%) [35,37]. IHC failed to detect CML cells though RT-PCR was positive. RT-PCR did not
identify infiltration of CML cells in OT prior or after xenotransplantation in the remaining
two patients [27].

JMML—IHC staining of CD3, CD4 and CD68 revealed no MID in OT of one JMML
patient [37]. The patient had no chemotherapy prior to OTC.

Burkitt’s lymphoma—RT-qPCR showed the absence of IgH rearrangements in one
patient, though the patient had started chemotherapy [38].

3.3. Central Nervous System (CNS) Tumors

Two studies (Table 3) reported MID testing in OT of patients diagnosed with astrocy-
toma, ependymoma, germinoma, glioblastoma, medulloblastoma and PNET (primary CNS
localization), with only one case being metastasized disease (a PNET patient). Ovarian
tissues from 17 patients with a mean age at the time of cryopreservation of 8.2 ± 4.7 years
(median 8 years, range 1–17 years) were analyzed. While OTC was performed for all
17 patients before chemotherapy, the slow freezing technique for OTC was reported only
for 2 patients. All OTs analyzed were MID-negative by IHC or RT-ddPCR, with molecular
markers including NSE and GFAP or GFAP and ENO2, or xenotransplantation [28,29].
However, we assume that patients described in [28] are included in a more recent arti-
cle [29]. To avoid duplication of patients, only information on how the OTs were analyzed
was included in Table 3 and Table S2.
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Table 3. Summary studies on minimal infiltrative disease in cryopreserved ovarian tissue of girls with central nervous system tumors.

Ref. Study Type Pt
(n)

Type of Cancer
Markers and Methods (1–5) Detected by

Methods
(1–5)

Positive
Patients, n (%)

Potential Bias Overall
Bias

Histology (1) IHC (2) PCR $ (3) Xeno (4) NGS (5) SB AB MB DB SC SA*

[29] Prospective
study 17

Astrocytoma,
ependymoma,

germinoma,
glioblastomsa,

medulloblastoma,
PNET

n = 17
NSE,

GFAP
n = 17

GFAP, ENO2
n = 14 n = 17 - ND -

1 
 

 
  

 

3 

 
  

 

2 

 
  

 

2 

 
  

 

2 

 
  

 

3 

 
  

 

2 

 
  

[28] Case reports 3 PNET n = 3
NSE,

GFAP
n = 3

GFAP, ENO2
n = 3 n = 3 n = 1 ND -

1 
 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

 

3 

 
  

1 
 

 
  

Grade assessment
Study design Low Prospective cohort study in 1/1 (case report is not incorporated in the body summary of evidence since the same patients are in the prospective study)
Study limitations −1 Some limitations: SB moderate in 1/1; AB low in 1/1; MB is moderate in 1/1; DB is moderate in 1/2; SC moderate in 1/1; SA low in 1/1
Consistency NA Only one study
Directness −1 Though results are direct, population and outcomes cannot be generalized
Precision −1 Low number of patients; only one study
Publication bias 0 Unlikely
Effect size 0 NA
Dose–response 0 NA
Plausible confounding +1 Treatment as plausible confounder may seriously influence the effect

Quality of evidence

 

4 

⊕⊖⊖⊖  Very low

Conclusion Detection of MID in ovarian tissues from central nervous system tumors patients is unlikely despite various attempts to identify it but the results cannot be generalized (1 study,
17 participants)

 

3 

 
  

= low risk of bias;

 

2 

 
  

= moderate risk of bias;

1 
 

 
  

= high risk of bias;

 

4 

⊕⊖⊖⊖  = very low quality of evidence. AB = attrition bias (the study data available (i.e., participants not lost to
follow up) adequately represent the study sample), DB = detection bias (the outcome of interest is measured in a similar way for all participants), FISH = fluorescence in situ hybridization,
IHC = immunohistochemistry, L = low risk, M = moderate risk, MB = measurement bias (the prognostic factor is measured in a similar way for all participants), MID = minimally
infiltrative disease, ND = not detected, OT = ovarian tissue, OTC = ovarian tissue cryopreservation, PCR = polymerase chain reaction, PNET = primitive neuroectodermal tumor,
Pt = patients, SA* = no statistical analysis performed, all primary outcomes are reported, SB = selection bias (the study sample adequately represents the population of interest),
SC = study confounding (important potential confounding factors are appropriately accounted for), Xeno = xenotransplantation (and evaluation after). ‘-’ means the method was not
used in the specific study; ‘$’ includes all types of PCR: PCR, RT-PCR, quantitative RT-PCR, digital droplet RT-PCR, nested PCR.



