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Abstract: This paper introduces an innovative extension of the DIRECT algorithm specifically
designed to solve global optimization problems that involve Lipschitz continuous functions subject
to linear constraints. Our approach builds upon recent advancements in DIRECT-type algorithms,
incorporating novel techniques for partitioning and selecting potential optimal hyper-rectangles. A
key contribution lies in applying a new mapping technique to eliminate the infeasible region
efficiently. This allows calculations to be performed only within the feasible region defined by linear
constraints. We perform extensive tests using a diverse set of benchmark problems to evaluate the
effectiveness and performance of the proposed algorithm compared to existing DIRECT solvers.
Statistical analyses using Friedman and Wilcoxon tests demonstrate the superiority of a new
algorithm in solving such problems.

Keywords: global optimization; derivative-free optimization; partitioning; DIRECT-type algorithms;
linear constraints; constraint handling techniques; benchmark problems
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1. Introduction

Global optimization is an active and important research area that focuses on
discovering the best global solution for an objective function within a given domain. To
tackle this challenging problem, numerous cutting-edge solution techniques have been
devised. Among these, line search methods have gained widespread usage [1], involving
iterative searches for the optimum by following a predetermined search direction. These
methods have demonstrated their effectiveness in various domains of problems [2,3].
Another category of techniques comprises meta-heuristic algorithms, which draw
inspiration from natural phenomena and problem-solving heuristics. Examples of such
algorithms include genetic [4], particle swarm [5], and simulated annealing [6], which have
achieved significant popularity and adoption. However, there have been developments in
the form of more efficient methods and extensions [7–9]. Furthermore, advanced
optimization methods such as Bayesian optimization [10] and the radial basis function [11]
employ surrogate models to approximate the objective function, enabling an efficient guide
of the search process. These techniques play a vital role in addressing complex and
computationally demanding optimization problems.

This paper focus on a Lipschitz global optimization [12,13] problem presented in the
following form:

min
x∈D

f (x),

Ax ≤ b,
(1)

where A ∈ Rm × n, b ∈ Rm and D = [l, u] = {x ∈ Rn : lj ≤ xj ≤ uj, j = 1, . . . , n}. Here, D
represents a full-dimensional convex polytope in which the minimization of the objective
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function f : Rn → R takes place. The feasible region consists of points that satisfy all
constraints and is denoted

Dfeas = D ∩Ω, where Ω = {x ∈ Rn : Ax ≤ b}. (2)

For convergence, we assume that the objective function f (x) is Lipschitz continuous, at least
in the vicinity of the globally optimal solution. However, the function can be non-linear,
non-differentiable, non-convex, and multi-modal. Consequently, traditional optimization
methods that rely on derivative information do not apply to such problems.

Global optimization of a non-linear objective function subject to linear constraints is a
significant topic in mathematical programming, as it covers numerous real-world
optimization problems. For example, in engineering design, the optimal design of
structures, circuits, and manufacturing processes often involves linear constraints [14].
Similarly, portfolio optimization problems commonly involve linear constraints, such as
budget restrictions or constraints on asset allocation percentages [15]. Furthermore, the
optimal design and operation of chemical processes are subject to linear constraints arising
from considerations such as material balances, equipment capacities, and safety
constraints [16]. These examples highlight the diverse domains where linearly constrained
non-convex global optimization problems arise.

The algorithm DIRECT [17] is widely recognized for its effectiveness in global
optimization, particularly for box-constrained problems. It utilizes a deterministic
sampling strategy that enables the discovery of global optima without derivative
information. This makes it suitable for handling complex, multi-modal, and
non-differentiable objective functions. Since the algorithm was first published, researchers
have worked to improve its performance by introducing new and more efficient sequential
and parallel variants [18–28]. Comprehensive numerical benchmark studies [29–31]
demonstrated a very promising performance of DIRECT-type algorithms compared to other
derivative-free global optimization methods.

The DIRECT-type algorithms have also shown their effectiveness in solving a wide
range of problems with different types of constraints, including those described in
Equation (1). Several studies, such as [18,24,32–36], have proposed DIRECT-type algorithms
to handle general constraints and “hidden” constraints [37–39]. Most of these methods are
based on penalties and auxiliary functions. These functions penalize violations of the
constraints, ensuring that solutions adhere to the constraints. However, one of the main
challenges with penalty-based approaches is the need to adjust the parameters, as the
performance of these methods is highly sensitive to the chosen parameters [24,40]. To
address this issue, researchers have explored techniques such as automatic penalty setting
modification during optimization [18,24,34–36]. This leads to more reliable results than
methods with manually selected penalty parameters. However, these methods primarily
deal with bound constraints and face challenges when encountering infeasible regions.
This becomes particularly difficult for DIRECT-type algorithms, as they need to subdivide
these regions to uncover feasible regions, resulting in a significant number of wasted
function evaluations. To address this issue, only two DIRECT-type algorithms have been
specifically designed for problems with linear constraints. In [40], the authors proposed
two simplicial partitioning approaches to handle linearly constrained problems, using
simplices to cover the feasible region. However, these simplicial partitioning methods are
mainly limited to lower-dimensional problems.

This paper presents a new algorithm of type DIRECT designed specifically to address
the global optimization problems stated in Equation (1). Building on recent advances in
DIRECT-type algorithms, we have integrated novel techniques for partitioning and selecting
potential optimal hyper-rectangles. A notable innovation in our approach is the adoption of
mapping techniques that efficiently eliminate the infeasible region, allowing computations
exclusively within the region delimited by the linear constraints. Through extensive testing
using the latest and substantially expanded version of the DIRECTGOLib v1.3 benchmark
library [41], this study comprehensively investigates the performance and effectiveness
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of our proposed algorithm. Furthermore, to ensure the reliability and significance of our
results, we employ statistical analyses, including the Friedman [42] and Wilcoxon [43] tests,
to validate the superiority of our algorithm over existing DIRECT solvers for such problems.

Paper Contributions and Structure

The contributions of the paper can be summarized as follows:

1. The review of techniques proposed to tackle linearly constrained problems within the
framework of DIRECT-type algorithms.

2. Introduction of a novel and distinctive DIRECT-type algorithm explicitly designed for
non-convex problems involving linear constraints.

