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Abstract: Immunological principles can be used to build a sustainable investment portfolio. The
theory of immunology states that information about recognized pathogens is stored in the memory of
the immune system. Information about previous illnesses can be helpful when the pathogen re-enters
the body. Real-time analysis of 11 automated financial trading datasets confirmed this phenomenon
in financial time series. Therefore, in order to increase the sustainability of the portfolio, we propose
to train the portfolio with the most similar segments of historical data. The segment size and offset
may vary depending on the data set and time.

Keywords: dynamic data; high dimensionality; portfolio management; sustainable investment
strategies; nature-inspired computing

1. Introduction

Important features of the modern world are constant changes taking place in economy,
climate, finance and the need to process a huge amount of chaotic information. Automated
financial trading is an excellent example of this. Here, we confront large-scale problems
where thousands of traders use a variety of trading strategies.

When dealing with sustainability in financial trading, the main aim is “how to provide
the opportunity for complex systems to be almost always reliable and survivable during its
overall life cycle” [1]. A large number of different “improvements” were proposed to fulfil
the portfolio designers’ dreams. Authors in their literature review [2] on sustainability,
indicated that a general portfolio setting followed selection criteria and the company’s
strategies, which are usually based on management elements, e.g., time, cost, risk, quality,
etc., leaving the sustainability variables behind. The following are a couple of examples.
Zinovev, P. A., and Ismagilov proposed to use the Fuzzy forecasting technique, and ref. [3]
suggested a sustainable collaboration of alliance of diverse portfolios. Furthermore, ref. [4]
concluded that two main criteria should be used as parameters for quantifying portfolio
sustainability: portfolio return and portfolio risk, with preference towards risk [5] using
long-term memory (LSTM) networks [6] that are ideal for learning classification, time series
processing and prediction problems, where important events are separated by indefinite
time and boundary time intervals.

Due to the increasing complexity and non-convexity of financial engineering problems,
biologically inspired heuristic algorithms gained considerable importance, especially in the
area of financial decision optimization [7]. The use of artificial immune systems (AIS) is one
of the heuristic algorithms [8]. An important procedure of AIS, called “negative selection“,
is widely used in modern intrusion detection algorithms. This algorithm started to be used
to speed up the calculation components of financial portfolios [9].

The immune system (IS) of vertebrates has a memory that stores information about the
structure of previous pathogens (viruses, bacteria, etc.). Information about this structure
enables the body to produce antibodies (molecules that interact with pathogens and help
destroy them). As soon as antigens (invaders) appear, they are quickly destroyed (secondary
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immune response). Thus, the information stored in the immune memory about previously
encountered antigens can be very useful [1]. Figure 1a, frequently used in immunology
literature, shows that the secondary immune response is much stronger than the primary
one. We see a small reaction of the immune system if the antigen appears for the first
time. If the antigen appears a second time, the reaction is much stronger. This increases
survivability and makes the population more sustainable.
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Figure 1. (a)—A schematic diagram of immune responses, (b)—secondary responses in automated
financial trading systems (data D1), black—original data, blue—after transformations (Fast Fourier
transform and data clustering, more details in Section 2).

Long-term sustainability is related to the concept of durability. Therefore, when we
investigate sustainability issues, we must examine long time series of multivariate financial
data. We speculate that there may be short sections of data in the long financial history,
which, like a secondary immune target, can be used to calculate the portfolio weights and
improve financial sustainability.

The goal of our article is not to create the best financial portfolio but to explore how
to make better use of available historical data and select the segment of historical data to
build the current portfolio. Hence, the two tasks of the article are as follows:

1. To find a recurrence of similar segments in seemingly chaotic historical data;
2. If we find this similarity, we can use this knowledge to improve the sustainability of

the portfolio.

To the best of our knowledge, this kind of research has not been conducted before, and
this is the scientific novelty of the present article.

Frequent changes in political, economic and financial factors make training sets too
short for portfolio design with high-dimensional data [9,10]. Only a fraction of the most
recent historical financial data can be used to find association rules in portfolio design in
the belief that the most recent trends will persist over the next period of time.

