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Abstract: In the paper, we consider the approximation of analytic functions by shifts from the wide
class S̃ of L-functions. This class was introduced by A. Selberg, supplemented by J. Steuding, and
is defined axiomatically. We prove the so-called joint discrete universality theorem for the function
L(s) ∈ S̃. Using the linear independence over Q of the multiset

{
(hj log p : p ∈ P), j = 1, . . . , r; 2π

}
for positive hj, we obtain that there are many infinite shifts

(
L(s + ikh1), . . . , L(s + ikhr)

)
, k = 0, 1, . . .,

approximating every collection
(

f1(s), . . . , fr(s)
)

of analytic non-vanishing functions defined in the
strip {s ∈ C : σL < σ < 1}, where σL is a degree of the function L(s). For the proof, the probabilistic
approach based on weak convergence of probability measures in the space of analytic functions
is applied.

Keywords: analytic functions; discrete shifts; limit theorem; simultaneous approximation; Selberg–
Steuding class; weak convergence

MSC: 11M06; 11M41; 11M36

1. Introduction

One of the most important branches of the function theory is the approximation of
analytic functions, and is widely used not only in mathematics but also in other natural
sciences. In the 1980s, it was discovered that there exist analytic objects that approximate
large classes of analytic functions. S.M. Voronin found [1] that the first such object as the
Riemann zeta-function ζ(s), s = σ + it, given by

ζ(s) =
∞

∑
m=1

1
ms = ∏

p∈P

(
1− 1

ps

)−1

, σ > 1,

where P is the set of all prime numbers. As is well-known, ζ(s) has the meromorphic
continuation of the whole complex plane with Ress=1 ζ(s) = 1. Voronin proved [1] (see
also [2]) that if 0 < c < 1

4 , the function f (s) is continuous and non-vanishing on the disc
|s| ≤ c, and analytic in the interior of that disc, then there exists a real number τ = τ(ε, f )
such that

max
|s|≤c

∣∣∣∣ζ(s +
3
4
+ it

)
− f (s)

∣∣∣∣ < ε

for any ε > 0.
Thus, Voronin reported that all non-vanishing analytic functions on the strip D ={

s ∈ C : 1
2 < σ < 1

}
, and uniformly on discs can be approximated by shifts ζ(s + iτ) of

one and the same function ζ(s). The Bohr–Courant theorem [3] claims that the set

{ζ(σ + it) : t ∈ R}
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is dense everywhere on a complex plane for every fixed 1
2 < σ ≤ 1. From here, it follows

that the set of values of the function ζ(s) is very rich. Thus, in terms of approximation, the
function ζ(s) is universal, and this might be natural in view of the remark above.

We denote by H(D) the space of the analytic on D functions equipped with the
topology of uniform convergence on the compacta. Since the spaceH(D) has an infinite-
dimension, the Voronin theorem is a infinite-dimensional extension of the Bohr–Courant
denseness theorem.

The above-mentioned Voronin universality theorem has a more general statement
which follows the Mergelyan theorem on the approximation of analytic functions by
polynomials [4]. We denote by K(D) the set of compact subsets of the strip D with
connected complements, and byH0(K, D) the class of continuous non-vanishing functions
on K ∈ K(D) that are analytic in the interior of K. Moreover, we let mesA stand for the
Lebesgue measure of a measurable set A ⊂ R. Then the following statement on the ζ(s)’s
universality is known, see, for example, [5–9].

Theorem 1. Suppose that K ∈ K(D) and f (s) ∈ H0(K, D). Then, for every ε > 0,

lim inf
T→∞

1
T

mes
{

τ ∈ [0, T] : sup
s∈K
| f (s)− ζ(s + iτ)| < ε

}
> 0.

The inequality of the theorem shows the infinitude of shifts of ζ(s + iτ) approximating
a given function f (s) ∈ H0(K, D).

The statement of Theorem 1 was influenced by a probabilistic method proposed in [6].
The initial Voronin method based on the Riemann-type rearrangement theorem in the
Hilbert space was developed in [7,8].