Cancers 2023, 15, 4199 12 of 26

4. Discussion

In 17 studies, 25 patients tested positive for MID in the OT of at least 115 pediatric
patients diagnosed with solid tumors (Table 1), hematological malignancies (Table 2) and
CNS tumors (Table 3). The most commonly used methods for detection of MID in OT were
histology, IHC and RT-qPCR. For 62 patients, additionally, OTs were xenotransplanted into
immunodeficient mice and reevaluated for MID [16,24–29].

A substantial proportion of the included articles focused on EWS, since EWS treatment
harbors a high risk of infertility due to the high cyclophosphamide equivalent dose score
of the protocols used. Three patients who were identified as being MID-positive had their
OT frozen before starting treatment and two were reported to have a localized disease. All
reported patients with metastatic disease (n = 11) were found to be negative for MID, while
most of them had OTC performed before starting chemotherapy. This is a very important
finding, indicating that the initial stage of the disease in EWS is not a major predictive value
for MID’s presence in cryopreserved OT and suggests that the diagnosis of disseminated
EWS may not preclude offering OTC to the patients. Evaluating possible infiltration in
hematological malignancies is another challenge. Since leukemic cells transported with
blood flow are supposed to be omnipresent, presumably there is a much higher chance
to detect MID prior to the initiation of chemotherapy. On the other hand, leukemic cells
are extremely sensitive to chemotherapy and may start disappearing after initiation of
treatment [39]. However, we observed that 12 out of 22 MID-positive patients had received
chemotherapy prior to OTC and 10 patients had not. In summary, 71 patients had their OTs
cryopreserved before treatment and 41 after treatment initiation. Though the moment when
the OT was obtained—prior to the initiation of chemotherapy or during the treatment—is
important, this confirms that treatment status is not the only confounder in the detection
of MID.

Though CNS tumors have a 0.5–18% capacity to metastasize [29], to date only one
case of a pediatric brain tumor with ovarian involvement has been reported [40] which
makes metastasis relatively uncommon in children. In our systematic review of 17 CNS
tumor patients, we identified that 100% of OT fragments were free of cancer cells, even
in those who had experienced relapse or died during the treatment later, suggesting that
CNS tumors may carry a low risk of ovarian infiltration [28], though larger-scale studies
are needed.

The presence of malignant cells in OT is the subject of ongoing research and there
are no widely established detection methods due to limited availability of ovarian tissue
for analysis. Some general methods include conventional histology and IHC, however,
their sensitivity and power are low with a detection limit of 1% or more tumor cells [41].
Targeted molecular-genetic approaches such as PCR or RT-qPCR with sensitivity of 10−3 to
10−6 seem to be better applicable and even broader and deeper screening methods such
as RT-ddPCR or next generation sequencing with sensitivity of <10−5 to 10−6 are getting
to the front lines in MID detection [42]. To achieve even higher sensitivity, sometimes
methods are used in combination, however, it should be based on the disease context and
sample availability while collaborating with experts to obtain the best detection power.
Future studies to develop and validate the methods for MID are necessary to optimize
methods and to enable required sensitivity. In addition, xenotransplantation of OT into
immunodeficient animals may be used as a preclinical method to predict relapse [43]. How-
ever, xenotransplantation is a time-consuming method and the most important question
is how results can be implemented in clinical care. Previous ex vivo experiments have
shown that transplanted cryopreserved OT fragments in immunodeficient mice can vanish
or decrease in size, thereby complicating analysis of MID [26–28]. It has also been reported
that transplantation of a small number of cells may be insufficient to cause the disease,
which means that the detected MID with highly sensitive methods might not have any
clinical relevance, though a positive result should not be ignored [44,45]. Similar observa-
tions by other scientists were made when OTC was performed after induction of treatment
or after achieving complete remission [45,46]. However, chemotherapy may not exclude
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malignant cells completely and the risk of them harboring within OT remains [26,27]. It
has also been suggested that exploration by histology [24], blood blast count [25] or MCF
and PCR-verified infiltrations into distant organs, such as bone marrow, spleen or lymph
nodes [26], of xenotransplanted animals may be useful. MFC seems to be a very promising,
adaptable technique for searching specific markers in leukemia patients, and it has already
been used by some research groups on OT [47], testicular tissue [44], bone marrow or
peripheral blood as a predictive tool of clinical outcome [48,49] with sensitivity of 10−3 to
10−4 [42].

