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Abstract: This paper is devoted to the approximation of a certain class of analytic functions by shifts
Z(s + iτ), τ ∈ R, of the modified Mellin transform Z(s) of the square of the Riemann zeta-function
ζ(1/2 + it). More precisely, we prove the existence of a closed non-empty set F such that there are
infinitely many shifts Z(s + iτ), which approximate a given analytic function from F with a given
accuracy. In the proof, the weak convergence of measures in the space of analytic functions is applied.
Then, the set F coincides with the support of a limit measure.
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1. Introduction

Recall that the Riemann zeta-function ζ(s), s = σ + it, is defined, for σ > 1, by the
Dirichlet series

ζ(s) =
∞

∑
m=1

1
ms ,

and is analytically continuable to the whole complex plane, except for the point s = 1,
which is a simple pole with residue 1. It is well known that the function ζ(s) has good
approximation properties, its shifts ζ(s + iτ), τ ∈ R, approximate every non-vanishing
analytic function defined on the strip {s ∈ C : 1/2 < σ < 1}. On the other hand, in the
theory of the function ζ(s), there exists several important unsolved problems. One of them
is the moment problem on the asymptotic behavior as T → ∞ for

T∫
0

|ζ(σ + it)|2k dt, σ >
1
2

, k > 0.

Y. Motohashi introduced [1], see also [2], the modified Mellin transforms

Zk(s) =
∞∫

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2k
x−s dx, k ∈ N,

and applied them for investigation of the latter problem. He first considered the case
k = 2. The integral for Zk(s) [3] is absolutely convergent for σ > 1 if 0 6 k 6 2, and for
σ > (k + 2)/4 if 2 6 k 6 6. Hence, the function Zk(s) is analytic in the corresponding
half-planes. Later, the Mellin transforms Zk(s) with applications were studied in [4–6].
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We give one example from [4]. Define E2(T) by

T∫
0

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣4 dt = TP4(log T) + E2(T)

with

P4(x) =
4

∑
j=0

ajxj, a4 =
1

2π2 .

There exists a problem to estimate E2(T). In [4], using the mean square estimates for Z(s),
it was obtained that, for ε > 0,

E2(T)�ε T2/3+ε,

and this estimate is the best up to ε. The notation a �ε b, a ∈ C, b > 0, means that there
exists a positive constant c = c(ε) such that |a| 6 cb.

In function theory, much attention is devoted to the approximation of analytic func-
tions. We recall some results related to number theory. S.N. Mergelyan obtained [7] a
very deep result connected to polynomials. Suppose that K is a compact set with a con-
nected complement, and f (s) a continuous function on K, which is analytic inside of K.
Mergelyan proved [7] the existence of a polynomial sequence uniformly convergent on
K to the function f (s). From this, it follows that, for any ε > 0, we can find a polynomial
p f ,ε(s) satisfying

sup
s∈K

∣∣∣ f (s)− p f ,ε(s)
∣∣∣ < ε.

Thus, a function satisfying the above hypotheses can be approximated by a polynomial.
In 1975, it turned out that there exist functions that approximate a whole class of

analytic functions. The first example of such functions is the Riemann zeta-function.
S.M. Voronin proved [8] that if 0 < r < 1/4, the function f (s) 6= 0 is continuous on the disc
|s| 6 r, and analytic inside that disc, then, for any ε > 0, there is a real number τ = τ(ε)
satisfying the inequality

max
|s|6r

∣∣∣∣ f (s)− ζ

(
s +

3
4
+ iτ

)∣∣∣∣ < ε.

This shows that a set of non-vanishing analytic functions defined in the strip {s ∈ C : 1/2 <
σ < 1} is approximated by shifts ζ(s + iτ) of one and the same function. In other words,
ζ(s) is universal with respect to the approximation of analytic functions. The Voronin
universality theorem was reinforced and extended for other zeta-functions. We recall its
last form, see [9–12]. Suppose that K ⊂ D is a compact set having a connected complement,
f (s) is continuous, having no zeros on K and analytic in inside of K function. Then, for any
positive ε,

lim inf
T→∞

1
T

µ

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ)− f (s)| < ε

}
> 0.

Here, µ stands for the Lebesgue measure on the line R.
The proof of the Voronin theorem in [8] is based on the rearrangement theorem for

series in Hilbert space. B. Bagchi proposed [12] a new original probabilistic method that
uses weak convergence of measures in the space of analytic functions. The Bagchi method
was developed in [9,10]. Other results on the universality of zeta-functions are discussed
in a survey paper [13]. We notice that an idea of application probabilistic methods in
the theory of ζ(s) was proposed by H. Bohr and B. Jessen. In [14,15], they obtained the
existence of the limit

lim
T→∞

1
T

J{t ∈ [0, T] : ζ(σ + it) ∈ R}
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for every rectangle R ⊂ C with edges parallel to the axis and σ > 1/2. Here, J denotes
the Jordan measure on R. A modern version of the Bohr–Jessen theorem in terms of weak
convergence is presented in [9].

In general, for description value distribution of ζ(s), various methods and terms are
used. For example, it was observed in [16] that the distribution of a-points of ζ(s), a 6= 0
(the solution of ζ(s) = a), has a certain relation to a Julia line [17] with respect to the
essential singularity of ζ(s) at infinity.

