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Abstract

We consider the one-loop corrections to the Zbb̄ vertex in a CP -conserving left–right model (LRM), viz.
a model with gauge group SU(2)L × SU(2)R × U(1). We allow the gauge coupling constants of SU(2)L
and SU(2)R to be different. The spontaneous symmetry breaking is accomplished only by doublets and/or 
singlets of SU(2)L and SU(2)R . The lightest massive neutral gauge boson of our LRM is assumed to have 
the same Yukawa couplings to bottom-quark pairs as the Z of the Standard Model (SM); this assumption 
has the advantage that, then, the infrared divergences automatically cancel down in the subtraction of the 
Zbb̄ vertex in the SM from the same vertex in the LRM. We effect a proper renormalization of the Zbb̄

vertex and check explicitly both its gauge invariance and the cancellation of all the ultraviolet divergences. 
We find out that a LRM with the above assumptions cannot achieve a better fit to the Zbb̄ vertex than a 
multi-Higgs extension of the SM, viz. both models can only achieve a decent fit when one admits scalar 
particles with very low masses � 50 GeV. This is true even when we allow for markedly different gauge 
coupling constants of SU(2)L and SU(2)R .
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1. Introduction

In the Standard Model (SM), the Zbb̄ interaction is written

LZbb̄ = g

cw

Zμ b̄ γ μ (gLPL + gRPR)b, (1)

where cw is the cosine of the weak mixing angle, PL and PR are the projection operators of 
chirality, and gL and gR are the Zbb̄ couplings. At tree level gL and gR have the values

g
tree,SM
L = s2

w

3
− 1

2
, g

tree,SM
R = s2

w

3
, (2)

respectively, where sw is the sine of the weak mixing angle. With s2
w = 0.22339 [1], Eq. (2) gives 

g
tree,SM
L = −0.42554 and gtree,SM

R = 0.07446. After inclusion of radiative corrections, the SM 
prediction for the couplings is [2]

gSM
L = −0.420875, gSM

R = 0.077362. (3)

In the presence of New Physics (NP), we define δgL and δgR through

δgL = gL − gSM
L , δgR = gR − gSM

R . (4)

Experimentally, gL and gR are obtained from the observable quantities Ab and Rb; their 
precise experimental definitions may be found in Refs. [2–4] and in appendix A of Ref. [5]. One 
has

Ab = 2rb
√

1 − 4μb

1 − 4μb + (1 + 2μb) r2
b

, (5)

where rb = (gL + gR)
/
(gL − gR) and μb = m2

b

(
m2

Z

)/
m2

Z . We use the numerical values 
mb

(
m2

Z

)= 3 GeV and mZ = 91.1876 GeV [1]. Furthermore,

Rb = sb cQCD cQED

sb cQCD cQED + sc + su + ss + sd
, (6)

where cQCD = 0.9953 and cQED = 0.99975 are QCD and QED corrections, respectively,

sb = (1 − 6μb) (gL − gR)2 + (gL + gR)2 , (7)

and sc + su + ss + sd = 1.3184. A recent overall fit of many electroweak observables gives [4]

Rfit
b = 0.21629 ± 0.00066, (8a)

Afit
b = 0.923 ± 0.020. (8b)

On the other hand, Ab has been extracted by measuring the Z-pole forward–backward asym-
metry A0,b

FB at LEP1 and by measuring the left–right forward–backward asymmetry AFB
LR at 

SLAC—for details see Ref. [4] and appendix A of Ref. [5]. The averaged result of those mea-
surements is

A
average
b = 0.901 ± 0.013. (9)

While the Afit
b of Eq. (8b) deviates from the SM prediction ASM

b = 0.9347 by just 0.6σ , the 
A

average
b of Eq. (9) displays a much larger disagreement 2.6σ . The Rfit

b of Eq. (8a) is 0.7σ above 
the SM value RSM = 0.21582 ± 0.00002.
b

2



D. Fontes, D. Jurčiukonis and L. Lavoura Nuclear Physics B 996 (2023) 116373
Table 1
The results of Eqs. (5) and (6) for gL and gR and the corresponding values of δgL

and δgR , extracted through Eqs. (3) and (4). The superscript ‘fit’ corresponds 
to the input values (8) while the superscript ‘average’ corresponds to the input 
values (8a) and (9).

Solution gL gR δgL δgR

1fit −0.420206 0.084172 0.000669 0.006810
2fit −0.419934 −0.082806 0.000941 −0.160168

1average −0.417814 0.095496 0.003061 0.018134
2average −0.417504 −0.094139 0.003371 −0.171501

Fig. 1. Scatter plot of the values of δgL and δgR in the aligned 2HDM. See Ref. [5] for details.

In this work we consider both the set of values (8), which we denote through the superscript 
‘fit’, and the set formed by values (8a) and (9), which we denote through the superscript ‘aver-
age’. Plugging the central values of those two sets into Eqs. (5) and (6), we obtain four different 
solutions for gL and gR—for details see Ref. [5]. Two of those solutions may be discarded by 
both theoretical and experimental arguments [6], while the other two solutions are reasonable; 
they are given in Table 1. Notice that δgR seems to be much larger than δgL.

The two solutions have been studied in the context of the two-Higgs-doublet model (2HDM) 
and three-Higgs-doublet model (3HDM) [5,7]; it has been found that those extensions of the SM 
do not improve significantly the fit of the Zbb̄ vertex relative to the SM—see Fig. 1.

Two decades ago, research has been carried out on the Z → bb̄ decay asymmetry in simplified 
left–right models [8–10]. A model with an additional neutral gauge boson including two Higgs 
doublets, a scalar singlet, and one charged and one neutral vector-like singlets has been studied 
in Ref. [11]. The SM extended by an additional vector boson Z′ has been claimed to provide 
a good fit to A0,b

FB near the Z pole and to Rb measured at energies above that pole [12,13]. 
In Refs. [14,15] it is shown that some natural composite Higgs models with a subgroup of the 
custodial symmetry O(3) are able to solve the A0,b

FB anomaly while reproducing the observed 
Rb . There are also studies of contributions from models with extra dimensions to the process 
Z → bb̄ [16–18], an analysis of Z-pole observables in an effective theory [19], revised QCD 
effects on the Zbb̄ forward–backward asymmetry [20], and a recent explanation [21] of the Zbb̄

forward–backward asymmetry by adding to the SM new heavy-quark multiplets—an SU(2)L
doublet with hypercharge −5/6 and an SU(2)L singlet with hypercharge −1/3.

The discrepancies in Ab may be evidence for NP, but they may also be due to a statistical 
fluctuation or to another experimental effect on one of asymmetries; more precise experiments 
are needed. Hadron colliders may cover the experimental regions of the Zbb̄ couplings of LEP1, 
3
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but with large uncertainties [22]. Lepton colliders of the next generation offer better opportunities 
for further studies of the Zbb̄ vertex, since they could collect a large amount of data around the 
Z pole [23]. Some recent papers [24–27] propose novel methods to probe the Zbb̄ couplings at 
both existing and future colliders.

In this paper we seek to reproduce solution 1 in Table 1 by invoking a version of the left–right 
model (LRM) [28–32], i.e. a model with gauge group SU(2)L ×SU(2)R ×U(1), at the one-loop 
level. (We also comment on the possibility of reproducing that solution at the tree level.) We are 
inspired in this endeavour by the observation that, since δgR appears to be much larger than δgL, 
then maybe a model with right-handed gauge interactions provides a better fit to the Zbb̄ vertex; 
the same rationale was used before in Ref. [10]. The version of the LRM that we use here is 
characterized by the following four features:

• The gauge coupling constants of SU(2)L and SU(2)R are allowed to differ.1,2 This is done 
in order to allow greater flexibility of the LRM in fitting the Zbb̄ vertex.

• The spontaneous symmetry breaking of SU(2)L and SU(2)R is achieved exclusively by 
scalar doublets of those groups, avoiding the triplets that exist in other versions of the LRM.

• We assume CP conservation, both at the Lagrangian level and in the vacuum state.
• The lightest neutral gauge boson couples to the left- and right-handed fermions with exactly 

the same strength as the Z gauge boson of the SM.

While the first feature above complicates our LRM, the other three features simplify it con-
siderably. The fourth feature is very helpful to our computation, because it makes the infrared 
divergences in the Zlbb̄ vertex of the LRM exactly identical to the same divergences in the 
Zbb̄ vertex of the SM; those divergences then disappear when comparing the vertices in the two 
models. That feature should not constitute an unreasonable restriction, because—as discussed 
below—previous studies of (different versions of) the LRM suggest that the mixing of the two 
neutral massive gauge bosons of the LRM should be extremely small anyway.

Another feature of our model is that we only include in it the top and bottom quarks—we 
neglect both all the other quarks and the leptons; we do this because they are inessential for the 
Zbb̄ vertex.

In this paper we carefully work out the renormalization of the vertex, which is non-trivial 
because of the enlarged gauge group. This forces us to be painstaking in the definition of the 
model and, in particular, of all its symmetries. The paper is organized as follows. In Sec. 2 we 
describe the gauge structure of the model. Section 3 deals with the fit of the Zbb̄ vertex in the 
LRM at tree level. Section 4 proceeds with the description of the scalar structure of the model. 
In Sec. 5 we collect all the parameters of the model and outline our procedure for fitting the 
Zbb̄ vertex. Section 6 deals with the one-loop calculation and the renormalization procedure. In 
Sec. 7 we give the practical results of our work. Thereafter, many appendices deal in detail with 
technical issues.

1 This is fully compatible with left–right symmetry at very high energies. Namely, that discrete symmetry, which 
has been called P in Ref. [33] or D in some other papers, may be broken at a very high energy while keeping the 
SU(2)L × SU(2)R × U(1) gauge group intact [33].

2 We do not take into account in this paper the constraints on the LRM derived in Refs. [34,35], since those papers 
assume left–right symmetry, at least in the scalar potential.
4
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2. Description of the model: gauge interactions and quarks

2.1. Gauge coupling constants and covariant derivative

Gauge coupling constants, θw , and α We consider a CP -conserving left–right model (LRM), 
i.e. a model with gauge group SU(2)L × SU(2)R × U(1)X . The gauge coupling constant of 
SU(2)L is g; the gauge coupling constant of SU(2)R is l3; the gauge coupling constant of U(1)X
is h. We define

G ≡ g2, L ≡ l2, H ≡ h2, (10a)

�1 ≡ √
GL + GH + LH, �2 ≡ g

√
L + H, (10b)

cw ≡ �2

�1
, sw ≡ −lh

�1
, cα ≡ gl

�2
, sα ≡ −gh

�2
, (10c)

where cw ≡ cos θw , sw ≡ sin θw , cα ≡ cosα, and sα ≡ sinα. The electromagnetic coupling con-
stant e is given by

e = −glh

�1
, E ≡ e2. (11)

Notice that

Lc2
w − Gs2

w = GL2

�2
1

> 0. (12)

Using the measured value of sw, Eq. (12) produces the lower bound∣∣∣∣ lg
∣∣∣∣> ∣∣∣∣ swcw

∣∣∣∣≈ 0.53. (13)

Covariant derivative The covariant derivative is

Dμ = ∂μ − ig
(
T +

L W+μ + T −
L W−μ

)− il
(
T +

R V +μ + T −
R V −μ

)
+ieAμQ − i

g

cw

Zμ
(
TL3 − Qs2

w

)
− i

l

cα

Xμ
(
TR3 − Ys2

α

)
, (14)

where

• T ±
L and T ±

R are the raising and lowering operators of SU(2)L and SU(2)R , respectively;
• TL3 and TR3 are the third generators of SU(2)L and SU(2)R , respectively;
• Y = TR3 + X is the weak hypercharge and Q = TL3 + Y is the electric charge4;
• Aμ is the photon field, which is the only massless gauge field.

Signs It is clear in Eq. (14) that

• The sign of the field W±μ may be chosen so that g is positive.

3 The left–right-symmetric model assumes l = g. We allow l to be different from g for the sake of generality.
4 X is the quantum number that generates U(1)X . It should not be confused with the gauge field Xμ .
5
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• The sign of the field V ±μ may be chosen so that l is positive.
• The sign of the field Aμ may be chosen so that e is negative.
• The sign of the field Zμ may be chosen so that g

/
cw is positive.

• The sign of the field Xμ may be chosen so that l
/
cα is positive.

Accordingly, from now on we shall assume that g, l, −e, cw, and cα are positive. Equation (10c)
then informs us that �2 and �1 are positive too. Equation (11) tells us that h is positive too. 
Hence, θw and α are both angles of the fourth quadrant in our sign convention.

2.2. Gauge-boson mixing

The fields Zμ and Xμ mix, just as the fields W+
μ and V +

μ . We write(
Zμ

Xμ

)
=
(

cψ −sψ
sψ cψ

)(
Zlμ

Zhμ

)
,

(
W+

μ

V +
μ

)
=
(

cξ sξ

−sξ cξ

)(
W+

lμ

W+
hμ

)
, (15)

where Zlμ and Zhμ are neutral eigenstates of mass with squared masses Ml and Mh, respectively, 
and W+

lμ and W+
hμ are charged eigenstates of mass with squared masses M̄l and M̄h, respectively. 

By definition, Ml < Mh and M̄l < M̄h. We identify Zl as the observed neutral gauge boson with 
mass mZ = √

Ml = 91.1876 GeV and W±
l as the observed charged gauge bosons with mass 

mW =
√

M̄L = 80.378 GeV. In Eqs. (15) cψ ≡ cosψ , sψ ≡ sinψ , cξ ≡ cos ξ , and sξ ≡ sin ξ , 
where ψ and ξ are mixing angles. Note that, if our LRS model had not been assumed to be 
CP -invariant, then the second Eq. (15) would have contained a phase in the mixing matrix. 
Without loss of generality, one may choose the overall sign of 

(
Zlμ, Zhμ

)T in such a way that 
cψ is non-negative5; similarly, we also assume cξ ≥ 0. Equations (15) come about because in the 
Lagrangian there are mass terms

L = · · · + 1

2

(
Zμ Xμ

)
Mn

(
Zμ

Xμ

)
+ (W−

μ V −
μ

)
Mc

(
W+μ

V +μ

)
(16a)

= 1

2

(
Ml ZlμZ

μ
l + Mh ZhμZ

μ
h

)+ M̄l W
−
lμW

μ+
l + M̄h W−

hμW
μ+
h . (16b)

In Eq. (16a) the 2 × 2 matrices Mn and Mc are real and symmetric.

2.3. Quarks

Multiplets In our simplified LRM we only consider the third-generation quarks, viz. the left-
handed tL and bL and the right-handed tR and bR

6; we disconsider both the lepton sector and the 
other two quark generations. Under SU(2)L × SU(2)R × U(1)X ,(

tL
bL

)
→ UL

(
tL
bL

)
eiγ /6,

(
tR
bR

)
→ UR

(
tR
bR

)
eiγ /6. (17)

The quantum numbers of the quark fields are in Table 2.

5 The relative sign of Zlμ and Zhμ is fixed by the requirement that the mixing matrix 
(

cψ −sψ
sψ cψ

)
has positive

determinant.
6 There should be no confusion between the left-handed and right-handed bottom-quark fields—bL and bR , 

respectively—and the scalar field b.
6
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Table 2
The U(1) quantum numbers of the quark fields.