In our previous article [11], we examined long time series of multivariate financial
data and searched for the ‘optimal’ length of training data history. We found that the
optimal length of history training in everyday trading depends on the specifics of the
data and varies over time. An algorithm for the calculation of the length of learning
history was proposed in [11]. We will also look into day-to-day trading where one or more
significant changes in the environment may occur several times a year. Smaller changes
take place every day. In our analysis, we consider extremely high-dimensional financial
data (hundreds of thousands) aimed at creating a 1/N (equally weighted) portfolio. To
have a profitable trade, the history of the j-th investment, rji, profit or loss (usually called
returns) at the i-th point in time (month, day, etc.) is used to determine the proportions
(weights) of investments, wj, j = 1, 2, . . . , N. In the 1/N portfolio, all components of the
portfolio, wj, are equal: wj = 1/Nsimilarity.
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A classical method to calculate the portfolio weights is the “mean/variance quality
criterion” [12,13]. In this approach, the Sharpe ratio is maximized:

SharpeR = mean(P(r))/variance(P(r)). (1)

To calculate the portfolio weights, the mean and covariance matrix from training data,
L N-dimensional training vectors ri (i = 1 2, . . . , L), are to be estimated. The mean-variance
approach is fruitful if the distribution of portfolio returns is Gaussian and the sample
size/dimensionality ratio is large. Very often this ratio is small.

In trading, one deals with assets, stocks, bonds, and commodities. In advanced auto-
mated trading considered in the present paper, the profit and losses (PNL) of automated
trading strategies (TS) are employed [14,15]. In sustainable portfolio management sys-
tems [16,17], one considers a vast variety of heuristically designed trading strategies and
selects a single one or a small number of them capable of obtaining profit during the forth-
coming period. Trading strategies (trading robots) mimic human psychology, knowledge
and expertise. Histories of their outputs can contain useful additional information [16–18].

The number of trading strategies is constantly increasing. Presently, we are faced with
tasks where the number of strategies reaches hundreds of thousands. The portfolio design
schemas based on the mean-variance approach become worthless when the dimensionality
of portfolio inputs exceeds the number of observations by hundreds of times. The selection
accuracy of a small number of the best strategies becomes inexact when the training set
size, L, is small. Hence, in the design, the proper portfolio rule problem, “selection of the
appropriate subset of trading strategies”, becomes of great importance.

In an attempt to find novel solutions, we started examining nature’s information
processing schemas aimed at maintaining sustainable human life. It was immunology
that suggested a good idea. The vertebrate immune system has a memory that stores
information about previous infections. Therefore, following a recurrent infection of the
same type, healing is much faster. As the evolution of the immune system takes half a
billion years, it might be considered to be a very important law of nature. The assessment
of the old data also resembles the rules for making decisions on the nearest neighbor used
in climatology, agriculture [19] and “structural dependence” in behavioral economics [17],
where historians sometimes talk about repeating old historical events. The designers of
an intrusion detection system noticed this innate property of vertebrates and started a
new field of research called artificial immune systems [20,21]. The knowledge of artificial
immune systems has already been applied to speed up the large-scale portfolio selection [9].

In the current article, we analyze the usefulness of historical information that can be
helpful to portfolio design.

This paper is organized as follows. In Section 2, the main objective of the paper is
presented: the necessity to use a lagged interval of historical data to select a profitable
subset of trading systems for portfolio design. Sections 3 and 4 describe the verification of
the lagged training data principle by analyzing 11 financial data sets practically employed
in automated trading. Section 5 concludes the paper.

2. Backward Shift of Training Data

Figure 1b (blue curve No. 2) shows that the secondary immune response [22] can be
observed in real financial trading (details at the end of this Section).

To track the presence of the secondary reaction in financial trading, we analyzed one of
the real multivariate time series of automatic day trading used in previous experiments [11].
The dimension of the data was Ndata = 19,441 trading strategies, and the length of the
data was L = 600 working days (approximately two years). We will name these data
“selection history”. The aim was to assess which section of the selection history could be
most informative to developing an N-dimensional portfolio that should be used for trading
over the last 100 days (501:600). In this experiment, we chose the following dimension of
the portfolio: Nsimilarity = 600 << Ndata. Thus, in this experiment, the selection of the best
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600 trading strategies out of 19,441 becomes an integral part of the portfolio management
process.