In the present paper, we are connected to a new problem—the approximation of

analytic functions by the function Z(s) de f
= Z1(s). We need some results from [3]. The

function Z(s) is analytic in the half-plane σ > −3/4, except for a double pole at the point
s = 1, and has simple poles at the points s = −(2k− 1), k ∈ N. Let γ0 be the Euler constant,
E(T) be defined by

T∫
0

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣2 dt = T log
T

2π
+ (2γ0 − 1)T + E(t),

and

G(T) =
T∫

1

E(t)dt− πT, G1(T) =
T∫

1

G(t)dt.

Then, it was obtained that

Z(s) = 1
(s− 1)2 +

2γ0 − log 2π

s− 1
− E(1) + π(s + 1)

+ s(s + 1)(s + 2)
∞∫

1

G1(x)x−s−3 dx, σ > −3
4

. (1)

Moreover, for 0 6 σ 6 1, t > t0 > 0, and fixed ε > 0,

Z(σ + it)�ε t1−σ+ε,

and
T∫

1

|Z(σ + it)|2 dt�ε

{
T3−4σ+ε if 0 6 σ 6 1

2 ,
T2−2σ+ε if 1

2 6 σ 6 1.
(2)

Let D = {s ∈ C : 1/2 < σ < 1}, and H(D) be the space of analytic on D functions
equipped with the topology of uniform convergence on compacts. The main result of the
paper is the following theorem.

Theorem 1. There is a non-empty closed subset F ⊂ H(D) such that, for arbitrary compact set
K ⊂ D, f (s) ∈ F, and every ε > 0,

lim inf
T→∞

1
T

µ

{
τ ∈ [0, T] : sup

s∈K
|Z(s + iτ)− f (s)| < ε

}
> 0.

Moreover, except for at most a countably set of values of ε > 0, “lim inf” can be replaced by “lim”.

Theorem 1 implies that there are infinitely many shifts Z(s + iτ) approximating a
function from the set F. Theorem 1 is a certain version of the modern form of the Voronin
universality theorem [8] for the Riemann zeta-function, see, for example, [9,10]. In the case
of ζ(s), F = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Unfortunately, in the case of Theorem 1, the set F cannot be explicit described. Let
B(X ) stand for Borel σ-field of the space X . We will show that F is the support of a
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probability measure on (H(D),B(H(D))). Theorem 1 is a corollary of a limit theorem for
weakly convergent measures in the space (H(D),B(H(D))). For A ∈ B(H(D)), set

PT(A) =
1
T

µ{τ ∈ [0, T] : Z(s + iτ) ∈ A}.

Denote by W−→ the weak convergence.

Theorem 2. On the space (H(D),B(H(D))), there is a probability measure P such that PT
W−−−→

T→∞
P.

For the proof of Theorem 2, the auxiliary function

Zy(s) =
∞∫

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2v(x, y)x−s dx,

where

v(x, y) = exp
{
−
(

x
y

)σ0
}

, x, y ∈ (1, ∞),

with a fixed σ0 > 0, will be useful.

2. Case of Finite Interval

Let a > 1, and

Za,y(s) =
a∫

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2v(x, y)x−s dx,

For A ∈ B(H(D)), set

PT,a,y(A) =
1
T

µ
{

τ ∈ [0, T] : Za,y(s + iτ) ∈ A
}

.

Lemma 1. On the space (H(D),B(H(D))), there is a probability measure Pa,y such that

PT,a,y
W−−−→

T→∞
Pa,y.

The proof of Lemma 1 is divided into parts. In the first part, we will deal with weak
convergence on a certain Cartesian product. Let γ be the unit circle on C, and

Ωa = ∏
u∈[1,a]

γ.

In virtue of the Tikhonov theorem, the set Ωa with the product topology is a compact
topological Abeliam group. For A ∈ B(Ωa), set

QT,a(A) =
1
T

µ
{

τ ∈ [0, T] :
(

u−iτ : u ∈ [1, a]
)
∈ A

}
.

Lemma 2. On the space (Ωa,B(Ωa)), there is a probability measure Qa such that QT,a
W−−−→

T→∞
Qa.

Proof. The character group of Ωa is isomorphic to ⊕
u∈[1,a]

Zu, where Zu = Z for all u ∈ [1, a].

Therefore, the Fourier transform gT,a(ku : u ∈ [1, a]) of QT,a is given by

gT,a(ku : u ∈ [1, a]) =
∫

Ωa

∏
u∈[1,a]

xku
u dQT,a,
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where xu ∈ γ, ku ∈ Z, and only a finite number of ku are not zeros. Thus,

gT,a(ku : u ∈ [1, a]) =
1
T

T∫
0

exp

−iτ ∑
u∈[1,a]

ku log u

dτ

=


1 if ∑

u∈[1,a]
ku log u = 0,

1−exp{−iτ ∑u∈[1,a] ku log u}
iT ∑u∈[1,a] ku log u if ∑

u∈[1,a]
ku log u 6= 0.

Therefore, we have

lim
T→∞

gT,a(ku : u ∈ [1, a])
de f
= ga(ku : u ∈ [1, a]) =


1 if ∑

u∈[1,a]
ku log u = 0,

0 if ∑
u∈[1,a]

ku log u 6= 0.

This shows that QT,a
W−−−→

T→∞
Qa with Qa on (Ωa,B(Ωa)) with the Fourier transform

ga(ku : u ∈ [1, a]).