3. The substantial enhancement of the DIRECTGOLib v1.3 benchmark library by
incorporating 34 lineary-constrained test problems.

4. The provision of the novel algorithm developed as an open-source resource to ensure
the full reproducibility and reusability of all results.

The remaining sections of this paper are structured as follows. In Section 2.1, we
provide a review of the original DIRECT algorithm, while Section 2.2 covers its relevant
modifications for problems with constraints. Section 3 introduces a novel algorithm based
on the DIRECT approach. In Section 4, we provide and discuss the results of our numerical
investigation using a set of 67 test problems from the DIRECTGOLib v1.3 library. Finally, in
Section 5, we conclude the paper and outline potential directions for future research.

2. Materials and Methods

This section provides an overview of the classical DIRECT algorithm and its extensions
to handle constraints.

2.1. The Original DIRECT Algorithm for Box-Constrained Global Optimization

We begin by briefly introducing the original DIRECT algorithm [17], which is a
recognized approach for box-constrained global optimization. This algorithm effectively
explores the search space by partitioning it into hyper-rectangles and iteratively refining
the search through function evaluations. Notably, the DIRECT algorithm is specifically
designed to handle box-constrained optimization problems of the form:

min
x∈D

f (x). (3)

In the initial stages, the DIRECT algorithm normalizes the original domain D = [l, u]
into a unit hyper-rectangle D̄ = [l̄, ū] = [0, 1] = {x̄ ∈ Rn : 0 ≤ l̄j ≤ x̄j ≤ ūj ≤ 1, j =
1, . . . , n}. The algorithm refers only to the original space (D) that evaluates the objective
function.

The search process in the DIRECT algorithm begins with an initial evaluation of the
objective function at the midpoint x̄1 =

(
1
2 , . . . , 1

2

)
of the first unit hyper-rectangle D̄ = D̄1

0 .
This evaluation serves as the starting point for the algorithm’s search space exploration.
The goal is to identify and select hyper-rectangles that are most promising.

Initially, there is only one hyper-rectangle available. Therefore, the selection process is
straightforward. The DIRECT algorithm employs an n-dimensional trisection approach,
dividing each selected hyper-rectangle into three equal sub-rectangles along each
dimension. The objective function is evaluated only once for each newly created
hyper-rectangle.

The selection process plays a crucial role in each subsequent iteration (k) of the
algorithm. The objective is to identify the most promising candidates for further
investigation, allowing the DIRECT algorithm to effectively navigate the search space and
prioritize the exploration of regions with the greatest promise of finding global optima.
The formal requirement of potentially optimal hyper-rectangles (POH) in future iterations
is stated in Definition 1.
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Definition 1. Let denote the sampling point as xi and the measure of the hyper-rectangle (D̄i
k) as

δ̄i
k. Let ε > 0 be a positive constant, and let f min be the best value currently found for the objective

function. A hyper-rectangle D̄h
k , where h ∈ Ik (the index set identifying the current partition), is

considered potentially optimal if there exists a positive constant L̃ (also known as the rate-of-change
or Lipschitz constant) such that

f (xh)− L̃δ̄h
k ≤ f (xi)− L̃δi

k, ∀i ∈ Ik, (4)

f (xh)− L̃δ̄h
k ≤ f min − ε| f min|, (5)

where the measure of the hyper-rectangle D̄i
k is

δ̄i
k =

1
2
‖ūi − l̄i‖. (6)

In Equation (6), the ‖.‖ on the right-hand side represents the standard Euclidean
2-norm. It is worth mentioning that certain studies [44,45] have examined alternative
non-Euclidean norms in their research investigations. A hyper-rectangle D̄h

k is considered
potentially optimal if it meets two requirements. First, the lower Lipschitz bound for
the objective function, calculated using the left-hand side of (4), should be the smallest
among all hyper-rectangles in the current partition, with some positive constant L̃. The
second requirement is that the lower bound of the hyper-rectangle must be better than
the current best solution ( f min). Specifically, it should be less than or equal to f min −
ε| f min|. This condition serves as a threshold to prevent the DIRECT algorithm from wasting
function evaluations on extremely small hyper-rectangles that are unlikely to lead to
significant improvements. The value of ε used in practice can vary, and in work [17], good
results were achieved with values of ε ranging from 10−3 to 10−7. Once all the selected
potentially optimal hyper-rectangles have been sampled and subdivided, the iterative
process continues until some stopping criterion is met. Common stopping conditions
employed in the DIRECT algorithm encompass reaching the maximum limit of objective
function evaluations, iterations, execution time, or attaining a specific target value for the
objective function.

2.2. Extensions of the DIRECT Algorithm for Problems with Constraints

Although the classical DIRECT algorithm is effective for box-constrained optimization
problems, it requires modifications to handle optimization problems with constraints. We
discuss the existing approaches and adaptations that have been proposed to extend the
capabilities of the DIRECT algorithm for constrained optimization problems.

2.2.1. Approaches Based on Simplicial Partitioning

In our previous work [40], we extended the original DISIMPL algorithm, which is
based on simplicial partitioning, to handle problems with linear constraints [46,47].
Simplicial partitioning is particularly suitable for addressing problems with linear
constraints because simplices can effectively cover the search space defined by these
constraints. This approach allows the simplicial partitioning algorithms (Lc-DISIMPLc and
Lc-DISIMPLv) [40] to perform the search exclusively within the feasible region,
distinguishing it from other approaches of the type DIRECT. However, it should be noted
that calculating the feasible region requires solving 2n + m linear n-dimensional systems,
as demonstrated by the authors in [40]. This operation exhibits exponential complexity,
which limits the effectiveness of the proposed algorithm for problems with relatively small
values of n and m.

2.2.2. Penalty and Auxiliary Function Approaches

The first approach to handling constrained problems was introduced in [18] and
implemented as glcSolve in TOMLAB software [21]. This approach employs an auxiliary
function that penalizes any deviation of the function value from the global minimum value
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( f ∗). The penalty function does not impose any penalty on function values below f ∗; it only
applies when violating the constraints. Moreover, a weighted sum of constraint violations
is assigned to each value of the function. The penalty function achieves its minimum
value of zero solely at the global minimum, while at any other point, it assumes positive
values indicating sub-optimality or infeasibility. Additionally, the glcSolve algorithm
removes hyper-rectangles where it can be demonstrated that the linear constraints cannot
be satisfied.

