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Abstract
Background  Marfan syndrome is a genetic connective tissue disorder affecting skeletal, ocular, and cardiovascular 
organ systems. Previous research found that pathogenic variants clustered in exons 24–32 of fibrillin-1 (FBN1) gene 
result in more severe clinical phenotypes. Furthermore, genotype-phenotype correlation studies suggested that more 
severe cardiovascular phenotypes were related to variants held responsible for haploinsufficiency. Our objective was 
to analyze the differences in clinical manifestations and genotypes of individuals with early-onset Marfan syndrome 
and to assess their impact on management strategies.

Methods  We analyzed clinical and genetic data of a new patient with early-onset Marfan syndrome together with 51 
previously reported ones in the PubMed database between 1991 and 2022.

Results  Analysis showed 94% (49/52) of pathogenic variants clustered in exons 24–32 of the FBN1. The most 
common skeletal features were arachnodactyly (98%), reduced elbow extension (48%), pectus deformity (40%), and 
scoliosis (39%). Haploinsufficiency variants were reported as having poor outcome in 87.5% of the cases. Among 
patients carrying variants that substitute a cysteine for another amino acid and those that do not change cysteine 
content, cardiac intervention was found to be associated with a better outcome (p = 0.035 vs. p = 0.002). Variants that 
create an extra cysteine residue were found to be associated with a higher risk of ectopia lentis. Additionally, children 
up to 36-months-old were more often reported as still alive at the time of publication compared to newborns 
(p < 0.01).

Conclusions  Our findings have implications for prognosis, because different genotype groups and their resulting 
phenotype may require personalized care and management.
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Background
Marfan syndrome (MIM 154,700, MFS) is a hereditary 
disorder originally reported by professor of paediat-
rics Antonin-Bernard Marfan (1858–1942). Physician 
prompted later interest of scientists in this disease, who 
recognized its Mendelian dominant trait and by 1991 it 
was confirmed genetically by Dietz et al. in two unre-
lated patients with missense variants in fibrillin-1 (FBN1) 
gene [1]. FBN1 itself is a large gene of 230  kb and is 
fragmented into 65 exons. Pathogenic variants of FBN1 
vary in phenotypes, which differently affect tissue dam-
age severity and timing of disease manifestation. Major 
manifestations are known as ectopia lentis, aortic root 
dilation, and dural ectasia, together with other skeletal 
features, such as wrist and thumb sign, pectus defor-
mity, and others. Hence, diagnostic criteria or revised 
Ghent nosology, which consists of those features, is used 
worldwide to diagnose MFS [2]. However, it does not 
necessarily fit in the picture of the most robust genotype-
phenotype or early-onset form of MFS (EOMFS), also 
named neonatal MFS (nMFS), which causative mutations 
are usually located in exons 24–32 [3]. The incidence of 
classic Marfan’s syndrome is about 2–3 per 10 000 indi-
viduals, while the frequency of nMFS is not reported in 
the literature [4]. In addition, it is difficult to draw a clear 
line between neonatal and EOMFS, because more clinical 
phenotypes may exist (further on term “early-onset MFS” 
will be used for simplicity purpose). To diagnose nMFS, 
distinct findings, such as mitral or tricuspid valvular 
insufficiency, pulmonary emphysema, joint contractures, 
crumpled ears and loose skin were needed to be present 
together at birth or within first 3 months of life [5], as 
described by Booms et al. [6]. However, in 2016 Maeda 
et al. [7] described case series almost corresponding to 
nMFS, but named it EOMFS, as pulmonary emphysema 
was not present. Authors suggested that a broader phe-
notype spectrum of EOMFS may exist without fulfilling 
Hennekam’s strict definition and noted the importance of 
elucidating genotype-phenotype correlations in patients 
with pathogenic variants in this critical region. Life-
threatening cardiovascular complications such as aor-
tic root dilation, mitral valve prolapse and regurgitation 
are frequently found in EOMFS and may not be present 
together, but are usually associated with poor outcomes 
[8]. In the past years, a few studies on characterization 
of FBN1 pathogenic variants by their genotype-pheno-
type correlations were reported [9–12]. More detailed 
research focused on dominant negative effect, associ-
ated with in-frame pathogenic variants’ phenotype and 
haploinsufficiency model, related to premature termina-
tion codon variants and analysed a large population of 
MFS patients, including systematic familial screening to 
limit referral bias [12]. Authors confirmed that lifelong 
aortic event risk was strongly associated with premature 