Lemma 2 implies a certain limit lemma in the space H(D). We recall that if h : X → X1
is a (B(X ),B(X1))-measurable mapping, then a probability measure P on (X ,B(X )) de-
fines the unique probability measure Ph−1 on (X1,B(X1)) defined by Ph−1(A) = P(h−1 A),
A ∈ X1. Moreover, if the mapping h is continuous, then the weak convergence is preserved,

i.e., if Pn
W−−−→

n→∞
P in X , then also Pnh−1 W−−−→

n→∞
Ph−1 in X1. The latter remark is sometimes

very useful.
Let

Sn,a,y(s) =
a− 1

n

n

∑
k=1

∣∣∣∣ζ(1
2
+ iξk

)∣∣∣∣2v(ξk, y)ξ−s
k ,

where ξk ∈ [xk−1, xk] and xk = 1 + ((a− 1)/n)k. For A ∈ B(H(D)), let

PT,n,a,y(A) =
1
T

µ
{

τ ∈ [0, T] : Sn,a,y(s + iτ) ∈ A
}

.

Lemma 3. On the space (H(D),B(H(D))), there is a probability measure Pn,a,y such that PT,n,a,y
W−−−→

T→∞
Pn,a,y.

Proof. Let the mapping hn,a : Ωa → H(D) be given by the formula

hn,a(y) =
a− 1

n

n

∑
k=1

∣∣∣∣ζ(1
2
+ iξk

)∣∣∣∣2v(ξk, y)ξ−s
k yξk , y = {yu ∈ γ : u ∈ [1, a]}.

Then, hn,a is a continuous in the product topology, and hn,a({u−iτ : u ∈ [1, a]}) = Sn,a,y(s +
iτ). Thus, PT,n,a,y = QT,ah−1

n,a , where QT,a comes from Lemma 2. This equality, the continuity
of hn,a, Lemma 2 and the above remark on the preservation of weak convergence show that
PT,n,a,y converges weakly to Pn,a,y = Qah−1

n,a as T → ∞ with Qa defined in Lemma 2.

In the sequel, we will use one lemma on the convergence in distribution ( D−→). Recall
that the random element Xn converges in distribution to X as n → ∞, if the distribution
Pn of Xn converges weakly to that P of X as n → ∞. In this case, we use the notation

Xn
D−−−→

n→∞
P as well.

Suppose that the metric space (X , d) is separable and the X -valued random elements
X, Yn and Xnk are defined on the same probability space with measure P.
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Lemma 4. For k ∈ N, let
Xnk

D−−−→
n→∞

Xk

and
Xk

D−−−→
k→∞

X.

If, for any ε > 0,
lim
k→∞

lim sup
n→∞

P{d(Xnk, Yn) > ε} = 0,

then Yn
D−−−→

n→∞
X.

The lemma is proved, for example, in [18], Theorem 4.2.
We note that the space H(D) is separable and metrizable. It is known that there is a

sequence {Kl : l ∈ N} ⊂ D of compact embedded sets such that D is the union of Kl , and
every set K ⊂ D lies in some set Kl . Then,

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(D),

is a metric in H(D) which induces its topology of uniform convergence on compacts.

Lemma 5. The equality

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρ
(
Sn,a,y(s + iτ),Za,y(s + iτ)

)
dτ = 0

holds.

Proof. The definition of the metric ρ implies that it suffices to show that

lim
n→∞

lim sup
T→∞

1
T

T∫
0

sup
s∈K

∣∣Sn,a,y(s + iτ)−Za,y(s + iτ)
∣∣dτ = 0 (3)

for every compact set K ⊂ D. Let L be a simple closed contour lying in D and enclosing
a compact set K; suppose also that infs∈K infz∈L |s− z| > c(L) > 0. Then, by the integral
Cauchy formula, we have

sup
s∈K

∣∣Sn,a,y(s + iτ)−Za,y(s + iτ)
∣∣�L

∫
L

∣∣Sn,a,y(z + iτ)−Za,y(z + iτ)
∣∣|dz|.

Therefore,

1
T

T∫
0

sup
s∈K

∣∣Sn,a,y(s + iτ)−Za,y(s + iτ)
∣∣dτ

�L

∫
L

|dz|

 1
T

T∫
0

∣∣Sn,a,y(z + iτ)−Za,y(z + iτ)
∣∣dτ

. (4)

Clearly,
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1
T

T∫
0

∣∣Sn,a,y(z + iτ)−Za,y(z + iτ)
∣∣dτ

6

 1
T

T∫
0

∣∣Sn,a,y(z + iτ)−Za,y(z + iτ)
∣∣2 dτ

1/2

(5)

We have ∣∣Sn,a,y(z + iτ)−Za,y(z + iτ)
∣∣2

=
(
Sn,a,y(z + iτ)−Za,y(z + iτ)

)(
Sn,a,y(z + iτ)−Za,y(z + iτ)

)
= Sn,a,y(z + iτ)Sn,a,y(z + iτ)− Sn,a,y(z + iτ)Za,y(z + iτ)

− Sn,a,y(z + iτ)Za,y(z + iτ) +Za,y(z + iτ)Za,y(z + iτ), (6)

where z denotes the complex conjugate of z ∈ C. By the definition of Sn,a,y(s),

Sn,a,y(z + iτ)Sn,a,y(z + iτ) =
(

a− 1
n

)2 n

∑
k=1

∣∣∣∣ζ(1
2
+ iξk

)∣∣∣∣4v2(ξk, y)ξ−2Rez
k

+

(
a− 1

n

)2 n

∑
k1=1

n

∑
k2=1

k1 6=k2

∣∣∣∣ζ(1
2
+ iξk1

)∣∣∣∣2∣∣∣∣ζ(1
2
+ iξk2

)∣∣∣∣2

× v(ξk1 , y)v(ξk2 , y)ξ−z
k1

ξ−z
k2

(
ξk1

ξk2

)−iτ
.