Since τ in the shifts ζ(s + iτ) of Theorem 1 is an arbitrary real number, Theorem 1 is
called a continuous universality theorem. Parallel to continuous universality theorems
for zeta-functions, there are discrete universality theorems when τ takes values from a
certain discrete set. These were proposed by A. Reich [10] for Dedekind zeta-functions of
algebraic number fields K. If K = Q, we deal with a discrete universality for the Riemann
zeta-function. As an example, we now state a classical result in the following (see [6]).

Theorem 2. Suppose that K ∈ K(D), f (s) ∈ H0(K, D) and h > 0. Then, for every ε > 0,

lim inf
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
s∈K
| f (s)− ζ(s + ikh)| < ε

}
> 0.

Here #A denotes the number of elements of the set A ⊂ R, and N runs over the set
N0 = N∪ {0}.

Note that discrete universality theorems were also investigated in [6–8].
Some other functions given by a Dirichlet series also fulfil the property of universality

in the Voronin sense. For example, Dirichlet L-functions L(s, χ) with arbitrary Dirichlet
character χ,

L(s, χ) =
∞

∑
m=1

χ(m)

ms , σ > 1,

are universal, as was mentioned by Voronin in [2]. Let A = {am : m ∈ N} ⊂ C be a periodic
sequence. Then the periodic zeta-function

ζ(s;A) =
∞

∑
m=1

am

ms , σ > 1,

also has the universal approximation property [11]. For values of the parameters α and λ,
the Hurwitz zeta-function ζ(s, α) and Lerch zeta-function L(λ, α, s), for σ > 1, respectively
given by
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ζ(s, α) =
∞

∑
m=0

1
(m + α)s and L(λ, α, s) =

∞

∑
m=0

e2πiλm

(m + α)s ,

are universal (see [12]). In other words, they approximate analytic functions from the
classH(K, D) considered continuous on K and analytic in the interior of K functions. This
observation leads to certain conjectures. For example, by the Linnik–Ibragimov conjecture
(or programme), see [8], all functions in a certain half-plane defined by a Dirichlet series,
with analytic continuation left of the absolute convergence abscissa and satisfying some
natural growth hypotheses are universal in the Voronin sense. However, currently there are
Dirichlet series which their universality is not known, for example, the function L(λ, α, s)
with an algebraic irrational parameter. Results in this direction for the Hurwitz zeta-
function ζ(s, α), as in [13], are presented.

To obtain more general results, the universality of separate functions and some classes
of functions are considered. One such class was introduced by A. Selberg (see [14,15]),
known as the Selberg class S . The structure of the class S was studied by various authors,
see [8,16–20], but until now its structure was not completely known. However, the class
includes all main zeta- and L-functions, for example, ζ(s), L(s, χ), the zeta-functions of
certain cusp forms, etc. The Selberg class S is defined axiomatically, with its functions

L(s) =
∞

∑
m=1

a(m)

ms , a(m) ∈ C,

satisfying four axioms. Recall that the notation a�θ b, b > 0, means that there is a positive
constant c = c(θ) such that |a| ≤ cb, and that Γ(s) denotes the Euler gamma-function. The
axioms of the class S have the names:

(1) (Ramanujan conjecture). The estimate a(m)�ε mε is valid with any ε > 0.
(2) (Analytic continuation). For some l ∈ N0, (s − 1)l L(s) in an entire function of

finite order.
(3) (Functional equation). Let

ΛL(s) = L(s)qs
j0

∏
j=1

Γ(λjs + αj),

where q, λj ∈ R+, and αj ∈ C such that <αj ≥ 0. Then the functional equation of
the form

ΛL(s) = wΛL(1− s)

is valid. Here, |w| = 1, and, as usual, by s we denote the conjugate of s.
(4) (Euler product). Let

log Lp(s) =
∞

∑
l=1

b(pl)

ps

with coefficients b(pl) such that b(pl)� pαl , α < 1
2 . Then the representation

L(s) = ∏
p∈P

Lp(s)

holds.

Axioms (1)–(4) of the class S are insufficient to prove universality as they do not
include the analogue of the prime number theorem. Therefore, J. Steuding, who was first to
study the class S with an emphasis on universality [8], introduced the following axioms.

