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Chapter 1

Introduction

Long and narrow material damage string was observed from 1964 [1], however

femtosecond pulse filamentation was observed for the first time by Braun et. al. [2]

in 1995. The intense infrared pulse did not diffract during 20 meters propagation

in air, but becomes focused and keeps nearly constant beam diameter over a long

distance. Such effects are called self-focusing and filament generation. The first

explanation of the intense peak propagation was based on idea of self-channeling

(self guiding) [3]. Many scientific papers devoted to the study of intense beam

propagation through various substances were published in short period. Later it

was understood that filament propagation could not be explained via help of self

guiding due to various causes. The moving focus [4] and dynamic spatial replen-

ishment [5, 6] models were proposed as more suitable. Nevertheless the proposed

models are capable to explain many of experimentally observed phenomena, the

far field properties of filament was a mystery. It was noticed, that X wave angular

dispersion closely fits the observed spatio-temporal spectrum [7], therefore the

model of the filaments based on conical wave idea was proposed [8].

In 2004 it was demonstrated [9, 10], that filament which forms in nonlinear

medium with Multiphotn Absorption (MPA) is a conical wave. The conical na-

ture of filament allows to explain how filament is capable to keep nearly constant

values of the peak intensity and diameter even in absorbing medium. Multiple

filaments occur when the initial beam is broad and nonsymmetric. Usually, the

radially symmetric (cylindrical) beams were used for filament generation. Just
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recently the filament array was generated using nonsymmetric beam. In this the-

sis we discuss three filament generation cases: simple single filament generation,

filaments generated in scattering medium and multiple filaments generation by

elliptical beams.

As it was mentioned before, filament central peak is almost not influenced by

absorption while propagating in nonlinear and absorbent medium. Since scat-

tering particles creates an additional energy dissipation mechanism, the filament

formation and propagation in scattering medium seems possible and deserves to

be discussed. Filamentation in water with different scattering particle concentra-

tion was studied experimentally and numerically. To induce scattering the 2 µm

diameter polystyrene spheres were added in water. It was discovered that filament

in scattering medium formes at longer distances, but when energy losses due to

scattering exceed some level the self-focusing filament do not occur at all.

Multiple filament generation by elliptical beam is appealing method to pro-

duce repeatable and stable filament arrays. It was demonstrated, that filaments

generated by elliptical beam, arrange themselves on major ellipse axis, and their

period depends on beam energy. Physical nature of self arrangement was not fully

understood. The proposed analytic model of multifilamentation supported by nu-

merical simulations and experimental approvement will be discussed in chapter

5.

The temporal spectrum of the radiation becomes drastically broadened when

the filament is formed. That is caused by many physical effects, and among them

the pulse splitting phenomenon seems is the most important. The statistical

analysis of generated spectrum revealed, that intensity statistical distribution at

fixed wavelength is not symmetric. At some specific wavelengthes the intensity

may exceed mean value many times. A careful examination of the pulse spectral

intensity profiles revealed L - shaped statistical distribution [11]. The appearance

and suppression of specific statistical events will be discussed in chapter 6.
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The main tasks of the thesis

Thesis is aimed to:

1. Examine supercontinuum spectra dependence on initial beam diameter.

2. Study of the filamentation in scattering medium.

3. Study of the multifilamentation with elliptical beams.

4. Search and study for rogue wave statistics in supercontinuum generation and

filamentation processes.

5. Provide a unified understanding of mentioned above phenomenon via conical

wave formation process.

Scientific novelty

1. The explanation of the supercontinuum spectra dependence of the initial

beam diameter.

2. The explanation of the filament and supercontinuum spectra via event of

pulse splitting into two X pulses with intensity dependant group velocities.

The explanation of the spectrum cut-off (spectrum edge frequency values) by

intensity clamping of splitted pulses.

3. The development of new numerical scheme which could be used for the inves-

tigation of almost any laser beam propagation through scattering medium.

4. The numerical observation of the small scale filamentation in scattering

medium (water with the polystyrene particles).

5. The explanation of the elliptical beam multifilamentation process via cas-

caded four wave mixing process.

6. The explanation of the small scale intensity structures via X wave modulation

instability.

7. The numeric observation, and explanation of the rogue wave statistics in the

filamentation process in bulk medium, for the first time. The proposition of

the rogue wave statistical suppression mechanism based on the pulse intensity

clamping.

Practical value

A revealed role of the initial beam diameter to the red part of the supercontin-

uum, could be used for the formation of better seed in parametric amplification

scheme (Such as NOPA). It was also demonstrated, that filaments are able to

form and propagate through scattering medium. These results could be used in
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various scattering environments when the high peak intensity radiation transmis-

sion is needed. The developed numerical scheme could be used for the study of

laser beam propagation in any scattering medium. The addressing of the elliptical

beam multifilamentation process to the Four Wave Mixing (FWM) and material

nonlinearity, shows the possibility to control and use of the periodic filament ar-

rays for the multichannel microfabrication. The revealed nature of the rogue wave

statistics via X wave formation, gives also the recipe for the damping mechanism

of the mentioned extreme events.

Statements to defend

1. Strong scattering leads to distortions of the filament energy reservoir de-

veloping an apparent speckle structure, but does not greatly alter filament

formation and propagation dynamics.

2. Self-focusing of high power beams with large ellipticity leads to formation

of periodic and high reproducible multiple filaments arrays. Multiple fil-

ament arrays emerge as apparently regular patterns in the space domain,

the spatiotemporal dynamics of the individual filaments is governed by the

input-beam power and the input-beam ellipticity.

3. In three-dimensional space, space-time coupling leads to rogue events that

are associated to X-wave formation in the normal group-velocity dispersion

regime.

4. In the certain input-pulse energy interval the blue-shifted spectral compo-

nents of the supercontinuum exhibit large shot-to-shot intensity variations

that obey extreme-value statistical distribution.
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V. Martinėnaitė, A. Varanavičius, A. Petras Piskarskas, G. Valiulis, Spatial

chirp and angular dispersion dynamics in femtosecond noncollinear OPCPA,

2011.