Several years later, an alternative approach [33] based on DIRECT was introduced that
utilizes an exact L1 penalty. Experimental results demonstrated promising results with this
approach. However, a major drawback is the manual setting of the penalty parameters for
each constraint function by the user. In practice, the selection of penalty parameters is a crucial
task that can have a significant impact on the algorithm’s performance [24,34,40,47,48].

Two other approaches based on penalty functions were introduced in [35,36]. These
algorithms feature an automatic update rule for the penalty parameter, and under certain
weak assumptions, the penalty parameters are updated a finite number of times.

In [24], a novel extension of the DIRECT algorithm called DIRECT-GLce was introduced.
This algorithm employs an auxiliary function approach that combines objective and
constraint functions. The DIRECT-GLce algorithm operates in two distinct phases: one
focuses on locating feasible points, while the second aims to improve the current feasible
solution. During the initial phase, DIRECT-GLce samples the search space and minimizes
the sum of constraint violations. Once feasible points are identified, the algorithm
improves these feasible solutions. The proposed algorithm operates without penalty
parameters and ensures convergence to a feasible solution.

2.2.3. Filtering Approach

Another recent DIRECT-type approach [32] also aims to simultaneously minimize
constraint violations and objective function values. The suggested algorithm employs
filter methodology [49] and divides the main set into three subsets. The filtering strategy
prioritizes selecting potentially optimal candidates as follows: first, hyper-rectangles with
feasible center points are chosen, followed by those with infeasible but non-dominated
center points, and finally, those with infeasible and dominated center points.

2.2.4. Alternative Approaches without Utilizing Constraint Information

The first and most straightforward extension of the DIRECT algorithm to handle the
constrained optimization problem is based on the barrier approach, as described in [37]. In
this approach, infeasible points are assigned a very high value, ensuring that no infeasible
hyper-rectangles are subdivided as long as there are feasible hyper-rectangles of the same
size with a feasible midpoint. The strategy was extended in [38], where the authors suggested
incorporating a subdividing step. After subdividing all traditional POHs, a new subdividing
step is initiated, where all hyper-rectangles with infeasible midpoints are also subdivided.
The authors demonstrated that this extra step effectively decomposes the boundaries of the
hidden constraints and efficiently exposes the edges of the feasible region.

Another extension of the DIRECT algorithm is based on the neighborhood assignment
strategy and was also proposed in [37]. In this approach, the value assigned to an infeasible
point is based on the objective function values found in neighboring feasible points.

In the most recent proposals [39], the authors suggested a different approach to
handling constraints. The proposed method assigns a value to an infeasible hyper-rectangle,
depending on the distance of its center to the current best minimum point. This way,
infeasible hyper-rectangles close to the current minimum point are not penalized with large
values. This approach allows for a faster and more comprehensive examination near the
feasible region boundary.
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3. Description of the Proposed mBIRECTv-GL Algorithm

This section introduces our novel algorithm based on the DIRECT-type framework and
incorporates mapping methods to handle linear constraints efficiently.

3.1. Efficient Bijective Mapping: Construction and Methodological Details

We describe our technique to map a hyper-rectangle onto a linearly constrained
polytope. By employing this transformation (mapping), we aim to leverage the benefits
of the DIRECT algorithm to address linearly constrained global optimization problems.
The mapping allows us to work within a hyper-rectangular domain D, facilitating the
application of the DIRECT algorithm’s efficient search strategies.

The linear constraints imposed in the problem formulation define a region in the
original coordinate system that might not align with the DIRECT algorithm, which operates
on hyper-rectangles. To bridge this gap, we introduce a transformation that maps the
hyper-rectangle onto a linearly constrained region, as illustrated in Figure 1.
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Using this approach, we avoid directly solving linearly constrained problems and
instead utilize one-to-one mapping. This mapping transforms the points from the hyper-
rectangular domain, D, to the feasible space, Dfeas. Therefore, the solution to the problem:

min
x∈D

f (T(x, xo)), (7)

yields the solution to the original problem. Here, xo represents the interior reference point,
which coincides in both sets and plays an important role in the mapping. It is essential for
the point xo to be strictly feasible:

Axo < b. (8)

Various methods can be used to find xo as described in [24,34,39,50]. We employ an
adapted variation of the technique introduced in [51] that builds on the approach described
in [50]. This method finds a set of vertices defined by linear constraints and uses them to
calculate the midpoint of Dfeas.

Let us formalize the mapping process using the Horst1 test problem as an example
(see Figure 2). The mapping T(xi, xo) transforms any point xi ∈ D to x̂i ∈ Dfeas:

x̂i = xi + λi(xo − xi). (9)

The parameter λi is calculated as:

λi =
||xic − xib||
||xo − xib|| , (10)

where xic represents the intersection point of the closest linear constraint (to xic) and the
line passing through points xo and xi. Similarly, xib is the intersection point of the closest
boundary constraint and the same line. The ratio λ ∈ [0, 1) is a relative multiplier used to
move points in the direction of a vector (xo − xi). This ensures that the transformed point
is adjusted in a controlled manner toward the center xo while maintaining its proximity to
the original point. As shown in Lemma 1, the mapping defined by Equation (9) only maps
points where there is infeasibility along the direction of a vector (xi − xo).
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Lemma 1. If xic = xib, then also x̂i = xi.

Proof. Since xic and xib coincide, from Equation (10), it follows that λi = 0. Substituting
λi = 0 value in Equation (9), we obtain:

x̂i = xi + 0(xo − xi) = xi.

Next, we also demonstrate that the transformation T : D → Dfeas is a bijective
mapping. From the perspective of optimization, it is crucial to avoid conducting potentially
expensive evaluations of the objective function at the same points.

Lemma 2. Let Dfeas and D be two convex and compact sets, where Dfeas ⊆ D ⊂ Rn, and
xo ∈ Dfeas such that Equation (8) holds. Then, the mapping x̂i = T(xi, xo) as defined in
Equation (9) is a bijection.