termination codon pathogenic variants (83%), in-frame 
pathogenic variants leading to a cysteine loss at the pro-
tein level (73%), and variants that do not change the 
cysteine content at the protein level (61%). Importantly, 
pathogenic variants leading to an additional cysteine resi-
due had mild risk for aforementioned event (29%). Data 
on genotype-phenotype correlations are crucial for the 
early management of MFS.

Here we report a new patient with an EOMFS and a 
review of the prevalence of clinical characteristics and 
their manifestation within genotype groups of EOMFS 
cases published in the literature between 1991 and 2022. 
Additionally, we were interested in determining how 
genotyping might be beneficial in a clinical setting for 
EOMFS patients.

Methods
Patients’ population
The study population consisted of one novel patient and 
51 individual cases identified in the literature with a het-
erozygous likely pathogenic or pathogenic variant of the 
FBN1 gene, which resulted in EOMFS. Written informed 
consent for participation in this study was obtained from 
patient parents before publishing this article. Data were 
collected using standardized form created based on 
revised Ghent nosology by Loeys et al. [2]. Collected data 
included demographics, age at examination, genetic pro-
file, musculoskeletal, ophthalmologic, cardiovascular fea-
tures, intervention, and outcomes.

Literature review
We searched PubMed database utilizing EOMFS-related 
keywords and a query “(((Marfan syndrome) AND 
(((((Early-onset) OR (Newborn)) OR (Toddler)) OR 
(Infant)) OR (Neonatal)))” with limits activated (1991–
2023, English). 632 articles were identified. Two indepen-
dent researchers reviewed those manuscripts by title and 
abstract excluding non relevant articles. 201 manuscripts 
were selected for further investigation and fully revised. 
The exclusion criteria were (1) insufficient molecular 
genetic data about the case (2) genetically not confirmed 
cases (3) prenatally diagnosed cases (4) cases without 
full clinical information needed (5) cases with variants 
now classified as likely benign (6) patients with positive 
family history. To elucidate some of the exclusion crite-
ria, we want to specify that prenatal MFS cases were not 
included as they are evaluated during sonoscopy study, 
which does not provide clinical features for diagnosis and 
can be extremely inaccurate, while the patients with a 
positive family history where not included in this study, 
because probands usually have more severe phenotype 
than their family members, which could mislead us in 
evaluating the severity of EOMFS clinical features. After 
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ultimate revision, thirty-eight articles were included in 
the final analysis.

Genotype related categorization
In this study, we divided 52 individuals into two major 
groups: haploinsufficiency and a dominant negative 
effect group (DN). Pathogenic variants affecting cyste-
ine content and those not affecting cysteine content were 
assigned to the DN group and others to the haploinsuf-
ficiency group. Dominant negative effect sample was 
further divided into three different categories: cys+ (mis-
sense variants that substitute for a cysteine), cys– (vari-
ants that substitute a cysteine for another amino acid), 
and cys-no (variants that do not modify cysteine con-
tent) group. This categorization strategy was adapted 
from the methodology created by Arnaud et al., 2021 and 
is detailed in Supplementary Table  1. Current criteria 
and guidelines as published by the American College of 
Medical Genetics and Genomics (ACMG) and the Asso-
ciation for Molecular Pathology (AMP) were followed 
to evaluate variant pathogenicity [13]. A freely available 
online software tool that implements these criteria was 
used for the revision of all identified variants [14].