Fields TL3 TR3 X Y = TR3 + X Q = TL3 + Y

tL 1/2 0 1/6 1/6 2/3
bL −1/2 0 1/6 1/6 −1/3
tR 0 1/2 1/6 2/3 2/3
bR 0 −1/2 1/6 −1/3 −1/3

3. Fitting the Zbb̄ coupling at tree level in the LRM

With the covariant derivative in Eq. (14) and since the bottom quark has the quantum numbers 
in Table 2, one has

L = · · · + b̄Lγμ

[
g

cw

Zμ

(
s2
w

3
− 1

2

)
− ls2

α

6cα

Xμ

]
bL

+b̄Rγμ

[
gs2

w

3cw

Zμ + l

cα

Xμ

(
s2
α

3
− 1

2

)]
bR. (18a)

Using both Eq. (10c) and the first Eq. (15), we find the coupling of the b quark to the light neutral 
gauge boson—which we identify as the observed one—written in the form of Eq. (1) as

LZlbb̄ = g

cw

Z
μ
l b̄ γμ

(
g

tree,LRM
L PL + g

tree,LRM
R PR

)
b, (19)

with

g
tree,LRM
L = cψ

(
s2
w

3
− 1

2

)
− sψ

gs2
w

6
√

Lc2
w − Gs2

w

, (20a)

g
tree,LRM
R = cψ

s2
w

3
+ sψ

g√
Lc2

w − Gs2
w

(
s2
w

3
− Lc2

w

2G

)
. (20b)

One sees that, besides the Weinberg angle θw, the two quantities gtree,LRM
L and gtree,LRM

R depend 
on two parameters of the LRM, viz. l/g and ψ . It should be possible to adjust the latter in order 
to reproduce the observed δgL and δgR in either the ‘average’ or ‘fit’ solutions:

δgL =
(

s2
w

3
− 1

2

)
(cosψ − 1) − s2

w

6

(
l2

g2 c2
w − s2

w

)−1/2

sinψ, (21a)

δgR = s2
w

3
(cosψ − 1) +

(
s2
w

3
− l2

g2

c2
w

2

)(
l2

g2 c2
w − s2

w

)−1/2

sinψ. (21b)

The solution to Eqs. (21) is depicted in Fig. 2. In particular, one sees that

l

g
= 1.112, ψ = −0.0144 for the ‘fit’ solution (22)

and
l

g
= 0.929, ψ = −0.0467 for the ‘average’ solution. (23)

Thus, in order to fit the Zbb̄ vertex in the LRM at tree level one needs a mixing angle ψ � −10−2; 
moreover, one should not be very far from the left–right-symmetric case l = g.
7
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Fig. 2. Left panel: a smooth trajectory in the δgR vs. δgL plane connecting the 1fit and 1average points of Table 1. Right 
panel: the same trajectory translated into the l/g vs. ψ plane through solving Eqs. (21). We have used c2

w = m2
W

/
m2

Z
.

It remains to be seen whether values of l/g and ψ like those in the right panel of Fig. 2 are 
compatible with phenomenology. This matter goes beyond the scope of the present work. We just 
refer to the rather old Ref. [36] and the more recent Refs. [37–39]; their authors have investigated 
how large ψ is allowed to be in a left–right-symmetric model (viz. a model with l = g). They all 
conclude that |ψ | � 10−3. It is conceivable that allowing for l/g 	= 1 may give |ψ | some room 
for being larger; but ψ ∼ −0.01 seems far-fetched. One thus concludes that using the LRM at 
tree level for fitting the Zbb̄ vertex does not work. It remains to be seen whether the LRM at 
one-loop level can do a better job; that is the aim of this work. Unfortunately, in order to do 
that job properly one must carefully renormalize the LRM; that forces us to define the model 
completely, including its scalar sector. That is what we do in the next section.

4. Description of the model: scalars

4.1. Multiplets

The scalar multiplets of our LRM consist of an SU(2)L doublet HL, an SU(2)R doublet HR ,7

and a ‘bi-doublet’—i.e., a doublet both of SU(2)L and of SU(2)R—�. Thus,

HL =
(

m

n

)
, HR =

(
p

q

)
, � =

(
b∗ c

−a∗ d

)
, �̃ ≡ τ2�

∗τ2 =
(

d∗ a

−c∗ b

)
, (24)

where m, n, p, q , a, b, c, and d are complex Klein–Gordon fields. The multiplets (24) transform 
under SU(2)L × SU(2)R × U(1)X as

HL → UL HL eiγ /2, HR → UR HR eiγ /2, � → UL � UR
†, �̃ → UL �̃ UR

†, (25)

where UL and UR are the 2 ×2 unitary matrices with determinant 1 representing the SU(2)L and 
SU(2)R transformations, respectively, in the doublet representation. The phase γ is the parameter 
of the U(1)X transformation: both HL and HR have X = 1/2 while � has X = 0. The U(1)

quantum numbers of the scalar fields are given in Table 3.

7 Other left–right models use triplets of SU(2)L and SU(2)R instead of HL and HR .
8
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Table 3
The U(1) quantum numbers of the scalar fields.

Fields TL3 TR3 X Y = TR3 + X Q = TL3 + Y

m 1/2 0 1/2 1/2 1
n −1/2 0 1/2 1/2 0
p 0 1/2 1/2 1 1
q 0 −1/2 1/2 0 0
a, c 1/2 1/2 0 1/2 1
b, d −1/2 1/2 0 1/2 0

4.2. VEVs

The electromagnetism-conserving8 vacuum expectation values (VEVs) are

〈0 |m|0〉 = 〈0 |p|0〉 = 〈0 |a|0〉 = 〈0 |c|0〉 = 0, (26a)

〈0 |n|0〉 = uL, 〈0 |q|0〉 = uR, 〈0 |b|0〉 = v1, 〈0 |d|0〉 = v2. (26b)

Since we assume our model to be CP -conserving, uL, uR , v1, and v2 are taken to be real. 
Without loss of generality, one may choose the signs of the scalar multiplets to set uL, uR , and 
v2 non-negative; only the sign of v1 remains free. We define

UL ≡ u2
L, UR ≡ u2

R, V1 ≡ v2
1, V2 ≡ v2

2 . (27)

One may interchange � and �̃, i.e. one may make a ↔ c and b ↔ d . Thus, from now on we 
shall assume V2 to be larger than V1.

4.3. Mixing of the scalars

Definition of the mixing matrices We expand the neutral-scalar fields about their VEVs as

n = uL + ρL + iηL√
2

, q = uR + ρR + iηR√
2

, b = v1 + ρ1 + iη1√
2

, d = v2 + ρ2 + iη2√
2

,

(28)

where ρL,R,1,2 and ηL,R,1,2 are real Klein–Gordon fields. Because of the assumed CP invari-
ance, the fields ρL,R,1,2 (viz. the scalars) mix among themselves, but they do not mix with the 
fields ηL,R,1,2 (viz. the pseudoscalars). Thus,⎛⎜⎜⎝

ρ1
ρ2
ρL

ρR

⎞⎟⎟⎠= Vρ

⎛⎜⎜⎜⎝
S0

5

S0
6

S0
7

S0
8

⎞⎟⎟⎟⎠ , (29)

where S0
5,6,7,8 are real eigenstates of mass with masses μ5,6,7,8, respectively. The 4 × 4 matrix 

Vρ is real and orthogonal. Analogously to Eq. (29),

8 We assume conservation of electromagnetism by the vacuum state.
9
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⎛⎜⎜⎝
η1
η2
ηL

ηR

⎞⎟⎟⎠= Vη

⎛⎜⎜⎜⎝
G0

l

G0
h

S0
3

S0
4

⎞⎟⎟⎟⎠ , (30)

where G0
l and G0

h are the Goldstone bosons that are ‘eaten’ by Zlμ and Zhμ, respectively, while 
S0

3 and S0
4 are physical pseudoscalars with squared masses Mη1 and Mη2, respectively. The matrix 

Vη is real and orthogonal. Also,⎛⎜⎜⎝
a

c

m

p

⎞⎟⎟⎠= Vϕ

⎛⎜⎜⎜⎝
G+

l

G+
h

H+
3

H+
4

⎞⎟⎟⎟⎠ , (31)

where G+
l and G+

h are Goldstone bosons that are ‘eaten’ by W+
lμ and W+

hμ, respectively, while 
H+

3 and H+
4 are physical charged scalars with squared masses Mϕ1 and Mϕ2, respectively. The 

matrix Vϕ is real and orthogonal because of the assumed CP conservation.

Parameterization of Vρ The parameterization that we use for the matrix Vρ in Eq. (29) is the 
following:

Vρ =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 c3 −s3
0 0 s3 c3

⎞⎟⎟⎠×

⎛⎜⎜⎝
1 0 0 0
0 c2 −s2 0
0 s2 c2 0
0 0 0 1

⎞⎟⎟⎠×

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 c6 s6
0 0 s6 −c6

⎞⎟⎟⎠

×

⎛⎜⎜⎝
c1 s1 0 0
s1 −c1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠×

⎛⎜⎜⎝
1 0 0 0
0 s4 0 c4
0 0 1 0
0 c4 0 −s4

⎞⎟⎟⎠×

⎛⎜⎜⎝
1 0 0 0
0 0 c5 s5
0 0 s5 −c5
0 1 0 0

⎞⎟⎟⎠ , (32)

where ci ≡ cos θi and si ≡ sin θi for i = 1, . . . , 6. In this way one obtains a matrix Vρ with a 
simple first row and a simple first column:

Vρ =

⎛⎜⎜⎝
c1 s1c4 s1s4c5 s1s4s5

s1c2
(
Vρ

)
22

(
Vρ

)
23

(
Vρ

)
24

s1s2c3
(
Vρ

)
32

(
Vρ

)
33

(
Vρ

)
34

s1s2s3
(
Vρ

)
42

(
Vρ

)
43

(
Vρ

)
44

⎞⎟⎟⎠ . (33)

The sign of S0
5 is chosen in such a way that detVρ = +1 is positive. We choose the signs of S0

6 , 
S0

7 , and S0
8 in such a way that c4, c5, and s5 are non-negative.

Goldstone bosons Since the scalar doublets of SU(2)L are(
m

n

)
,

(
a

b

)
, and

(
c

d

)
, (34)

and the scalar doublets of SU(2)R are(
p

q

)
,

(−a

d∗
)

, and

(−c

b∗
)

, (35)
10
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the neutral fields

uLηL + v1η1 + v2η2 and uRηR − v1η1 − v2η2 (36)

are Goldstone bosons. The charged fields

uLm + v1a + v2c and uRp − v2a − v1c (37)

are Goldstone bosons too. Thus, there are two neutral Goldstone bosons and two charged Gold-
stone bosons, and it is a non-trivial problem to find out how they mix to form the states that are 
‘swallowed’ by the neutral gauge bosons Zlμ and Zhμ and by the charged gauge bosons W+

lμ and 
W+

hμ, respectively. This problem is addressed in Appendix A. The results of that appendix may 
be summarized as follows:(

Vη

)
11 = v1

(
cψ�1 − sψL

)
√

2Ml

√
L + H

,
(
Vη

)
12 = v1

(−sψ�1 − cψL
)

√
2Mh

√
L + H

,

(
Vη

)
21 = v2

(
cψ�1 − sψL

)
√

2Ml

√
L + H

,
(
Vη

)
22 = v2

(−sψ�1 − cψL
)

√
2Mh

√
L + H

,

(
Vη

)
31 = uL

(
cψ�1 + sψH

)
√

2Ml

√
L + H

,
(
Vη

)
32 = uL

(−sψ�1 + cψH
)

√
2Mh

√
L + H

,

(
Vη

)
41 = sψ

uR

√
L + H√
2Ml

,
(
Vη

)
42 = cψ

uR

√
L + H√
2Mh

,

(38)

and (
Vϕ

)
11 = cξgv1 + sξ lv2√

2M̄l

,
(
Vϕ

)
12 = sξ gv1 − cξ lv2√

2M̄h

,(
Vϕ

)
21 = cξgv2 + sξ lv1√

2M̄l

,
(
Vϕ

)
22 = sξ gv2 − cξ lv1√

2M̄h

,(
Vϕ

)
31 = cξguL√

2M̄l

,
(
Vϕ

)
32 = sξ guL√

2M̄h

,(
Vϕ

)
41 = −sξ luR√

2M̄l

,
(
Vϕ

)
42 = cξ luR√

2M̄h

.

(39)

The physical pseudoscalars Two orthonormalized linear combinations of the η fields that are 
orthogonal to the Goldstone bosons (36) are

ηa ≡ v2η1 − v1η2√
T1

, ηb ≡ T1 (uLηR + uRηL) + uLuR (v1η1 + v2η2)√
T1

√
T2

, (40)

where

T1 ≡ V1 + V2, T2 ≡ ULUR + T1 (UL + UR) . (41)

Note that 
√

T1 and 
√

T2 are positive—this corresponds to the definition of the signs of ηa and 
ηb . The Lagrangian contains mass terms for the pseudoscalar fields as

L = · · · − 1

2

(
ηa, ηb

)
Mη

(
ηa

ηb

)
, (42)

where Mη is a real 2 × 2 symmetric matrix. This matrix is diagonalized as(
cη −sη
s c

)
Mη

(
cη sη

−s c

)
=
(

Mη1 0
0 M

)
, (43)
η η η η η2

11
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where cη ≡ cosη, sη ≡ sinη, and Mη1 < Mη2. From Eq. (43),(
Mη

)
11 = Mη1c

2
η + Mη2s

2
η, (44a)(

Mη

)
22 = Mη1s

2
η + Mη2c

2
η, (44b)(

Mη

)
12 = (Mη2 − Mη1

)
cηsη. (44c)

Since(
ηa

ηb

)
=
(

cη sη
−sη cη

)(
S0

3
S0

4

)
, (45)

one has(
Vη

)
13 = cη

v2√
T1

− sη
v1uLuR√

T1T2
,
(
Vη

)
14 = sη

v2√
T1

+ cη

v1uLuR√
T1T2

,(
Vη

)
23 = cη

−v1√
T1

− sη
v2uLuR√

T1T2
,
(
Vη

)
24 = sη

−v1√
T1

+ cη

v2uLuR√
T1T2

,

(
Vη

)
33 = sηuR

√
T1

T2
,

(
Vη

)
34 = −cηuR

√
T1

T2
,

(
Vη

)
43 = −sηuL

√
T1

T2
,

(
Vη

)
44 = cηuL

√
T1

T2
.