Proof. We will demonstrate it by the injectivity and subjectivity of T.
Injectivity: We need to show that

∀xi, xj ∈ D, T(xi, xo) = T(xj, xo)→ xi = xj. (11)

Assume that equality T(xi, xo) = T(xj, xo) holds for any xi, xj ∈ D, such that xi 6= xj.
Then, from Equation (10), it follows

xi + λi(xo − xi) = xj + λj(xo − xj). (12)

Since the points xi, xj are mapped toward the same center (xo) in the direction of
vectors (xo − xi) and (xo − xj), equality x̂i = x̂j is possible only then the direction of these
vectors is the same. Therefore, from Equation (10), it follows that

λi = λj = λ. (13)

From Equations (12) and (13), it follows

xi + λ(xo − xi) = xj + λ(xo − xj).
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Simplifying it, we obtain the following:

(λ− 1)(xj − xi) = 0. (14)

Equation (14) is equal to zero when at least one of the multiplicands is zero. As
xi 6= xj, therefore (λ− 1) = 0 → λ = 1. However, for λ = 1 to hold, it would require
xic = xo (see Equation (10)), but this contradicts Equation (8) to hold. Therefore, it
follows that

(xj − xi) = 0→ xj = xi.

Thus, the map T is injective.
Surjectivity: We need to show that

∀x̂i ∈ Dfeas, ∃xj ∈ D, such that x̂i = T(xj, xo). (15)

For any x̂i from the equality x̂i = T(xj, xo) and Equation (9), we obtain

x̂i = xj + λj(xo − xj)

x̂i = xj(1− λj) + λjxo

xj =
x̂i − λjxo

1− λj . (16)

Mapping the point xj (from Equation (16)), we obtain

T(xj, xo) = xj(1− λj) + λjxo =
(x̂i − λjxo)

(1− λj)
(1− λj) + λjxo = x̂i. (17)

We showed that for any x̂i ∈ Dfeas, we found xj ∈ D (Equation (16)), such that
x̂i = T(xj, xo), i.e., the mapping T is surjective. Since it is also injective, therefore, it is a
bijection that guarantees a one-to-one correspondence between points in these two sets.

3.2. Integrating Mapping Techniques in DIRECT-Based Framework

The original DIRECT algorithm cannot directly sample points at the boundary of
the feasible region, limiting its convergence in such cases. Recent studies [23,52,53] have
highlighted the impact of this limitation, demonstrating that it can lead to slow convergence
when the optimal solution lies at the boundary of the feasible region. It is especially
common when dealing with constrained problems [24]. The studies conducted in [23]
have shown that employing strategies that sample points at the hyper-rectangle vertices
offers significant advantages in converging to solutions located at the boundary. Based
on these findings, we have incorporated one of the most recent versions of DIRECT-type
algorithms (so-called BIRECTv) [54], which samples one point at the vertex and one point
along the main diagonal of the hyper-rectangle. This modification allows for more effective
exploration of the boundary regions, improving the algorithm’s convergence performance
in such cases. Figure 3 depicts the process, illustrating the initialization and the first two
iterations of the extended version (BIRECTv [54]) of the BIRECT algorithm [55] applied to
the two-dimensional Horst1 test problem.

On the other hand, Figure 4 demonstrates the corresponding version of the algorithm
when the introduced mapping technique is applied. It is evident that without the mapping,
the algorithm cannot be used directly to solve the Equation (1) problem as it may converge
to an infeasible region (x /∈ Dfeas). However, using the proposed mapping technique, all
points sampled by the algorithm outside the feasible region (x /∈ Dfeas), as well as some of
the inner points (x ∈ Dfeas), are shifted toward the center point xo along the direction of
(xo − xi) (see Figure 4).
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Figure 4. Application of the mapping technique embedded in the BIRECTv algorithm on Horst1 test
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Finally, Figure 5 illustrates both algorithms: BIRECTv vs. BIRECTv with mapping
techniques applied to the same Horst1 test problem. The mapping technique guarantees
convergence to a feasible point and significantly improves the algorithm’s performance.
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Selection of the Most Promising Regions Using a Two-Step-Based Approach

We employ a two-step approach [56] (Global and Local, GL) to identify the extended
set of POHs to select the most promising regions. This approach is formally defined in
Definition 2.

Definition 2. The objective is to find all Pareto optimal hyper-rectangles that are non-dominated
in terms of size (higher is better) and center point function value (lower is better) as well as those
that are non-dominated in terms of size and distance from the current minimum point (closer is
better). The unique union of these two identified sets of candidates is then considered.

Using Definition 2 instead of the original selection (Definition 1), we are able to expand
the set of POHs by including more medium-sized hyper-rectangles and hyper-rectangles
that are closer to the best solution. A recent study [23] on various partitioning and POH
selection strategies has demonstrated the superior performance of the two-step Pareto
selection technique.

3.3. Description of a Novel Algorithm (mBIRECTv-GL)

The step-by-step procedure for the new algorithm mBIRECTv-GL is presented in
Algorithm 1. The algorithm takes inputs such as objective, constraint functions, and
stopping conditions, including tolerance (εpe), the maximum number of function
evaluations (Mmax), and the maximum number of iterations (Kmax). Upon termination,
mBIRECTv-GL provides the best value of the objective function found ( f min), solution point
(xmin), and performance metrics, including percent error (pe), total number of function
evaluations (m), and total number of iterations (k).

Algorithm 1 The mBIRECTv-GL algorithm

Input: Objective function ( f ), linear constraint functions (Ax ≤ b), search domain (D),
and adjustable algorithmic parameters (opt): tolerance (εpe), maximum number of
function evaluations (Mmax), and maximum number of iterations (Kmax);

Output: The best objective function value ( f min), minimum point (xmin), and algorithmic
performance measures (pe, k, m);

1: Normalize the search domain D to be the unit hyper-rectangle D̄;
2: Find an interior point xo ∈ Dfeas;
3: Initialize: x̄1 = ( 1

3 , . . . , 1
3 ), x̄2 = (1, . . . , 1), k = 1, m = 2 and pe; // pe defined in

Equation (19)
4: xi

j =| ūj − l̄j | x̄i
j + l̄j, j = 1, . . . , n, i = 1, 2; // referring to D

5: Find projections: x̂i = T(xi, xo), i = 1, 2; // map points to Dfeas using Equation (9)
6: Evaluate f 1 = f (x̂1) and f 2 = f (x̂2), and find f min, xmin;
7: while pe > εpe and m < Mmax and k < Kmax do
8: Identify the set Sk of POHs applying Definition 2;
9: for each D̄i

k ∈ Sk do
10: Sample new points (x̄m+1, x̄m+2) into newly created D̄m+1

k and D̄m+2
k ;

11: Refer to D and find projections x̂m+1 and x̂m+2;
12: Evaluate objective function f at mapped points (x̂m+1 and x̂m+2);
13: end for
14: Update f min, xmin and other performance measures: k, m and pe;
15: end while
16: Return f min, xmin, and algorithmic performance measures: k, m and pe.