(5) There exists κ > 0 such that

lim
x→∞

1
π(x) ∑

p≤x
|a(p)|2 = κ,
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where function π(x) counts the number of primes up to x. Moreover, in [8] the Euler
product of the type

(6)

L(s) = ∏
p∈P

l

∏
j=1

(
1−

αj(p)
ps

)−1

was required with some complex αj(p).

For the universality for the above functions, we need one important ingredient of the
class S . For L ∈ S , the quantity

dL = 2
j0

∑
j=1

λj

is called the degree of the function L. The degree is an deep characteristic of the class S . If
dL = 1, then L(s) coincides with ζ(s) or L(s + ia, χ) with some a ∈ R. For L ∈ S , let

σL = max
(

1
2

, 1− 1
dL

)
.

We denote by DσL = {s ∈ C : σL < σ < 1}, K(DσL) the class of compact subsets of
the strip DσL with connected complements, and H0(K, DσL) the class of continuous non-
vanishing functions on K that are analytic in the interior of K. Then, in [8], the following
universality theorem has been proved.

Theorem 3. Suppose that L(s) satisfies Axioms (2), (3), (5) and (6). Let K ∈ K(DσL) and
f (s) ∈ H0(K, DσL). Then, for every ε > 0, the inequality

lim inf
T→∞

1
T

mes
{

τ ∈ [0, T] : sup
s∈K
| f (s)− L(s + iτ)| < ε

}
> 0

holds.

In [21], Axiom (6) was removed. Thus, Theorem 3 holds for the so-called Selberg–
Steuding class S̃; more precisely, for the functions belonging to the Selberg class and
satisfying Axiom (5).

The discrete version of Theorem 3 has been obtained in [22].

Theorem 4. Suppose that L(s), K and f (s) are the same as in Theorem 3. Then, for every h > 0
and ε > 0,

lim inf
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
s∈K
| f (s)− L(s + ikh)| < ε

}
> 0.

We can consider a simultaneous approximation of a tuple of analytic functions by a
tuple of shifts of zeta- or L-functions. This type of universality is called joint universality.
This phenomenon of a Dirichlet series was also introduced by Voronin. In [23], he studied
the joint functional independence of Dirichlet L-functions using the joint universality.
Of course, the joint universality is more complicated, but, on the other hand, it is more
interesting. Obviously, in the case of joint universality, the approximating shifts require
some independence conditions. For example, Voronin used Dirichlet L-functions with
pairwise non-equivalent Dirichlet characters. Later, the joint universality theorems were
proven for zeta-functions defined by a Dirichlet series with periodic coefficients, Matsumoto
zeta-functions, and automorphic L-functions. For these proofs, see the very informative
paper [9].

This paper deals with the discrete joint universality property for L-functions for the
class S̃. Let
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L(s) =
∞

∑
m=1

a(m)

ms ,

h1, ..., hr be fixed positive numbers, and h = (h1, . . . , hr). We define the multiset

A(P, h, 2π) =
{
(hj log p : p ∈ P), j = 1, . . . , r; 2π

}
,

and then we prove the following theorem.

Theorem 5. Suppose that L(s) ∈ S̃, and the set A(P, h, 2π) is linearly independent over the field
of rational numbers Q. For j = 1, . . . , r, let Kj ∈ K(DL) and f j(s) ∈ H0(Kj, DL). Then, for every
h ∈ (R+)r and ε > 0,

lim inf
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
1≤j≤r

sup
s∈Kj

| f j(s)− L(s + ikhj)| < ε

}
> 0.

Moreover, for all but at most countably many ε > 0, the limit

lim
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
1≤j≤r

sup
s∈Kj

| f j(s)− L(s + ikhj)| < ε

}

exists and is positive.

In [24], a joint continuous universality theorem for a function L(s) ∈ S̃ on the appro-
ximation of analytic functions by shifts

(
L(s + ia1τ), . . . , L(s + iarτ)

)
with linear indepen-

dence over Q real algebraic numbers a1, . . . , ar was obtained.
For example, for r = 3, we can take h1 = 1, h2 =

√
2, and h3 =

√
3 in Theorem 5.