Statistical analysis
Statistical analysis was conducted using SPSS Statistics 
V.20.0 (IBM). Descriptive statistics of patients’ clinical 
characteristics are reported in frequencies and percent-
ages (N, %). Quantitative data are expressed as median 
(quartiles). Qualitative variable features within groups 
were analysed using the chi-square test of independence, 
which results were considered statistically significant 
when p < 0.05.

Results
Case report
A male patient, first child of a previously healthy fam-
ily, was born full term with weight and height of 2700 g 
(5–10°percentile) and 50  cm (50° percentile), respec-
tively (Fig.  1). He presented infantile hypotonia and 
a poor weight gain. At age of 7 months, pancreatic 

insufficiency was confirmed and a continuous pancreli-
pase therapy started. At age of 8 months, he developed 
left spinal deviation and low degree hypermetropia. 
On physical examination characteristic facial features 
included enophthalmos, malar hypoplasia, and microret-
rognathia. Musculoskeletal system was noteworthy for 
chest asymmetry, pectus carinatum, and scoliosis. Addi-
tionally, the patient appeared pale and had arachnodac-
tyly. At age of 1, he was hospitalized due to the shortness 
of breath. Paroxysmal supraventricular tachycardia was 
registered on 12-lead electrocardiogram (ECG). Ade-
nosine was ineffective. Amiodarone was used to termi-
nate arrhythmia. Chest X-ray showed relaxation of right 
hemidiaphragm. Abdominal ultrasonography was done 
without any signs of hepatomegaly. Echocardiogram 
showed that left and right atriums were compressed by 
the liver tissue, mitral and tricuspid valve prolapse with 
mild to moderate degree regurgitation. It also revealed 
markedly dilated aortic root (3.1 cm; Z score + 7.5) (Fig. 2. 
a)). Echocardiogram findings were confirmed by com-
puterized tomography (CT) angiogram with the calcu-
lations of mitral anullar disjuntion distance – 6.6  mm 
(Fig.  2. b-c). In consequence, diaphragm plication was 
performed twice in 9-month period. Follow-up during 
this period was without any events of arrhythmia and no 
significant changes in echocardiogram evaluations. Blood 
test results during follow-up were normal. No cardiac 
interventions were performed. The patient is on low dose 
of beta blockers and amiodarone, and a follow up every 
2–4 months.

Whole exome sequencing data revealed a de novo 
heterozygous pathogenic missense variant c.3661T > C, 
p.(Cys1221Arg) of FBN1 in exon 30. This variant has 
already been reported in the literature as causing EOMFS 
[15].

Patient’s population
A total of 52 cases along with our patient were included 
in the final study [6–8, 15–49]. The summary of their 
demographic and genetic profile characteristics is out-
lined in Table  1. The percentage of males was slightly 

Fig. 1  Timeline of the developmental and diagnostic milestones
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higher than that of females (52% vs. 46%), and gender 
was unknown for one individual (2%). Age at diagno-
sis ranged from preterm to infantile children, while full 
term newborns accounted for 62% (32/52), preterm new-
borns for 13% (7/52), and the median age at diagnosis of 
other 13 patients was 8 months (Q1-Q3, 4–11). A signifi-
cant number of newborns died (73.7%), while older chil-
dren (30.8%) were alive at the time when the article was 
published (p < 0.010). Patients reported alive at the time 
when the article was published had the median age of 60 
months (Q1-Q3, 14–120) and the oldest patient reported 
alive was 23-year-old. For chi-square test newborns and 
preterm newborns were placed in one group and com-
pared with infants, which exact age is specified in Table 1.

FBN1 gene variants and genotype groups demographics
Majority (94%) of the pathogenic variants in the FBN1 
gene were clustered in exons 24–32 (Table  1). Of the 
52 cases included in the study, almost all of the variants 
(48/52, 92%) were de novo, while four lacked segregation 
data on family history (4/52, 8%). Missense variants were 
the most common substitution (75%), followed by exon 
deletions and splice site variants (12%), with the only one 
insertion present (2%). After categorizing the patients 
into groups based on their genotype, cys-no was the larg-
est group (23/52, 44%), followed by cys– (18/52, 35%), 
haploinsufficiency (8/52, 15%) and cys+ (3/52, 6%).