This systematic review uncovered gaps of knowledge: no studies have been reported
on ovarian involvement in children with renal tumors, hepatoblastomas, retinoblastomas
or Hodgkin lymphomas (Table 4). These cancers carry specific molecular (driving) markers
that can be used as candidates to identify MID [50]. In addition, the OTs of OS patients
have not been tested using specific markers for MID detection or sensitive methods [24,33].
However, there was an attempt to identify molecular markers by FISH or RT-PCR in
OS patients but without any success [34] and only later a valuable candidate RB1 as a
prognostic factor was proposed [51]. Additionally, Dolmans et al. (2016) [34] claim that
if no specific tumor markers are found, xenotransplantation into immunodeficient mice
should be used for the detection of malignant cells before any reimplantation. The absence
of specific markers at the time of diagnosis for some cancers underscores the importance
of a comprehensive analysis of primary tumor tissues or finding new ways of detecting
markers. Moreover, this systematic review indicated that the most used freezing technique
for OTC was slow freezing. Only one study by Chaput et al., in 2019 [31], compared the
impact on RNA yield after freezing OTs by slow freezing and snap freezing techniques. No
differences between the two methods that could potentially have influenced MID detection
by molecular methods were described/found.

Table 4. Reported MID in harvested ovarian tissue involvement in cancer patients. MID—minimal
infiltrative disease.

Incidence Rate Types of Cancer in Adults Types of Cancer in Children

High risk
>11%

Leukemia, Burkitt’s lymphoma,
neuroblastoma

Ewing sarcoma, acute lymphoblastic leukemia,
acute myeloid leukemia, chronic myeloid

leukemia

Moderate risk
0.2–11%

Cervical adenocarcinoma, breast cancer
(infiltrating lobular subtype, stage IV), Ewing’s

sarcoma, non-Hodgkin
lymphoma, colon cancer

Low risk
<0.2% Remaining malignancies

Osteosarcoma, rhabdomyosarcoma, synovial
sarcoma, clear cell sarcoma, Burkitt’s

lymphoma, juvenile myelomonocytic leukemia,
central nervous system tumors

Classification of MID incidence in adults is from [52]; suggestion of classification of MID incidence rates in
pediatric patients is according to the findings of this systematic review.

4.1. Strengths and Limitations

To our knowledge, this is the first systematic review on MID in cryopreserved OT of
pediatric oncology patients that includes published markers and detection methods used
for screening. We summarized 17 selected articles that we considered to be representative
of the current state of the field. However, due to variations in techniques for detection,
MID markers, metastasis status (in cases of solid and CNS tumors) and time of OTC (prior,
during, after the treatment) and low sample sizes (ranging from 1 to 17 patients) in the
studies, a meta-analysis was not feasible.
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4.2. Implications for Clinical Practice and Research

Two recent reviews described the current status of strategies to safely use cryopre-
served OT for fertility restoration in adult [53,54] and prepubertal (<12 years) [54] oncologi-
cal patients, including in vitro maturation, construction of an artificial ovary, maturation of
oocytes, stem cell-based oogenesis and purging. The reviews conclude that in pediatric
oncology these methods are all still experimental procedures and require substantial ad-
ditional research before clinical application. As OTC and subsequent OT transplantation
remain the only option for fertility restoration for girls with cancer, this highlights the
need for precise MID detection in OT. While encouraging results have been published for
young girls with sarcomas and CNS malignancies, we can never exclude the possibility
of the harboring of malignant cells within ovarian tissue. Table 5 shows proposed and
potential markers and techniques to detect MID according to the markers used in ovarian
tissue but also those used for disease detection and/or those of prognostic value. Although
some of the proposed and potential markers are usually found in the original tumor tissue
and less likely to be found in MID due to the small amount of DNA, with the newest
methods such as NGS, even the smallest alterations could be found after careful accuracy
and reliability validation. NGS panels after identification of disease-specific targets may
be the best approach for MID detection. In this way, it would be possible to reach deeper
sequencing coverage, use data streamlining and provide the best personalized medicine
approach to the patients [55].
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Table 5. Proposed and potential markers with techniques to detect minimal infiltrative disease in cryopreserved ovarian tissue of girls with specific malignancies.