We denote by B(X ) the Borel σ-field of the space X , and let P and Pn, where n ∈ N,
be probability measures on (X ,B(X )). We report that Pn converges weakly to P as n→ ∞,
and write P w−−−→

n→∞
P, if, for all bounded continuous functions g(x) on X ,

lim
n→∞

∫
X

g(x)dPn =
∫
X

g(x)dP.

We derive Theorem 5 from a probabilistic joint discrete limit theorem on weakly
convergent probability measures in the space of analytic functions. For proof of the
latter theorem, we consider the weak convergence of probability measures on the infinite-
dimensional torus, and in the space of analytic functions for certain absolutely convergent
Dirichlet series. After this, we show a comparison in the mean between the initial L-
function and functions defined by an absolutely convergent Dirichlet series. This will give
the desired joint discrete limit theorem for the tuple of functions we are interested in.

2. Case of the Torus

We define the infinite-dimensional torus as

T = ∏
p∈P
{s ∈ C : |s| = 1},

where T is the infinite Cartesian product over prime numbers of unit circles. Since each
circle is a compact set, by the Tikhonov theorem, T with the product topology and operation
of pairwise multiplication is a compact topological abelian group. Now, we construct the set

Tr = T1 × . . .×Tr,

where Tj = T, j = 1, . . . , r. Then, the Tikhonov theorem again shows that Tr is a compact
topological group. We denote by t = (t1, .., tr), tj ∈ Tj, tj = (tj(p) : p ∈ P), j = 1, . . . , r, the
elements of Tr.
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For A ∈ B(Tr), we set

QN,Tr ,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N :
((

p−ikh1 : p ∈ P
)
, . . . ,

(
p−ikhr : p ∈ P

))
∈ A

}
.

In this section, we consider the weak convergence for QN,Tr ,h as N → ∞.

Proposition 1. Suppose that the set A(P, h, 2π) is linearly independent over Q. Then, QN,Tr ,h
w−−−→

n→∞
mH , where mH is the probability Haar measure on (Tr,B(Tr)).

Proof. The characters of the Tr are of the form
r

∏
j=1

∏
p∈P

∗t
ljp
j (p)

with integers ljp, where the star indicates that only a finite number of ljp are not zeroes.
Therefore, the Fourier transform FN,Tr ,h(l1, .., lr), l j = (ljp : ljp ∈ Z, p ∈ P), j = 1, . . . , r, can
be represented by

FN,Tr ,h(l1, .., lr) =
∫
Tr

r

∏
j=1

∏
p∈P

∗tj
ljp(p)dQN,Tr ,h

=
1

N + 1

N

∑
k=0

r

∏
j=1

∏
p∈P

∗p−ikljphj

=
1

N + 1

N

∑
k=0

exp
{
− ik

r

∑
j=1

hj ∑
p∈P

∗ljp log p
}

. (1)

By a continuity theorem on the compact groups, for the proof of Proposition 1, it is
sufficient to show that the Fourier transform FN,Tr ,h(l1, .., lr) converges, as N → ∞, to the
Fourier transform

FmH (l1, . . . , lr) =

{
1 if (l1, . . . , lr) = (0, . . . , 0),
0 otherwise

of the Haar measure mH . Here, 0 = (0, 0, . . . ).
Equality (1), obviously, gives

FN,Tr ,h(0, . . . , 0) = 1. (2)

Thus, it remains to consider only the case (l1, . . . , lr) 6= (0, . . . , 0). Since the set
A(P, h, 2π) is linearly independent over Q, we have, in this case,

exp
{
− i

r

∑
j=1

hj ∑
p∈P

∗ljp log p
}
6= 1. (3)

Actually, if (3) is false, then
r

∑
j=1

hj ∑
p∈P

∗ljp log p = 2πm

for some m ∈ Z and the integers ljp 6= 0. However, this contradicts the assumption that
the set A(P, h, 2π) is linearly independent. Now, using (3) and the formula for the sum of
geometric progressions, we deduce from (1) that, for (l1, . . . , lr) 6= (0, . . . , 0),