Clinical characteristics
Clinical characteristics distribution within groups and 
overall features are highlighted in Table  2. Commonly 
observed clinical characteristics were arachnodactyly 

Fig. 2  (a) Echocardiogram illustrating dilatation of the aortic root (sinuses of Valsalva); (b) Transversal computer tomography (CT) illustrating mitral an-
nular disjunction distance (6.6 mm); (c) Sagittal and transversal computer tomography (CT) illustrating diaphragmatic relaxation. Left liver lobe entering 
the mediastinum
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(98%), mitral regurgitation/prolapse (96%), and aor-
tic root dilation (90%). To begin with skeletal system, 
reduced elbow extension was most frequently reported 
(6/8, 75%) in the haploinsufficiency group and similarly 
distributed within cys–, cys + and cys-no groups, 44% 
vs. 33% vs. 43.5%, respectively. Quite large sample of 
patients had pectus deformity (21/52, 40%), which larg-
est percentage was present in cys + group (100%), simi-
lar proportion in haploinsufficiency and cys-no groups 
(37.5% vs. 39%), and the smallest in cys– group patients 
(16.7%). Scoliosis or thoracolumbar kyphosis was pres-
ent in almost half of the patients (39%) and similarly dis-
tributed between groups, except for a haploinsufficiency 
group, where it was less commonly reported (1/8, 12.5%).

As with facial features, downslaping palpebral fissures 
were observed in 19 cases (37%), dolichocephaly in 16 
patients (31%), and enophthalmos in 13 patients (25%). 
Micrognathia and retrognathia were reported less fre-
quently, with percentages of 23% and 19%, respectively.

The most common ophthalmologic feature was ectopia 
lentis (29%), which was similarly distributed in the hap-
loinsufficiency, cys–, and cys-no groups (25%, 28%, and 
26%, respectively). The highest proportion of ectopia len-
tis was reported in the cys + group (2/3, 67%).

Cardiovascular features
Aortic root dilation and mitral regurgitation/prolapse 
were most frequently observed cardiovascular fea-
tures (90% and 96%). Mitral regurgitation/prolapse was 
reported in all haploinsufficiency, cys–, cys + patients, 
and in 91% of cys-no group individuals (21/23, 91%). 
Cardiac intervention was performed in 40% of all cases 
and was statistically significantly associated with better 
outcomes: 79% of those who were alive at the time when 
the article was published have received cardiac interven-
tion (p < 0.001). Most of them were valvuloplasty surger-
ies on mitral and tricuspid valves with a few aortic sleeve 
placement surgeries. Correspondingly, in cys-no and 
cys– groups more children reported alive have received 
cardiac intervention (p < 0.002 vs. p < 0.035).

Respiratory features
Only information on diaphragm eventration, hernia or 
relaxation was collected. To note, the largest percent-
age of diaphragm lesions was in a dominant negative 
effect group 8/44 (18%): 22% and 17% in cys– and cys-no 
group, respectively. In contrast, there was only one case 
of diaphragm lesion observed in the haploinsufficiency 
group.

Discussion
In 2007, Faivre et al. established a genotype-phenotype 
association for classical MFS based on the effects of 
haploinsufficiency and a dominant negative model on Ta
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skeletal, ophthalmologic, and cardiac characteristics [50]. 
Other author analyses revealed that pathogenic vari-
ants in exons 24–32 are present in approximately 90% 
of patients with nMFS, but only in 20% of classic cases 
[51]. Subsequent studies focused on the clinical relevance 
and genotype effect on mitral valve phenotype in MFS 
patients [12, 52]. Understanding how different genotypes 
impact the development of EOMFS is crucial for accu-
rately predicting the course of the disease and determin-
ing the most effective management strategies.