Therefore,

1
T

T∫
0

Sn,a,y(z + iτ)Sn,a,y(z + iτ)dτ

=

(
a− 1

n

)2 n

∑
k=1

∣∣∣∣ζ(1
2
+ iξk

)∣∣∣∣4v2(ξk, y)ξ−2Rez
k

+ O

((
a− 1

n

)2 1
T

n

∑
k1=1

n

∑
k2=1

k1 6=k2

∣∣∣∣ζ(1
2
+ iξk1

)∣∣∣∣2∣∣∣∣ζ(1
2
+ iξk2

)∣∣∣∣2

× v(ξk1 , y)v(ξk2 , y)ξ−Rez
k1

ξRez
k2

∣∣∣∣log
ξk1

ξk2

∣∣∣∣−1
)

.

Since

lim
n→∞

a− 1
n

n

∑
k=1

∣∣∣∣ζ(1
2
+ iξk

)∣∣∣∣4v2(ξk, y)ξ−2Rez
k =

a∫
1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣4v2(x, y)x−2Rez dx,

hence we obtain, for all z ∈ L,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

Sn,a,y(z + iτ)Sn,a,y(z + iτ)dτ = 0. (7)

Similarly, by the definition of Za,y(s), for all z ∈ L,
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lim sup
T→∞

1
T

T∫
0

Za,y(z + iτ)Za,y(z + iτ)dτ

= lim sup
T→∞

1
T

T∫
0

( a∫
1

a∫
1

∣∣∣∣ζ(1
2
+ ix1

)∣∣∣∣2∣∣∣∣ζ(1
2
+ ix2

)∣∣∣∣2

× v(x1, y)v(x2, y)x−z−iτ
1 x−z+iτ

2 dx1 dx2

)
dτ

= lim sup
T→∞

1
T

a∫
1

a∫
1

x1 6=x2

∣∣∣∣ζ(1
2
+ ix1

)∣∣∣∣2∣∣∣∣ζ(1
2
+ ix2

)∣∣∣∣2

× v(x1, y)v(x2, y)x−z
1 x−z

2

(
e−iT log(x1/x2) − 1

)(
log

x1

x2

)−1
dx1 dx2 = 0. (8)

The latter equality suggests that the set of values of the function Za,y(s) is not dense. On
the other hand, this case is convenient for our investigations. Moreover,∣∣∣∣∣∣ 1

T

T∫
0

Sn,a,y(z + iτ)Za,y(z + iτ)dτ

∣∣∣∣∣∣
6

 1
T

T∫
0

∣∣Sn,a,y(z + iτ)
∣∣2 dτ

1/2 1
T

T∫
0

∣∣Za,y(z + iτ)
∣∣2 dτ

1/2

,

and this is true for the integral of Sn,a,y(z + iτ)Za,y(z + iτ). This and (4)–(8) show that

lim
n→∞

lim sup
T→∞

1
T

T∫
0

sup
s∈K

∣∣Sn,a,y(s + iτ)−Za,y(s + iτ)
∣∣dτ = 0.

Proof of Lemma 1. Suppose that θT is a random variable uniformly distributed on [0, T]
and defined on a certain probability space with measure P. Define the H(D)-valued
random element

XT,n,a,y(s) = Sn,a,y(s + iθT).

In view of Lemma 3, we have
XT,n,a,y

D−−−→
T→∞

Xn,a,y, (9)

where Xn,a,y is the H(D)-valued random element with the distribution Pn,a,y.
Now, we will prove that the sequence {Pn,a,y : n ∈ N} is tight, i.e., that, for every ε > 0,

there exists a compact set K = K(ε) ⊂ H(D) such that

Pn,a,y(K) > 1− ε

for all n ∈ N. Let Kl be a compact set in the definition of the metric ρ. Then, (7) and the
integral Cauchy formula imply

sup
n∈N

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

∣∣Sn,a,y(s + iτ)
∣∣dτ 6 Rl,a,y < ∞.

Let ε > 0 be a fixed, and Ml = Ml,a,y = Rl,a,y2lε−1. Then, in view of (9),
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P
(

sup
s∈Kl

∣∣Xn,a,y(s)
∣∣ > Ml

)
6 sup

n∈N
lim sup

T→∞

1
MlT

T∫
0

sup
s∈Kl

∣∣Sn,a,y(s + iτ)
∣∣dτ 6

ε

2l (10)

for all n and l ∈ N. Let

K = K(ε) =

{
g ∈ H(D) : sup

s∈Kl

|g(s)| 6 Ml , l ∈ N
}

.

Then, the set K is compact in the space H(D), and, by (10),

P
(
Xn,a,y ∈ K

)
= 1− P

(
Xn,a,y 6∈ K

)
> 1− ε

∞

∑
l=1

2−l = 1− ε

for all n ∈ N. This and the definition of Pn,a,y prove the tightness of the sequence {Pn,a,y : n ∈
N}. In the theory of weak convergence of probability measures, the Prokhorov theorem, see,
for example, [18], occupies an important place. Let {P} be a family of probability measures
on (X ,B(X )). The Prokhorov theorem connects the tightness and relative compactness of
{P}; namely, if the family {P} is tight, then it is relatively compact.