In the initialization step (lines 1 to 6), the algorithm begins by normalizing the hyper-
rectangle D and determining the interior point xo. Next, the algorithm samples two points
for each hyper-rectangle, converts them back to the original space D and maps them to
Dfeas. These points are then evaluated, and the performance metrics are initialized. The
algorithm proceeds to iterate from lines 7 to 15. When selecting POHs, mBIRECTv-GL uses
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a two-step strategy. Newly sampled points for each POH are evaluated at their mapped
locations. These steps are repeated until the specified stopping condition is met, ensuring
the algorithm’s convergence.

3.4. Convergence Properties of the mBIRECTv-GL Algorithm

The literature extensively covers and investigates the convergence properties of
DIRECT-type algorithms, as evidenced by numerous studies (e.g., [17,20,26,39,55,57,58]).
Typically, these algorithms belong to the class of “divide the best” methods and
demonstrate a type of convergence known as “everywhere dense.” This implies that they
converge at every point within the feasible region. Each point explored during the
algorithm acts as an accumulation point, progressively leading to the sampling of points
that approach the global minima.

The convergence of mBIRECTv-GL follows a similar framework. In each iteration,
the algorithm chooses the hyper-rectangle with the largest measure and guarantees that
subdivision occurs across all dimensions of its longest side. The algorithm mBIRECTv-GL
guarantees convergence to the global minimum x∗ based on two conditions: (1) the presence
of a feasible non-empty region indicated by Dfeas 6= ∅, and (2) the objective function
exhibiting at least local continuity in the vicinity of x∗. As the number of trial points
generated approaches infinity Mmax → ∞, the convergence of mBIRECTv-GL is ensured.

Proposition 1. For any global minimum point x∗ ∈ Dfeas ⊆ D and any ε > 0, there exist an
iteration number k(ε) ≥ 1 and a point x̂i ∈ Dfeas, such that ‖x̂i − x∗‖ < ε.

Proof. From Equation (2), it follows that Dfeas ⊆ D.
First, assume Dfeas = D. In this case, the behavior of mBIRECTv-GL is in line with that

of a standard algorithm of type DIRECT for box-constrained optimization. Consequently,
the convergence of mBIRECTv-GL follows from the convergence properties observed in other
DIRECT-type algorithms.

Next, consider the case where Dfeas ⊂ D. In each iteration k, mBIRECTv-GL always
selects at least one hyper-rectangle D̄i

k from the group of hyper-rectangles with the largest
measure δ̄max

k :
δ̄max

k = max
i∈Ik
{δ̄i

k}. (18)

The partitioning strategy implemented in mBIRECTv-GL effectively reduces the
dimensions of D̄i

k along its longest sides, simultaneously decreasing the measure (δmax
k ) of

the corresponding hyper-rectangle Di
k ∈ D. As the number of hyper-rectangles with the

maximum diameter is finite, all hyper-rectangles with the current maximal diameter will
eventually undergo partitioning after a sufficiently large number of iterations.

This iterative process continues with a fresh set of hyper-rectangles having the largest
diameters until the largest hyper-rectangle within the original domain D reaches a diameter
δmax

k smaller than ε. Consequently, there exists a sampling point xj ∈ Dj
k ⊂ D such that

‖xj − x∗‖ < ε.
The transformation x̂j = T(xj, xo) defined in Equation (9) is a linear map. Taking

into account Dfeas ⊂ D, therefore, in the current partition, there exists a sampling point
x̂i ∈ Dfeas such that ‖x̂i − x∗‖ < ε.

4. Results and Discussions
4.1. Foundation of Solver Comparisons and Design of Experimental Setup

In this section, we evaluate the performance of six algorithms of the type DIRECT that
were specifically designed to solve global optimization problems with linear constraints
taken from the DIRECTGOLib v1.3 [41] library. DIRECTGOLib v1.3 is a comprehensive
collection of benchmark problems for global optimization. It encompasses both test and
practical engineering problems with box and general constraints, which serve as
benchmarks for various DIRECT-type algorithms.
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The latest version of the DIRECTGOLib v1.3 library includes an additional 34 linearly
constrained problems. This update expands on the previous version, DIRECTGOLib v1.2,
which contained only 33 linearly constrained test problems. For a comprehensive overview
of all linearly constrained optimization problems in DIRECTGOLib v1.3 and their respective
properties, refer to Appendix A, specifically Table A1. The table presents essential details
such as the ID of the problem (#), name (Name), original reference (Ref.), dimension (n),
number of constraints (Con.), number of active constraints (AC), search domain (D), and
known solution value ( f ∗).

To compare our newly developed mBIRECTv-GL algorithm, we selected five existing
competitors of DIRECTtype. Four of these algorithms (DIRECT-GLc, DIRECT-GLce,
Lc-DISIMPLc, and Lc-DISIMPLv) are accessible through the recently introduced toolbox
DIRECTGO v1.2 [59], while glcSolve is a solver included in the commercial TOMLAB
toolbox [21].

Among the selected algorithms, three are auxiliary function-based approaches that
have demonstrated high efficiency for global optimization problems with general
constraints [24,59]. They are directly applicable to problems with linear constraints. The
other two algorithms are simplicial partitioning-based DIRECT-type methods specifically
designed to handle linearly-constrained optimization problems as stated in Equation (1).
All computations were performed on a computer with an 8th Generation Intel Core
i7-8750H processor (6 cores), 16 GB of RAM, and MATLAB R2023a.