We report a 24-months-old patient with EOMFS and 
supraventricular tachycardia paroxysm, who presented 
specific MFS skeletal features. The diagnosis of the syn-
drome was made relatively late, which indicates either 
the lack of knowledge about MFS characteristics among 
healthcare providers or the presence of early onset MFS 
features that are different from the adult form of the syn-
drome. Analysis of the cases reported in the literature 
showed arachnodactyly, reduced elbow extension, pec-
tus deformity, and scoliosis as the most frequently seen 
skeletal features in EOMFS. As well, we highlight the 
importance of categorizing patients by their genotype-
phenotype profile as it has an impact on clinical decision 
making. Speaking of mutations spectrum in nMFS com-
pared to the classic MFS form, missense variant overrep-
resentation is observed. Importantly, PTC mutations are 
associated with the classical MFS and are rarely found in 
nMFS, with nonsense pathogenic variants resulting in 
nMFS not described in the literature [50]. In addition, 
our study has limitations. First, statistical analysis was 
limited by disproportionate size of the samples, while 
incomplete phenotyping, retrospective nature of the 
study and clinical characteristics reporting bias may have 
affected conclusions.

Recently, Zarate et al. developed a clinical scoring sys-
tem for EOMFS, which consider cardiac, systemic and 
FBN1 diagnostic features [53]. However, a threshold of 14 
points is required if only clinical features are considered 
and all of them must be present. When comparing results 
of the present study to those of Zarate et al., the most 
reported characteristics were arachnodactyly, cranio-
facial dysmorphism, joint contractures, reduced elbow 
extension, and lens dislocation/subluxation. If the patient 
has just one or more but not all the features, a more com-
plex initial clinical evaluation may be required, as rarity 
of the syndrome and stable general status of the patient 
may misguide health care specialists and delay final diag-
nosis. Typically, in such cases, echocardiogram is not 
performed as cardiovascular system still does not show 
any signs of impairment. Echocardiogram could be an 
important cost-effective diagnostic tool in EOMFS diag-
nosis as the clinical scoring system developed by Zarate 
et al. may not cover variety of the cases where more com-
prehensive evaluation may be required.Ta
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It is interesting to note the differences in cardiovas-
cular phenotype among the different variants of FBN1 
gene in EOMFS patients, as well the potential impact 
on clinical management and prognosis. Variants result-
ing in cysteine alterations and haploinsufficiency, which 
were associated with higher aortic events risk, highlight 
the importance of regular cardiovascular monitoring and 
early intervention planning in these patients [12, 54, 55]. 
In addition, cys– variants also have the greater preva-
lence of mitral valve prolapse (MVP) and mitral annular 
disjunction (MAD). Besides, MAD rises the greater risk 
for arrhythmic events and is assumed to be a possible 
cause of sudden death in MFS patients [52]. It poses a 
risk for our patient, which presented with supraventricu-
lar tachycardia and MAD. Close cardiovascular moni-
toring and family training to recognize paroxysms of 
arrhythmia are important in these situations. Other stud-
ies focusing on EOMFS found out cys-no variants were 
of intermediate cardiovascular phenotype (61% lifelong 
risk of surgery or dissection) [12]. In the present study, 
the better outcomes observed in the cys-no and cys– 
groups after cardiac intervention suggest that timely and 
appropriate management can improve outcomes in these 
patients. However, the higher rates of death in the haplo-
insufficiency group (87.5%, 7/8), although not statistically 
significant in the present study, highlights the need for 
further research and larger studies to better understand 
the impact of different FBN1 variants on cardiovascular 
outcomes in EOMFS patients.