Malignancy Proposed Markers Potential Techniques References

Overall

ABL class abnormalities RT-qPCR [25,27]

NUP98 gene fusion transcripts RT-PCR [56]

WT1 mutations PCR, qPCR [57]

RASSF1A hypermethylation Quantitative MSP [58]

P53 mutations, transcript levels NGS, RNA sequencing [59,60]

Notch aberrations Sequencing [61]

CD19, CD20, CD22 MFC, NGS, RT-qPCR [62]

GD2, B7H3 MFC [63]

Acute lymphoblastic leukemia

Philadelphia chromosome-positive
(Ph+; BCR-ABL1 fusion gene) PCR, RT-PCR [25,36]

(TCF3) E2A fusion genes RT-qPCR;RT-ddPCR [16,38]

CD34, CD10, CD20, CD79a, CD3, TdT IHC [37]

CD19, CD34, CD10-, negative for myeloid markers, CD45,
HLA-DR2, CD10, CD19, CD22, CD33, CD38, CD2, cyCD3,
CD5, CD7, CD33, CD45RA, CD123

MFC [26]

Ig(H/K)/TCR targets RT-PCR, RT-ddPCR [16,25,27,38]

RUNX1 (AML1)translocations, fusion genes RT-PCR, FISH, RT-qPCR, PCR [25,37,38,64]

MLL (KMT2A) rearrangements, patient-specific on DNA RT-qPCR, long-distance inverse PCR [38,65]

Intrachromosomal amplification of chromosome 21 (iAMP21) FISH [64]

IKZF1 mutations Sequencing [66]

SIL-TAL1 fusion gene PCR [67]

Asparagine synthetase RT-qPCR [68]

Chronic myeloid leukemia

BCR-ABL fusion gene FISH, RT-PCR, PCR [27,37,69]

MPO, glycophorin A, CD34, CD68, CD117,
LCA/CD45, Factor VIII IHC [35,37]
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Table 5. Cont.

Malignancy Proposed Markers Potential Techniques References

Acute promyelocytic leukemia PML-RARα brc isoforms RT-qPCR, FISH [70]

Acute myeloid leukemia

RUNX1 (AML1) fusion genes RT-PCR, RT-qPCR [38,71,72]

NPM1 mutations RT-qPCR [38]

FLT3fusion transcripts RT-PCR [25]

BCR-ABL1 fusion genes RT-PCR [25]

CD34, CD68, CD117, MPO, CD13, CD4 IHC [37]

CD34, CD33, CD13, CD117, CD38, CD65, CD7,
HLA-DR2, CD11c MFC [26]

CBFB-MYH11 fusion genes PCR, RT-qPCR [37,71]

NUP98 rearrangements RT-qPCR, NGS [56,73]

FUS-ERG fusion gene FISH, PCR, RNA sequencing [74]

KMT2A rearrangements RT-qPCR, FISH, RT-PCR; long-distance inverse PCR [65,75]

RBM15-MKL1 (OTT-MAL) fusion gene/transcript RT-PCR [76]

CEBPA mutations PCR, sequencing [77]

UBTF mutations NGS [78]

Acute myeloid leukemia–Down syndrome GATA1 mutations, patient-specific on DNA Sequencing [79,80]

Anaplastic large cell lymphoma ALK fusion genes, NPM1 mutations RT-PCR, FISH, immunofluorescence [78,81]

Juvenile myelomonocytic leukemia CD3, CD4, CD68 IHC [37]

Lymphoma (Hodgkin and non-Hodgkin)

Immunoglobulin (Ig) or T-cell receptor (TCR)
gene rearrangements

RT-qPCR [38]

Multiplex PCR [82]

9p24 amplification/JAK2 DNA copy number analysis, RT-qPCR [83]

14q11/TRA/D FISH [84]
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Table 5. Cont.