Since the sequence {Pn,a,y} is tight, by the Prokhorov theorem [18], it is relatively
compact, i.e., every subsequence {Pnk ,a,y} contains a subsequence weakly convergent to a
certain probability measure on (H(D),B(H(D))). Thus, there exists a probability measure
Pa,y on (H(D),B(H(D))) and a sequence {Pnr ,a,y} such that Pnr ,a,y converges weakly to Pa,y
as r → ∞. In other words,

Xnr ,a,y
D−−−→

r→∞
Pa,y. (11)

Now, we are in position to apply Lemma 4 for the random elements

YT,a,y(s) = Za,y(s + iθT),

Xnr ,a,y and Xa,y, where Xa,y has the distribution Pa,y. By Lemma 5, we have, for every ε > 0,

lim
n→∞

lim sup
T→∞

P
(
ρ(YT,a,y, Xnr ,a,y) > ε

)
6 lim

n→∞
lim sup

T→∞

1
Tε

T∫
0

ρ
(
Snr ,a,y(s + iτ),Za,y(s + iτ)

)
dτ = 0.

This, (9) and (11) together with Lemma 5 prove Lemma 1, i.e., PT,a,y converges weakly to
Pa,y as T → ∞.

3. Case of Infinite Interval

In this section, we will prove a limit theorem for the function Zy(s). Since
ζ(1/2 + it)� t1/6 as t→ ∞, and v(x, y) with respect to x is decreasing exponentially, the
integral for Zy(s) is absolutely convergent for σ > σ0 with every fixed σ0 and y > 0.

For A ∈ B(H(D)), define

PT,y(A) =
1
T

µ
{

τ ∈ [0, T] : Zy(s + iτ) ∈ A
}

.

Lemma 6. On (H(D),B(H(D))), there exists a probability measure Py such that PT,y
W−−−→

T→∞
Py.
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Proof. First, we observe that the equality

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρ
(
Zy(s + iτ),Za,y(s + iτ)

)
dτ = 0 (12)

holds. As in the case of Lemma 5, it suffices to show that, for every compact set K ⊂ D,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

sup
s∈K

∣∣Zy(s + iτ)−Za,y(s + iτ)
∣∣dτ = 0. (13)

It is easily seen that, for every fixed y > 0 and s ∈ K,

Zy(s + iτ)−Za,y(s + iτ) =
∞∫

a

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2v(x, y)x−s−iτ dx

�y

∞∫
a

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2v(x, y)x−1/2 dx = oy(1)

as a→ ∞ in view of convergence of the integral. From this, equality (13) follows.
Let θT be the same random variable as in the proof of Lemma 1. Define

YT,y(s) = Zy(s + iθT),

and denote by Ya,y the H(D)-valued random element with the distribution Pa,y. Then,
Lemma 1 implies the relation

YT,a,y
D−−−→

T→∞
Ya,y. (14)

Let Kl , l ∈ N be a compact set from the definition of metric ρ. Then, (8) and the integral
Cauchy formula give

sup
a>1

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

∣∣Za,y(s + iτ)
∣∣dτ 6 Rl,y < ∞.

Thus, taking M̂l = M̂l,y = Rl,y2lε−1, we find by (14)

P
(

sup
s∈Kl

∣∣Ya,y(s)
∣∣ > M̂l

)
6 sup

a>1
lim sup

T→∞

1
M̂lT

T∫
0

sup
s∈Kl

∣∣Za,y(s + iτ)
∣∣dτ 6

ε

2l .

This shows that
P
(
Ya,y ∈ K

)
> 1− ε,

for all a > 1, where K = {g ∈ H(D) : sups∈Kl
|g(s)| 6 M̂l , l ∈ N}. Therefore, the family

of probability measures {Pa,y : a > 1} is tight. Thus, there exists a sequence Par ,y weakly
convergent to a certain probability measure Py as r → ∞, i.e.,

Yar ,y
D−−−→

r→∞
Py.

This, (12), (14) and Lemma 4 prove that

YT,y
D−−−→

T→∞
Py, (15)

and the lemma is proved.
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4. Formula for Zy(s)

As usual, denote by Γ(s) the Euler gamma-function, and define

ly(s) =
s

σ0
Γ
(

s
σ0

)
ys,

where σ0 is from definition of v(x, y).

Lemma 7. The integral representation, for s ∈ D,

Zy(s) =
1

2πi

σ0+i∞∫
σ0−i∞

Z(s + z)ly(z)
dz
z

is valid.

Proof. We will apply the classical Mellin formula

1
2πi

a+i∞∫
a−i∞

Γ(s)b−s ds = e−b, a, b > 0,

and obtain

1
2πi

σ0+i∞∫
σ0−i∞

ly(z)x−z dz
z

=
1

2πi

σ0+i∞∫
σ0−i∞

1
σ0

Γ
(

z
σ0

)(
x
y

)−z
dz

=
1

2πi

1+i∞∫
1−i∞

Γ(z)
(

x
y

)−σ0z
dz

= exp
{
−
(

x
y

)σ0
}

= v(x, y). (16)

Setting, for brevity,

f (x, t) =
1

2πi
ly(σ0 + it)