Since diaphragm relaxation is an aggravating circum-
stance in our case, we reviewed reported cases to better 
understand the prognosis. Almost all of the patients (7/9) 
experienced bad outcomes during infancy, while the old-
est child was 24 months-old when he passed away sud-
denly. Four deaths were reported of cardio-respiratory 
distress syndrome, one of multiple organ failure, one of 
sudden death and one of respiratory failure after sup-
port withdrawal. In most of the other reported cases car-
diac or cardiorespiratory insufficiency led to the lethal 
outcome. Post-mortem analysis of two cases showed 
emphysematous changes, consolidation and intraalveo-
lar haemorrhage with lung fibrosis. However, majority 
of the cases had severe diaphragmatic hernia and cardiac 
lesions with no diaphragmatic relaxation reported, let-
ting us believe it may have better prognosis. All things 
considered, diaphragm hernia worsen EOMFS patients’ 
prognosis, but little is known on diaphragm relaxation 
impact on the disease.

In the literature, pathogenic variants substituting or 
creating cysteine residuals in FBN1 gene have a higher 
probability of ectopia lentis [50]. It seems that the pres-
ent study’s findings are generally consistent with previous 
literature regarding the association between pathogenic 
variants involving cysteine residues in the FBN1 gene 

and the likelihood of ectopia lentis. Specifically, both the 
present study and previous research found that cys + vari-
ants have a higher risk of ectopia lentis compared to hap-
loinsufficiency and cys-no groups. However, it should 
be noted that the cys– group in the present study had a 
lower frequency of ectopia lentis compared to what has 
been reported in the literature. It is also worth noting 
that the cys + group in this study had a relatively small 
sample size (N = 3), which may limit the conclusions.

Previous studies have shown that haploinsufficiency 
patients have a significant skeletal system involvement 
[50]. This was later confirmed by Arnaud et al., who 
reported a high frequency of severe scoliosis among hap-
loinsufficiency patients (52%), as well as cys– (45%) and 
cys-no (43%) groups [12]. Our results for cys–, cys-no 
patients were similar (39% and 48% respectively). How-
ever, in the cys + group, we found a higher frequency of 
scoliosis or thoracolumbar kyphosis (33%) compared to 
the data of Arnaud et al. (16%). Our findings also revealed 
a lower frequency of scoliosis among haploinsufficiency 
patients (12.5%), but higher rates of reduced elbow exten-
sion and pectus deformity (75% and 37.5%, respectively), 
which is consistent with the findings reported by Faivre 
et al. [50].

In 2016, Maeda et al. reported on two EOMFS patients 
who survived after the initial diagnosis: 10 and 8 years, 
respectively [7]. The first patient required three mitral 
valvuloplasty surgeries and medication therapy, when 
the second child was successfully developing with medi-
cation therapy and foreseen aortic root replacement 
surgery. Authors suggested that a broader spectrum of 
EOMFS phenotypes exist and could provide some assis-
tance in treatment decision making. Based on their geno-
type, those two patients would be assigned to the cys-no 
group, which has better outcomes with cardiac interven-
tion, a lower risk for ectopia lentis and an intermediate 
cardiovascular phenotype [12].

Genotype-phenotype categorization could guide phy-
sicians in the management of EOMFS. Patients with 
cys + genotypes should be more intensively screened for 
ectopia lentis, while haploinsufficiency patients should be 
closely monitored for cardiovascular state. Speaking of 
cys– and cys-no patient groups, a possible overlap within 
phenotype severity and eligibility for surgical interven-
tion based on their genotype should be cautiously inves-
tigated in future genotype-phenotype studies, as other 
authors previously found similar results and suggested 
to optimise timing and decision making on the need for 
prophylactic aortic root surgery [54]. All EOMFS patients 
are at risk for some type of skeletal deformation and 
should be regularly examined by a pediatric orthopaedic 
traumatologist.
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Conclusions
This study found that EOMFS patients who were infants 
and children over one-year-old had more favourable out-
comes. Skeletal features such as arachnodactyly, pectus 
deformity, reduced elbow extension, and scoliosis were 
common and suggested the need for an echocardiogram. 
A relationship between better outcomes and performed 
cardiac intervention in cys– and cys-no groups exists 
and needs to be further investigated. Our results have 
important prognostic implications, as different genotype 
groups may require individualized care and management 
based on their specific phenotype.
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