To find the most informative segment of the training data, we divided the first 500-
day data into 9 overlapping sections: (1:100), (51:150), . . . , (351:450), (401:500). The
(501:600) working days served as a test set. The length of each section was lsect = 100.
The Nsimilarity/lsect ratio is seen be seen to be very high. Therefore, we followed the recom-
mendations of DeMiguel et al. [23,24]. We built 10 1/N portfolios for all 10 sections. In this
way, we obtained 10 financial portfolios and used them to trade during the 100 test days.
As a result, we obtained 10 Nsimilarity-dimensional return vectors, R1, R2, . . . , R10, later to
be used for finding the most informative segment of the training data.

To see the secondary effect in the resulting return vectors, we looked for similarities
between vector R10 and vectors: R1, R2, . . . , R9. We plotted the distribution of Rj values
relative to R10 values on two-dimensional plots on the screen and also calculated the
correlation coefficients between vectors R10 and Rj (j = 1:9). Figure 1b contains graph 1
showing the dependence of the correlation coefficient on the lag value (in days). The effect
is very small.

Increasing the Specificity of Trading Strategies

A possible reason for the lack of a clear secondary reaction is the low specificity of
trading strategies. To increase specificity, we changed the display of data for available
trading strategies:

1. To reduce the impact of large fluctuations of returns, we used a square root transfor-
mation from the original data.

2. Then, we used a 512-day history to compute the Fast Fourier Transform (FFT) weights.
3. We used principal component analysis to reduce the size of the 512-day history of

each trading strategy to 64.
4. In this 64-dimensional space, we grouped 19, 411 64-dimensional vectors into 100 groups

(clusters). Clustering is of help in accounting for many nonlinearities of multivariate
distributions.

5. To increase the specificity of the new sellers, we generated all possible, Nspecifity = 100
× 99/2 = 4950 pairs from 100 average vectors (sellers1). The mean/variance method
was used to obtain Nspecifity of second-tier sales (sellers2), (see [25] for details).

Blue curve No. 2 in Figure 1b shows the dependence of the correlation, cor, on the
lag for the new 4950-dimensional data. Here we see an obvious link between lagging
and correlations. When a segment of validation data of 100 days follows a segment
of the training data without any breaks, the lag = 100 days. The correlation is even
negative (cor = −0.1). With a lag of 200–350 days, the correlation noticeably increases and
approaches 0.3. Here, we see a “secondary response” that states that correctly shifted
training data segments can be more useful than the most recent ones.

It should be noted that this is just one of the possible procedures designed to reveal
the specificity of the trading strategies discussed in the current article.

3. Analysis of Multitude of Financial Time Series

The presence of a secondary reaction in financial trading data was analyzed above.
The simplest parameter—variation in correlations—confirmed the idea of the secondary
immune response. The analysis of a larger number of real multivariate time series will be
presented below. A more detailed description of the data is provided in Appendix A.

Similar experiments were performed with 13,000-dimensional data D3 and 22,672-
dimensional data D4. In both cases, we observed the presence of the secondary response
in the study of correlations, the Sharpe ratio and portfolio returns. We see, again, that
different lag durations vary. This confirms the assumption that when designing an adaptive
financial portfolio, the most useful lag value should be determined individually for each
time interval.
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Analysis of the Sharpe Ratios

When analyzing correlation, we observed the secondary response effect (Figure 1b).
We are interested in discovering if the secondary response effect is present in the Sharpe
ratios and the portfolio returns.

To this end, we began to analyze the relationship between the portfolio performance
and the lag. To characterize performance, we considered the following: (1) the Sharpe
ratio of the two months sections of the selection history and (2) the 1/N (equally weighted)
portfolio returns.