(46)

In Eq. (45), we choose the sign of 
(
S0

3 , S0
4

)T
in such a way that cη is non-negative.9

The physical charged scalars Two orthonormalized fields that are orthogonal to the charged 
Goldstone bosons (37) are

ϕ+
a ≡ (V1 − V2)m − v1uLa + v2uLc√

K1
, (47a)

ϕ+
b ≡ 2v1v2uLuRm − K1p + v2uR (V1 − V2 − UL)a + v1uR (V2 − V1 − UL)c√

K1
√

K2
, (47b)

where

K1 ≡ (V1 − V2)
2 + (V1 + V2)UL, K2 ≡ ULUR + K1 + (V1 + V2)UR. (48)

In Eqs. (47), the normalization factors 
√

K1 and 
√

K2 are positive—this corresponds to a con-
vention for the signs of ϕ+

a and ϕ+
b . The Lagrangian contains mass terms for the charged-scalar 

fields as

L = · · · − ( ϕ−
a , ϕ−

b

)
Mϕ

(
ϕ+

a

ϕ+
b

)
, (49)

where Mϕ is a real (because our model is CP -conserving) 2 × 2 symmetric matrix. That matrix 
is diagonalized as(

cϕ −sϕ
sϕ cϕ

)
Mϕ

(
cϕ sϕ

−sϕ cϕ

)
=
(

Mϕ1 0
0 Mϕ2

)
, (50)

9 The relative sign of S0
3 and S0

4 is fixed by the condition that the determinant of the mixing matrix 
(

cη sη
−sη cη

)
is 

positive.
12
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where cϕ ≡ cosϕ, sϕ ≡ sinϕ, and Mϕ1 < Mϕ2. It follows from Eqs. (50) that(
Mϕ

)
11 = Mϕ1c

2
ϕ + Mϕ2s

2
ϕ, (51a)(

Mϕ

)
22 = Mϕ1s

2
ϕ + Mϕ2c

2
ϕ, (51b)(

Mϕ

)
12 = (Mϕ2 − Mϕ1

)
cϕsϕ. (51c)

Since(
ϕ+

a

ϕ+
b

)
=
(

cϕ sϕ
−sϕ cϕ

)(
H+

3
H+

4

)
, (52)

one has(
Vϕ

)
13 = −cϕv1uL√

K1
+ sϕv2uR (V2 − V1 + UL)√

K1K2
, (53a)

(
Vϕ

)
23 = cϕv2uL√

K1
+ sϕv1uR (V1 − V2 + UL)√

K1K2
, (53b)

(
Vϕ

)
33 = cϕ (V1 − V2)√

K1
− 2sϕv1v2uLuR√

K1K2
, (53c)

(
Vϕ

)
43 = sϕ

√
K1

K2
, (53d)

(
Vϕ

)
14 = −sϕv1uL√

K1
+ cϕv2uR (V1 − V2 − UL)√

K1K2
, (54a)

(
Vϕ

)
24 = sϕv2uL√

K1
+ cϕv1uR (V2 − V1 − UL)√

K1K2
, (54b)

(
Vϕ

)
34 = sϕ (V1 − V2)√

K1
+ 2cϕv1v2uLuR√

K1K2
, (54c)

(
Vϕ

)
44 = −cϕ

√
K1

K2
. (54d)

In Eq. (52), we choose the sign of 
(
H+

3 , H+
4

)
such that cϕ ≥ 0.10

4.4. Gauge-fixing terms

The terms in the Lagrangian that are bi-linear in either the gauge-boson fields or the scalar 
fields are

L = · · · + 1

2

(
∂μG0

l ∂μG0
l + ∂μG0

h ∂μG0
h + ∂μS0

3 ∂μS0
3 + ∂μS0

4 ∂μS0
4

)
−1

4

(
∂μZlν − ∂νZlμ

) (
∂μZν

l − ∂νZ
μ
l

)
−1

4

(
∂μZhν − ∂νZhμ

) (
∂μZν

h − ∂νZ
μ
h

)
10 The relative sign of H+

3 and H+
4 is not free, since altering it would change the sign of the determinant of the mixing 

matrix 
(

cϕ sϕ
)

.
−sϕ cϕ

13
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−1

4

(
∂μAν − ∂νAμ

) (
∂μAν − ∂νAμ

)
−Mη1

2

(
S0

3

)2 − Mη2

2

(
S0

4

)2 + Ml

2
Zlμ Z

μ
l + Mh

2
Zhμ Z

μ
h

+√Ml Zlμ ∂μG0
l +√Mh Zhμ ∂μG0

h, (55)

and

L = · · · + ∂μG−
l ∂μG+

l + ∂μG−
h ∂μG+

h + ∂μH−
3 ∂μH+

3 + ∂μH−
4 ∂μH+

4

− (∂μW+ν
l

) (
∂μW−

lν

)+ (∂μW+ν
l

)(
∂νW

−
lμ

)
− (∂μW+ν

h

) (
∂μW−

hν

)+ (∂μW+ν
h

)(
∂νW

−
hμ

)
,

−Mϕ1H
−
3 H+

3 − Mϕ2H
−
4 H+

4 + M̄l W
−
lμW

μ+
l + M̄h W−

hμW
μ+
h

+i

(√
M̄l W−

lμ ∂μG+
l +
√

M̄h W−
hμ ∂μG+

h − H.c.

)
(56)

cf. Eq. (A.13). We add to them the gauge-fixing terms11

Lgf,0 = −
(
∂μZ

μ
l − ξl

√
Ml G

0
l

)2
2ξl

−
(
∂μZ

μ
h − ξh

√
Mh G0

h

)2
2ξh

−
(
∂μAμ

)2
2ξA

, (57a)

Lgf,± = −
(
∂μW

+μ
l − iξ̄l

√
M̄l G

+
l

)(
∂νW

−ν
l + iξ̄l

√
M̄l G

−
l

)
ξ̄l

−
(
∂μW

+μ
h − iξ̄h

√
M̄h G+

h

)(
∂νW

+ν
h + iξ̄h

√
M̄h G−

h

)
ξ̄h

. (57b)

4.5. Scalar potential

The scalar potential appears in the Lagrangian as L = · · ·−V and is in our model of the form 
V = VH + V� + VH�, where

VH = μL H
†
LHL + μR H

†
RHR

+λL H
†
LHL H

†
LHL + λR H

†
RHR H

†
RHR + λLR H

†
LHL H

†
RHR, (58a)

V� = μ1 tr
(
�†�
)

+ μ2 tr
(
�̃†� + �†�̃

)
+λ1

[
tr
(
�†�
)]2 + λ2

{[
tr
(
�†�̃
)]2 + H.c.

}
+ λ3

∣∣∣tr(�†�̃
)∣∣∣2

+λ4 tr
(
�†�
)

tr
(
�̃†� + �†�̃

)
, (58b)

VH� = m1

(
H

†
L�HR + H

†
R�†HL

)
+ m2

(
H

†
L�̃HR + H

†
R�̃†HL

)
+λ3L H

†
L��†HL + λ3R H

†
R�†�HR + λ4L H

†
L�̃�̃†HL + λ4R H

†
R�̃†�̃HR

+λ5L H
†
L

(
��̃† + �̃�†

)
HL + λ5R H

†
R

(
�†�̃ + �̃†�

)
HR. (58c)

11 We restrict ourselves to Rξ gauges.
14
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The parameters λL, λR , λLR , λ1, λ2, λ3, λ4, λ3L, λ3R , λ4L, λ4R , λ5L, and λ5R are dimension-
less; the parameters m1 and m2 have mass dimension; the parameters μL, μR , μ1, and μ2 have 
mass-squared dimension. All these parameters are real because of the assumed CP conservation. 
Notice that we have not imposed the parity symmetry HL ↔ HR, � → �†, �̃ → �̃† on V . In 
component fields, V = V(2) + V(3) + V(4), where

V(2) = μL

(
|m|2 + |n|2

)
+ μR

(
|p|2 + |q|2

)
+ μ1

(
|a|2 + |b|2 + |c|2 + |d|2

)
+ 2μ2

(
a∗c + ac∗ + b∗d + bd∗) , (59a)

V(3) = m1
(−a∗n∗p − anp∗ + b∗m∗p + bmp∗ + cm∗q + c∗mq∗ + dn∗q + d∗nq∗)

+ m2
(−c∗n∗p − cnp∗ + d∗m∗p + dmp∗ + am∗q + a∗mq∗ + bn∗q + b∗nq∗) ,

(59b)

V(4) = λL

(
|m|2 + |n|2

)2 + λR

(
|p|2 + |q|2

)2 + λLR

(
|m|2 + |n|2

)(
|p|2 + |q|2

)
+ λ1

(
|a|2 + |b|2 + |c|2 + |d|2

)2

+ 4λ2

(
a2c∗2 + b2d∗2 + 2abc∗d∗ + H.c.

)
+ 4λ3

(
|ac|2 + |bd|2 + adb∗c∗ + a∗d∗bc

)
+ 2λ4

(
|a|2 + |b|2 + |c|2 + |d|2

)(
a∗c + b∗d + ac∗ + bd∗)

+ λ3L

{(
|b|2 + |c|2

)
|m|2 +

(
|a|2 + |d|2

)
|n|2 + 2 Re

[(
cd∗ − ab∗)m∗n

]}
+ λ4L

{(
|b|2 + |c|2

)
|n|2 +

(
|a|2 + |d|2

)
|m|2 − 2 Re

[(
cd∗ − ab∗)m∗n

]}
+ λ5L

(
|m|2 + |n|2

)(
ac∗ + a∗c + bd∗ + b∗d

)
+ λ3R

{(
|a|2 + |b|2

)
|p|2 +

(
|c|2 + |d|2

)
|q|2 + 2 Re

[
(bc − ad)p∗q

]}
+ λ4R

{(
|a|2 + |b|2

)
|q|2 +

(
|c|2 + |d|2

)
|p|2 − 2 Re

[
(bc − ad)p∗q

]}
+ λ5R

(
|p|2 + |q|2

)(
ac∗ + a∗c + bd∗ + b∗d

)
. (59c)

The parameters in V(4) are constrained by the unitarity and bounded-from-below conditions; 
these are worked out in Appendices B and C, respectively. Additional constraints derive from the 
condition that the assumed minimum of the potential is a global, not just local, minimum; they 
are partially given in Appendix D. Still other constraints have to do with the observed couplings 
of the scalar of mass 125 GeV, which we assume to be S0

5 ,12 to pairs of gauge bosons or to quark 
pairs; they are worked out in Appendix E.

12 We do not in general assume, though, S0 to be the lightest scalar.
5
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4.6. Yukawa couplings and quark masses

Yukawa couplings The Yukawa couplings are given by

LYukawa = − ( t̄L, b̄L

)(
y1� + y2�̃

)(
tR
bR

)
+ H.c. (60a)

= − (y1b
∗ + y2d

∗) t̄LtR − (y1c + y2a) t̄LbR

+ (y1a
∗ + y2c

∗) b̄LtR − (y1d + y2b) b̄LbR + H.c., (60b)

where the Yukawa coupling constants y1 and y2 are real because of the assumed CP invariance 
of the model.

Quark masses When b and d acquire real VEVs v1 and v2, respectively, Eq. (60b) gives rise to 
quark masses

mt = y1v1 + y2v2, mb = y1v2 + y2v1. (61)

From Eqs. (61),

y1 = −v1mt + v2mb

V2 − V1
, y2 = v2mt − v1mb

V2 − V1
. (62)

Without loss of generality, we fix the relative sign of (tL, bL)T and (tR, bR)T in such a way that 
y2 ≥ 0. Since we have already fixed V2 ≥ V1, this means that we always use mt ≥ 0. The sign of 
mb—just as the sign of v1—remains free.

5. Parameter counting and procedure

Counting of parameters Our left–right model has in its Lagrangian the following parameters:

• The gauge coupling constants g, l, and h.
• The parameters of the potential μL, μR , μ1, μ2, m1, m2, λL, λR , λLR , λ1, λ2, λ3, λ4, λ3L, 

λ3R , λ4L, λ4R , λ5L, and λ5R .
• The Yukawa couplings y1 and y2.

This makes 24 real parameters. (There are other parameters in the model, but they are dependent 
on these 24. For instance, θw and α depend on the gauge coupling constants; the VEVs uL,R and 
v1,2 depend on the parameters of the potential.)

Counting of observables We use observable quantities as input of the renormalization proce-
dure. We choose these observables to be exclusively masses, mixing angles, and the electromag-
netic coupling constant. The quantities at our disposal are:

• The squared electromagnetic coupling constant, viz. E.
• The squared masses of the neutral gauge bosons, viz. Ml and Mh.
• The squared masses of the charged gauge bosons, viz. M̄l and M̄h.
• The mixing angle ψ between the two neutral gauge bosons.
• The mixing angle ξ between the two charged gauge bosons.
• The masses μ5, μ6, μ7, and μ8 of the four scalars.
16
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• The six mixing angles θi (i = 1, . . . , 6) that parameterize the mixing matrix Vρ .
• The squared masses of the two pseudoscalars, viz. Mη1 and Mη2.
• The mixing angle η between the two pseudoscalars.
• The squared masses of the two charged scalars, viz. Mϕ1 and Mϕ2.
• The mixing angle ϕ between the two charged scalars.
• The masses mt and mb of the top and bottom quarks.

This makes 25 real observables. There is, thus, one more observable than there are parameters in 
the model. This means that there must be one constraint among the 25 observables; that constraint 
is derived in Appendix G, viz. it is in Eq. (G.11).

Procedure Our practical procedure is the following.

1. We input the following 24 quantities:
• The squared electromagnetic coupling constant, viz. E = 4π

/
137.035 999 084 .

• The squared masses of the neutral gauge bosons, viz. Ml and Mh. We choose 
√

Ml =
91.1876 GeV and 

√
Mh ∈ [0.75, 4] TeV.13

• The squared masses of the charged gauge bosons, viz. M̄l and M̄h. We choose 
√

M̄l =
80.377 GeV and 

√
M̄h ∈ [0.75 TeV,

√
Mh

]
.14

• The mixing angle between the two neutral gauge bosons is chosen ψ = 0. In this way 
the neutral gauge boson Zl of the LRM has the same interactions, at the tree level, 
as the observed boson of mass 

√
Ml = 91.1876 GeV. As a consequence, the infrared 

divergences—due to the zero masses of the photon and of the gluons—in the one-loop 
diagrams for the vertex Zlbb̄ in the LRM cancel out when one subtracts from those dia-
grams the analogous diagrams for the vertex Zbb̄ in the SM, viz. when one compares the 
LRM to the SM in order to compute δgL and δgR .

• The mixing angle between the two charged gauge bosons, viz. ξ ∈ [−0.01, +0.01]. In 
practice, this angle cannot be larger than 0.005, because of the lower bound 0.75 TeV that 
we impose on 

√
M̄h—see Appendix H.

• The masses mt = 172.69 GeV and mb = ±4.18 GeV of the top and bottom quarks, re-
spectively. We choose mt positive; the sign of mb may be either positive or negative.

• The masses of the four physical scalars, viz. μ5 = 125.25 GeV and μ6 < μ7 < μ8 <

1 TeV.15

• The mass of the lightest pseudoscalar, viz.
√

Mη1 < 1 TeV.
• The masses of the two physical charged scalars, viz.

√
Mϕ1 <

√
Mϕ2 < 1 TeV.

• The mixing angle between the two pseudoscalars, viz. η ∈ [−π/2, +π/2].
• The mixing angle between the two charged scalars, viz. ϕ ∈ [−π/2, +π/2].
• The six mixing angles that parameterize the mixing matrix of the scalars Vρ , viz. the 

θi (i = 1, 2, . . . , 6). We choose θ4 ∈ [−π/2, +π/2] and θ5 ∈ [0, +π/2]; the other four 

13 Actually, a more realistic lower bound on the masses of the new gauge bosons of the LRM would be 2 TeV or 
3 TeV [39–50]. (The precise bound depends on the ratio g/l between the gauge coupling constants of SU(2)L and 
SU(2)R .) We opt for the lax lower bound 750 GeV in order to explore all the possibilities to fit the Zbb̄ vertex.
14 In our LRM M̄h must always smaller than Mh , see Appendix F.
15 We allow for very light scalars of mass as low as 10 GeV, although these are in practice most likely excluded by 
experiment. We do this in order to explore whether this radical possibility might allow us to fit gL and gR adequately.
17
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mixing angles are in principle free, but in practice θ1,2,3 are strongly constrained by the 
experimental constraints of Appendix E.

2. Following the procedure outlined in Appendix F for the case ψ = 0, we determine G, L, 
H , V1, V2, UL, and UR . In order for the procedure to run smoothly, the inequalities (F.20)
must hold, and (as)

2 − 4xyD2 in Eqs. (F.22) must be positive; furthermore, all seven final 
quantities must turn out positive. If any of these does not happen, then the input values are 
inadequate and must be discarded. This requirement alone forces ξ to be very small.

3. We fix v2 = √
V2, uL = √

UL, and uR = √
UR . We also fix v1 = ±√

V1; its sign is opposite 
to the one of ξ , cf. Eq. (A.11). The gauge coupling constants g = √

G, l = √
L, and h = √

H

are positive.
4. We compute the Yukawa coupling constants by means of Eqs. (62). We check that they are 

not much too large, viz. that |y1| � M and |y2| � M with M ≈ 4π .
5. We compute T1, T2, K1, and K2 by means of Eqs. (41) and (48).
6. We compute the matrix elements of Mϕ by using Eqs. (51).
7. We compute Mη2 by using Eq. (G.11). If we obtain Mη2 < Mη1, then we make Mη2 ↔ Mη1

together with η → η − π/2.
8. We compute the matrix elements of Mη by using Eqs. (44).
9. We compute the matrix elements of Mρ by using Eq. (G.2).