Malignancy Proposed Markers Potential Techniques References

Wilms tumor

WT1, WTX mutations PCR, qPCR [57]

CTNNB1 mutations qPCR [57]

DROSHA/DGCR8 mutations Sequencing (DNA, RNA) [85]

SIX1/SIX2 mutations Sequencing (DNA, RNA) [85]

DICER1 mutations Sequencing (DNA, RNA) [85]

DIS3L2 mutations Sequencing (DNA, RNA) [85]

FBXW7 mutations Chromosome copy number profiling, sequencing [86]

DIS3L2 mutations PCR [87]

TP53 mutations NGS [88]

Clear cell sarcoma of the kidney

BCOR internal tandem duplications RNA sequencing, PCR, IHC, FISH [88,89]

YWHAE-NUTM2 fusion transcript RT-PCR [90]

TCF21 hypermethylation Methylation-based methods,
quantitative pyrosequencing methylation analysis [90,91]

Malignant rhabdoid tumor of the kidney SMARCA4; SMARCB1 IHC, WGS [92,93]

Renal cell carcinoma

TFE3 (Xp11) translocations/fusion transcripts FISH, WGS/NGS, IHC, RNA sequencing [60,88,94,95]

TFEB translocations/fusion transcripts RNA sequencing, FISH, IHC [60,88,95]

ALK rearrangements IHC, FISH, RT-PCR, NGS [96]
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Table 5. Cont.

Malignancy Proposed Markers Potential Techniques References

Neuroblastoma

MYCN amplification/mutations FISH, ddPCR, NGS [88,97]

PHOX2B IHC [98]

TH RT-qPCR, multiplex RT-qPCR [99]

CHRNA3, DBH, GAP43, POSTN, PRRX1 and FMO3 multiplex RT-qPCR [100]

MDM2 RT-qPCR [101]

ATRX mutations WGS, IHC [102]

ALK mutations Sequencing, qPCR [103]

Synovial sarcoma Bcl-2, SYT-SSX fusion gene IHC, RT-qPCR [34]

Clear cell sarcoma

Melanoma cocktail/S100 IHC [34]

EWS-ATF1 fusion gene RT-qPCR [34]

BROC mutations RT-qPCR [104]

YWHAE-NUTM2 fusion transcript RT-qPCR [104]

Ewing Sarcoma

EWS fusion transcripts RT-qPCR [15,24,30–34]

t(X;22) EWS translocations FISH [34,88]

CD99, INI1 IHC [34,88]

Osteosarcoma RB1 deletion IHC, PCR, RT-PCR [51]

Rhabdomyosarcoma

PAX3/7-FOXO1 fusion gene RT-qPCR [34,105]

MYOD1 IHC, RT-qPCR [34,105]

MYOGENIN IHC, RT-qPCR [34,105]

VGLL2 fusion transcripts RT-PCR, RNA sequencing [106]

NTRK fusion transcripts RT-PCR, RNA sequencing [106]

(B)RAF fusion transcripts RT-PCR, RNA sequencing [106]

t(2;13) translocation alveolar RT-PCR [107]

cfRRBS shWGS [108]
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Table 5. Cont.

Malignancy Proposed Markers Potential Techniques References

Medulloblastoma

GFAP/NSE IHC [29]

Alterations in WNT and SHH pathways’ components FISH, sequencing, methylation-based methods and
combinations of them [109]

Astrocytoma CD99/NSE
GFAP IHC, RT-ddPCR [29]

Ependymoma GFAP/NSE
GFAP IHC, RT-ddPCR [29]

Germinoma GFAP/NSE
GFAP IHC, RT-ddPCR [29]

Glioblastoma GFAP/NSE
GFAP IHC, RT-ddPCR [29]

Primitive neuroectodermal tumor GFAP/NSE
GFAP IHC, RT-ddPCR [29]

Germ cell tumors Chromosome 3p gain, miRNA NGS, RT-qPCR [110]

The markers and techniques in bold have been reported for testing in ovarian tissue (results from this review), the markers and techniques not in bold have not yet been described for
detection in ovarian tissue but are used in the diagnostic setting. ddPCR—digital droplet PCR, FISH—fluorescence in situ hybridization, IHC—immunohistochemistry, MFC—multicolor
flow cytometry, MSP—methylation-specific PCR, NGS—next generation sequencing, PCR—polymerase chain reaction, qPCR—quantitative PCR, RNA—ribonucleic acid, RT-PCR—real-
time PCR, RT-qPCR—real-time quantitative PCR, shWGS—shallow WGS, SVS—synovial sarcoma, WGS—whole genome sequencing.
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5. Conclusions

In conclusion, testing OTC harvests for MID is important for individual patients. If a
patient expresses the desire for autotransplantation of harvested OT, it involves a preliminary
MID-based risk assessment depending on their cancer type and molecular markers found
at the diagnosis by an expert team. Applying the most reliable methods, as was shown in
this systematic review, such as RT-qPCR, FISH or MFC, for determining the absence of MID,
or alternatively, in the case of existing MID, purifying the OT from malignant cells to ensure
oncologically safe future fertility restoration, is important for the clinical implementation of
autotransplantation of cryopreserved OT material in girls with cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15174199/s1, Table S1: GRADE criteria adapted for the
systematic review for detection of minimal infiltrative disease in cryopreserved pediatric ovarian
tissue; Table S2: Evidence tables of articles included in the systematic review [15,16,24–38].
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Appendix A

Table A1. Script with keywords and synonyms used for article identification in PubMed database.