FN,Tr ,h(l1, . . . , lr) =

1− exp
{
− i(N + 1)∑r

j=1 hj ∑∗p∈P ljp log p
}

(N + 1)
(

1− exp
{
− i ∑r

j=1 hj ∑∗p∈P ljp log p
}) .
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Hence,

lim
N→∞

FN,Tr ,h(l1, . . . , lr) = 0

for (l1, . . . , lr) 6= (0, . . . , 0). This, together with (2), shows that

lim
N→∞

FN,Tr ,h(l1, . . . , lr) = FmH (l1, . . . , lr),

thus proving the Proposition 1.

We apply Proposition 1 for the proof of weak convergence for the measures defined
by means of certain absolutely convergent Dirichlet series connected to the function L(s).
We fix a number β > 1

2 , and

vn(m; β) = exp
{
−
(

m
n

)β}
, m, n ∈ N.

We define the functions

Ln(s) =
∞

∑
m=1

a(m)vn(m; β)

ms

and

Ln(s, tj) =
∞

∑
m=1

a(m)tj(m)vn(m; β)

ms , j = 1, . . . , r,

where, for m ∈ N,

tj(m) = ∏
pl‖m

tl
j(p).

If L(s) ∈ S̃ , then a(m) � mε
ε with arbitrary ε > 0. Obviously, vn(m; β) decreases

exponentially with respect to m. Therefore, the series for Ln(s) and Ln(s, tj) are absolutely
convergent for σ > σa with arbitrary finite σa and fixed n ∈ N. Let

Ln(s + ikh) =
(

Ln(s + ikh1), . . . , Ln(s + ikhr)
)

and

Ln(s, t) =
(

Ln(s, t1), . . . , Ln(s, tr)
)
.

Moreover, let H(DL) stand for the space of analytic on DL functions endowed with
the topology of uniform convergence on compact sets, and let

Hr(DL) =
r

∏
j=1
H(DL).

For A ∈ B(Hr(DL)), we set

PN,n,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N : Ln(s + ikh) ∈ A
}

.

Proposition 2. On (Hr(DL),B(Hr(DL))), a probability measure Pn exists such that PN,n,h
w−−−→

N→∞
Pn.

Proof. Let the mapping un : Tr → Hr(DL) be given by un(t) = Ln(s, t). The absolute
convergence of the series for Ln(s, tj), j = 1, . . . , r, implies the continuity of un. Hence, un is
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(Tr,Hr(DL))-measurable. Therefore, every probability measure P on (Tr,B(Tr)) induces
the unique probability measure Pu−1

n on (Hr(DL),B(Hr(DL))) given by

Pu−1
n (A) = P(u−1

n A), A ∈ B(Hr(DL)).

Let QN,Tr ,h be from Proposition 1. Then, for every A ∈ B(Hr(DL)),

PN,n,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N :
((

p−ikhj : p ∈ P
)
, j = 1, . . . , r

)
∈ u−1

n A
}

= QN,Tr ,h(u−1
n A) = QN,Tr ,hu−1

n (A).

Hence, we have PN,n,h = QN,Tr ,hu−1
n . Therefore, Proposition 1, the continuity of un

and Theorem 5.1 in [25] show that PN,n,h
w−−−→

N→∞
Pn, where Pn = mHu−1

n .

We see that the measure Pn is independent of h. This allows us to obtain the weak
convergence of Pn as n→ ∞, and identify the limit measure. Let

L(s, tj) =
∞

∑
m=1

a(m)tj(m)

ms , j = 1, . . . , r.

It is known [8] that the Dirichlet series for L(s, tj), for almost all tj, is uniformly
convergent on compact subsets of the strip DL. Thus, L(s, tj), for j = 1, . . . , r, is aH(DL)-
valued random element. The probability Haar measure mH on (T,B(T)) is the product of
the Haar measure mH

j on (Tj,B(Tj)), i.e., for A = A1 × . . .× Ar ∈ B(Tr),

mH(A) = mH
1 (A1) · . . . ·mH

r (Ar).