σ0 + it

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2x−s−σ0−it

and applying theorem from ([19], §1.84), we obtain

T∫
−T

dt
X∫

1

f (x, t)dx =

X∫
1

dx
T∫
−T

f (x, t)dt, (17)

for any X, T > 1. Next, the well-known estimate

Γ(σ + it)� exp (−c|t|), c > 0,

which is uniform in any fixed strip σ1 < σ < σ2, together with the inequality

X∫
1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2 dx � X(log X)

imply
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+∞∫
T

dt
X∫

1

(| f (x, t)|+ | f (x,−t)|)dx,
X∫

1

dx
+∞∫
T

(| f (x, t)|+ | f (x,−t)|)dt� R,

where

R = R(X, T) = yσ0

+∞∫
T

e−ct/σ0 dt
X∫

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2x−σ−σ0 dx

� yσ0 exp
{
− c

σ0
T
}(

1 + X1−σ−σ0
)
(log X)2. (18)

Hence, using (17) and (18), we find that

+∞∫
−∞

dt
X∫

1

f (x, t)dx =

 T∫
−T

+

+∞∫
T

+

−T∫
−∞

dt
X∫

1

f (x, t)dx

=

X∫
1

dx
T∫
−T

f (x, t)dt + O(R)

=

X∫
1

dx

 +∞∫
−∞

−
+∞∫
T

−
−T∫
−∞

 f (x, t)dt + O(R)

=

X∫
1

dx
+∞∫
−∞

f (x, t)dt + O(R).

Tending T → ∞, we obtain

+∞∫
−∞

dt
X∫

1

f (x, t)dx =

X∫
1

dx
+∞∫
−∞

f (x, t)dt

for any X > 1. Therefore, the application of a theorem from ([19], §1.84) together with (16)
yields

1
2πi

σ0+i∞∫
σ0−i∞

Z(s + z)ly(z)
dz
z

=

+∞∫
−∞

+∞∫
1

1
2πi

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2 ly(σ0 + it)
σ0 + it

x−s−σ0−itdx

=

+∞∫
−∞

dt
+∞∫
1

f (x, t)dx =

+∞∫
1

dx
+∞∫
−∞

f (x, t)dt

=

+∞∫
1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2x−s 1
2πi

σ0+i∞∫
σ0−i∞

ly(z)x−z dz
z

dx

=

+∞∫
1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2x−sv(x, y)dx = Zy(s).
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5. Approximation of Z(s) by Zy(s)

Lemma 8. The equality

lim
y→∞

lim sup
T→∞

1
T

T∫
0

ρ
(
Z(s + iτ),Zy(s + iτ)

)
dτ = 0

holds.

Proof. Let K be an arbitrary fixed compact set of the strip D. Then, there exists a number
ε > 0 such that, for all s = σ + it ∈ K, 1/2 + 2ε 6 σ 6 1− ε. Denote

σ1 = σ− ε− 1
2

, σ0 =
1
2
+ ε.

Then, σ1 > 0 for all s ∈ K. Since the point z = 1− s is a double pole, and z = 0 is a simple
pole of the function

Z(s + z)
ly(z)

z
,

Lemma 7 and the residue theorem imply

Zy(s)−Z(s) =
1

2πi

−σ1+i∞∫
−σ1−i∞

Z(s + z)ly(z)
dz
z

+ Ry(s), (19)

where

Ry(s) = Res
z=1−s

Z(s + z)
ly(z)

z
.

Let a0 = 2γ0 − log 2π. Then, in view of (1),

Ry(s) =
(

ly(z)
z

)′∣∣∣∣∣
z=1−s

+ a0
ly(1− s)

1− s
. (20)

By (19), for all s ∈ K, we have

Zy(s + iτ)−Z(s + iτ) =
1

2π

∞∫
−∞

Z
(

σ + it− σ +
1
2
+ ε + iτ + iv

)

×
ly(1/2 + ε− σ + iv)

1/2 + ε− σ + iv
dv + Ry(s + iτ).

Hence, writing v in place of t + v, gives, for s ∈ K,

Zy(s + iτ)−Z(s + iτ) =
1

2π

∞∫
−∞

Z
(

1
2
+ ε + iτ + iv

)
ly(1/2 + ε− s + iv)

1/2 + ε− s + iv
dv

+ Ry(s + iτ)

�
∞∫
−∞

∣∣∣∣Z(1
2
+ ε + iτ + iv

)∣∣∣∣ sup
s∈K

∣∣∣∣ ly(1/2 + ε− s + iv)
1/2 + ε− s + iv

∣∣∣∣dv

+ sup
s∈K

∣∣Ry(s + iτ)
∣∣.

Thus,
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1
T

T∫
0

sup
s∈K

∣∣Zy(s + iτ)−Z(s + iτ)
∣∣dτ

�
∞∫
−∞

 1
T

T∫
0

∣∣∣∣Z(1
2
+ ε + iτ + iv

)∣∣∣∣dτ

 sup
s∈K

∣∣∣∣ ly(1/2 + ε− s + iv)
1/2 + ε− s + iv

∣∣∣∣dv

+
1
T

T∫
0

sup
s∈K

∣∣Ry(s + iτ)
∣∣dτ

de f
= I1 + I2. (21)

First we estimate I1. The definition of ly(s) and (17) imply that, for s = σ + it ∈ K,

ly(1/2 + ε− s + iv)
1/2 + ε− s + iv

�σ0 y1/2+ε−σ

∣∣∣∣Γ( 1
σ0

(
1
2
+ ε− σ− it + iv

))∣∣∣∣
�σ0 y1/2+ε−σ exp

{
− c

σ0
|t− v|

}
�σ0 y1/2+ε−σ exp

{
− c

σ0
|v− t|

}
�σ0 y1/2+ε−σ exp

{
c

σ0
|t|
}

exp
{
− c

σ0
|v|
}

. (22)

Since σ > 1/2 + 2ε, then 1/2 + ε− σ 6 −ε for any s ∈ K. Therefore,

sup
s∈K

∣∣∣∣ ly(1/2 + ε + iv− s)
1/2 + ε + iv− s

∣∣∣∣�σ0,K y−ε exp{−c1|v|}.