10. We compute the parameters of V(3) and V(4) in Eqs. (59) by following the steps in the last 
paragraph of Appendix G.

11. We check the unitarity conditions on the parameters of V(4).
12. We check the bounded-from-below conditions on the parameters of V(4).
13. We compute μL, μR , μ1, μ2, and V0 by using Eqs. (D.3) and (D.4).
14. We check the extra conditions in Appendix D.
15. We compute the experimental parameters κ of Appendix E. We enforce the conditions [51,

52] κW ∈ [0.59, 1.46], κZ ∈ [0.63, 1.32], κt ∈ [0.81, 1.47], and |κb| ∈ [0.11, 1.79]. Note 
that:

We allow κb to be either positive or negative, since experiment is as yet unable to fix its 
sign.
We require the parameters κ to be in their 3σ ranges, because we do not want to miss out 
any possibility that the LRM might offer to fit gL and gR .
In our model κW and κZ always turn out to be smaller than 1 and almost equal to each 
other, for reasons explained in Appendix E, cf. Appendix H.

6. Calculation and renormalization

We now describe the calculation of the renormalized one-loop process Zl → bb̄. We do it by 
using FEYNMASTER [53,54], which resorts to FEYNRULES [55,56], QGRAF [57], and FEYN-
CALC [58–60]. More specifically, we use FEYNMASTER to generate the Feynman rules of the 
model (both for the renormalized interactions and for the counterterms), to generate the Feynman 
diagrams, and to calculate the one-loop amplitudes and the counterterms.

The ultraviolet (UV) renormalized one-loop process (denoted i �̂Zlbb̄
μ ) is the sum of the non-

renormalized one-loop process (denoted i �Zlbb̄
μ ) and the counterterms of the process (denoted 

i �
Zlbb̄
μ

∣∣∣
CT

); that is,

i �̂Zlbb̄
μ = i �Zlbb̄

μ + i �Zlbb̄
μ

∣∣∣ . (63)

CT

18
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The terms in the right-hand side of Eq. (63) are determined when considering the theory up to the 
one-loop level; more specifically, one must take the original Lagrangian of the theory, identify 
each parameter and each field as a bare quantity, and then split it into a renormalized quantity and 
a counterterm16; thus, for a generic bare parameter p(0) and a generic bare field φ(0), we write

p(0) = p + δp, φ(0) = φ + 1

2
δZφ φ, (64)

where p is the renormalized parameter, δp is the corresponding counterterm, φ is the renormal-
ized field, and δZφ is its counterterm.

The Feynman rules for the renormalized parameters are obtained by expanding the Lagrangian 
and keeping only the terms with power zero in the counterterms. They are used to calculate the 
interactions of the theory; in particular, it is this set of rules that is used to calculate the (non-

renormalized, one-loop) diagrams contributing to i �Zlbb̄
μ .

The Feynman rules for the counterterms are obtained by expanding the Lagrangian and keep-
ing only the terms with power one in the counterterms. The set of all those terms that contribute 

to Zl → bb̄ constitutes i �
Zlbb̄
μ

∣∣∣
CT

. By using FEYNMASTER it is straightforward to conclude that

i �Zbb̄
μ

∣∣∣
CT

= iγμ (FLPL + FRPR) , (65)

where, with ψ = 0,

FL = sw hδcα + cα hδsw + cα sw δh

6
− g δcw + cw δg

2

+ sα h

6
δsψ +

(
δZZlZl

2
+ δZ

dq,L
33

∗

2
+ δZ

dq,L
33

2

)
i �

Zlbb̄
μ,L

∣∣∣
tree

+δZAZl

2
i �Abb̄

μ,L

∣∣∣
tree

+ δZZhZl

2
i �

Zhbb̄
μ,L

∣∣∣
tree

, (66a)

FR = sw hδcα + cα hδsw + cα sw δh

6
+ sw l δsα + sα l δsw + sα sw δl

2

+
(

sα h

6
− cα l

2

)
δsψ +

(
δZZlZl

2
+ δZ

dq,R
33

∗

2
+ δZ

dq,R
33

2

)
i �

Zlbb̄
μ,R

∣∣∣
tree

+δZAZl

2
i �Abb̄

μ,R

∣∣∣
tree

+ δZZhZl

2
i �

Zhbb̄
μ,R

∣∣∣
tree

. (66b)

Notice that, when ψ = 0,

i �
Zlbb̄
μ,L

∣∣∣
tree

= cα sw h

6
− cw g

2
, (67a)

i �Abb̄
μ,L

∣∣∣
tree

= cα cw h

6
+ sw g

2
, (67b)

i �
Zhbb̄
μ,L

∣∣∣
tree

= sα h

6
, (67c)

16 For details see e.g. Ref. [61].
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i �
Zlbb̄
μ,R

∣∣∣
tree

= cα sw h

6
+ sα sw l

2
, (67d)

i �Abb̄
μ,R

∣∣∣
tree

= cα cw h

6
+ sα cw l

2
, (67e)

i �
Zhbb̄
μ,R

∣∣∣
tree

= sα h

6
− cα l

2
. (67f)

It is important to understand the role of the neutral-gauge-boson mixing angle ψ in these equa-
tions. As mentioned in the previous section, since we identify the LRM gauge boson Zl with the 
observed neutral boson of mass 91.1876 GeV, we set the renormalized ψ to zero. However, there 
is no symmetry of the theory that implies ψ = 0; the choice ψ = 0 is just a particular solution 
of a model where ψ is in general nonzero. Therefore, when renormalizing that model a nonzero 
bare parameter ψ(0) must be allowed and renormalized; the circumstance that we consider a par-
ticular solution of the model where the renormalized ψ vanishes does not change the fact that 
the bare ψ(0) is in general nonzero and has a nonzero counterterm δψ .17

We need to compute the counterterms that appear in Eqs. (66b). We perform that computation 
by using on-shell subtraction (OSS), except for the independent mixing angles; the latter are 
fixed through a symmetry relation [54].18

Let us start with the field counterterms. Through a trivial generalization of the field countert-
erms calculated through OSS in the SM, we find:

δZViVi
= R̃e

∂ �
ViVi

T

(
k2
)

∂k2

∣∣∣∣∣
k2=m2

Vi

, (68a)

δZViVj
= 2 R̃e

�
ViVj

T

(
m2

Vj

)
m2

Vj
− m2

Vi

⇐ i 	= j, (68b)

δZ
dq,L
33 = −R̃e�bb̄

L

(
m2

b

)
− mb

∂

∂p2 R̃e
{
mb

[
�bb̄

L

(
p2
)

+ �bb̄
R

(
p2
)]

+ �bb̄
l

(
p2
)

+ �bb̄
r

(
p2
)}∣∣∣∣

p2=m2
b

,

(68c)

δZ
dq,R
33 = −R̃e�bb̄

R

(
m2

b

)
− mb

∂

∂p2 R̃e
{
mb

[
�bb̄

L

(
p2
)

+ �bb̄
R

(
p2
)]

+ �bb̄
l

(
p2
)

+ �bb̄
r

(
p2
)}∣∣∣∣

p2=m2
b

.

(68d)

17 Actually, δψ is crucial to absorb the divergences of the process Zl → bb̄. The non-inclusion of that counterterm 
would lead to the same kind of inconsistency as the one pointed out in Ref. [62].
18 For details see Ref. [61]. Note that in this paper we use ηg = ηf = 1, while Refs. [63,64] have used ηg = −ηf = −1
instead. (The purely conventional parameters ηg and ηf are defined in Eqs. (F.23) of Ref. [61].)
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Here, �xy
k

(
p2
)

represents the kth component of the non-renormalized one-loop two-point func-
tion for the fields x, y with 4-momentum p.19 The operator R̃e discards the absorptive parts of 
the loop integrals but keeps the imaginary parts of complex parameters.20

We now turn to the parameter counterterms. The first thing to notice is that not all the pa-
rameters which intervene in Eqs. (66b) are independent, i.e. not all of them are counterterms of 
the independent parameters. Indeed, we choose as independent parameters the squared masses 
of Zl , Zh, Wl , and Wh together with e, ψ , and ξ . One may use the relations of the model to 
rewrite Eqs. (66b) in terms of the counterterms of the independent parameters (we omit this here 
as the rewritten expressions are extremely long). Those counterterms are defined, as usual, by 
the splitting of the bare version of the independent parameters:

Ml(0) = Ml + δMl, (69a)

Mh(0) = Mh + δMh, (69b)

M̄l(0) = M̄l + δM̄l, (69c)

M̄h(0) = M̄h + δM̄h, (69d)

e(0) = (1 + δZe) e, (69e)

ψ(0) = δψ, (69f)

ξ(0) = ξ + δξ. (69g)

The mass counterterms in the OSS scheme are

δm2
Vi

= −R̃e�
ViVi

T

(
m2

Vi

)
. (70)

The counterterm δZe, which a priori has a very complicated expression, may be significantly 
simplified by using a Ward identity. That identity was derived in detail, for the case of the SM, 
in appendix F of Ref. [61]. By generalizing it to the LRM, we obtain:

δZe = −1

2
δZAA − 1

2cw

δZZlA

(
sw cψ + sα

cα

sψ

)
− 1

2cw

δZZhA

(
sα

cα

cψ − sw sψ

)
, (71)

which we use after setting ψ = 0. Note that Eq. (71) reduces to its SM version, viz. to equa-
tion (F.60) of Ref. [61], when α = ψ = 0 and Zl = Z.

In order to fix the counterterms δψ and δξ we apply a method similar to the one described in 
Ref. [54] to obtain21:

19 For details see section 5.4.1 of Ref. [61]. We are assuming the tadpole scheme dubbed PRTS in Ref. [61]. This implies 
that the Green’s functions considered here do not include the one-loop tadpoles.
20 This detail is actually irrelevant in this paper, since in our LRM there are no complex parameters. Hence, in this case 
we might have used Re instead of ̃Re.
21 Whereas the counterterms of the mixing parameters in Ref. [54] were fixed in Feynman gauge, the counterterms 
δψ and δξ in this paper are not fixed in any specific gauge. This has to do with the tadpole scheme. Namely, Ref. [54]
used the tadpole scheme dubbed FJTS, wherein the parameter counterterms are required to behave as gauge-independent 
(i.e. not to change when the gauge is changed) in order for the observables to be gauge-independent; and while that 
naturally happens for the parameter counterterms fixed through on-shell or minimal subtraction, one needs to enforce it 
in the case of parameter counterterms fixed by symmetry relations. In the present paper, by contrast, the tadpole scheme 
at stake is PRTS, wherein the parameter counterterms are in general gauge dependent; that gauge dependence ends up 
cancelling in the renormalized functions, as long as the whole set of parameter counterterms is renormalized by using 
a momentum-subtraction scheme. Since the latter condition is satisfied in this paper, the renormalized functions of this 
paper are gauge-independent, as we have explicitly checked (numerically). For details see Ref. [61].
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δψ = 1

4

[
δZZlZh

− δZZhZl
+ sw

cw

(
δZZhA − δZAZh

)]
, (72a)

δξ = 1

4

(
δZWhWl

− δZWlWh

)
. (72b)

Using Eqs. (66b) to (72) we calculate i �
Zlbb̄
μ

∣∣∣
CT

and hence Eq. (63).

Using FEYNMASTER we have numerically checked both the UV-finiteness and the gauge-

independence of i �̂
Zlbb̄
μ .

7. Discussion

In this section we discuss the results obtained by using the procedure in section 5. In our 
numerical analysis the scalar masses were assumed to be lower than 1 TeV; this bound is mostly 
irrelevant, because the contributions of the new scalars to δgL and δgR tend to zero when the 
scalars become very heavy. On the other hand, the lower bound on the masses of the scalars is 
important, because scalars with very low masses allow one to fit the Zbb̄ vertex, as has already 
been found out in the context of the 2HDM and 3HDM [5]. For this reason, in this section we 
display four different fits:

In the first fit (for which we have used green points in our scatter plots) we have assumed a 
lower bound 10 GeV on the masses of all the scalars.22

In the second fit (displayed through blue points in the scatter plots), the lower bound on the 
scalar masses is 125 GeV.
In the third fit (red points) the lower bound is 500 GeV.
In the fourth fit (displayed exclusively in the right panel of Fig. 3), the lower bound on all 
the scalar masses is 125 GeV, except only the lightest scalar and the lightest pseudoscalar, 
which are allowed to have mass as low as 10 GeV.

We emphasize that we have attempted to explore whether very small masses allow one to fit gL

and gR adequately, irrespective of whether such low masses are realistic or not; we do not claim 
that our very-low-mass scalars may ever be compatible with the experimental data.

We depict in Fig. 3 the confrontation between experiment and the values of gL and gR attain-
able in our LR model. In the left panel one sees that, when one forces the scalar masses to be 
larger than 125 GeV, the LRM is unable to achieve a better agreement with experiment than the 
SM—it even does not attain the 2σ interval on the value of Ab (9). Only when one allows very 
low scalar masses � 10 GeV are the central values of both solutions 1fit and 1average attainable. 
In the right panel of Fig. 3 one sees that, if both the masses of the lightest pseudoscalar, viz. mη1, 
and lightest neutral scalar, viz. m6, are � 10 GeV, while all the other charged and neutral scalars 
are above 125 GeV, then the central values of both solutions 1fit and 1average are attainable too. 
This shows that only one light scalar and one light pseudoscalar are needed in order to correct gR. 
However, the other scalars are important too; when the lower bound on their masses is increased 
to 200 GeV we are already unable to reach solution 1fit (points for that fit are not shown).

22 This is avowedly a lax lower bound. In particular, there is a recent experimental lower bound of 150 GeV on the 
masses of charged scalars [65,66]; but it is also true that low-mass charged scalars are not very useful to adequately fit 
the Zbb̄ vertex. We have used this lower bound to illustrate that neutral scalars with very low masses are really needed
to fit the Zbb̄ vertex in our LRM.
22
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Fig. 3. Scatter plot of the values of gL and gR in our model. The crossed circle marks the SM prediction (3); the star 
marks the best-fit point of solution 1fit and the cross the best-fit point of solution 1average, cf. Table 1. The orange lines 
mark the 1σ (full lines) and 2σ (dashed lines) boundaries of the region determined by the experimental value (8a); 
similarly, the violet lines correspond to the value (8b) and the blue lines to the value (9). Left panel: the three cases 
where the lower bound on the masses of the scalars are 10 GeV (green points), 125 GeV (blue points), and 500 GeV 
(red points). Right panel: the green points are the same as in the left panel; the magenta points have only the masses mη1
of the lightest pseudoscalar and m6 of the lightest neutral scalar above 10 GeV, while all the other scalars have masses 
above 125 GeV. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

The unexpected conclusion of this paper is thus that, in spite of its many parameters—most 
of them in the scalar sector—and in spite of the existence of right-handed currents, our LRM 
with ψ = 0 is basically unable to fit the experimental values of gL and—mainly—gR , unless one 
resorts to scalars with extremely low masses. In particular, our LRM does not do a better job in 
fitting the Zbb̄ vertex than the much simpler 2HDM or 3HDM.

We should emphasize once again that we have assumed the renormalized mixing angle ψ to 
be zero. This assumption has a crucial technical advantage: instead of having to deal with the 
effect of soft photons and gluons on the Zbb̄ vertex, and on the way they operate to cancel the 
infrared divergences in the loops—both in the SM and in the LRM—we could simply subtract 
gL and gR in both models to eliminate those divergences. On the one hand, this assumption 
is certainly a weakness of our computation. On the other hand, taking into account the soft 
photons and gluons would certainly entail various technical difficulties; moreover, since recent 
analyses [37–39] suggest that |ψ | cannot be much larger than 10−3 anyway, while at the tree 
level one needs ψ ∼ 10−2 to fit the Zbb̄ vertex—see Section 3—we believe that allowing ψ 	= 0
would not change our final conclusions substantially.