The above remarks show that

L(s, t) =
(

L(s, t1), . . . , L(s, tr)
)

is a Hr(DL)-valued random element defined on the probability space (Tr,B(Tr)). We
denote by PL the distribution of L(s, t).

The measure Pn coincides with that studied in the continuous case in [24]. Therefore,
we have the following proposition.

Lemma 1. The relation Pn
w−−−→

n→∞
PL holds. Moreover, the support of the measure PL is set as({

g ∈ H(DL) : either g(s) 6= 0 or g(s) ≡ 0
})r

.

Proof. The first assertion of the lemma is contained in Lemma 7 in [24], while the second
one is in Lemma 9 in [24].

3. Limit Theorem

We start this section with a mean value estimate for the collection of L-functions we
are interested in.

Let

L(s + ikh) =
(

L(s + ikh1), . . . , L(s + ikhr)
)
.

In this section, we estimate the distance between L(s + ikh) and Ln(s + ikh) in the
mean. Let d be the metric on the spaceHr(DL), i.e., for g

l
= (gl1, . . . , glr), l = 1, 2,

d(g
1
, g

2
) = max

1≤m≤r
d(g1m, g2m),

and d is the metric in H(DL) which induces its uniform convergence topology on com-
pact sets.
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Lemma 2. For arbitrary positive fixed numbers h1, . . . , hr,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

d
(

L(s + ikh), Ln(s + ikh)
)
= 0.

Proof. Since

d(g1, g2) =
∞

∑
j=1

2−j
sups∈Kj

|g1(s)− g2(s)|
1 + sups∈Kj

|g1(s)− g2(s)|
, g1, g2 ∈ H(DL),

where {Kj : j ∈ N} ⊂ DL is a certain sequence of compact sets, it suffices to show that, for
every compact set K ⊂ DL,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈K
|L(s + ikhj)− Ln(s + ikhj)| = 0, j = 1, . . . , r. (4)

We fix a compact set K, a positive number h, and L(s) ∈ S̃. We use the integral
representation [24]

Ln(s) =
1

2πi

∫ β+i∞

β−i∞
L(s + z)ln(z; β)dz, (5)

where

ln(s; β) =
1
β

Γ
(

s
β

)
ns,

and the fixed number β > 1
2 is the same as in the definition of vn(m; β). There exists

δ = δ(K) such that σL + 2δ ≤ σ ≤ 1− δ for σ + it ∈ K. Thus, β1
de f
= σ− σL − δ > 0. Let

β = σL + δ. The integrand in (5) has a simple pole at the point z = 0, and a possible simple
pole at the point z = 1− s. Therefore, by the residue theorem and (1),

Ln(s)− L(s) =
1

2πi

∫ −β1+i∞

−β1−i∞
L(s + z)ln(z; β)dz + r(s),

where

r(s) = Res
z=1−s

L(s + z)ln(z; β) = γln(1− s; β),

and γ = Ress=1 L(s). If α = 0 in Axiom (2), then r(s) = 0. Hence, for s = σ + it ∈ K,

L(s + ikh)− Ln(s + ikh)

=
1

2πi

∫ ∞

−∞
L(s + ikh + σL − σ + δ + iτ)ln(σL − σ + δ + iτ; β)dτ + r(s + ikh)

=
1

2πi

∫ ∞

−∞
L(σL + δ + ikh + iτ)ln(σL + δ− s + iτ)dτ + r(s + ikh)

�
∫ ∞

−∞

∣∣L(σL + δ + ikh + iτ)
∣∣ sup

s∈K
|ln(σL + δ− s + iτ)|dτ + sup

s∈K
|r(s + ikh)|.