[C5] ASSP 2012, San Diego, USA, V. Jukna, A.Zaukevičius, R. Antipenkov,
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The structure of the thesis

Thesis consists of introduction, followed by five main chapters and conclusions.

Introduction is devoted to the explanation of filamentation process. The mech-

anisms responsible for filament generation and evolution are explained first and

various models of the filamentation are presented as well. The second chapter is

devoted to the study on supercontinuum spectrum dependence on the initial pulse

diameter. The chapter 4 is devoted to the study of the filamentation in scatter-

ing medium, and covers the performed experiment, explanation of new developed

numerical scheme, and finally comparison of the numerical and experimental re-

sults. The chapter 5 describes the multifilamentation with elliptical beam. The

role of the four wave mixing to the filaments periodicity is briefly explained. The

periodicity dependence on the wave of intensity as well the evolution of multifila-

mentation is shown. Three dimensional study of the modulation instability during

multifilamentation process is also presented in chapter 5. The last chapter 6 is

devoted to the origin of the rogue wave statistics in supercontinuum generation,

and comparison of the numeric results with experimental. At the end (chapter 7)

the main conclusions of the current work are presented.
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Chapter 2

Ultrashort pulse propagation in
nonlinear Kerr media

2.1 Physical processes involved in filament formation

Nonlinear propagation of intense ultrashort pulse in nonlinear Kerr medium is

complicated process which rise a lot of nonlinear physical processes starting from

modulation instability followed by self-focusing and unsymmetrical pulse split-

ting, enhanced by self steepening, non-instantaneous nonlinear response, chased

by MPA, and developed plasma defocusing and absorption, also not excluding

Raman contribution. Therefore we will discuss and introduce step by step the

most important physical effects that occur during light filamentation process.

2.1.1 Diffraction and dispersion

Pulse transformation during propagation in linear medium is the most impor-

tant issue of understanding the filament capability to overcome dispersion and

diffraction. Actually, the overcoming of the diffraction means just significant sup-

pression of the beam broadening in comparison with the standard Gaussian beam.

As it is known, the Gaussian beam A(x, y) = av exp
(
−x

2+y2

ρ20

)
linear propagation

in paraxial limit is described by equation:

∂A

∂z
= − i

2k0

(
∂2

∂x2
+

∂2

∂y2

)
A. (2.1)
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Chapter 2. Ultrashort pulse propagation in nonlinear Kerr media

The solution remains Gaussian, but acquires parabolic wavefront

A(r, z) =
av

1− 2iz
k0ρ

2
0

exp

− r2

ρ2
0

(
1− 2iz

k0ρ
2
0

)
 , (2.2)

where r =
√
x2 + y2 is radial transverse coordinate, av is the initial beam peak

amplitude, ρ0 is the initial Gauss beam width, k0 is the wave number, z is the

propagation distance. Diffraction could be characterized by Rayleigh length, when

collimated Gaussian beam diameter increase by factor
√

2:

ZR =
k0ρ

2
0

2
=
πρ2

0

λ0
. (2.3)

Namely, form Eq. 2.2 we obtain that beam width increases as

ρ(z)

ρ0
=

√
1 +

(
z

ZR

)2

. (2.4)

However, the overall beam power is constant while beam amplitude drops as

av(z)

av
=

1√
1 +
(

z
ZR

)2
. (2.5)

Note, that even in vacuum beam diffracts, since it is a superposition of the

plane waves propagating at slightly different directions.

The pulse temporal broadening during propagation in dispersive media is anal-

ogous to the diffraction of the beam caused by Group Velocity Dispersion (GVD).

It can be described by equation:

∂A

∂z
=
i

2
g0
∂2A

∂t2
, (2.6)

where g0 is the GVD coefficient. Initial Gaussian pulse A(t) = av exp
(
− t2

τ20

)
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Chapter 2. Ultrashort pulse propagation in nonlinear Kerr media

during linear propagation remain Gaussian but also acquires temporal chirp

A(r, z) =
av√

1− 2izg0
τ20

exp

− t2

τ2
0

(
1− 2izg0

τ20

)
 . (2.7)

Dispersion is characterized by dispersion length, when the transform limited

Gaussian pulse duration increases by factor of
√

2

Ld =
τ2
0

2g0
. (2.8)

Namely, form Eq. 2.7 pulse duration grows as

τ(z)

τ0
=

√
1 +

(
z

Ld

)2

. (2.9)

However the amplitude decreases as

av(z)

av
=

1

4

√
1 + z2

Ld

. (2.10)

Note, that both diffraction and dispersion sustain Gaussian shape of the wave

packet but lead to phase modulation. Moreover, pulse chirp sign is defined by the

sign of the GVD coefficient g0. Here, just the second order dispersion terms are

discussed. Higher order terms become important for ultrashort pulses and makes

pulse profile and phase modulation nonsymmetric. The sign of the GVD coeffi-

cient is the most important since it defines the main features of the filamentation

spectrum. The higher order dispersion terms affect filament spectral components

far from the central frequency and do not change significantly the topology of

the far field. Nevertheless, in order to have good agreement between numerical

results and experiment, the higher order dispersion terms should be included (or

even total dispersion of the material).
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Chapter 2. Ultrashort pulse propagation in nonlinear Kerr media

2.1.2 Self-focusing

High intensity light propagating in transparent nonlinear material modifies its

refractive index i. e. the refractive index depends on intensity n = n0 + n
(I)
2 I.

The most materials under usual experimental conditions possess positive nonlinear

refractive index (n2) value, and only a bunch of materials have negative one. Some

materials have complex and pronounced n2 dependence on wavelength [12], some

of materials have complicated n2 dependence on time [13]: the n2 sign can change

from positive to negative. Nevertheless usually the filaments are generated and

studied in media with not so complex n2 behavior.