To determine the stopping condition, we used established criteria commonly
employed in evaluating the performance of different algorithms of DIRECT, as discussed in
previous works [17,34,59,60]. Given that global minima are known for all test problems,
we concluded the evaluation of the algorithms once a point x was discovered that satisfied
a defined percent error (pe). The specific formula for calculating the percent error was
as follows:

pe = 100×
{ f (x)− f ∗

| f ∗ | , f ∗ 6= 0,

f (x), f ∗ = 0,
(19)

which was smaller than the tolerance value εpe, i.e., pe ≤ εpe. Furthermore, the algorithms
tested were terminated if the number of function evaluations exceeded the maximum limit
of 106 or the computation time surpassed one hour. In such cases, the final result was set
to 106 for further processing of the results. The value of εpe was set to 10−2 as the default
value. In cases where the optimal value of the objective function is large, the algorithm
may terminate even when the distance to the optimum is relatively large. On the other
hand, when the optimal value is very close to zero (but f ∗ 6= 0 ), Equation (19) can require
an extremely precise solution. However, there were only a few such tasks in the test set
where these exclusions may have had an impact.

The experimental results presented in this article are also available in digital form
through the Results/MDPI directory of the GitHub repository [59]. Additionally, the
MATLAB script for cycling through all the DIRECTGOLib v1.3 test problems used in this
paper can be found in the Scripts/MDPI directory of the same GitHub repository [59]. This
script is useful for reproducing results as well as for comparing and evaluating newly
developed algorithms.

4.2. Analysis of the Overall Performance of Algorithms

Table 1 summarizes the experimental results obtained from six algorithms. The second
column shows the number of problems that were not solved within the specified relative
error, while columns three to seven display the average number of function evaluations for
different subsets of problems.

Among the algorithms analyzed, our new mBIRECTv-GL algorithm demonstrated the
highest success rate, with only 9 of the 67 problems remaining unsolved. The DIRECT-GLce
algorithm and the DIRECT-GLc algorithm closely followed, with 14 and 16 unsolved
problems, respectively, placing them as the second and third most effective algorithms.
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Table 1. Performance evaluation of DIRECT-type algorithms on 67 linearly constrained optimization
problems.

Average Number of Function Evaluations

Algorithm Fails Overall n≤5 n≥6 AC 1 NAC 2

mBIRECTv-GL 9/67 155,031 70,140 340,980 107,449 294,975
Lc-DISIMPLv 18/67 269,349 66,192 714,356 260,327 295,882
Lc-DISIMPLc 22/67 333,860 137,852 763,208 396,432 295,026
glcSolve 23/67 370,703 134,031 889,126 166,726 572,827
DIRECT-GLc 16/67 286,976 114,737 664,259 281,871 301,988
DIRECT-GLce 14/67 283,836 121,677 639,040 277,607 302,154

1 Problems with active constraints; 2 Problems without active constraints.

When considering the overall average of function evaluations, the algorithm
mBIRECTv-GL outperformed all other algorithms, showing nearly twice the effectiveness of
the second-best algorithm, Lc-DISIMPLv. However, for problems with smaller dimensions
(n ≤ 5), the Lc-DISIMPLv algorithm displayed the best average results. Although our
mBIRECTv-GL required approximately 6% more function evaluations compared to
Lc-DISIMPLv, it outperformed the latter by requiring about 52% fewer evaluations for
larger-dimensional (n ≥ 6) problems.

The final two columns display the average number of function evaluations for
problems with and without active constraints. When none of the constraint functions are
active, most algorithms exhibit similar performance, except for the glcSolve algorithm,
which shows comparatively inferior results in such cases (see column NAC). However,
when the solution lies on the boundary of the feasible region, our developed algorithm
exhibits a clear advantage (see column AC).

Figure 6 presents the data profiles [61,62] and empirical cumulative distributions (ECD)
using the entire dataset considered. To construct the ECD, we established 51 targets with
relative precisions ranging from 10[2,...,−2] (a similar setup as in [63]). These ECD plots, as
exemplified on the right-hand side of Figure 6, provide information on the performance of
the algorithms in different search stages. Both the data profiles and the ECD plots highlight
the dominance of two algorithms, mBIRECTv-GL and Lc-DISIMPLv. This is attributed to
their sampling strategy, which directly samples points on the boundaries. mBIRECTv-GL
and Lc-DISIMPLv exhibit higher success rates while requiring fewer function evaluations,
making them more efficient and cost-effective than other algorithms.
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The data profiles displayed on the left side of Figure 6 indicate that within a small
evaluation budget (≤4× 103), the Lc-DISIMPLv algorithm is slightly more efficient than our
algorithm developed and can solve a greater number of test problems. However, the ECD
plot on the right side of Figure 6 reveals that these algorithms solve similar percentages
of target errors within ≤3 × 102. When larger evaluation budgets are considered, the
mBIRECTv-GL algorithm outperforms all other algorithms.

4.3. Statistical Analysis of the Results

The validity of the results and comparisons between algorithms and the significance
of the improvements achieved by mBIRECTv-GL were evaluated using the non-parametric
Wilcoxon signed test at a significance level of 5%. A p-value greater than 0.05 suggests that
the difference in results between the two methods is insignificant. Table 2 displays the
p-values obtained comparing mBIRECTv-GL with other DIRECT-type competitor solvers. For
all instances, the p-values are below 0.05, which indicates that mBIRECTv-GL exhibits
significantly superior performance compared to other techniques and surpasses the
performance of other algorithms for the benchmark problems examined. However, as the
evaluation budgets increase, the p-values of the penalty-based DIRECT-type algorithms
closely approach the 5% significance level.

Table 2. p-values of the Wilcoxon signed test with 5% significance, mBIRECTv-GL vs. other competitors,
using different objective function evaluation budgets.

Algorithm 102 103 104 105 106

Lc-DISIMPLv 4.3758× 10−3 4.1523× 10−3 1.0205× 10−3 2.9316× 10−4 2.1367× 10−4

Lc-DISIMPLc 7.2762× 10−9 2.8887× 10−5 1.8188× 10−4 6.3294× 10−5 8.0517× 10−5

glcSolve 1.4166× 10−7 8.7745× 10−6 4.8968× 10−5 1.4354× 10−3 1.1472× 10−4

DIRECT-GLc 3.5571× 10−11 2.2431× 10−9 2.6512× 10−5 1.1858× 10−3 1.4097× 10−2

DIRECT-GLce 4.2110× 10−11 4.5098× 10−10 7.0552× 10−7 2.4254× 10−4 3.9474× 10−2

Taking into account the results of the Friedman mean rank test presented in Table 3,
mBIRECTv-GL achieves the highest ranking among the approaches for all budgets for the
evaluation of objective functions. The developed algorithm is most advantageous when
smaller evaluation budgets are used. The Friedman test, conducted at a level of
significance 5%, indicates a significant difference in the performance of the various
algorithms. Nevertheless, as the evaluation budgets are raised, the Friedman mean rank
values exhibit decreased dispersion, implying that there will come the point where the
algorithms will demonstrate similar performance.