From this, we have

1
N + 1

N

∑
k=2

sup
s∈K
|L(s + ikh)− Ln(s + ikh)|

�
∫ ∞

−∞

(
1

N + 1

N

∑
k=2
|L(σL + δ + ikh + iτ)|

)
sup
s∈K
|ln(σL + δ− s + iτ)|dτ

+
1

N + 1

N

∑
k=2

sup
s∈K
|r(s + ikh)|. (6)
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By the Cauchy–Schwarz inequality,

1
N + 1

N

∑
k=2
|L(σL + δ + ikh + iτ)| �

(
1
N

N

∑
k=2
|L(σL + δ + ikh + iτ)|2

) 1
2

. (7)

To estimate the last mean square, we apply the Gallagher lemma, see Lemma 1.4
in [26], and the known estimate [8]∫ T

−T
|L(σ + it)|2dt�σ T (8)

which is valid for fixed σ, σL < σ < 1. Application of the Gallagher lemma gives

N

∑
k=2
|L(σL + δ + ikh + iτ)|2

�h

∫ Nh

3
2 h
|L(σL + δ + iv + iτ)|2dv+

+

( ∫ Nh

3
2 h
|L(σL + δ + iv + iτ)|2dv

∫ Nh

3
2 h
|L′(σL + δ + iv + iτ)|2dv

) 1
2

. (9)

The Cauchy integral formula together with (8) gives, for σL < σ < 1, the bound∫ T

−T
|L′(σ + it)|2dt�σ T.

This, and (8) and (9) lead to the estimate
N

∑
k=2
|L(σL + δ + ikh + iτ)|2 �h,δ N(1 + |τ|). (10)

To estimate ln(σL + δ− s + iτ) for s ∈ K, we use the well-known estimate

Γ(σ + it)� e−c|t|, c > 0,

which is valid for large |t| uniformly in any fixed strip. Thus, for s ∈ K, we find

ln(σL + δ− s + iτ)�β nσL+δ−σe−
c
β |τ−t| �β,K n−δc−c1|τ|

with c1 > 0. Now, the latter estimate, and (7) and (10) show that∫ ∞

−∞

(
1

N + 1

N

∑
k=2
|L(σL + δ + ikh + iτ)|

)
sup
s∈K
|ln(σL + δ− s + iτ)|dτ

�β,K,h,δ n−δ
∫ ∞

−∞
e−c1|τ|(1 + |τ|)

1
2 dτ �β,K,h,δ n−δ. (11)

Similarly, the definition of r(s) yields that, for s ∈ K,

r(s + ikh)�β n1−σe−
c
β |kh+t| �β,K n1−σL−2δe−c2kh

with c2 > 0. Hence,

1
N + 1

N

∑
k=2

sup
s∈K
|r(s + ikh)| �β,K n1−σL−2δ 1

N

N

∑
k=2

e−c2kh

�β,K,h n1−σL−2δ

(
log N

N
+

1
N

∞

∑
k≥log N

e−c2kh
)

�β,K,h n1−σL−2δ log N
N

.
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This, and (6) and (11) lead to the estimate

1
N + 1

N

∑
k=2

sup
s∈K
|L(s + ikh)− Ln(s + ikh)| �β,K,h,δ

(
n−δ + n1−σL−2δ log N

N

)
.

Therefore, taking N → ∞ and then n→ ∞, we obtain

lim
n→∞

lim inf
N→∞

1
N + 1

N

∑
k=2

sup
s∈K
|L(s + ikh)− Ln(s + ikh)| = 0.

Since, obviously,

lim
N→∞

1
N + 1

1

∑
k=0

sup
s∈K
|L(s + ikh)− Ln(s + ikh)| = 0,

thus proving (4).

Now we are ready to prove the desired joint discrete limit theorem for the collection
of L-functions belonging to the class S̃. For A ∈ B(Hr(DL)), we set

PN,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N : L(s + ikh) ∈ A
}

.

Let Pn and PL be the same as in Lemma 1.

Theorem 6. Suppose that L(s) ∈ S̃, and the set A(P, h, 2π) is linearly independent over Q. Then
PN,h

w−−−→
N→∞

PL.

Proof. In view of Lemma 1, it suffices to show that Pn and PN,h have the same limit measure

as n→ ∞ and N → ∞, respectively. We denote by D−→ the convergence in distribution.
On some probability space (Ω,A, P), we define the random variable ξN by

P{ξN = k} = 1
N + 1

, k = 0, 1, . . . , N.