The beam with transverse intensity distribution I = I(x, y) produces trans-

versely dependant refractive index change. Obviously, phase velocity in most

intense part of the beam becomes less than in low intensity peripheral part, con-

sequently, the plane wave front of the beam starts to sag during beam propagation

and overall beam starts to self-focus. Self-focusing of the beam was predicted in

1964 by R. Chiao, E. Garmire and C. Townes [14]. When the beam power exceeds

some critical value it collapses (blows up) in finite distance. The distance where

collapse occur is called critical distance. The most used expression is Dawes-

Marburger, which estimates Gaussian beam collapse distance:

zc =
0.367ZR√[(

P0
Pc

)1/2 − 0.852
]2

− 0.0219

, (2.11)

where ZR is Rayleigh length, P0 is initial beam power, Pc = α λ2

8πn0n2
is critical

power for self- focusing. Expression 2.11 is retrieved by fitting numerical simula-

tion results to nonlinear function. The first attempt was not accurate [15], but

after Marburger [16] retrieved expression used up to now [17]. More accurate is

Fibich proposed empiric formula [18]:

zc = 0.317ZR

(
P0

Pc
− 1

)0.6346

, (2.12)
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Chapter 2. Ultrashort pulse propagation in nonlinear Kerr media

which has relative accuracy of 1%, while Marburger’s expression 2.11 has about

10%.

The collapse of the wavepacket can be arrested by various effects. The most

important phenomenon is MPA [19] as well as the defocusing of plasma. Addi-

tionally, when pulse duration is very short material dispersion is also capable to

arrest collapse [20]. Moreover the saturating and noninstant nonlinear response

[18, 21], nonlinear loss, nonparaxiality, and manifestation of the non scalar nature

of the electromagnetic radiation [22, 23, 24] are also capable to arrest collapse.

2.1.3 Self phase modulation

The nonlinear change of the refractive index could be induced not only in

transverse space by beam intensity distribution, but also become time-dependant

due to wave amplitude temporal modulation. Namely, pulse generates temporal

phase-shift during propagation in nonlinear material. This phenomena is called

Self Phase Modulation (SPM). It could be understood by studying simple equa-

tion, which accounts only phase change due to nonlinear refractive index during

wave propagation in medium:

∂A

∂z
= iβ|A|2A. (2.13)

The solution of the equation 2.13 is

A (t, z) = A0(t) exp
(
−iβ|A0|2z

)
. (2.14)

For the wave amplitude and phase we obtain:

a(t, z) = a0(t, z),

ϕ(t, z) = ϕ0(t)− β|A0(t)|2z.
(2.15)

Obviously the amplitude does not change in propagation, but the phase ac-

quires time-dependant phase-shift proportional to the pulse intensity and propa-
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gation distance. The accumulated phase-shift reads as

δϕ(t, z) = −βz|A(t)|2 = −zω0

c
n

(I)
2 I0(t). (2.16)

The frequency shift induced by SPM reads as

δω(t, z) =
∂(δϕ)

∂t
= −βz∂|A0(t)|2

∂t
= −ω0z

c
n

(I)
2

∂I0(t)

∂t
. (2.17)

Since the intensity of the propagating pulse remains constant, the SPM steadily

generates new frequency components and broadens the pulse spectrum. Lets

discuss the effect of the SPM to the Gaussian pulse propagation through nonlinear

medium. We introduce maximum phase shift as

ϕmax =
ω0z

c
n

(I)
2 I0(0), (2.18)

and nonlinear SPM length Lspm by condition ϕmax = 1, thus

Lspm =
c

ω0n
(I)
2 I0(0)

. (2.19)

The phase and frequency change for a Gaussian pulse I0(t) = I0(0) exp(−t2/τ2
0 )

are

δϕ(t) = −ϕmax exp

(
− t

2

τ2
0

)
,

δω(t) =
2

τ2
0

tϕmax exp

(
− t

2

τ2
0

)
.

(2.20)

The dependencies 2.20 are depicted in Fig. 2.1. As it seen the pulse acquires

negative chirp mostly linear in vicinity of the pulse peak, and some positive chirp

in the periphery (Fig. 2.1c). Furthermore, there are two time-moments (τ1 and

τ2) when the two equal frequency shifts occurs (obviously except the central fre-

quency). Due to the fact that these frequency components correspond to the

distinct time moments, and do not have the same phase, therefore, they should

15



Chapter 2. Ultrashort pulse propagation in nonlinear Kerr media

interfere in frequency domain: the pulse spectrum consists of number of interfer-

ence fringes (see Fig. 2.2). The number of peaks is equal to integer part of φmax/π.

From equation 2.20 and extremum condition d
dtδω(t) = 0 we find time moments

when frequency shift reaches maximum and minimum values: tmin = −τ0
√

2 and

tmax = τ0
√

2. Thus the maximum frequency shift is δωmax =
√

2
e
ϕmax
τ0

.

-2 2

-0.4

0.4

δω δω(t)/ 0

ττ1 τ2

c)

-2 2

-1

0
Φ

τ

b)

1

I/I0

τ

a)

-2 0 2

Figure 2.1: The Gaussian shape (a), the reduced phase Φ = ϕ/ϕmax (b), and reduced frequency
deviation (c), where δω0 = 2ϕmax/τ0.

φmax = 0 1.5 π0.5 π 1 π

6.5 π 7.5 π

Figure 2.2: Spectrum of the Gaussian pulse at different φmax values.

Presented above explanation of SPM was derived without the accounting of the

material dispersion. That is true, either the pulse is very long or the dispersion

is negligible. The interesting case (in future we use it to explain pulse splitting

in normal Group Velocity (GV) dispersion region) of pulse propagation in non-
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linear χ(3) material with normal GVD is reshaping to flattop pulse. The required

conditions for such reshaping are: self phase modulation length Lspm must be

much shorter than material length (Lspm << L), and dispersion length would

be larger than length of the material, namely, (Lspm � L ≈
√
LspmLd < Ld).