Script

(((((((((((((((((((((((((((((((((((((((minimal residual disease*[Title/Abstract]) OR (MRD[Title/Abstract])) OR (measurable
residual disease*[Title/Abstract])) OR (residual tumor*[Title/Abstract])) OR (residual tumour*[Title/Abstract])) OR
(residual minimal disease*[Title/Abstract])) OR (residual disease*[Title/Abstract])) OR (contaminat*[Title/Abstract])) OR
(infiltrat*[Title/Abstract])) OR (detect*[Title/Abstract])) OR (molecular residual disease*[Title/Abstract]))) OR
(aberration*[Title/Abstract])) OR (fusion transcript*[Title/Abstract])) OR (gene fusion*[Title/Abstract])) OR
(translocation*[Title/Abstract])) OR (tumor-specific transcript*[Title/Abstract])) OR (PAX3[Title/Abstract])) OR
(PHOX2B[Title/Abstract])) OR (CRMP1[Title/Abstract])) OR (GAP43[Title/Abstract])) OR (ISL1[Title/Abstract])) OR
(PAX3- FKHR[Title/Abstract])) OR (PAX7-FKHR[Title/Abstract])) OR (FKHR[Title/Abstract])) OR (PAX7[Title/Abstract]))
OR (FOXO1[Title/Abstract])) OR (RASSF1A[Title/Abstract])) OR (CTNNB1[Title/Abstract])) OR (onfFN[Title/Abstract]))
OR (EWS-FLI1[Title/Abstract])) OR (EWSR1[Title/Abstract])) OR (FLI1[Title/Abstract])) OR (ETV1[Title/Abstract])) OR
(ETV6[Title/Abstract])) OR (CHOP[Title/Abstract])) OR (GADD153[Title/Abstract])) OR (ATF1[Title/Abstract])) AND
((((((((((((((((((cancer*[Title/Abstract]) OR (cancer cell*[Title/Abstract]) OR (tumor*[Title/Abstract])) OR
(tumour*[Title/Abstract])) OR (malignan*[Title/Abstract])) OR (neoplasm*[Title/Abstract])) OR
(carcinoma*[Title/Abstract])) OR (oncolog*[Title/Abstract])) OR (sarcoma*[Title/Abstract])) OR
(blastoma*[Title/Abstract]))) OR (osteosarcoma*[Title/Abstract])) OR (neuroblastoma*[Title/Abstract])) OR
(rhabdomyosarcoma*[Title/Abstract])) OR (nephroblastoma*[Title/Abstract])) OR (retinoblastoma*[Title/Abstract])) OR
(hepatoblastoma*[Title/Abstract])) OR (Wilms*[Title/Abstract])) OR (ewing[Title/Abstract]))) AND
(((((ovarian[Title/Abstract]) OR (ovary[Title/Abstract])) OR (ovaries[Title/Abstract])) OR (gonad*[Title/Abstract])) AND
((((((cryopresev*[Title/Abstract]) OR (frozen[Title/Abstract])) OR (freeze[Title/Abstract])) OR (harvest*[Title/Abstract]))
OR (frozen-thawed[Title/Abstract])) OR (thawed[Title/Abstract])))
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Table A2. Study inclusion and exclusion criteria.

Inclusion Exclusion

• Articles in English
• Articles on female childhood cancer

patients
• Articles on cryopreserved ovarian tissue
• Articles on markers of metastasized

cancer to ovarian tissue
• Articles published any time
• Case reports, case series, original research,

communications

• Articles not in English
• Articles on male cancer patients
• Articles on cryopreserved

oocytes/embryos or other fertility
preservation methods

• Markers measured only serum or blood
• Only cell lines
• Reviews, systematic reviews, literature

reviews, narrative reviews, comments,
guidelines

• A full text is not available
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