Thus, we obtain

I1 �σ0,K y−ε

+∞∫
−∞

exp
{
− c

σ0
|v|
}

1
T

T∫
0

∣∣∣∣Z(1
2
+ ε + iτ + iv

)∣∣∣∣dτ dv.

Given 0 < ε1 < ε, Cauchy inequality together with (2) imply

1
T

T∫
0

∣∣∣∣Z(1
2
+ ε + iτ + iv

)∣∣∣∣dτ 6

 1
T

T∫
0

∣∣∣∣Z(1
2
+ ε + iτ + iv

)∣∣∣∣2 dτ

1/2

=

 1
T

T+v∫
v

∣∣∣∣Z(1
2
+ ε + iτ

)∣∣∣∣2 dτ

1/2

6

 2
T

T+|v|∫
0

∣∣∣∣Z(1
2
+ ε + iτ

)∣∣∣∣2 dτ


1/2

�ε

(
1
T
(T + |v|)2−2(1/2+ε)+ε1

)1/2

�ε T−ε+ε1/2 +
1√
T
|v|1/2−ε+ε1/2

�ε T−ε/2 +
|v|1/2
√

T
.

Hence,
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I1 �σ0,K,ε y−ε

+∞∫
−∞

ec1|v|
(

T−ε/2 +
|v|1/2
√

T

)
dv�σ0,K,ε y−ε

(
T−ε/2 + T−1/2

)
�σ0,K,ε y−εT−ε/2.

Passing to the estimate of I2, and setting g(z) = ly(z)/z, we obtain

g′(z) =
yz

σ0
Γ
(

z
σ0

)(
1
σ0

ψ

(
z
σ0

)
+ log y

)
where ψ(x) = Γ′(x)/Γ(x) denotes the digamma-function. Hence,

Ry(s) = g′(1− s) + (2γ0 − log 2π)g(1− s)

=
y1−s

σ0
Γ
(

1− s
σ0

)(
1
σ0

ψ

(
1− s

σ0

)
+ log y + 2γ0 − log 2π

)
.

Thus, we find

Ry(s + iτ)� y1−σ

∣∣∣∣Γ(1− σ

σ0
+ i

t + τ

σ0

)∣∣∣∣(∣∣∣∣ψ(1− σ

σ0
+ i

t + τ

σ0

)∣∣∣∣+ log y + 1
)

�σ0 y1−σ exp
{
− c

σ0
|t + τ|

}(
log
∣∣∣∣ t + τ

σ0

∣∣∣∣+ log y + 1
)

and therefore

sup
s∈K
|Ry(s + iτ)| �σ0,K y1−(1/2+2ε) exp

{
− c

σ0
τ

}
(log (τ + 2) + log y)

�σ0,K,ε y1/2−ε exp{−c2|τ|}.

Thus, we obtain

I2 =
1
T

T∫
0

sup
s∈K
|Ry(s + iτ)|dτ �σ0,K,ε

y1/2−ε

T

T∫
0

exp{−c2τ}dτ �σ0,K,ε
y1/2−ε

T
.

Consequently,

1
T

T∫
0

sup
s∈K

∣∣Zy(s + iτ)−Z(s + iτ)
∣∣dτ = I1 + I2 �σ0,K,ε y−εT−ε/2 +

y1/2−ε

T
.

Tending T → ∞, we find

lim
T→∞

1
T

T∫
0

sup
s∈K

∣∣Zy(s + iτ)−Z(s + iτ)
∣∣dτ = 0.

Then, the desired assertion follows.

6. Proof of Theorem 2

We return to the limit measure Py in Lemma 6. We recall that PT,y
W−−−→

T→∞
Py.

Lemma 9. The family of probability measures {Py : y > 1} is tight.



Axioms 2023, 12, 520 16 of 19

Proof. Let K ⊂ D be a compact set. Then, we have

1
T

T∫
0

sup
s∈K

∣∣Zy(s + iτ)
∣∣dτ 6

1
T

T∫
0

sup
s∈K

∣∣Z(s + iτ)−Zy(s + iτ)
∣∣dt

+
1
T

T∫
0

sup
s∈K
|Z(s + iτ)|dτ. (23)

Let L be a simple closed contour lying in D, enclosing a compact K and such that

inf
z∈L

inf
s∈K
|z− s| > c(L) > 0.

Then, the application of the integral Cauchy formula gives

|Z(s + iτ)| 6 1
2π

∫
L

|Z(z + iτ)|
|z− s| |dz|,

and
sup
s∈K
|Z(s + iτ)| 6 1

2πc

∫
L

|Z(z + iτ)| |dz| �L

∫
L

|Z(z + iτ)| |dz|.