We may also comment on the ratio l/g between the gauge coupling constants of SU(2)L and 
SU(2)R . The right panel of Fig. 2 suggests that l/g should not be very far from 1 in a fit of the 
Zbb̄ vertex at tree level. At loop level we see, in Fig. 6, that l/g is much freer; we have found 
points (not depicted in that figure) with l/g as high as 6. We emphasize, however, that in making 
Fig. 6 we just require the points to adequately fit Rb, while in Fig. 2 what is at stake is fitting 
both Rb and Ab .

In Appendix H we give more information on the ranges of the parameters of the LRM.
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Appendix A. The Goldstone bosons

Gauge-boson mass matrices From Eq. (14) and Table 3, the covariant derivatives of the scalar 
fields are

Dμm = ∂μm − ig√
2

W+μn + ieAμm + ig
(
s2
w − c2

w

)
2cw

Zμm + ils2
α

2cα

Xμm, (A.1a)

Dμn = ∂μn − ig√
2

W−μm + ig

2cw

Zμn + ils2
α

2cα

Xμn, (A.1b)

Dμp = ∂μp − il√
2

V +μq + ieAμp + igs2
w

cw

Zμp + il
(
s2
α − c2

α

)
2cα

Xμp, (A.1c)

Dμq = ∂μq − il√
2

V −μp + il

2cα

Xμq, (A.1d)

Dμa = ∂μa − ig√
2

W+μb + il√
2

V +μd∗ + ieAμa + ig
(
s2
w − c2

w

)
2cw

Zμa − ilcα

2
Xμa,

(A.1e)

Dμb = ∂μb − ig√
2

W−μa − il√
2

V +μc∗ + ig

2cw

Zμb − ilcα

2
Xμb, (A.1f)

Dμc = Dμa
(
a → c, b → d, d∗ → b∗) , (A.1g)

Dμd = Dμb
(
b → d, a → c, c∗ → a∗) . (A.1h)

When the scalar fields in Eqs. (A.1) get substituted by their VEVs (26), one obtains
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D. Fontes, D. Jurčiukonis and L. Lavoura Nuclear Physics B 996 (2023) 116373
Dμm → − iguL√
2

W+μ, (A.2a)

Dμn → iuL

2

(
g

cw

Zμ + ls2
α

cα

Xμ

)
, (A.2b)

Dμp → − iluR√
2

V +μ, (A.2c)

Dμq → iluR

2cα

Xμ, (A.2d)

Dμa → i√
2

(−gW+μv1 + lV +μv2
)
, (A.2e)

Dμb → iv1

2

(
g

cw

Zμ − lcαXμ

)
, (A.2f)

Dμc → i√
2

(−gW+μv2 + lV +μv1
)
, (A.2g)

Dμd → iv2

2

(
g

cw

Zμ − lcαXμ

)
. (A.2h)

From Eqs. (A.2a), (A.2c), (A.2e), and (A.2g) one gets the charged-gauge-boson mass matrix Mc, 
given by

A ≡ (Mc)11 = GV 2
L

2
, B ≡ (Mc)22 = LV 2

R

2
, D ≡ (Mc)12 = −glv1v2, (A.3)

where

VL ≡√V1 + V2 + UL, VR ≡√V1 + V2 + UR (A.4)

are positive by definition. From Eqs. (A.2b), (A.2d), (A.2f), and (A.2h) one has, for the neutral-
gauge-boson mass matrix Mn, the formulas

R ≡ (Mn)11 = GL + GH + LH

2 (L + H)
V 2

L, (A.5a)

S ≡ (Mn)22 = L2 (V1 + V2) + H 2UL + (L + H)2 UR

2 (L + H)
, (A.5b)

T ≡ (Mn)12 = �1

2 (L + H)
[HUL − L(V1 + V2)] . (A.5c)

Note that (Mn)12 cannot be made zero in any natural (i.e. enforceable through a symmetry) way. 
This means that the mixing angle ψ cannot be made zero through any symmetry.

G±
W and G±

V We define the normalized states

G−
W ≡ uLm∗ + v1a

∗ + v2c
∗

VL

, G−
V ≡ uRp∗ − v2a

∗ − v1c
∗

VR

. (A.6)

Then, from Eqs. (A.1a), (A.1c), (A.1e), and (A.1g),

L = · · · − i
(√

A W+
μ ∂μG−

W + √
B V +

μ ∂μG−
V

)
+ H.c., (A.7)

where
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√
A = gVL√

2
,

√
B = lVR√

2
(A.8)

are positive by definition.

Diagonalization of Mc From Eqs. (15) and (16),(
cξ −sξ

sξ cξ

)(
A D

D B

)(
cξ sξ

−sξ cξ

)
=
(

M̄l 0
0 M̄h

)
. (A.9)

Therefore,

2cξ sξ = 2D

M̄h − M̄l

, (A.10a)

c2
ξ − s2

ξ = B − A

M̄h − M̄l

, (A.10b)

M̄h − M̄l =
√

(A − B)2 + 4D2, (A.10c)

M̄l = A + B − (M̄h − M̄l

)
2

, (A.10d)

M̄h = A + B + (M̄h − M̄l

)
2

. (A.10e)

From Eqs. (A.3) and (A.10a),

cξ sξ
(
M̄h − M̄l

)= −glv1v2. (A.11)

Since cξ , M̄h − M̄l , g, l, and v2 are positive (without lack of generality), Eq. (A.11) means that 
the sign of sξ must be chosen opposite to the sign of v1.

G±
l and G±

h We now define

G−
l ≡ cξ

√
AG−

W − sξ
√

B G−
V√

M̄l

, (A.12a)

G−
h ≡ sξ

√
AG−

W + cξ

√
B G−

V√
M̄h

, (A.12b)

where 
√

M̄l and 
√

M̄h are positive by definition. Then Eq. (A.7) is rewritten as

L = · · · − i

(√
M̄l W+

lμ ∂μG−
l +
√

M̄h W+
hμ ∂μG−

h

)
+ H.c., (A.13)

which goes into the last line of Eq. (56). Equations (A.12) are the definition of G±
l and G±

h . Note 
that these states are orthogonal:√

M̄lM̄h G−
l · G−

h = cξ sξ (A − B) +
(
c2
ξ − s2

ξ

)√
AB G−

W · G−
V (A.14a)

= D

¯ ¯ (A − B) + B − A

¯ ¯
√

AB
−2v1v2 (A.14b)
Mh − Ml Mh − Ml VLVR
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= D

M̄h − M̄l

(A − B) + B − A

M̄h − M̄l

√
AB

2D

glVLVR

(A.14c)

= D

M̄h − M̄l

(A − B) + B − A

M̄h − M̄l

D (A.14d)

= 0. (A.14e)

They are also correctly normalized:

M̄l G
−
l · G−

l = c2
ξA + s2

ξ B − 2cξ sξ
√

AB G−
W · G−

V (A.15a)

= 1 + c2
ξ − s2

ξ

2
A + 1 − c2

ξ + s2
ξ

2
B − 2cξ sξ

√
AB

−2v1v2

VLVR

(A.15b)

= A + B

2
+ B − A

2
(
M̄h − M̄l

) (A − B) − 2D

M̄h − M̄l

√
AB

D√
AB

(A.15c)

= A + B

2
− (A − B)2

2
(
M̄h − M̄l

) − 2D2

M̄h − M̄l

(A.15d)

= M̄l, (A.15e)

M̄h G−
h · G−

h = s2
ξ A + c2

ξB + 2cξ sξ
√

AB G−
W · G−

V (A.16a)

= 1 − c2
ξ + s2

ξ

2
A + 1 + c2

ξ − s2
ξ

2
B + 2cξ sξ

√
AB

−2v1v2

VLVR

(A.16b)

= A + B

2
− B − A

2
(
M̄h − M̄l

) (A − B) + 2D

M̄h − M̄l

√
AB

D√
AB

(A.16c)

= A + B

2
+ (A − B)2

2
(
M̄h − M̄l

) + 2D2

M̄h − M̄l

(A.16d)

= M̄h. (A.16e)

GZ and GX We define

GZ ≡ uLηL + v1η1 + v2η2

VL

, G′
X ≡ uRηR − v1η1 − v2η2

VR

. (A.17)

These states are normalized, but they are not orthogonal to each other:

GZ · GZ = G′
X · G′

X = 1, GZ · G′
X = −V1 − V2

VLVR

. (A.18)

From Eqs. (A.1b), (A.1d), (A.1f), and (A.1h),

L = · · · +
(

g√
2cw

Zμ + ls2
α√

2cα

Xμ

)
VL ∂μGZ + l√

2cα

Xμ VR ∂μG′
X. (A.19)

Using the quantities R and S in Eqs. (A.5), one may rewrite Eq. (A.19) as

L = · · · + √
R Zμ ∂μGZ + √

S Xμ ∂μGX, (A.20)

where
√

R = gVL√ (A.21)

2cw
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and

GX ≡ 1√
S

l√
2cα

(
s2
αVLGZ + VRG′

X

)
. (A.22)

Notice that both 
√

R and 
√

S are, by definition, positive. One easily ascertains that

GX · GX = 1, GZ · GX = T√
RS

, (A.23)

where T is in Eq. (A.5c).

G0
l and G0

h We define

G0
l ≡ cψ

√
R GZ + sψ

√
S GX√

Ml

, G0
h ≡ −sψ

√
R GZ + cψ

√
S GX√

Mh

. (A.24)

Applying the first Eq. (15) to Eq. (A.20), we obtain

L = · · · +√Ml Z
μ
l ∂μG0

l +√Mh Z
μ
h ∂μG0

h, (A.25)

as in the last line of Eq. (55). The diagonalization of the neutral-gauge-boson mass matrix pro-
ceeds as(

R T

T S

)
=
(

cψ −sψ
sψ cψ

)(
Ml 0
0 Mh

)(
cψ sψ

−sψ cψ

)
, (A.26)

i.e.

R = Ml c
2
ψ + Mh s2

ψ, (A.27a)

S = Ml s
2
ψ + Mh c2

ψ, (A.27b)

T = (Ml − Mh)cψsψ . (A.27c)

Hence,

G0
l · G0

l = G0
h · G0

h = 1, G0
l · G0

h = 0, (A.28)

viz. the states G0
l and G0

h are orthonormal as they should. Equations (A.24) lead to Eqs. (38); for 
instance, defining vη ≡ v1η1 + v2η2,

G0
l = 1√

Ml

{
cψ

√
R

vη + uLηL

VL

+ sψ
l√
2cα

[
s2
α

(
vη + uLηL

)+ uRηR − vη

]}
(A.29a)

= 1√
2Ml

[
cψ

g

cw

(
vη + uLηL

)+ sψ

(
l

cα

uRηR − lcαvη

)]
(A.29b)

= 1√
2Ml

[
cψ

�1√
L + H

(
vη + uLηL

)+ sψ

(√
L + H uRηR − L√

L + H
vη

)]
.

(A.29c)

Appendix B. Unitarity conditions

The unitarity conditions constrain the quartic part of the scalar potential in Eq. (59c).
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The states with TL3 = TR3 = X = 0 Let us consider the scattering among themselves of the 
twelve two-scalar states with quantum numbers TL3 = TR3 = X = 0. Those states are

aa∗, cc∗, bb∗, dd∗, ac∗, ca∗, bd∗, db∗, mm∗, nn∗, pp∗, and qq∗ (B.1)

in this fixed, conventional order. The coefficients for their scattering among themselves are given 
by the 12 × 12 symmetric matrix

M12×12 =

⎛⎜⎜⎜⎜⎜⎜⎝
A2×2 B2×2 C2×2 D2×2 E2×2 F2×2
B2×2 A2×2 D2×2 C2×2 G2×2 F2×2
C2×2 D2×2 H2×2 I2×2 J2×2 K2×2
D2×2 C2×2 I2×2 H2×2 J2×2 K2×2
E2×2 G2×2 J2×2 J2×2 L2×2 M2×2
F2×2 F2×2 K2×2 K2×2 M2×2 N2×2

⎞⎟⎟⎟⎟⎟⎟⎠ , (B.2)

where

A2×2 =
(

4λ1 2λ1 + 4λ3
2λ1 + 4λ3 4λ1

)
, B2×2 =

(
2λ1 2λ1
2λ1 2λ1

)
, (B.3a)

C2×2 =
(

4λ4 4λ4
4λ4 4λ4

)
, D2×2 =

(
2λ4 2λ4
2λ4 2λ4

)
, (B.3b)

E2×2 =
(

λ4L λ3L

λ3L λ4L

)
, F2×2 =

(
λ3R λ4R

λ4R λ3R

)
, (B.3c)

G2×2 =
(

λ3L λ4L

λ4L λ3L

)
, H2×2 =

(
2λ1 + 4λ3 16λ2

16λ2 2λ1 + 4λ3

)
, (B.3d)

I2×2 =
(

4λ3 8λ2
8λ2 4λ3

)
, J2×2 =

(
λ5L λ5L

λ5L λ5L

)
, (B.3e)

K2×2 =
(

λ5R λ5R

λ5R λ5R

)
, L2×2 =

(
4λL 2λL

2λL 4λL

)
, (B.3f)

M2×2 =
(

λLR λLR

λLR λLR

)
, N2×2 =

(
4λR 2λR

2λR 4λR

)
. (B.3g)

It is readily found that M12×12 is equivalent to the direct sum of the six matrices(
2λ1 − 8λ2

)
,

(
2λ1 − 24λ2 + 8λ3

)
,

(
2λ1 + 4λ3 4λ4

4λ4 2λ1 + 8λ2

)
, (B.4a)(

2λ1 − 4λ3
√

2 (λ3L − λ4L)√
2 (λ3L − λ4L) 2λL

)
,

(
2λ1 − 4λ3

√
2 (λ3R − λ4R)√

2 (λ3R − λ4R) 2λR

)
,

(B.4b)⎛⎜⎜⎝
2λ1 + 24λ2 + 8λ3 12λ4 2

√
2λ5L 2

√
2λ5R

12λ4 10λ1 + 4λ3
√

2 (λ3L + λ4L)
√

2 (λ3R + λ4R)

2
√

2λ5L

√
2 (λ3L + λ4L) 6λL 2λLR

2
√

2λ5R

√
2 (λ3R + λ4R) 2λLR 6λR

⎞⎟⎟⎠ . (B.4c)

Other states Besides the 12 states (B.1), there are other sets (with quantum numbers other than 
TL3 = TR3 = X = 0) of two-scalar states that scatter among themselves. Most of them yield 
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matrices of scattering coefficients that are equivalent to one or more of the matrices (B.4). But 
there are a few extra scattering matrices, viz.

• the four states with TL3 = 0 and TR3 = X = 1/2, i.e. an, cn, bm, and dm produce a 4 × 4
matrix that is equivalent to the direct sum of the two 2 × 2 matrices(

λ3L λ5L

λ5L λ4L

)
,

(
2λ3L − λ4L λ5L

λ5L 2λ4L − λ3L

)
; (B.5)

• the four states with TR3 = 0 and TL3 = X = 1/2 produce the same scattering matrices as in 
Eq. (B.5) but with all the sub-indices L → R;

• the scattering of the single state mn produces the matrix 
(

2λL

)
;

• the scattering of the single state pq produces the matrix 
(

2λR

)
;

• the scattering of the single state mp produces the matrix 
(
λLR

)
.

All the other scatterings just reproduce one or more of the matrices above.