The dynamics of the simultaneous action of the material dispersion and SPM is

determined by length of self-action defined as Lsa =
√
LspmLd. The result of the

combined action is formation of nearly flattop pulse with linear chirp at the dis-

tance z ∼ 2Lsa. As it is depicted in Fig. 2.3 in the initial part of the propagation

SPM is dominant process. Linear chirp produced by normal GVD has the same

sign as the chirp produced by SPM in central part of the pulse (t ≈ 0). Therefore,

the central part of the pulse undergoes stretching, however the peripherical part

what possesses the opposite chirp induced by SPM, undergo temporal compres-

sion. Finally combined action of stretching of the central part and compression

of peripherical one, reshapes Gaussian pulse into flattop.

I(t)

s( )ω

1.5L = 0sa 0.5 1 2

Figure 2.3: Flattop pulses formation in nonlinear dispersive χ(3) material. Pulse intensity top
line and spectrum bottom line evolution.

A completely different scenario of the SPM takes place in anomalous dispersion

region and positive n2. In this case, the chirp induced by SPM (positive) and chirp

obtained due to GVD (negative) have opposite signs, and starts to compensate

each other. That happens when self-action length Lsa becomes equal to dispersion

length Ld. The pulse formed under such condition is capable stationary propagate

without any distortions of the envelope i. e. we obtain single soliton pulse. The
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soliton solution could be presented in form

A(z, t) = As exp(−iΓz). (2.21)

Substituting Eq. 2.21 into Nonlinear Schrödinger (NLS) equation

∂A

∂z
− i

2
g0
∂2A

∂t2
= iβ|A|2A, (2.22)

we obtain

1

2
g0
∂2As
∂t2

+ ΓAs + βA3
s = 0. (2.23)

This equation can be rewritten in a form

1

2
g0

(
∂As
∂t

)2

+ ΓA2
s +

1

2
βA4

s = 0. (2.24)

The solution of this equation when β > 0 (self-focusing nonlinearity) and g0 < 0

(anomalous GVD) is

As(t) = A0sech(t/τs), (2.25)

where soliton amplitude A0 and duration τs satisfies the relation

2Γ =
|g0|
τ2
s

= βA2
0. (2.26)

According to (2.26), the soliton with the higher amplitude has shorter dura-

tion. When the hyperbolic secant pulse has peak power equal to critical P = Pcr

(Pcr =
g0Aeff

τ2s β
, where Aeff is effective area, and not the same as Pc), such pulse

propagates stationary in a fiber with the anomalous dispersion. The pulse prop-

agation dynamics may be presented by three different scenario. The first, when

P < Pcr the nonlinearity does not able to compensate material dispersion, there-

fore pulse is dispersively broadening (Fig. 2.4 a). In second case when P = Pcr,

SPM fully compensates the phase modulation produced by GVD, propagation be-
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comes stationary (Fig. 2.4 b). In the third case, when P > Pcr, the SPM is dom-

inating at the initial stage (thanks to high intensity) and spectrum is broadening.

Due to anomalous GVD such pulse starts to compress till some minimum value,

when GVD (proportional to 1/τ2
s , where τs is pulse duration) becomes capable

to overcome pulse compression, and pulse starts to spread. Such compression-

decompression cycles are periodic (Fig. 2.4 c). This oscillating pulse behavior be-

come very complex when the peak power significantly exceeds the critical power.

The multiple soliton bound states occur. The integer part of N = P/Pcr ratio

gives the N’th soliton bound state number.

t tt

zz z

P = PcrP < Pcr P > Pcr

b) c)a)

Figure 2.4: Pulse envelope change when pulse peak power is lower than critical a), when peak
power equals to critical power, soliton propagation case b), and peak power is more than critical
power c) in this particular case P = 2Pcr.

2.1.4 Modulation instability and skewed coherence

The modulation instability driven noise amplification may manifest itself as

generation of high intensity peaks with random spatio-temporal positions, and

could initiate the process known as multifilamentation formation process. The

nature of the modulation instability can be explained by FWM process. The

optical pulse propagating in nonlinear χ(3) medium experiences not only SPM,

but also FWM process. Conversely as the SPM, that is always phase-matched,

the FWM process requires a phase matching of the interacting waves i.e. the

condition
−→
k s +

−→
k i − 2

−→
k p = 0 must be satisfied. There the

−→
k p,
−→
k s,
−→
k i are the

wave vectors of the pump, signal and idler wave, respectively. We will assume
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that pumps are plane monochromatic wave directed along some axis, but signal

and idler waves are matched non-collinearly (Fig. 2.5).

kp kp

ks ki
k┴

Figure 2.5: Noncollinear FWM phase match scheme.

In such case we have

ks⊥ = ki⊥ = k⊥, (2.27)

and

ksz + kiz − 2kp = 0. (2.28)

The longitudinal wave-vector is defined as kz =
√
k2 − k2

⊥. However in parax-

ial approximation kz = k − k2⊥
2k . We will account material dispersion just till

second order, thus we have k(ω0 + Ω) = k0 + k′Ω + 1
2k
′′Ω2, where k0 = k(ω0), and

ω = ω0 + Ω. For the plane and monochromatic pump we have kp = k0 ≡ k(ωp).