When speaking about natural immune systems, we emphasized that a high specificity
of antibodies for a particular antigen was a very important factor. Hence, trading systems
should be specific as well, able to trade perfectly even during a very short time period.
Having an extremely large number of trading strategies, we believed them to be quite
specific. Preliminary experiments confirmed this guess. To further increase the specificity of
trading systems, we proposed the following method. We reduced the number of potential
TSs by selecting only those that were effective for at least one two-month period during
the last few years. This method was used in preparing data for the experiment reported
in Section 2. This technique was used in this Section, too. The experimentally evaluated
dependence of the Sharpe ratio values and the sums of the portfolio returns (both measured
during two-month periods) on the lag of the training data segment are presented below
(Figure 2a,b). We used a 26-month length section of 50,356-dimensional data D8 in that
experiment. To increase the specificity of the trading strategies after the pre-selection
procedure, dimensionality was reduced up to Ndata = 29,920. In the experiment, the first
24 months were used to generate 23 two-month length sections used to find the secondary
answer. The last 25 and 26 months were devoted to validation.
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Figure 2. (a)—Two-month Sharpe ratio values as a function of the lag; (b)—portfolio returns as a
function of the lag (data D8).

Both graphs in Figure 2 confirm the presence of the secondary response. The same
effect on data D8 was also observed in the analysis of the correlations. To further examine
these data, we defined the following parameters for D1, D5–D11 pre-screening and selection
procedures to be used to analyze the datasets. Parameters include the length and dimension
of the data chunks that will be used to select and test the best training data—two months
and Nsimilarity = 600; in order to bring the new algorithm closer to practice, the number of
trading systems used to calculate portfolio performance was reduced to nfin = 30.

We used these parameters in the study of the mentioned datasets. For each data set,
we were able to observe the phenomenon of the secondary response. We noticed that in all
datasets, the most favorable lag values depended on the dataset. In addition, the optimal
values could change over time.
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4. Dynamic Lag-Based Portfolio

The ultimate goal of looking for secondary reaction phenomena in financial datasets is
the desire to develop new adaptive sustainable portfolio management techniques that are
immune to sudden changes in economy and the financial environment. The above study
showed that the main parameter here was, without doubt, the size of the lag in the training
data segment.

We have two years of training history. This history is divided into 23 intervals of
2 months, overlapping by 1 month. We use all history to determine the optimal lag. This
optimal lag is used for the next 24th two-month period.

When testing the portfolio design algorithm, we selected the best lag value obtained
during last month’s data. This scheme is a double out-of-sample strategy. Step 1: Data
from 25 and 26 months are used to select similar trading strategies. Step 2: The following
two months, i.e., 27 and 28, serve as a test set for the evaluation of the cumulative sum of
portfolio returns.

Figure 3a represents a variation in the “optimal” lag during a six-year period in the
experiments with data D11.
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Figure 3. Variation of the lag (a) and cumulative portfolio returns (b) as functions of time (data D11).

The two-month period (approximately 42 working days) allowed us to estimate the
Sharpe ratio only approximately. We could see that optimal lag fluctuated too frequently
(see Figure 3a). To reduce the fluctuations, we used smoothing. As a result, we obtained a
moderate gain while calculating cumulative portfolio returns (sums of portfolio returns
obtained during every single one-month shift of the data). We named this method the
adaptive lag smoothing approach.

To be sure about the profitability of the adaptive lag smoothing approach, we per-
formed simulation experiments with 11 real-world data sets, D1, D2, . . . D10 and D11. We
used the method’s parameters obtained while working with data D8. The adaptive lag
approach outperformed the “no-lag” method in the experiments with all data sets, with
the exception of data D6. Gain ratio, the maximum of the cumulative sum of the adaptive
lag approach divided by the maximum of the cumulative sum of the no-lag approach, is
presented in the right-hand column of Table A1. Figures 3b and 4a–c show the cumulative
function of the novel “adaptive smoothed lag Portfolio design scheme” obtained in the
double out-of-samples experiment with data sets D11, D8, D6 and D5.

Figure 3b shows that the cumulative returns curve of the adaptive lag method out-
performs the portfolio design scheme, where the test set follows the training set without
a gap (in such case lag = 2 months). Five years after employing the novel method, a total
gain in portfolio returns is almost four times larger than that when the method with lag = 2
was employed. Despite the use of the double out-of-sample strategy, the above result
is too optimistic. The reason is the over-adaptation to data D8: We considered several
modifications (diverse sets of the parameters) of the novel method and selected the best
modification.
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Figure 4. Variation in cumulative portfolio returns as a function of time for two portfolio design
strategies ((a–c) corresponds to data sets D8, D6 and D5).