Summary of the unitarity conditions Unitarity means that no scattering has too large an am-
plitude. This implies that the eigenvalues of all the scattering matrices in the previous two 
paragraphs are no larger, in modulus, than a certain number M ; we use M = 8π . Thus, the 
unitarity constraints on V4 are23

2 |λL| < M; (B.6a)

2 |λR| < M; (B.6b)

|λLR| < M; (B.6c)

|λ3L + λ4L| +
√

(λ3L − λ4L)2 + 4 (λ5L)2 < 2M; (B.6d)

|λ3L + λ4L| +
√

9 (λ3L − λ4L)2 + 4 (λ5L)2 < 2M; (B.6e)

|λ3R + λ4R| +
√

(λ3R − λ4R)2 + 4 (λ5R)2 < 2M; (B.6f)

|λ3R + λ4R| +
√

9 (λ3R − λ4R)2 + 4 (λ5R)2 < 2M; (B.6g)

2 |λ1 − 4λ2| < M; (B.6h)

2 |λ1 − 12λ2 + 4λ3| < M; (B.6i)

|2λ1 + 4λ2 + 2λ3| +
√

(4λ2 − 2λ3)
2 + 16 (λ4)

2 < M; (B.6j)

|2λ1 − 4λ3 + 2λL| +
√

(2λ1 − 4λ3 − 2λL)2 + 8 (λ3L − λ4L)2 < 2M; (B.6k)

|2λ1 − 4λ3 + 2λR| +
√

(2λ1 − 4λ3 − 2λR)2 + 8 (λ3R − λ4R)2 < 2M. (B.6l)

Moreover, the moduli of the four (potentially complex) eigenvalues of the 4 × 4 matrix (B.4c)
must be smaller than M .

23 Clearly, some of the conditions (B.6) are redundant—for instance, inequality (B.6e) is stronger than inequal-
ity (B.6d)—but we do not have to care much about that.
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Appendix C. Bounded-from-below conditions

The bounded-from-below (BFB) conditions state that the quartic part of the scalar potential, 
viz. Eq. (59c), must be positive for any values of the fields. In order to derive the BFB conditions 
on V(4) we follow Ref. [67].

Auxiliary quantities We define the quantities:

rL ≡ |m|2 + |n|2 , (C.1a)

rR ≡ |p|2 + |q|2 , (C.1b)

r0 ≡ |a|2 + |b|2 + |c|2 + |d|2 , (C.1c)

r1 ≡ a∗c + ac∗ + b∗d + bd∗, (C.1d)

r2 ≡ −i
(
a∗c − ac∗ + b∗d − bd∗) , (C.1e)

k ≡ r1

r0
, (C.1f)

ρL ≡
(|b|2 + |c|2) |m|2 + (|a|2 + |d|2) |n|2 + 2 Re

[
(cd∗ − ab∗)m∗n

]
r0rL

, (C.1g)

ρR ≡
(|a|2 + |b|2) |p|2 + (|c|2 + |d|2) |q|2 + 2 Re

[
(bc − ad)p∗q

]
r0rR

. (C.1h)

Equation (59c) is then rewritten

V(4) = λL (rL)2 + λR (rR)2 + λLRrLrR

+λ1 (r0)
2 + (λ3 + 2λ2) (r1)

2 + (λ3 − 2λ2) (r2)
2 + 2λ4 r0 r1

+λ3LρLr0rL + λ4L (1 − ρL) r0rL + λ5Lr1rL

+λ3RρRr0rR + λ4R (1 − ρR) r0rR + λ5Rr1rR. (C.2)

Elimination of r2 We note that

(r0)
2 − (r1)

2 − (r2)
2 =
(
|a|2 + |b|2 + |c|2 + |d|2

)2 − 4
∣∣a∗c + b∗d

∣∣2
=
(
|a|2 − |c|2

)2 +
(
|b|2 − |d|2

)2 + 2
(∣∣ab∗ − cd∗∣∣2 + |ad − bc|2

)
≥ 0. (C.3)

Therefore, (r2)
2 ≤ (r0)

2 − (r1)
2. This implies that

min
[
(λ3 − 2λ2) (r2)

2
]

= (λ3 − 2λ2)�(2λ2 − λ3)
[
(r0)

2 − (r1)
2
]
, (C.4)

where � is Heaviside’s theta function. Therefore,

min
[
V(4)

]= λL (rL)2 + λR (rR)2 + λLRrLrR

+
[
λ1 + (λ3 + 2λ2) k2 + (λ3 − 2λ2)�(2λ2 − λ3)

(
1 − k2

)
+ 2λ4k

]
(r0)

2

+ [λ3LρL + λ4L (1 − ρL) + λ5Lk] r0rL

+ [λ3RρR + λ4R (1 − ρR) + λ5Rk] r0rR. (C.5)
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This must be positive for any realistic values of ρL, ρR , k, rL, rR , and r0. We define the matrix

� =
⎛⎝ 2λ00 λL0 λR0

λL0 2λL λLR

λR0 λLR 2λR

⎞⎠ , (C.6)

where

λ00 ≡ λ1 + (λ3 + 2λ2) k2 + (λ3 − 2λ2)�(2λ2 − λ3)
(

1 − k2
)

+ 2λ4k, (C.7a)

λL0 ≡ λ3LρL + λ4L (1 − ρL) + λ5Lk, (C.7b)

λR0 ≡ λ3RρR + λ4R (1 − ρR) + λ5Rk (C.7c)

are functions of ρL, ρR , and k. Equation (C.5) then reads

min
[
V(4)

]= 1

2

(
r0, rL, rR

)
�

⎛⎝ r0
rL
rR

⎞⎠ . (C.8)

Since r0, rL, and rR are non-negative, the BFB condition is equivalent to the requirement that 
the matrix � be co-positive [68], viz. that

λ00 > 0, (C.9a)

λL > 0, (C.9b)

λR > 0, (C.9c)

λ̄L0 > 0, (C.9d)

λ̄R0 > 0, (C.9e)

λ̄LR > 0, (C.9f)√
λ00λLλR + λL0

2

√
λR + λR0

2

√
λL + λLR

2

√
λ00 +

√
2λ̄L0λ̄R0λ̄LR > 0, (C.9g)

where

λ̄L0 ≡ λL0

2
+√λLλ00, (C.10a)

λ̄R0 ≡ λR0

2
+√λRλ00, (C.10b)

λ̄LR ≡ λLR

2
+√λLλR. (C.10c)

The inequalities (C.9) must hold for all realistic values of ρL, ρR , and k. The inequalities (C.9b), 
(C.9c), and (C.9f) do not depend on those parameters; the same does not apply to the other four 
inequalities.

The inequality (C.9a) The quantity λ00 does not depend on ρL and ρR , it only depends on k. 
Clearly,

(r0)
2 − (r1)

2 − (r2)
2 ≥ 0 ⇒ |r1| ≤ |r0| ⇔ k ∈ [−1, +1] . (C.11)

Thus, the inequality (C.9a) means that λ00 must be positive for any value of k ∈ [−1, +1]. 
Since λ00 is a quadratic polynomial in k, it is easy to derive the conditions for this to happen. 
Kannike [67] proposed
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λ1 > 0, (C.12a)

λ1 − 2 |λ2| + λ3 > 0, (C.12b)

λ1 + 2λ2 + λ3 − 2 |λ4| > 0, (C.12c)

λ1 − 2λ2 − λ3 +
√

(λ1 + 2λ2 + λ3)
2 − 4 (λ4)

2 > 0, (C.12d)

λ1 − 6λ2 + λ3 +
√

(λ1 + 2λ2 + λ3)
2 − 4 (λ4)

2 > 0. (C.12e)

Alternatively, Chauhan [69] gave

λ1 > 0, (C.13a)

λ1 + 2λ2 + λ3 − 2 |λ4| > 0, (C.13b)

λ1 − (λ4)
2

2λ2 + λ3
> 0 ⇐ 2λ2 + λ3 > |λ4| , (C.13c)

λ1 − 2λ2 + λ3 − (λ4)
2

4λ2
> 0 ⇐ 4λ2 > |λ4| . (C.13d)

We instead suggest

λ1 + 2λ2 + λ3 − 2 |λ4| > 0, (C.14a)

λ1 − 2λ2 + λ3 − (λ4)
2

4λ2
> 0 ⇐ (4λ2 > |λ4| and 2λ2 > λ3) , (C.14b)

λ1 − (λ4)
2

2λ2 + λ3
> 0 ⇐ (2λ2 + λ3 > |λ4| and 2λ2 < λ3) . (C.14c)

The sets of inequalities (C.12), (C.13), and (C.14) are equivalent to each other and they are 
equivalent to λ00 > 0, ∀k ∈ [−1, +1].

The inequalities (C.9d), (C.9e), and (C.9g) For any values of the scalar fields, one may use an 
SU(2)L transformation to make m = 0 and then perform an SU(2)R transformation to render 
a = 0. In the gauge a = m = 0 one has

rL = |n|2 , (C.15a)

r0 = |b|2 + |c|2 + |d|2 , (C.15b)

r1 = b∗d + bd∗, (C.15c)

ρL = |d|2
|b|2 + |c|2 + |d|2 . (C.15d)

Then,

(r0)
2
[
k2 + (2ρL − 1)2 − 1

]
= (r1)

2 + 4 (ρLr0) [(ρL − 1) r0]

= 4
[
Re
(
b∗d
)]2 − 4 |d|2

(
|b|2 + |c|2

)
= −4 |cd|2 − 4

{
|bd|2 − [Re

(
b∗d
)]2}

= −4 |cd|2 − 4
[
Im
(
b∗d
)]2

≤ 0. (C.16)
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Therefore,

k2 + (2ρL − 1)2 ≤ 1. (C.17)

Inequality (C.17) tells us that, for any k ∈ [−1, +1],

1 − √
1 − k2

2
≤ ρL ≤ 1 + √

1 − k2

2
. (C.18)

The quantity λ̄L0 is, for any fixed value of k, a linear function of ρL. Therefore, the inequal-
ity (C.9d) holds for every possible ρL provided it holds for

ρL = 1 + (−1)nL
√

1 − k2

2
, (C.19)

where nL may be either 0 or 1. Similarly, the inequality (C.9e) holds for every ρR provided it 
holds for

ρR = 1 + (−1)nR
√

1 − k2

2
, (C.20)

where nR may be either 0 or 1. At last, the inequality (C.9g) holds for every ρL and ρR provided 
it holds for the ρL and ρR given by eqs. (C.19) and (C.20), respectively.

Recipe for BFB Our recipe for ascertaining the boundedness-from-below of V(4) consists of the 
following three steps:

1. Firstly we check that inequalities (C.9b), (C.9c), and (C.9f) hold.
2. Secondly we check that inequalities (C.13) hold.
3. Thirdly we make a scan over k from k = −1 to k = +1 in steps of 0.001, i.e. we make 

k = −1 + 0.001ns for ns = 0, 1, . . . , 2000. For every such value of k, we consider the two 
values of ρL and the two values of ρR given by eqs. (C.19) and (C.20), respectively, de-
pending on whether nL = 0 or nL = 1 and on whether nR = 0 or nR = 1. We check that 
inequalities (C.9d), (C.9e), and (C.9g) hold for all those four values of the pair (ρL, ρR).

Of course, step 3 is just an approximation for considering every k ∈ [−1, +1], but we have 
numerically checked that it is an almost perfect approximation because the step 0.001 is suffi-
ciently small. Provided the approximation is perfect, it is clear from our derivation that the three 
requirements above are necessary and sufficient conditions for the boundedness-from-below of 
V4.

Appendix D. Other conditions on the scalar potential

Vacuum equations In the potential (59) we substitute the fields by their VEVs (26) to obtain 
the VEV of the potential

〈0 |V |0〉 ≡ V0 = μ1 (V1 + V2) + 4μ2v1v2 + μLUL + μRUR

+2 (m1v2 + m2v1)uLuR

+λLU2
L + λRU2

R + λLRULUR

+λ1 (V1 + V2)
2 + (8λ2 + 4λ3)V1V2 + 4λ4 (V1 + V2) v1v2
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+λ3LV2UL + λ4LV1UL + 2λ5LULv1v2

+λ3RV2UR + λ4RV1UR + 2λ5RURv1v2. (D.1)

The equations of vacuum stability are

0 = 1

2

∂V0

∂v1
= μ1v1 + 2μ2v2 + m2uLuR

+2λ1 (V1 + V2) v1 + (8λ2 + 4λ3)V2v1 + 2λ4 (3V1 + V2) v2

+λ4LULv1 + λ5LULv2 + λ4RURv1 + λ5RURv2, (D.2a)

0 = 1

2

∂V0

∂v2
= μ1v2 + 2μ2v1 + m1uLuR

+2λ1 (V1 + V2) v2 + (8λ2 + 4λ3)V1v2 + 2λ4 (V1 + 3V2) v1

+λ3LULv2 + λ5LULv1 + λ3RURv2 + λ5RURv1, (D.2b)

0 = 1

2

∂V0

∂uL

= μLuL + (m1v2 + m2v1)uR

+2λLULuL + λLRURuL + λ3LV2uL + λ4LV1uL + 2λ5Lv1v2uL, (D.2c)

0 = 1

2

∂V0

∂uR

= μRuR + (m1v2 + m2v1) uL

+2λRURuR + λLRULuR + λ3RV2uR + λ4RV1uR + 2λ5Rv1v2uR. (D.2d)

Solving Eqs. (D.2) for the μ parameters, one obtains

μ1 = m1v2 − m2v1

V1 − V2
uLuR − 2λ1 (V1 + V2) − 4λ4v1v2

+λ3LV2 − λ4LV1

V1 − V2
UL + λ3RV2 − λ4RV1

V1 − V2
UR, (D.3a)

μ2 = 1

2

[
m1v1 − m2v2

V2 − V1
uLuR − (8λ2 + 4λ3) v1v2 − 2λ4 (V1 + V2)

−λ3L − λ4L

V1 − V2
ULv1v2 − λ3R − λ4R

V1 − V2
URv1v2 − λ5LUL − λ5RUR

]
, (D.3b)

μL = − (m1v2 + m2v1)
uR

uL

−2λLUL − λLRUR − λ3LV2 − λ4LV1 − 2λ5Lv1v2, (D.3c)

μR = − (m1v2 + m2v1)
uL

uR

−2λRUR − λLRUL − λ3RV2 − λ4RV1 − 2λ5Rv1v2. (D.3d)

Plugging Eqs. (D.3) back into Eq. (D.1) one obtains

V0 = − (m1v2 + m2v1) uLuR

−λLU2
L − λRU2

R − λLRULUR

−λ1 (V1 + V2)
2 − (8λ2 + 4λ3)V1V2 − 4λ4 (V1 + V2) v1v2

− (λ3LV2 + λ4LV1 + 2λ5Lv1v2)UL

− (λ3RV2 + λ4RV1 + 2λ5Rv1v2)UR (D.4)
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Alternative vacua There are terms in the potential (59) that may induce VEVs of fields that a 
priori did not have a VEV. They are the terms that are linear in any field, viz.[

2μ2 + 2λ4

(
|a|2 + |b|2 + |c|2 + |d|2

)
+λ5L

(
|m|2 + |n|2

)
+ λ5R

(
|p|2 + |q|2

)] (
a∗c + b∗d + H.c.

) ; (D.5a)

8λ2
(
abc∗d∗ + H.c.

) ; (D.5b)

4λ3
(
ab∗c∗d + H.c.

) ; (D.5c)

m1
(−anp∗ + bmp∗ + cqm∗ + dqn∗ + H.c.

) ; (D.5d)

m2
(−cnp∗ + dmp∗ + aqm∗ + bqn∗ + H.c.

) ; (D.5e)

(λ3L − λ4L)
[
m∗n
(
cd∗ − ab∗)+ H.c.

] ; (D.5f)

(λ3R − λ4R)
[
p∗q (bc − ad) + H.c.

]
. (D.5g)

The presence in the potential of these terms implies that the only possible vacua wherein some 
of the eight scalar fields are identically equal to zero are the following:

1. All the fields are zero.
2. Only p is nonzero; or, equivalently, only q is nonzero; or, equivalently, only p and q are 

nonzero. (The three situations are equivalent to each other through gauge transformations.)
3. Only m is nonzero; or, equivalently, only n is nonzero or, equivalently, only m and n are 

nonzero.
4. Only a and c are nonzero; or, equivalently, only b and d are nonzero.
5. Only a, b, c, and d are nonzero.
6. Only a, c, n, and p are nonzero; or, equivalently, only b, d , m, and p are nonzero; or, equiv-

alently, only a, c, m, and q are nonzero; or, equivalently, only b, d , n, and q are nonzero.