Setting z = σ + it for z ∈ L, and using the inequality (2), we find

1
T

T∫
0

sup
s∈K
|Z(s + iτ)|dτ �L

∫
L

1
T

T∫
0

|Z(z + iτ)|dτ |dz|

�L

∫
L

 1
T

T∫
0

|Z(z + iτ)|2 dτ

1/2

|dz|

�L

∫
L

 1
T

T+|t|+1∫
0

|Z(σ + iτ)|2 dτ


1/2

|dz|

�L

∫
L

(
1
T
(T + |t|)2−2σ+ε1

)1/2
|dz| �L T−ε/2.

Thus,

lim sup
T→∞

1
T

T∫
0

sup
s∈K
|Z(s + iτ)|dt 6 C < ∞.

Therefore, by (23) and Lemma 8,

sup
y>1

lim sup
T→∞

1
T

T∫
0

sup
s∈K

∣∣Zy(s + iτ)
∣∣dt 6 R < ∞.

Fix ε > 0 and put Ml = R2lε−1, l ∈ N. Let Yy(s) be a H(D)-valued random element with
the distribution Py. Then,

P
(

sup
s∈Kl

|Yy(s)| > Ml

)
6 sup

y>1
lim sup

T→∞

1
TMl

T∫
0

sup
s∈Kl

∣∣Zy(s + iτ)
∣∣dτ 6

ε

2l .

Hence, we have
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P(Yy(s) ∈ K) > 1− ε

for all y > 1, where

K =

{
g ∈ H(D) : sup

s∈Kl

|g(s)| 6 Ml , l ∈ N
}

,

and the lemma is proved.

Proof of Theorem 2. By Lemma 9 and the Prokhorov theorem, the family {Py : y > 1} is
relatively compact. Therefore, there exists a sequence {yk}, yk → ∞ as k → ∞ such that
{Pyk} converges weakly to a certain probability measure P on (H(D),B(H(D))) as k→ ∞.
Since the distribution of Yyk is Pyk , we have

Yyk
D−−−→

k→∞
P. (24)

Define
ZT(s) = Z(s + iθT).

Then, in view of Lemma 8, for every ε > 0,

lim
y→∞

lim sup
T→∞

P(ρ(Z(s), YT,Y(s)) > ε)

6 lim
y→∞

lim sup
T→∞

1
Tε

T∫
0

ρ(Z(s + iτ),Zy(s + iτ))dτ = 0.

The latter equality, relations (15) and (24) show that all hypotheses of Lemma 4 are satisfied.
Therefore, we obtain the relation

ZT
D−−−→

T→∞
P,

and this is equivalent to the assertion of the theorem.

7. Proof of Theorem 1

We derive Theorem 1 from Theorem 2 by applying properties of weak convergence of
probability measures. We will approximate functions from the support of the limit measure
P of PT in Theorem 2. The application of Theorem 2 is based on the following equivalents
of weak convergence, see, for example, [18].

Lemma 10. Let Pn, n ∈ N, and P be probability measures on (X ,B(X )). Then, the following
statements are equivalent.

1◦ Pn
W−−−→

n→∞
P.

2◦ For every open set G ⊂ X ,
lim inf

n→∞
Pn(G) > P(G).

3◦ For every continuity set A of the measure P (A is a continuity set of P if P(∂A) = 0, where ∂A
is a boundary of A),

lim
n→∞

Pn(A) = P(A).

Proof of Theorem 1. Denote by F the support of the limit measure P in Theorem 2. The
set F is a minimal closed subset of H(D) such that P(F) = 1. The set F consists of all
elements f ∈ H(D) such that, for every open neighborhood G of f , the inequality P(G) > 0
is satisfied. Obviously, F 6= ∅.

For f ∈ F, define
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Gε =

{
g ∈ H(D) : sup

s∈K
|g(s)− f (s)| < ε

}
.

Then, Gε is an open neighborhood of the element f of the support of P. Therefore,

P(Gε) > 0. (25)

Thus, by Theorem 2, and 1◦ and 2◦ of Lemma 10,

lim inf
T→∞

1
T

µ

{
τ ∈ [0, T] : sup

s∈K
|Z(s + iτ)− f (s)| < ε

}
> P(Gε) > 0.

To prove the second assertion of the theorem, we notice that the boundary ∂Gε lies in{
g ∈ H(D) : sup

s∈K
|g(s)− f (s)| = ε

}
.

Hence, ∂Gε1 ∩ ∂Gε2 = ∅ for ε1 6= ε2. Thus, P(∂Gε) can be positive for at most countably
many positive ε, in other words, Gε is a continuity set of P, except for all but at most a
countable set of values ε > 0. Therefore, Theorem 2, 1◦ and 3◦ of Lemma 10, and (25) show
that the limit

lim
T→∞

1
T

µ

{
τ ∈ [0, T] : sup

s∈K
|Z(s + iτ)− f (s)| < ε

}
= P(Gε) > 0.

exists for all but at most countably many ε > 0. The theorem is proved.

8. Conclusions

In this paper, we found that the shifts of the Mellin transform of the square of the
Riemann zeta-function ζ(s)

Z(s) =
∞∫

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2x−s dx

approximate a certain class F of analytic functions defined in the strip {s ∈ C : 1/2 < σ < 1}.
The main ingredient of the proof of the above result is a limit theorem for the function
Z(s) in the space of analytic functions. Note that a problem of approximation of analytic
functions by shifts of the function Z(s) is new, and it is discussed for the first time. The
main result and method are inspired by universality theorems for ζ(s). Unfortunately, the
set F is not explicitly given. This is a complicated future problem. Additionally, we are
planning to extend the results of the paper for Mellin transforms of other powers of ζ(s).
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