The graphs in Figures 3b and 4a,b and Column 6 in Table A1 demonstrate the success
achieved in the experiments with seven data sets. Figure 4c for data D6 shows success
with the no-lag rule. Requests for details of data D6 preparation showed that, this time,
trading strategies were selected in March 2017. It means that the 2011–February 2015
data were used in the training process. This factor spoiled the correct employment of the
out-of-sample method. Therefore, this example is highly instructive.

Following our requirements, the inclusion of trading systems in data sets D1, D5,
D7–D10 was performed until 2011 or 2013. These are earlier dates as compared to those
of the beginning of the out-of-sample experimental tests. Moreover, 127,838-dimensional
data D11 were prepared on 1 April 2017, without a preliminary pre-selection of trading
strategies. It is no wonder the adaptive lag approach outperformed the “no-lag” strategy
(see Figure 3b). On the very right-hand side of Figure 3b, we see a sudden fall in the value
of the “no-lag” strategy (graph “lag = 2”). The analysis of the “adaptive lag” fluctuations
on the right-hand side of Figure 3a can explain the reason for the ineffectiveness of the
“no-lag” strategy.

5. Concluding Remarks

The two objectives of the article were as follows: (1) to find the presence of recurrence
of similar segments in seemingly chaotic historical data; (2) if this similarity is found, can
this knowledge be used to improve the sustainability of the portfolio? To the best of our
knowledge, this kind of research has not been carried out before, and this is the novelty of
our article.

In examining 11 multidimensional financial data sets, we noticed a recurrence of a
similar historical data segment. We showed that by discovering the similarity to the section
of training data, old data could be successfully used to build a new portfolio. It is necessary
to find that section of data. If a similar history of training data was not observed, the
financial portfolio could hardly have improved. This is very similar to the activity of the
human immune system: O = If a person does not have X disease or has not been vaccinated,
his/her resistance to X disease is low.

The goal of our article was not to create the “best” way to build a portfolio. When
experimentally comparing the usefulness of multidimensional financial timeframes for
the future portfolio formation, we merely noted the recurrence of similar situations in a
half-million-year-old vertebrate immune system.

Repetition is a key feature of dynamic systems that can be used to describe the
behaviors of a system in phase space. Recurrence plots [26] with their variations could be
used in future research to determine the most appropriate historical data segment used
to build the portfolio. Our transformation of financial time series using the Fast Fourier
transform and data clustering described in Section 2 of the present paper allowed us to
observe the cluster data structure.

The problem becomes more complicated when we deal with extremely high-dimensional
time series. We are facing this type of difficulty at present. In the future, with the devel-
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opment of new technologies, we are sure to often encounter similar difficulties. In this
article, we solve the automatic financial trading problem, where we can find large arrays of
empirical data.

When considering the evolution of nature, we discovered that at least one problem
of this type had already been solved. It is the vertebrate immune system with almost half
a billion years of evolution. The study of the secondary immune response suggests that
some previous historical evidence may be more informative. It is a serious argument that
cannot be ignored.

A well-designed analysis of 11 real multidimensional financial trade data showed
that the secondary response could be found in the financial time series. To apply this
knowledge, it is necessary to find the most useful segment of historical financial time series
data assigned to portfolio training. The optimal lag value depends on the data; it varies
with time. In some times series, we cannot spot the secondary response effect. In principle,
it is possible to find datasets where secondary response is absent. One should not expect
the analysis of the previous period to be successful. We showed that simple averaging of
success of previous lags could often improve portfolio performance.

The purpose of this article was to draw attention of the scientific community to
the usefulness of the previously carefully selected training data segment in creating the
investment portfolio. A prerequisite is that at least one range of historical data used for
training would be similar to the current one. The fact that the specificity of trading strategies
is high enough is also of great importance. More detailed and comprehensive studies are
necessary in this field. In conclusion, it should be noted that repetition of similar data
segments complicates the task of designing the sustainable portfolio management system,
and these effects should not be ignored in practice.
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Appendix A. Data Description

Data sets. A systematic trading firm that trades in financial markets provided us with
several real-world trading strategy simulation results on historical financial data used in
automated trading. They covered equity indices, money market instruments, energies,
commodities, metals and foreign exchange markets. Trading models were mainly mean
reverting but some trend following systems were used as well. No other types of systems
were used. The dataset covered before-the-2008-crisis and after-crisis periods. The trading
firm told us that some aspects of machine learning were used in their models. similar to
Jonathan models in his paper [27].