The frequency of the signal wave component (ωs = ω0 + Ω), and frequency of the

idler wave (ωi = ω0 − Ω) are coupled by condition ωs + ωi = 2ωp. Thus from

phase matching condition we obtain

ks(ω0 + Ω) + ki(ω0 − Ω)− 2k0 =
k2
⊥

2k0
. (2.29)

The condition 2.29 within approximation of the material dispersion till second

order reads as:

k⊥ =
√
k0k′′Ω. (2.30)

This condition is equal to the angular dispersion of the X pulse i. e. the

FWM supports the X pulse generation in χ(3) material. However, discussed above

phase matching condition was obtained in so-called ”cold” regime, when the SPM
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and Cross Phase Modulation (XPM) induced change of refractive index was not

accounted. The phase matching in paraxial limit with accounted SPM and XPM

could be obtained from Eq. 2.29. We should account the SPM for pump wave by

adding extra term to the wave number: kp = k0 + n2I
ω0
c . Similarly the XPM for

the signal and idler waves could be introduced as ks = k0 +k′Ω + 1
2k
′′Ω2 + 2n2I

ω0
c

and ki = k0 − k′Ω + 1
2k
′′Ω2 + 2n2I

ω0
c . Finally from Eq. 2.29 we have

k⊥ =

√
(k0 + n2I

ω0

c
)(k′′Ω2 + 2n2I

ω0

c
). (2.31)

The corrected phase matching expression corresponds to the three cases. The

first is ”X” shaped and characterized by gap in spatial frequencies (Fig. 2.6 a),

the second one is also ”X” shaped and characterized by gap in temporal frequency

domain (Fig. 2.6 e), and the third is ”O” shaped (Fig. 2.6 i).

Such phase matching conditions sustain generation of some spatiotemporal

patterns and could be characterized by skewed coherence property. The similar

skewed coherency was found in χ(2) materials [25, 26]. To retrieve the spatiotem-

poral intensity distribution of the patterns discussed above, we removed pump

spectrum, leaving just the FWM generated components. The analysis of the spa-

tiotemporal correlation function revealed the hidden coherence (Fig. 2.6)

Multifilamentation in nonlinear medium was studied numerically solving the

NLS equation. The same model was used and explained in ref. [27]. The numerical

simulation results corresponding to the three different cases are summarized in

Fig. 2.6. It reveald the skewed coherence appearance in spectrum and intensity

domains. The first row represents the appearance of the skewed coherence in

self-focusing nonlinear material with normal GVD. Such case correspond to the

angular dispersion support presented in (Fig. 2.6 a) and is consistent with the

results of numerical experiment, (Fig. 2.6 b-d) i. e. distribution of the spectral

components in the far field renders the phase matching induced angular dispersion

(Fig. 2.6 a). The near field (Fig. 2.6 c) was retrieved by filtering of the pump
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Figure 2.6: Skewed coherence types in χ(3) medium. First row represents self-focusing, normal
dispersion case; where first figure is a spatiotemporal spectrum, and solid lines represents ana-
lytically estimated FWM phase matching condition, second is spatiotemporal intensity profile,
third is skewed coherence developed intensity distribution, fourth is a single shot autocorre-
lation. Second row represents self-defocusing, normal dispersion case. Third row represents
self-focusing in anomalous dispersion region.

field (in spectrum domain). The autocorrelation patterns were retrieved by use

of Wiener-Kintchine theorem. Both the autocorrelation and near field reveals

the X-shaped coherence. Autocorrelation result is grainy because one pulse can

constitute only a portion of statistical ensemble while integrating autocorrelations

over many shots granularity will get smoothed [26].

The second row in Fig. 2.6 corresponds to the self-defocusing medium with

normal GVD case. The near, far field, and autocorrelation patterns are X -

structured.

The third row corresponds to the self-focusing case with anomalous GVD. The

angular dispersion line corresponding to the phase matching condition, is ”O”

shaped. The near field do not show clear shape of O-wave, but far field and

autocorrelation (Fig. 2.6 i, l) reveal typical O-coherence: all peaks are placed

22



Chapter 2. Ultrashort pulse propagation in nonlinear Kerr media

around pump component.

As it was shown, the skewed coherence is a freak state, where light package does

not have temporal or spatial coherence, but it is skewed crosswise. Traditional

methods like Michelson interferometer and Young interferometer performs corre-

lation measurements just in time, or just in space and are not capable to show

skewed coherence: the volume of coherence found by such traditional methods

seems infinite small.

Generation of the object possessing skewed coherence requires high energy dis-

tributed over large spatiotemporal area or, in other words, large energy reservoir.

It is possible to enhance skewed coherence object formation on one axis and sup-

press on another just by changing from radial Gaussian beam to elliptic. In limit

condition when semi-minor elliptical beam diameter approaches the diameter of

the filament and is much less than in perpendicular semi-major axis, the skewed

coherence objects occurs on semi-major ellipse axis and time, and almost extinct

on other space-time dimension. Another limiting condition is peam power. When

it exceeds few critical powers (Pcr = 3.77 λ2

8πnn2
, where λ is wavelength, n is re-

fractive index, n2 is nonlinear refractive index), FWM is inefficient, and almost

extinct, therefore beam experiences self-focusing, reshapes to Townes profile, and

later forms a single filament. However, more powerful wave-packet (P � Pcr) ex-

periences modulation instability, develops stationary modes, and finally, evolves

into number of filaments. The position of each filament depends on intensity peaks

developed by modulation instability. Note, that FWM phase matching curve do

not approaches the spectrum of the stationary mode (X-wave), defined by trans-

verse k-vector: k⊥ =
√
k2(ω)− k2

z(ω), where k(ω) =
n(ω)ω
c is the wavenumber,

and kz(ω) = k(ωp) − β +
(
∂k
∂ω |ωp − α

)
(ω − ωp). Here ωp is the carrier frequency

of wave packet (pump), α and β are free parameters.

The modulation instability driven skewed coherence spectrum deviation from

stationary mode (X-wave) condition is presented in Fig. 2.7. The modulation

instability spectrum generated via FWM process is symmetric and corresponds
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(with good accuracy) to the phase matching curve (white dotted line in Fig. 2.7).

However, the stationary propagation requires nonsymmetric angular dispersion

depicted by red dashed line Fig. 2.7. Since the phase matching condition and the

modulation instability pattern spectra could be (at least vicinity of the pump)

approximated by intersection of two straight lines (green lines) the near field (Fig.