Cases 5 and 6 are impossible to treat analytically. There is yet another case, wherein all eight 
fields are nonzero in the vacuum, and this is also impossible to treat analytically. So, in the 
following we just consider cases 1 through 4.

Case 1 In case 1 the minimum of the potential has

〈0 |V |0〉 = 0 ≡ V (1). (D.6)

Case 2 In case 2 the minimum of the potential has

〈0 |V |0〉 = − (μR)2

4λR

≡ V (2). (D.7)

Case 3 In case 3 the minimum of the potential has

〈0 |V |0〉 = − (μL)2

≡ V (3). (D.8)

4λL
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Case 4 Case 4 gives (with b and d nonzero)

V = μ1 (B + D) + λ1 (B + D)2 + 4λ3BD + 8λ2BD cos (2θ)

+4 [μ2 + λ4 (B + D)]
√

BD cos θ (D.9a)

= μ1 (B + D) + λ1 (B + D)2 + 4 (λ3 − 2λ2)BD

+16λ2BD cos2 θ + 4μ̂
√

BD cos θ, (D.9b)

where B ≡ |b|2, D ≡ |d|2, θ ≡ arg (b∗d), and μ̂ ≡ μ2 + λ4 (B + D). One must find the value of 
Eq. (D.9b) when

∂V

∂θ
=
(

4μ̂
√

BD + 32λ2BD cos θ
)

(− sin θ) = 0, (D.10a)

∂V

∂B
= μ1 + 2λ1 (B + D) + 4 (λ3 − 2λ2)D + 16λ2D cos2 θ

+2μ̂

√
D

B
cos θ + 4λ4

√
BD cos θ = 0, (D.10b)

∂V

∂D
= μ1 + 2λ1 (B + D) + 4 (λ3 − 2λ2)B + 16λ2B cos2 θ

+2μ̂

√
B

D
cos θ + 4λ4

√
BD cos θ = 0. (D.10c)

Equation (D.10a) has three possible solutions:

cos θ = − μ̂

8λ2
√

BD
; (D.11a)

θ = 0; (D.11b)

θ = π. (D.11c)

Equations (D.10b) and (D.10c) may be subtracted from one another, producing

(D − B)

[
4 (λ3 − 2λ2) + 16λ2 cos2 θ + 2μ̂ cos θ√

BD

]
= 0. (D.12)

Therefore, eqs. (D.10b) and (D.10c) have two possible solutions. One of them is

B − D = 0, (D.13a)

μ1 + 2μ̂ cos θ = −4 (λ1 + λ3 − 2λ2)B − 16λ2B cos2 θ − 4λ4B cos θ; (D.13b)

and the other one is

μ1 = −2λ1 (B + D) − 4λ4
√

BD cos θ, (D.14a)

μ̂ cos θ = −8λ2
√

BD cos2 θ − 2 (λ3 − 2λ2)
√

BD. (D.14b)

Combining Eqs. (D.11) with either Eqs. (D.13) or Eqs. (D.14), there are altogether six cases:

1. Equations (D.11b) and (D.13) give

θ = 0, (D.15a)

D = B = − μ1 + 2μ2
, (D.15b)
4 (λ1 + 2λ2 + λ3 + 2λ4)
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V = − (μ1 + 2μ2)
2

4 (λ1 + 2λ2 + λ3 + 2λ4)
≡ V (4). (D.15c)

2. Equations (D.11c) and (D.13) give

θ = π, (D.16a)

D = B = − μ1 − 2μ2

4 (λ1 + 2λ2 + λ3 − 2λ4)
, (D.16b)

V = − (μ1 − 2μ2)
2

4 (λ1 + 2λ2 + λ3 − 2λ4)
≡ V (5). (D.16c)

3. Equations (D.11b) and (D.14) give

θ = 0, (D.17a)

B + D = −λ̂μ1 + 4λ4μ2

2λ1λ̂ − 4 (λ4)
2
, (D.17b)

√
BD = λ4μ1 − 2λ1μ2

2λ1λ̂ − 4 (λ4)
2
, (D.17c)

V = −λ̂ (μ1)
2 − 8λ1 (μ2)

2 + 8λ4μ1μ2

4
[
λ1λ̂ − 2 (λ4)

2
] ≡ V (6), (D.17d)

with λ̂ ≡ 4λ2 + 2λ3. This solution only exists if

2 |λ4μ1 − 2λ1μ2| ≤ −λ̂μ1 + 4λ4μ2. (D.18)

4. Equations (D.11c) and (D.14) give the same result as number 3, except that the sign of 
√

BD

gets inverted.
5. Equation (D.11a) and (D.13) give

cos θ = −1

4

2λ4μ1 − λ̄μ2

2λ2μ1 − λ4μ2
, (D.19a)

D = B = 1

2

2λ2μ1 − λ4μ2

(λ4)
2 − λ2λ̄

, (D.19b)

V = 4λ2 (μ1)
2 + λ̄ (μ2)

2 − 4λ4μ1μ2

4
[
(λ4)

2 − λ2λ̄
] ≡ V (7), (D.19c)

where λ̄ ≡ 4 (λ1 − 2λ2 + λ3).
6. Equations (D.11a) and (D.14) give (λ3 − 2λ2)

√
BD = 0, which is a contradiction because 

we are assuming that both B and D are nonzero.

The conditions One must require

V0 < V (1), V0 < V (2), V0 < V (3), (D.20)

and also

V0 < V (4) ⇐ μ1 + 2μ2

λ1 + 2λ2 + λ3 + 2λ4
< 0, (D.21a)

V0 < V (5) ⇐ μ1 − 2μ2
< 0, (D.21b)
λ1 + 2λ2 + λ3 − 2λ4
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V0 < V (6) ⇐ 2 |λ4μ1 − 2λ1μ2| ≤
∣∣∣−λ̂μ1 + 4λ4μ2

∣∣∣ and
−λ̂μ1 + 4λ4μ2

λ1λ̂ − 2 (λ4)
2

≥ 0, (D.21c)

V0 < V (7) ⇐ ∣∣2λ4μ1 − λ̄μ2
∣∣≤ 4 |2λ2μ1 − λ4μ2| and

2λ2μ1 − λ4μ2

(λ4)
2 − λ2λ̄

≥ 0. (D.21d)

In the conditions (D.20) and (D.21), the μ parameters must be substituted by their expressions 
in terms of the m and λ parameters by using Eqs. (D.3).

Appendix E. Experimental constraints

κZ and κW From Eq. (A.1),

L = · · · +
[

g2

2
W+μW−

μ +
(

g

2cw

Zμ + ls2
α

2cα

Xμ

)(
g

2cw

Zμ + ls2
α

2cα

Xμ

)]
|n|2

+
(

l2

2
V +μV −

μ + l2

4c2
α

XμXμ

)
|q|2

+1

2

(−gW+μb + lV +μd∗) (−gW−
μ b∗ + lV −

μ d
)

+1

2

(−gW+μd + lV +μb∗) (−gW−
μ d∗ + lV −

μ b
)

+
(

g

2cw

Zμ − lcα

2
Xμ

)(
g

2cw

Zμ − lcα

2
Xμ

)(
|b|2 + |d|2

)
. (E.1)

Therefore,

L = · · · + Z
μ
l Zlμ

[(
g2

4c2
w

c2
ψ + l2s4

α

4c2
α

s2
ψ + gls2

α

2cwcα

cψsψ

)√
2uLρL + l2

4c2
α

s2
ψ

√
2uRρR

+
(

g2

4c2
w

c2
ψ + l2c2

α

4
s2
ψ − glcα

2cw

cψsψ

)(√
2v1ρ1 + √

2v2ρ2

)]
+W

+μ
l W−

lμ

2

[
g2c2

ξ

√
2uLρL + l2s2

ξ

√
2uRρR

+
(
g2c2

ξ + l2s2
ξ

)(√
2v1ρ1 + √

2v2ρ2

)
+ 2glcξ sξ

(√
2v1ρ2 + √

2v2ρ1

)]
. (E.2)

Hence, the interactions of the scalar S0
5 with pairs of light massive gauge bosons are given by

L = · · · + Z
μ
l ZlμS0

5

2
√

2

{(
g2

c2
w

c2
ψ + l2s4

α

c2
α

s2
ψ + 2gls2

α

cwcα

cψsψ

)
uL

(
Vρ

)
31 + l2

c2
α

s2
ψ uR

(
Vρ

)
41

+
(

g2

c2
w

c2
ψ + l2c2

αs2
ψ − 2glcα

cw

cψsψ

)[
v1
(
Vρ

)
11 + v2

(
Vρ

)
21

]}
+W

+μ
l W−

lμS0
5√

2

{
g2c2

ξ uL

(
Vρ

)
31 + l2s2

ξ uR

(
Vρ

)
41

+
(
g2c2

ξ + l2s2
ξ

)[
v1
(
Vρ

)
11 + v2

(
Vρ

)
21

]+ 2glcξ sξ
[
v1
(
Vρ

)
21 + v2

(
Vρ

)
11

]}
. (E.3)

In our fits, we identify S0
5 as the observed scalar particle of mass 125 GeV. Equation (E.3) should 

therefore be compared to the corresponding interactions of the Higgs scalar H of the SM, which 
are given by
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LSM = · · · + H
emZmW√
m2

Z − m2
W

(
W+μW−

μ + m2
Z

2m2
W

ZμZμ

)
. (E.4)

We rewrite Eq. (E.3) as

L = · · · + S0
5

emZmW√
m2

Z − m2
W

(
κWW+μW−

μ + κZ

m2
Z

2m2
W

ZμZμ

)
, (E.5)

with

κZ = m2
W

m2
Z

√
m2

Z − m2
W

2Em2
Zm2

W

{
(GL + GH + LH)c2

ψ + H 2s2
ψ + 2H�1 cψsψ

L + H
uL

(
Vρ

)
31

+ (L + H)s2
ψuR

(
Vρ

)
41

+ (GL + GH + LH)c2
ψ + L2s2

ψ − 2L�1 cψsψ

L + H

[
v1
(
Vρ

)
11 + v2

(
Vρ

)
21

]}
, (E.6a)

κW =
√

m2
Z − m2

W

2Em2
Zm2

W

{
Gc2

ξ uL

(
Vρ

)
31 + Ls2

ξ uR

(
Vρ

)
41

+
(
Gc2

ξ + Ls2
ξ

)[
v1
(
Vρ

)
11 + v2

(
Vρ

)
21

]+ 2glcξ sξ
[
v1
(
Vρ

)
21 + v2

(
Vρ

)
11

]}
.

(E.6b)

In practice, we always input ψ = 0 in Eq. (E.6a) and, besides, the mixing angle ξ always turns 
out to be extremely small in our fits. When ψ = ξ = 0 one obtains, from Eqs. (10b), (11), (A.3), 
and (A.5a),

E = GLH

GL + GH + LH
, MW = GV 2

L

2
, MZ = (GL + GH + LH)V 2

L

2
. (E.7)

Then, from Eqs. (E.6),

κZ = κW = MW

V 2
L

√
2 (MZ − MW)

EMZMW

[
v1
(
Vρ

)
11 + v2

(
Vρ

)
21 + uL

(
Vρ

)
31

]
= v1c1 + v2s1c2 + uLs1s2c3√

V1 + V2 + UL

, (E.8)

where use was made of Eq. (33) in the last step. Thus, in our model, with ψ = 0 and in the limit 
ξ = 0, κZ and κW become equal and are necessarily smaller than one. In our fits ξ may deviate 
slightly from zero and therefore for some points κW is slightly larger than one, but never much.

κt and κb The Yukawa couplings of the top and bottom quarks to the scalars include, according 
to Eq. (60b),

LYukawa = · · · − y1ρ1 + y2ρ2√
2

(
t̄LtR + t̄RtL

)− y1ρ2 + y2ρ1√
2

(
b̄LbR + b̄RbL

)
. (E.9)

Using then Eqs. (62),
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LYukawa = · · · −
4∑

i=1

S0
i+4

[
(−v1mt + v2mb)

(
Vρ

)
1i

+ (v2mt − v1mb)
(
Vρ

)
2i√

2 (V2 − V1)

(
t̄LtR + t̄RtL

)
+ (−v1mt + v2mb)

(
Vρ

)
2i

+ (v2mt − v1mb)
(
Vρ

)
1i√

2 (V2 − V1)

(
b̄LbR + b̄RbL

)]
. (E.10)

The Yukawa couplings of S0
5 should be compared to the Yukawa couplings of H in the SM, 

which are given by

LSM = · · · − emZ

2mW

√
m2

Z − m2
W

H
[|mt |

(
t̄LtR + t̄RtL

)+ |mb|
(
b̄LbR + b̄RbL

)]
. (E.11)

One thus has

κt =
√

2m2
W

(
m2

Z − m2
W

)
Em2

Zm2
t

(v2mt − v1mb)
(
Vρ

)
21 + (v2mb − v1mt)

(
Vρ

)
11

(V2 − V1)
, (E.12a)

κb =
√

2m2
W

(
m2

Z − m2
W

)
Em2

Zm2
b

(v2mb − v1mt)
(
Vρ

)
21 + (v2mt − v1mb)

(
Vρ

)
11

(V2 − V1)
. (E.12b)

Appendix F. Determination of the VEVs and of the gauge coupling constants

General case Part of our input is formed by Ml , Mh, M̄l , M̄h, ξ , ψ ,24 and E. Using this input 
we determine the VEVs and the gauge coupling constants in the following way. We firstly define

x ≡ E

G
, y ≡ E

L
, z ≡ E

H
, a1 ≡ EV1, a2 ≡ EV2, a3 ≡ EUL, a4 ≡ EUR.

(F.1)

Equation (11) is equivalent to

x + y + z = 1. (F.2)

We use the input to compute

R = Mlc
2
ψ + Mhs

2
ψ, S = Mls

2
ψ + Mhc

2
ψ, T 2 = (Mh − Ml)

2 c2
ψs2

ψ, (F.3)

A = M̄lc
2
ξ + M̄hs

2
ξ , B = M̄ls

2
ξ + M̄hc

2
ξ , D2 = (M̄h − M̄l

)2
c2
ξ s

2
ξ . (F.4)

cf. Eqs. (A.27) and (A.9). The first Eq. (A.3) and Eq. (A.5a) imply

t ≡ A

R
= G(L + H)

GL + GH + LH

=
[

1

1 − y − z

(
1

y
+ 1

z

)][
1

1 − y − z

(
1

y
+ 1

z

)
+ 1

yz

]−1

= z + y

z + y + 1 − y − z

= z + y. (F.5)

24 In actual practice we always input ψ = 0, but the method that we delineate here works for arbitrary ψ .
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Therefore, x is computed from the input as

x = 1 − A

R
. (F.6)

Since x = E/G is by definition positive, we must enforce the condition

R ≥ A (F.7)

on the input. We then define

as ≡ a1 + a2. (F.8)

The first two Eqs. (A.3) and Eq. (A.5b) read, respectively,

2xA = as + a3, (F.9a)

2yB = as + a4, (F.9b)

2yz (y + z)S = asz
2 + a3y

2 + a4 (y + z)2 . (F.9c)

Equations (F.9) are solved as

as = xy2A + y (y + z)2 B − yz (y + z)S

y (y + z)
, (F.10a)

a3 = xy (2z + y)A − y (y + z)2 B + yz (y + z)S

y (y + z)
, (F.10b)

a4 = −xy2A + y
(
y2 − z2

)
B + yz (y + z)S

y (y + z)
. (F.10c)

Equation (A.5c) yields

4T 2 = x + y + z

xyz (y + z)2 (ya3 − zas)
2 . (F.11)

Plugging Eqs. (F.10) into Eq. (F.11) one obtains

4 (y + z)2 xyzT 2 = (x + y + z)
[
xyA − (y + z)2 B + z (y + z)S

]2
. (F.12)

Then, using x = 1 − t and

y = t − z, (F.13)

one obtains

4t2 (1 − t) T 2 (t − z) z =
[
t2B + (t − 1) (t − z)A − tzS

]2
. (F.14)

Equation (F.14) is a quadratic equation for z:

0 = z2
{

[(1 − t)A − tS]2 + 4t2 (1 − t) T 2
}

+2z
{

[(1 − t)A − tS] [tB + (t − 1)A] + 2t2 (t − 1) T 2
}

t

+ [tB + (t − 1)A]2 t2. (F.15)

One solves Eq. (F.15), enforcing on its solution the condition
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0 ≤ z ≤ t. (F.16)

Equation (F.13) then yields y. Equations (F.10) produce a1 + a2, a3, and a4; these must all turn 
out positive.