The trading strategy can be run in simulated mode using the environment very close
to the real world. During simulation, we can record strategies’ daily simulated profit and
losses and later use them to construct a sustainable portfolio. Every strategy has several
parameters that can be tuned to make strategy profitable. This is performed during the

http://raudys.com/immunology-sustainability-portfolio/
http://raudys.com/immunology-sustainability-portfolio/
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optimization process—typically, genetic optimization is used. During optimization, all the
data or part thereof can be used for parameter tuning—optimization. We always try to split
the data into the sample (IS) and out-of-sample (OoS). There are no set rules on how you
can split the data and we typically use 2015 or 2011 as the start of the OoS period.

Data dimensionality is rather large. This ranges from 10,411 to 127,838 trading strategy
simulations in a dataset list. This is the specificity of a task as the numerical simulations
(factors) are greater than the number of days in the data. This large number of simulations
is obtained by trying different parameters of the strategy and finding the parameter set that
leads to the best profit (or another metric). This is the result of optimization.

Two main trading strategy principles are trend following and mean reversion (Figure A1).
They typically vary depending on how you detect a trend or reversion moment, how long
you hold a position, how much risk is taken, stop loss level and other parameters. Mean
reverting automated trading systems are aimed at profiting from market corrections. Hence,
if the market is up trending too fast and for too long, the model can decide that soon there
will be a correction and short the market. Such models are very dangerous to trade solo, as
the market sometimes exhibits very strong short-term moves. For example, after a sharp
move up, the model may decide that there will be a correction down but the market shoots
up even more and generates a big loss. It is very important for such models to trade in a
portfolio to minimize individual model loss. Such systems can hold the flat position for a
very long time and trade only when there is an opportunity. Due to the uniqueness of such
models, profit and loss time series were very sparse, and 80% of days were non-trading.
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Figure A1. Schematic example of mean reversion (left) and trend following (right).

Short-term trend-following models follow a short-term trend. Such trends typically
last from half a day to two days. When the market is in the whipsaw mode, such strategies
generate a series of small losses. The aim is to profit from trends so much that it would
compensate losses of the whipsaw period. Strategies can be long-short where the position
is flipped between long and short position or one-sided where the strategy goes long or flat.
Some markets work better with the long-short strategy, some with the one-sided strategy.
Each dataset used in our study will be briefly described below. More characteristics are
presented in Table A1.

Datasets used in this study ended in 2017. We were unable to obtain new datasets as
the trading firm changed its trading strategies to new ones. At the same time, COVID-19
also influenced the way it ran its business.

D2—A mix of trend following and mean-reverting strategies.
D3—A mix for various strategies optimized till 2013-01-01.
D4—Mean reversion type strategies optimized on 45 liquid futures, no OOS period.
D5—Only trend following type strategies. The strategies differed from the previously

used ones in the way they detected the beginning of the trend.
D6—Mean reverting models, however, this time we had no OoS period. Consequently,

the results should be slightly better in the OoS tests.
D7—We normalized returns. Some futures we trade can be ten times bigger than

others and the same is case with profit and losses, so we normalized returns to have
approximately similar volatility.

D1, D8 and D9—The mean reversion systems only.
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D10—Mix of mean reversion and short-term trend following systems.
D11—The models were optimized using data until 2011-01-01. We employed mean

reversion models only and did not filter the loss-making strategies from the results, hence,
we have many more strategies.

Table A1. Real-world data considered in the paper.

Length Months Last Month Noriginal NFor Selection Gain Ratio

D1 162 August 2016 60,314 9479 6.25
D2 135 February 2014 10,411 4950 1.10
D3 139 May 2014 13,000 4950 1.68
D4 143 September 2014 22,672 4950 1.33
D5 129 October 2015 15,473 14,719 2.23
D6 169 February 2017 29,049 17,511 0.83
D7 151 January 2016 47,501 19,306 1.13
D8 159 May 2016 50,356 29,920 3.96
D9 162 August 2016 60,314 36,697 4.36
D10 169 February 2017 65,827 17,472 1.42
D11 171 March 2017 127,838 15,913 1.43
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