2.7 b) also exhibits the multiple superposition of the spatio-temporal patterns

distributed at appropriate angle.

t, ps

-0.1 0 0.1

-0.1

-0.05

0

0.05

0.1

x
, 
m

m

-1000 0 1000
-1000

-500

0

500

1000

Ω, THz

k
 ,
 m

m
x

-1

(a) (b)

Figure 2.7: The far (a) and near (b) field intensity distribution of the modulation instability
driven patterns. White dotted line depicts the modulation instability induced FWM phase
matching, red-striped line shows the angular dispersion of stationary mode. The green crossed
lines shows the slope of the tilted spatio-temporal patterns in near field. Normal GVD case was
considered.

The similar comparison between multifilament spectra and stationary X wave

angular dispersion curve is presented in Fig. 2.8. The red-dashed line corresponds

to the X wave propagating with group and phase velocity (parameters α = 0 and

β = 0) equal to that of the pump [28]. The pulse-splitting [29] initiates a for-

mation of the X waves propagating with different group velocities [30]. However,

each of these X waves are characterized by its own central frequency and, thus

the generated filament spectra vicinity the pump (Ω = 0, k⊥ = 0) central com-

ponent significantly differs from the stationary X wave condition described by

red-dashed line. Despite that, in the periphery the filament spectra approaches

the stationary mode condition. The total spectrum becomes blurred due to subse-

quent pulse splitting events: formed X waves patters have different velocities and
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spatio-temporal positions. Simulations were performed for fused silica with the

incident beam diameters 610µm and 90µm and 250fs duration at Full Width Half

Maximum (FWHM), central wavelength was 800nm. The properties for the fused

silica were taken from [27]. The intermediate state between skewed coherence and

stationary mode are wavy fringes in near field, and are called ”snake” or ”worm”

instability.

The skewed coherence in χ(2) material was studied earlier by Picozzi et al.

[31, 25, 26]. The material discussed in current subchapter is necessary for the

explanation of different multifilamentation stages in Chapter 5.
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Figure 2.8: The multifilamentation far (a) and near (b) field intensity distribution in normal
GVD and self-focusing (n2 > 0) case. White dotted line depicts the modulation instability
induced FWM phase matching, red-striped line shows the angular dispersion of stationary mode.
The green crossed lines shows the slope of the tilted spatio-temporal patterns in near field.

2.1.5 Pulse splitting

The intense pulse propagating in nonlinear medium with normal GVD un-

dergoes pulse-splitting [29]. The pulse-splitting is one of the most important

phenomenon preventing wave packet collapse during filamentation process, it can

be explained by GVD. Indeed, it was demonstrated [29], that GVD can arrest

the collapse, however it is valid just in certain power range [32]. As it is known,

the self-focusing in normal GVD case leads to flat-top pulse formation. Thus if

the self-focusing sustains beam shrinking, the normal GVD, on contrary, leads to

the pulse broadening during propagation. Since the pulse temporal broadening is
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one-dimensional effect but beam shrinking due to self-focusing takes place in two

dimensional space the temporal pulse peak intensity keeps growing, and pulse be-

comes shorter in time despite the continuous energy flux from the pulse peak to the

periphery (caused by normal GVD). Due to such dynamics (Fig. 2.9) the power

in the central part of the pulse (t ≈ 0) becomes less than critical (P (t = 0) < Pcr)

and self-focusing under the pulse peak becomes impossible. However, in the pe-

riphery part of the pulse (Fig. 2.9), beam power (due to energy brought by GVD)

becomes higher than critical (P > Pcr). Thus the self-focusing starts formation

of two intense peaks, or in other words, makes pulse-splitting (Fig. 2.9 g). Two

pulses produced by such event have slightly different group velocities respect to

initial pulse.

Such arrest of the collapse is possible only within distinct power range, higher

power pulse will collapse due to insufficient dispersion, while lower power beams

may have too small nonlinear effect. The range of power where dispersion is able

to arrest collapse was estimated analytically and studied numerically by Luther

et al. [32]. It was demonstrated, that the blow-up power depends nonlinearly on

GVD.

It is worth to note, that pulse collapse could be arrested not only by GVD,

but also plasma generated during filamentation process [33]. Plasma sustains the

defocusing of the trailing part of the pulse and shifts the remaining, truncated

part of the pulse to the leading part, which still keeps to self-focus. Such dynam-

ics causes the pulse superluminal propagation. The collapse becomes impossible

because of the balance between self-focusing and plasma induced defocusing. The

plasma induced defocusing is non dissipative, however the nonlinear losses induced

by MPA also are among the effects capable to prevent collapse: the most intense

part of the pulse dissipates and becomes limited at some intensity level. The non-

linear losses sustain formation of flat-top pulse with the subsequent pulse-splitting

(also induced by MPA) [33]. All mentioned above (Chapter 2) effects must be in-

cluded in numerical code, in order to get simulation results compatible with the
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Figure 2.9: The pulse-splitting dynamics (a)-(g) explained by pulse on axis intensity profile
(dash) and instantaneous power (solid line) evolution. The dotted line depicts the critical power.
[29]. (h) The self-splitting power range dependence on material parameter γ. γ = ZR/Ld is
relative material dispersion strength over the diffraction. Where ZR and Ld are Rayleigh and
dispersion length respectively, Pmax is the peak input power of Gaussian pulse. Self-splitting
power restricted by two curves. Pulse having lower power when dash-dotted curve will not split,
however pulse having higher power than solid curve will undergo collapse. [32]

experiment. Just in very few cases, when the radiation temporal spectrum re-

mains narrow and limited, or when we are interested in time-integrated output

the temporal effects could be excluded.