Table 3. Friedman mean rank values, using different objective function evaluation budgets.

Algorithm 102 103 104 105 106

mBIRECTv-GL 1.8060 2.2015 2.6866 2.8806 2.9030
Lc-DISIMPLv 2.4478 2.9179 3.3060 3.7164 3.7910
Lc-DISIMPLc 4.0373 3.5373 3.7537 3.9552 3.9701
glcSolve 3.3134 3.1866 3.4851 3.5672 3.8059

DIRECT-GLc 4.5672 4.1866 3.5224 3.3731 3.2761
DIRECT-GLce 4.8284 4.9701 4.2463 3.5075 3.1567

p-value 8.4848× 10−32 2.5717× 10−23 3.1391× 10−9 7.3195× 10−6 3.3810× 10−9

5. Conclusions and Future Prospects

This paper adds a novel approach to the class of DIRECT-type algorithms. The proposed
algorithm (mBIRECTv-GL) is specifically designed to tackle global optimization problems
involving Lipschitz continuous functions subject to linear constraints. By integrating the
most recent partitioning and selection techniques and applying mapping techniques to
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eliminate the infeasible region, the novel algorithm demonstrates remarkable efficiency
and superior performance compared to the existing DIRECT counterparts.

Although existing solution techniques, such as simplicial partitioning approaches,
operate exclusively within feasible regions, their effectiveness decreases significantly in
larger dimensions. In contrast, penalty- and auxiliary-function-based approaches exhibit
slower convergence rates and often require a considerably higher number of function
evaluations due to their handling of large infeasible regions. These methods also face
notable challenges when dealing with problems where the optimal solution lies precisely
at the boundaries of feasibility.

To validate the effectiveness of our approach, we conducted extensive experimentation
using a diverse set of benchmark problems. Our results highlight the superior performance of
our algorithm, particularly when solutions are located at the boundary of feasible regions. The
statistical analyses, including the Friedman and Wilcoxon tests, further support our results.

This research opens up novel possibilities for addressing Lipschitz-continuous
optimization problems with linear constraints, providing an improved algorithmic
solution with enhanced computational efficiency. Therefore, the new algorithm will have
an important place among all other DIRECT-type algorithms available in the open-source
DIRECTGO repository (see the Data Availability Statement below). To achieve even greater
usability, as a potential direction, we consider integrating DIRECT-type algorithms into the
new web-based tool for algebraic modeling and mathematical optimization [64,65].
Alternatively, at least the most efficient DIRECT-type algorithms could be hosted on the
NEOS Server (https://neos-server.org/neos/, (accessed on 30 May 2023))—a free
internet-based service for solving numerical optimization problems.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The DIRECTGOLib (DIRECT Global Optimization test problems
Library) is an open-source GitHub repository that serves as a comprehensive collection of test
problems for global optimization. It is designed to grow continuously and welcomes contributions
from anyone. The data used in this article, sourced from DIRECTGOLib v1.3, are available on GitHub
and Zenodo:

• https://github.com/blockchain-group/DIRECTGOLib (accessed on 15 June 2023),
• https://zenodo.org/record/8046086 (accessed on 16 June 2023).

They are released under the MIT license, allowing users to access and utilize the data. We encourage
contributions and corrections to enhance the library’s content further.

The original mBIRECTv-GL algorithm, along with four of its competitors (Lc-DISIMPLc,
Lc-DISIMPLv, DIRECT-GLc, and DIRECT-GLce), can be accessed on GitHub:

• https://github.com/blockchain-group/DIRECTGO (accessed on 15 June 2023).
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Appendix A. Linearly Constrained Test Problems from the DIRECTGOLib v1.3
Benchmark Library

Table A1. Key characteristics of global optimization test problems with linear constraints from
DIRECTGOLib v1.3 library [41].

# Name Ref. n Con. AC Variable Bounds (D) Optimum ( f ∗)

1 avgasa [66] 8 10 3 [0, 1]n −3.4201
2 avgasb [66] 8 10 4 [0, 1]n −4.4832
3 biggsc4 [66] 4 13 3 [0, 5]n −24.5000
4 Bunnag1 [66] 3 1 1 [0, 3]n 0.1111
5 Bunnag2 [66] 4 2 1 [0, 4]n −6.4052
6 Bunnag3 [66] 5 3 1 [0, 3] × [0, 2] × [0, 4]2 × [0, 2] −16.3693

https://neos-server.org/neos/
https://github.com/blockchain-group/DIRECTGOLib
https://zenodo.org/record/8046086
https://github.com/blockchain-group/DIRECTGO
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Table A1. Cont.