Case ψ = 0 In practice, we input ψ = 0. Then, according to Eqs. (F.3),

R = Ml, S = Mh, T = 0. (F.17)

Equation (A.5c) then implies

HUL = L(V1 + V2) , (F.18)

which simplifies considerably the resolution of the system of equations. One obtains,

G = EMl

Ml − A
, (F.19a)

L = EMl (Mh − Ml + A)

A(Mh − B)
, (F.19b)

H = EMl (Mh − Ml + A)

A(A + B − Ml)
, (F.19c)

V1 + V2 = 2A(Mh − B) (Ml − A)

EMl (Mh − Ml + A)
, (F.19d)

UL = 2A(Ml − A)(A + B − Ml)

EMl (Mh − Ml + A)
, (F.19e)

UR = 2A(Mh − B) (A + B − Ml)

EMl (Mh − Ml + A)
. (F.19f)

Note that one must input values of M̄l , M̄h, and ξ such that

A < Ml, Ml − A < B < Mh, (F.20)

where A and B are given by the first two Eqs. (F.4).

V1 and V2 It remains to separate a1 from a2. This we do by having recourse to the third 
Eq. (A.3):

a1a2 = xyD2. (F.21)

Therefore,

a1 = 1

2

[
as −
√

(as)
2 − 4xyD2

]
, a2 = 1

2

[
as +
√

(as)
2 − 4xyD2

]
. (F.22)

In Eqs. (F.22), 
√

(as)
2 − 4xyD2 is by definition positive, viz. we assume, without loss of gener-

ality, that V1 ≤ V2.
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D. Fontes, D. Jurčiukonis and L. Lavoura Nuclear Physics B 996 (2023) 116373
Proof that M̄h < Mh Because of Eqs. (A.3)–(A.5) and (F.18), when ψ = 0

A = G(L + H)

2L
UL, (F.23a)

B = L

2
UR + H

2
UL, (F.23b)

Mh = L + H

2
UR + H

2
UL

= B + H

2
UR. (F.23c)

Now,

M̄h = 1

2

[
B + A +

√
(B − A)2 + 4D2

]
. (F.24)

Therefore, using Eq. (F.23c),

Mh − M̄h = 1

2

[
B + HUR − A −

√
(B − A)2 + 4D2

]
≈ 1

2

(
HUR − 2D2

B − A

)
> 0, (F.25)

because both A and D are of order the electroweak scale squared, viz. V1, V2, and UL, while 
B ∼ UR is much larger. One thus concludes that the heavy neutral gauge boson is always heavier 
than the heavy charged gauge boson, at least when ψ = 0.

Appendix G. Mass matrices of the scalars

Mass matrix of the scalars The mass terms of the scalars are contained in the mass matrix Mρ , 
which is defined through

V = · · · + 1

2

(
ρ1, ρ2, ρL, ρR

)
Mρ

⎛⎜⎜⎝
ρ1
ρ2
ρL

ρR

⎞⎟⎟⎠ . (G.1)

That matrix may be computed from the input observables as

Mρ = Vρ × diag
(
μ2

5, μ2
6, μ2

7, μ2
8

)
× V T

ρ , (G.2)

where Vρ is a function of the mixing angles θi (i = 1, 2, . . . , 6) through Eq. (32). Using Eqs. (28), 
(59), and (D.3) one finds the matrix elements of Mρ :(

Mρ

)
11 = m1v2 − m2v1

V1 − V2
uLuR + V2

V1 − V2
[(λ3L − λ4L)UL + (λ3R − λ4R)UR]

+4λ1V1 + (8λ2 + 4λ3)V2 + 8λ4v1v2, (G.3a)(
Mρ

)
22 = m1v2 − m2v1

V1 − V2
uLuR + V1

V1 − V2
[(λ3L − λ4L)UL + (λ3R − λ4R)UR]

+4λ1V2 + (8λ2 + 4λ3)V1 + 8λ4v1v2, (G.3b)
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(
Mρ

)
12 = m1v1 − m2v2

V2 − V1
uLuR + v1v2

V2 − V1
[(λ3L − λ4L)UL + (λ3R − λ4R)UR]

+ (4λ1 + 8λ2 + 4λ3) v1v2 + 4λ4 (V1 + V2) , (G.3c)(
Mρ

)
13 = m2uR + 2 (λ4Lv1 + λ5Lv2)uL, (G.3d)(

Mρ

)
14 = m2uL + 2 (λ4Rv1 + λ5Rv2)uR, (G.3e)(

Mρ

)
23 = m1uR + 2 (λ3Lv2 + λ5Lv1)uL, (G.3f)(

Mρ

)
24 = m1uL + 2 (λ3Rv2 + λ5Rv1)uR, (G.3g)(

Mρ

)
33 = 4λLUL − (m1v2 + m2v1)

uR

uL

, (G.3h)(
Mρ

)
44 = 4λRUR − (m1v2 + m2v1)

uL

uR

, (G.3i)(
Mρ

)
34 = m1v2 + m2v1 + 2λLRuLuR. (G.3j)

Mass matrix of the pseudoscalars The mass terms of the pseudoscalars are contained in the 
mass matrix Mη, which is defined through

V = · · · + 1

2

(
ηa, ηb

)
Mη

(
ηa

ηb

)
, (G.4)

cf. Eq. (42). The matrix Mη may be computed from the input observables as

Mη =
(

cη sη
−sη cη

)(
Mη1 0

0 Mη2

)(
cη −sη
sη cη

)
, (G.5)

cf. Eq. (43). Using Eqs. (28), (40), (59), and (D.3) one finds the matrix elements of Mη:

(
Mη

)
11 = uLuR

V1 + V2

V1 − V2

(
m1

v2
− m2

v1

)
− uLuR

(
m1v

3
1 + m2v

3
2

)
v1v2 (V1 + V2)

+ (V1 + V2)

[
4λ3 − 8λ2 + (λ3L − λ4L)UL + (λ3R − λ4R)UR

V1 − V2

]
, (G.6a)

(
Mη

)
22 = − T2

T1uLuR

(m1v2 + m2v1) , (G.6b)

(
Mη

)
12 =

√
T2

T1
(m1v1 − m2v2) , (G.6c)

where T1 and T2 are defined in Eqs. (41).

Mass matrix of the charged scalars The mass terms of the charged scalars are contained in the 
mass matrix Mϕ , which is defined through

V = · · · + ( ϕ−
a , ϕ−

b

)
Mϕ

(
ϕ+

a

ϕ+
b

)
, (G.7)

cf. Eq. (49). The matrix Mϕ may be computed from the input observables as

Mϕ =
(

cϕ sϕ
−sϕ cϕ

)(
Mϕ1 0

0 Mϕ2

)(
cϕ −sϕ
sϕ cϕ

)
, (G.8)

cf. Eq. (50). Using Eqs. (28), (47), (59), and (D.3) one finds the matrix elements of Mϕ :
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D. Fontes, D. Jurčiukonis and L. Lavoura Nuclear Physics B 996 (2023) 116373
(
Mϕ

)
11 = λ3L − λ4L

V1 − V2
K1 + λ3R − λ4R

V1 − V2

4V1V2ULUR

K1

+ m1v2 + m2v1

uLuR (V2 − V1)
2

(
−URK1 − UL

4V1V2ULUR

K1

)
+4 (m1v1 + m2v2) v1v2uLuR

(V2 − V1)
2 , (G.9a)

(
Mϕ

)
22 = K2

K1

[
(λ3R − λ4R) (V1 − V2) − (m1v2 + m2v1)uL

uR

]
, (G.9b)

(
Mϕ

)
12 = −2v1v2uLuR

√
K2

K1

[
λ3R − λ4R − (m1v2 + m2v1)uL

uR (V1 − V2)

]
+m1v1 + m2v2

V2 − V1

√
K2, (G.9c)

where K1 and K2 are defined in Eqs. (48).

A constraint From Eqs. (G.6) and (G.9) one obtains

T2

[
2v1v2uLuR

(
Mϕ

)
22 +√K2 (V1 − V2)

(
Mϕ

)
12

]
= K2

[
2v1v2uLuR

(
Mη

)
22 +√T2 (V2 − V1)

(
Mη

)
12

]
. (G.10)

Equation (G.10) is a clear-cut prediction of our model for observable quantities (remember that 
the VEVs, and hence K2 and T2 too, are functions of the input observables, cf. appendix F). That 
prediction may be written

Mη2 =
{
T2

[
2v1v2uLuR

(
Mϕ

)
22 +√K2 (V1 − V2)

(
Mϕ

)
12

]
+
[
K2

√
T2 (V2 − V1) cηsη − 2v1v2uLuRK2s

2
η

]
Mη1

}
×
[
2v1v2uLuRK2c

2
η + K2

√
T2 (V2 − V1) cηsη

]−1
. (G.11)

Thus, given Mϕ1, Mϕ2, Mη1, and the mixing angles ϕ and η, one may calculate Mη2 .

Determination of the parameters of the potential Suppose that we already know the values of 
the VEVs uL, uR , v1, and v2 and that we input all the scalar masses and mixing angles. We may 
then

1. Use Eqs. (G.6b) and (G.6c) to determine m1 and m2.
2. Then use Eqs. (G.3h) to determine λL, (G.3i) to determine λR , and (G.3j) to determine λLR .
3. Next use either Eq. (G.9b) or Eq. (G.9c) to determine λ3R − λ4R , and then Eq. (G.9a) to 

determine λ3L − λ4L.
4. Equations (G.3d)–(G.3g) may now be employed to separately determine λ3R, λ4R , λ5R , λ3L, 

λ4L, and λ5L.
5. Equation (G.6a) pins down λ3 − 2λ2.
6. Equations (G.3a)–(G.3c) separately determine λ1, λ2, λ3, and λ4.
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Fig. 4. Scatter plot of the mass of the heavy charged gauge boson (
√

M̄h) versus the mixing angle between the two 
charged gauge bosons (ξ ), for the three cases where all the scalars have masses above 10 GeV (green points), 125 GeV 
(blue points), and 500 GeV (red points).

Fig. 5. Scatter plot of the relations among the vacuum expectation values v1, v2, and uL that break SU(2)L . The points, 
and the colour code for them, are the same as in Fig. 3. Left panel: v2 − |v1| versus v1. Right panel: 

√
v2

1 + v2
2 versus

uL . Remember that in our conventions v2 and uL are always positive, and v2 is always larger than |v1|.

Appendix H. The ranges of the parameters of the LRM

In this appendix we provide more information on the fits mentioned in section 7. We present 
scatter plots with green, blue, and red points following the code introduced in that section. How-
ever, the scatter plots in this appendix do not dwell on the fitting of the Zbb̄ vertex, rather on 
the parameters of the LRM itself. Moreover, in the scatter plots of this appendix we only display 
the points of Fig. 3 that satisfy the 2σ bounds on both Rb and Ab, viz. the points that are both 
in between the dashed orange lines and in between the magenta dashed lines in the left panel of 
that figure.

In Fig. 4 we plot the mass 
√

M̄h of the heavy charged gauge boson versus the mixing angle ξ
between the two charged gauge bosons. One sees that the mixing angle lies within a narrow range 
[−0.004, +0.004]. This happens because of the lower bound 750 GeV that we have imposed on √

M̄h and 
√

Mh; if we had opted for a more stringent and realistic lower bound [39–50], say 2 
or 3 TeV, then ξ would have to lie in an even narrower range. The various lower bounds on the 
masses of the scalars have no effect on this scatter plot, which results almost exclusively from 
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Fig. 6. Scatter plot of the gauge coupling constants g of SU(2)L , l of SU(2)R , and h of U(1)X . Both the points and the 
colour code used to mark them are the same as in Fig. 3. Left panel: h versus g. Right panel: h versus l/g.

Fig. 7. Scatter plot of the Yukawa coupling y2 and y1. Remember that in our convention y2 is always positive and larger 
than |y1|. The points and the colour code are the same as in Fig. 3.

the procedure in Appendix F. Namely, if one chooses larger values for ξ , then either one violates 
the first inequality (F.20) or one ends up with negative values for either G, V1, or UL—which 
must all be positive, because they are the squares of real quantities. Therefore, ξ must always be 
very small.

In Fig. 5 we display the correlations among the vacuum expectation values. In the left panel 

one sees that |v1| is always at least 30 GeV smaller than v2. Furthermore, 
√

v2
1 + v2

2 � 174 GeV 
provides an upper bound both on |v1| and on v2. In the right panel one observes the almost exact 

curve 
√

v2
1 + v2

2 + u2
L ≈ 174 GeV that arises from the masses of the gauge bosons Wl and Zl

being fixed to their observed values.
Fig. 6 displays the gauge constants g of SU(2)L, l of SU(2)R , and h of U(1)X . One sees in 

the horizontal scale of the left panel that g hardly deviates from it s SM value. On the other hand, 
h may vary from 2g/3 to 3g, approximately.

In the right panel of Fig. 6 one sees the counterpart, for the gauge coupling constants, of 
the relation observed in the right panel of Fig. 5 for the VEVs. Indeed, because we set ψ = 0, 
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Fig. 8. Scatter plot of the coupling modifiers κW and κZ , for the three cases where all the scalars have masses above 
10 GeV (green points), 125 GeV (blue points), and 500 GeV (red points).

Table 4
Approximate ranges of the parame-
ters of the scalar potential.

Parameter Range

m1 [GeV] -300 to 3
m2 [GeV] -140 to 130
λ1 0 to 3.6
λ2 -1 to 0.9
λ3 -3 to 3
λ4 -1.1 to 1.1
λL 0 to 4.2
λR 0 to 0.2
λLR -1.0 to 0.6
λ3L -6 to 11
λ3R -0.7 to 0.6
λ4L -3.8 to 9.5
λ4R -0.7 to 0.6
λ5L -6 to 6
λ5R -0.8 to 0.8

Eq. (F.18) forces h/l =
√

v2
1 + v2

2

/
uL. One sees that l/g saturates the bound in Eq. (13), but 

may also be much higher: in a separate dedicated search we have found points with l/g ∼ 6 that 
satisfy (at the price of very low-mass scalars) the 1σ bounds on Rb and Ab.

In Fig. 7 we illustrate the Yukawa couplings y1 and y2. One sees that in most cases |y1| and 
y2 are below 

√
4π ≈ 3.5; only a few points have them larger than 3.5, but always quite below 

our relaxed perturbativity bound 4π . One sees that y2 − |y1| is always larger than 0.8, that y1 is 
either positive or negative with the same likelihood, and that |y1| � 1.5.

In Fig. 8 we depict the correlation between the coupling modifiers κW and κZ . One observes 
that in the LRM they are equal for all practical purposes and they are always smaller than 1. We 
have also examined the parameters κt and κb; they do not correlate with each other and they fully 
cover their full ranges in conditions [52].
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In Table 4 we show the approximate ranges of some parameters of the scalar potential. Note 
that in a left–right-symmetric model one must have λL = λR , λ3L = λ3R , λ4L = λ4R , and λ5L =
λ5R ; these relations of course lead to restrictions on the masses and mixing of the scalars. It 
should be noted that the various lower bounds on the scalar masses that we have imposed do not 
greatly impact the ranges of the parameters of the potential.
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