2.1.6 Higher order Kerr nonlinearities

Since discovery of the filamentation in gasses [2], it has been described as the

interplay between the Kerr self-focusing and free electron plasma defocusing. Re-

cently that paradigm was revised not only by X wave theory (see section 2.3.4), but

also by a suggestion, that Higher Order Kerr Nonlinearity (HOKN) is able to sat-

urate and even change the sign of the Kerr effect [34]. The investigation sparkled

from the measurement of higher order HOKN in atomic and molecular gasses

[34, 35]. It was shown, that refractive index dependence on intensity is not linear

but more complex: negative nonlinear refractive index could be achieved at very

high intensity. It was claimed that such phenomenon could occur even before the

significant contribution of free electric charges. Statements were quickly adopted

to numerical filament generation analysis [36]. Authors claim, that plasma contri-
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bution could be replaced by HOKN, and plasma contribution is not so important

as it was supposed. A number of papers were published, some of them were sup-

porting [37, 38, 39, 40, 41], some were rejecting [42, 43, 44, 45] the importance of

the HOKN. Here we present some details of this contraposition.

Loriot et al. used polarization pump and probe technique for measuring high

order Kerr refractive index. Recently single-shot supercontinuum spectral in-

terferometry measurement technique was adopted for direct measurement of the

nonlinear optical response in argon and nitrogen [45]. Results were contradicting

with the Loriot [34] statement. No any deviation from linear dependence on the

intensity till the point where the response abruptly turns to negative values due

to plasma defocusing was found.

The ultrashort pulse filamentation numerical study by Bejot et al. [36] revealed,

that it is possible to include HOKN contribution in numerical calculations, do

not account plasma generation and get the almost correct results. Polynkin et

al. [43] experimentally measured plasma density generated through filamentation

in air and argon. It was found, that significant amount of free electrons were

generated via multiphoton ionization on beam axis. The Kosareva’s group made

comparison of experimentally measured filament intensity with results from 2

numerical models: the first one with HOKN and second without HOKN but with

plasma account as the major effect in beam defocusing [44]. It was demonstrated,

that the HOKN model does not reproduce intensity evolution, and in some cases,

may lead to incorrect result. When collapse is arrested by plasma, the blue shifted

component has X-shaped angular spectrum, what is consisted with experiments.

While the collapse is arrested by HOKN, the far field becomes O-shaped, without

blue-shifted component.

The dynamics of higher harmonic generation with and without HOKN effect,

is different [37]. Therefore, the experiment to measure and compare the relative

power of third and fifth harmonic, was proposed [42]. When just the third order

nonlinearity is accounted, the ratio between intensities of 5-th and 3-rd harmonics
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η = I5
I3

is about 10−4. However when the HOKN terms are accounted it becomes:

η ∼ 10. Till now no experimental verification was performed. The Brown et al.

studied [46] the relative roles of the HOKN effect and ionization in gases. The 1D

atomic model with the electron in attractive delta-potential that approximates

the electron-ion Coulomb potential, was implemented. The obtained results are

consistent with [42]. It was concluded, that supercontinuum generation is almost

not effected by higher order Kerr nonlinearity, however harmonic continuum gen-

eration is, since the harmonics continuum is generated in short media using very

tight focusing, and very high intensities, therefore, the filament and supercontin-

uum build up not possible. Volkova et al. [47] performed 3D quantum simulations

of silver atom and also came to conclusion that the HOKN does not show signifi-

cant influence.

2.2 Early numerical simulations of pulse propagation in
χ(3) media

The numerical simulation of the intense short light pulse propagation in non-

linear χ(3) material were began since the aurora of the nonlinear optics. A simple

model based on (3+1)-dimensional NLS equation was introduced [16] as early as

1975. The progress in stable ultrashort pulse laser [48], sophisticated measuring

techniques, development of new equipment and computers progress provided op-

portunity to compare numerical findings with experimental data [29, 49]. The first

experimental confirmation of pulse-splitting was given by Ranka and colleagues

[49] in 1996. The simple NLS model predicts symmetric pulse-splitting. Indeed,

the experimental data provided by most popular temporal autocorrelation tech-

nique confirmed the pulse-splitting symmetry. However, the autocorrelation tech-

nique always gives symmetric results, but more sophisticated Frequency-Resolved

Optic Gating (FROG) technique revealed the nonsymmetry of pulse-splitting [50].

Later, nonsymmetric pulse-splitting was also observed with cross-correlation [51]

technique. In order to explain the nonsymmetric pulse-splitting the numerical
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model should include additional effects, such as, MPA, space-time focusing (non-

paraxial propagation), Raman nonlinearity, nonlinear shock, plasma generation

[52, 53, 54, 55, 56, 57, 58, 17]. As the model step by step gained additional physi-

cal effects the understanding about filamentation and supercontinuum generation

iteratively evolved.

2.3 Filamentation models

2.3.1 The self-guiding model

The first explanation of long non diffractive propagation of the beam rested

on the idea that Townes intensity profile is a stationary state of NLS equation

[3]. Townes profile indeed meets conditions when self-focusing is compensated by

diffraction and it is similar to Gaussian [59]. Therefore, a spontaneous reshaping

should take place in nonlinear beam propagation, and indeed, it was demonstrated

experimentally that elliptical beam can reshape into radially-symmetric Townes

profile beam [60]. The Townes profile corresponds to the beam which power is

equal to the critical power of self-focusing. That contradicts to the experimen-

tal data, where a filament can exceed the critical power [61]. Furthermore, the

Townes profile represents unstable solution, where the only diffraction is compen-

sated by self-focusing, excluding other physical processes. Therefore, it implies

that solution is very sensitive to nonparaxiality, dispersion and other higher order

effects which are present in experiment and affects output results. The study of

instability of the Townes profile in nonlinear, self-guiding regime revealed, that

spatio-temporal modulation instability in Kerr medium lead to the Y-wave gen-

eration [62].