# Name Ref. n Con. AC Variable Bounds (D) Optimum ( f ∗)

7 Bunnag4 [66] 6 2 1 [0, 1]5 × [0, 20] −213.0470
8 Bunnag5 [66] 6 5 1 [0, 2] × [0, 8] × [0, 2] × [0, 1]2 × [0, 2] −11.0000
9 Bunnag6 [66] 10 11 3 [0, 1]n −268.0146
10 Bunnag7 [66] 10 5 0 [0, 1]n −39.0000
11 Bunnag8 [66] 5 1 0 [0, 1]n −17.0000
12 Bunnag10 [66] 20 10 5 [0, 100]n −394.7506
13 Bunnag11 [66] 20 10 5 [0, 100]n −884.7506
14 Bunnag12 [66] 20 10 5 [0, 100]n −8695.0122
15 Bunnag13 [66] 20 10 0 [0, 100]n −754.7506
16 Bunnag14 [66] 20 10 0 [0, 100]n −4118.725
17 Bunnag15 [66] 20 10 2 [0, 100]n 49,318.0180
18 ex2_1_1 [66] 5 1 1 [0, 20]n −4525.0000
19 ex2_1_2 [66] 6 2 1 [0, 1]5 × [0, 100] −213.0000
20 expfita [66] 5 2 0 [0, 20]n 0.0342
21 expfitb [66] 5 2 0 [0, 20]n 0.0860
22 expfitc [66] 5 2 0 [0, 20]n 0.3567
23 G01 [66] 13 9 6 [0, 10]9 × [0, 100]3 × [0, 10] −15.0000
24 Genocop7 [66] 6 2 1 [0, 1]5 × [0, 100] −413.0000
25 Genocop9 [66] 3 5 2 [0, 3]n −2.4714
26 Genocop10 [66] 4 2 1 [0, 3] × [0, 10]2 × [0, 1] −4.5284
27 Horst1 [67] 2 3 1 [0, 3] × [0, 2] −1.0625
28 Horst2 [67] 2 3 2 [0, 2.5] × [0, 2] −6.8995
29 Horst3 [67] 2 3 0 [0, 1] × [0, 1.5] −0.4444
30 Horst4 [67] 3 4 2 [0.5, 2] × [0, 3] × [0, 2.8] −6.0858
31 Horst5 [67] 3 4 2 [0, 1.2] × [0, 1.2] × [0, 1.7] −3.7220
32 Horst6 [67] 3 7 2 [0, 6] × [0, 5.0279] × [0, 2.6] −32.5793
33 Horst7 [67] 3 4 2 [0, 6] × [0, 3]2 −52.8774
34 hs021 [66] 2 1 0 [2, 50] × [−50, 10] −99.9600
35 hs021mod [66] 7 1 1 [2, 50]× [−50, 50]× [0, 50]× [2, 10]× [−10, 10]× [−10, 0]× [0, 10] 4.0400
36 hs024 [66] 2 3 2 [0, 5]n −1.0000
37 hs036 [66] 3 1 1 [0, 20] × [0, 11] × [0, 15] −3300.0000
38 hs037 [66] 3 2 1 [0, 42]n −3456.0000
39 hs038 [66] 4 2 0 [−10, 10]n 0.0000
40 hs044 [66] 4 6 2 [0, 42]n −15.0000
41 hs076 [66] 4 3 1 [0, 1] × [0, 3] × [0, 1]2 −4.6818
42 hs086 [66] 5 1 0 [0, 10]n −351.7236
43 hs118 [66] 15 17 9 [0, 100]n 553.9246
44 hs268 [66] 5 5 2 [0, 10]n −63,126.1111
45 Ji1 [66] 3 4 1 [0, 10]n −4.0907
46 Ji2 [66] 3 2 0 [0, 10]n −3.0029
47 Ji3 [66] 2 1 0 [0, 10]n −4.6758
48 ksip [66] 10 20 2 [0, 10]n 12.1448
49 Michalewicz1 [66] 2 3 0 [0, 10]n −1.0000
50 P9 [66] 3 9 2 [10−5, 3] × [10−5, 4]2 × [0, 2]2 × [0, 6] −13.4019
51 P14 [66] 3 4 2 [10−5, 3] × [10−5, 4] × [0, 2] × [0, 1] −4.5142
52 s224 [66] 2 4 1 [0, 6] × [0, 11] −304.0000
53 s231 [66] 2 2 0 [−10, 10]n 0.0000
54 s232 [66] 2 3 2 [0, 100]n −1.0000
55 s250 [66] 3 2 1 [0, 20] × [0, 11] × [0, 42] −3300.0000
56 s251 [66] 3 1 1 [0, 42]n −3456.0000
57 s253 [66] 3 1 0 [0, 100]n 120.0000
58 s268 [66] 5 5 2 [0, 2]n 7.0913
59 s277 [66] 4 4 4 [0, 10]n 5.0762
60 s278 [66] 6 6 6 [0, 10]n 7.8385
61 s279 [66] 8 8 8 [0, 10]n 10.6060
62 s280 [66] 10 10 10 [0, 10]n 13.3754
63 s331 [66] 2 1 0 [0.0001, 10]n 4.2584
64 s340 [66] 3 1 1 [0.0001, 10]n −0.0540
65 s354 [66] 4 1 1 [0, 20]n 0.2596
66 s359 [66] 5 14 4 [0, 10]n −563,335.5491
67 zecevic2 [66] 2 2 1 [0, 10]n −4.1250
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24. Stripinis, L.; Paulavičius, R.; Žilinskas, J. Penalty functions and two-step selection procedure based DIRECT-type algorithm for
constrained global optimization. Struct. Multidiscip. Optim. 2019, 59, 2155–2175. [CrossRef]
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46. Paulavičius, R.; Žilinskas, J. Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 2014, 59, 23–40.

[CrossRef]
47. Paulavičius, R.; Žilinskas, J. Simplicial Global Optimization; SpringerBriefs in Optimization; Springer: New York, NY, USA, 2014.

[CrossRef]
48. Finkel, D.E. Global Optimization with the DIRECT Algorithm. Ph.D. Thesis, North Carolina State University, Raleigh, NC,

USA, 2005.
49. Fletcher, R.; Leyffer, S. Nonlinear programming without a penalty function. Math. Program. 2002, 91, 239–269. [CrossRef]
50. Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 1996,

22, 469–483. [CrossRef]
51. Becker, S. CON2VERT—Constraints to Vertices, MATLAB Central File Exchange. 2023. Available online: https://www.

mathworks.com/matlabcentral/fileexchange/7894-con2vert-constraints-to-vertices (accessed on 16 May 2023).
52. Huyer, W.; Neumaier, A. Global Optimization by Multilevel Coordinate Search. J. Glob. Optim. 1999, 14, 331–355. [CrossRef]
53. Liu, H.; Xu, S.; Wang, X.; Wu, X.; Song, Y. A global optimization algorithm for simulation-based problems via the extended

DIRECT scheme. Eng. Optim. 2015, 47, 1441–1458. [CrossRef]
54. Chiter, L. Experimental Data for the Preprint “Diagonal Partitioning Strategy Using Bisection of Rectangles and a Novel Sampling

Scheme”. Mendeley Data, V2. 2023. Available online: https://data.mendeley.com/datasets/x9fpc9w7wh/2 (accessed on
16 June 2023).
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