Let theHr(DL)-valued random elements XN,n,h and XN,h be defined by

XN,n,h = XN,n,h(s) = Ln(s + ihξN)

and

XN,h = XN,h(s) = L(s + ihξN).

Then the assertion of Proposition 2 can be written in the form

XN,n,h
D−−−→

N→∞
Pn. (12)

Moreover, by Lemma 1,

Xn
D−−−→

n→∞
PL, (13)

where Xn is the Hr(DL)-valued random element with distribution Pn. Application of
Lemma 2 and defining the above random elements show that, for ε > 0,

lim
n→∞

lim sup
N→∞

P
{

d(XN,h, XN,n,h) ≥ ε
}

= lim
n→∞

lim sup
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : d
(

L(s + ikh), Ln(s + ikh)
)
≥ ε

}
≤ 1

ε(N + 1)

N

∑
k=0

d
(

L(s + ikh), Ln(s + ikh)
)
= 0.
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Taking into account the separability of the space (Hr(DL), d), the latter equality,
and (12) and (13), we deduce that the hypotheses of Theorem 4.2 in [25] are satisfied.
Therefore, we have

XN,h
D−−−→

N→∞
PL.

From last relation we obtain the assertion of the theorem.

4. Proof of Theorem 5

The proof of Theorem 5 we derive from Theorem 6, Lemma 1 and the Mergelyan
theorem mentioned in Section 1 (see [4]).

Proof of Theorem 5. Since f j(s) 6= 0 on Kj, application of the Megelyan theorem for
log f j(s) implies the existence of polynomials q1(s), . . . , qr(s) such that

sup
1≤j≤r

sup
s∈Kj

∣∣ f j(s)− eqj(s)
∣∣ < ε

2
. (14)

In view of the second part of Lemma 1, the tuple
(
eq1(s), . . . , eqr(s)

)
is an element of the

support of the measure PL. Therefore, the set

G(ε) =
{
(g1, . . . , gr) ∈ Hr(DL) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− eqj(s)| < ε

2

}

is an open neighbourhood of the support element, and thus by a property of supports,

PL(G(ε)) > 0. (15)

Now, Theorem 6 and Theorem 2.1 in [25] give

lim inf
N→∞

PN,n,h(G(ε)) ≥ PL(G(ε)) > 0. (16)

Inequality (14) shows the inclusion of G(ε) ⊂ G1(ε), where

G1(ε) =

{
(g1, . . . , gr) ∈ Hr(DL) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− f j(s)| < ε

}
.

Therefore, by (16),

lim inf
N→∞

PN,n,h(G1(ε)) > 0,

and we have the first assertion of the theorem.
For the proof of second inequality of the theorem, we observe that, for different values

of ε, the boundaries of G1(ε) do not intersect. This remark implies that the set G1(ε) is a
continuity set of the measure PL for all but at most countably many ε > 0. This result,
Theorem 6 and Theorem 2.1 in [25], in virtue of (15), imply

lim inf
N→∞

PN,n,h(G1(ε)) = PL(G1(ε)) ≥ PL(G(ε)) > 0

for all but at most countably many ε > 0.
Theorem 5 is therefore proven.

5. Concluding Remarks

In this paper we have obtained that every tuple ( f1(s), . . . , fr(s)) of analytic non-
vanishing functions in the strip DL can be approximated simultaneously by discrete shifts(

L(s + ikh1), . . . , L(s + ikhr)
)
, where L(s) is a Dirichlet series from the Selberg–Steuding

class, and the multiset {(hj log p : p ∈ P), j = 1, . . . , r; 2π}with positive h1, . . . , hr is linearly
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independent over a field of rational numbers. For proof of the above theorem, results of a
continuous universality theorem from [24] were applied.

We conjecture that Theorem 5 can be extended to include approximations by shifts(
L1(s + ikh1), . . . , Lr(s + ikhr)

)
, where L1(s), . . . , Lr(s) are functions from the Selberg–

Steuding class. For this, a modification to Lemma 1 is needed.
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