2.3.2 The moving focus model

The distinct model of filamentation is called ”moving focus”. It is based on the

assumption, that pulse can be split into temporal slices, and different slice should

collapse at different distances [4]. The most intense part of the pulse will collapse

at shortest distance and determine the nonlinear focus. The less intense parts
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of the pulse will focus at longer distances. That explains how the moving focus

is capable to maintain almost constant intensity and diameter in propagation.

Such model was used, for the first time, to explain filamentation in air and was

quite promising [63]. However, the moving focus model has obvious draw back,

because it lay on the assumption, that individual slices are not coupled in any

way, thus GVD, plasma and other effects should be weak. The model also fails,

when the beam is initially passed through the lens, or has a phase modulation: as

it will change the nonlinear focusing distance. However, this model predicts that

pulse should split during the propagation through the nonlinear medium into two

pulses: one with super-luminal and other with luminal group velocity [64]. Also

the pulse temporal compression before the nonlinear focus was foreseen, as it was

not done in self-guiding model.

2.3.3 Dynamical spatial replenishment

One of most successful explanation of filamentation, is called dynamical spa-

tial replenishment [5, 6]. This model based only on spatial effects: induced self-

focusing and plasma generation, and it very simplifies the filamentation process.

The beam, with the power larger than critical undergoes self-focusing. Intensities

near nonlinear focus approaches values needed for MPA and plasma generation.

The generated plasma is characterized by n2 < 0, and sustain the beam defocus-

ing. If defocused beam also affected by nonlinear losses still has sufficient power

to self-focus, it may undergo second focusing-defocusing cycle. Obviously, such

beam has less power and the focusing-defocusing period gets elongated. The rep-

etition of such cycles may explain filaments long range propagation property, but

only for very high energy beams.

2.3.4 The conical X wave model

The discussed above filamentation models does not explain generation of the

filament specific far field. The modern approach is based on X wave formation and

has advantages compared with other models. The idea behind the ”X wave” model
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is, that filament is nothing, than few X waves spontaneously generated during

interaction of conical wave packets. The conical nature of X waves sustains the

intense central peak propagation without diffraction and dispersion. It also can

explain suppression of nonlinear losses, treating the central peak as an interference

result, when the energy is dynamically refilled from the not so intense background.

The angular dispersion needed for non-diffracting and non-dispersive propagation

can be expressed via transverse wave vector

k⊥ =
√
k2 − k2

z , (2.32)

where the longitudinal wave-vector is a linear function of frequency kz = k0−k′0Ω.

The far and near field of X wave in normal dispersion regime is X-shaped, there-

fore they are called an ”X waves”. The nonlinear X-wave formation, for first time

was demonstrated in χ(2) material [65]. The recent paper of G. Valiulis et al.

[66] examines the X wave formation in second harmonic generation. The conical

nature of the filament was demonstrated in beautiful experiment of Dubietis et

al.. In order to verify the guiding mechanism a filament was formed in water

from an input Gaussian beam focused in cuvette. At the point where the fila-

ment appears they placed a pin-hole so that only the central spike of the filament

passes through. That caused the abrupt death of the filament and strong diffrac-

tion of transmitted peak. However, when a stopper was placed in the path of

the filament so that all beam passed except just the central spike, then the spike

was reformed nearly immediately. This finding was explained by conical nature

of the filament: the energy is continuously flowing from the surrounding energy

reservoir toward to the central spike. When the spike is removed by stopper the

refiling mechanism recreated it, but when the reservoir was removed by the pin-

hole, then the tiny central spike disappeared due to strong diffraction. Mentioned

above series of experiments [9, 10] revealed that the filament propagates without

self-channeling mechanism, in contrast with the most popular opinion [2]. Later
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Kolesik et al. [7] from numerical calculations gave the explanation that spectrum

indeed reshapes into X waves after a pulse split. Numerical calculations demon-

strated, that spectrum of two X waves generated during a single pulse-splitting

event can be approximated by X wave condition 2.32. The angular dispersion,

of the first closely fits to superluminaly propagating X wave, but the second one

correspond to luminaly propagating X wave.

2.3.5 The effective three wave mixing model

One more closely followed filament distinct spectrum generation explanation is

Effective Three Wave Mixing (ETWM) model [8]. The model is derived from uni-

directional optical pulse propagation equation, and the idea behind the ETWM

model is that distinct spectrum is generated due to scattering of the input field by

nonlinear medium response. The three waves are: input field, nonlinear medium

response and scattered field. Due to the pulse split in to two pulses the contribu-

tion to the generated spectrum should be accounted for both superluminaly and

luminaly propagating pulses. Therefore the total nonlinear change in susceptibil-

ity ∆χ is a sum of two peaks with different velocities:

∆χ (x, y, t) ≈
∑
r=1,2

∆χr (x, y, t− z/vr) . (2.33)

By decomposing response peaks into fourier spectrum components and insert-

ing into unidirectional pulse propagation equation, the end result is:

Akx,ky,ω (z) =
iω2

2c2kz (ω, kx, ky)
×
∫
dz
∑
r,u,v,Ω

∆χ
(r)
kx−u,ky−v,ω−Ω (z)Au,v,Ω (z)×

exp

[
iz

(
−kz (ω, kx, ky) + kz (Ω, u, v) +

ω − Ω

vr

)]
.

(2.34)

The largest contribution to the scattered field gives the term which satisfies the

phase matching condition. Therefore the scattered field is most efficient, when the
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exponential term becomes constant (the argument of the exponent is equal 0). So,

the spectral energy is concentrated in the region determined by

∣∣∣∣−kz (ω, kx, ky) + kz (Ω, u, v) +
ω − Ω

vr

∣∣∣∣ = 0. (2.35)

This equation describes the phase matching condition for generation of scat-

tered wave of frequency ω and transverse wave-numbers kx,y from scattering opti-

cal wave of frequency Ω with a material wave of ω−Ω frequency. When the input

wave is plane and monochromatic, the scattered wave phase matching condition is

equal to X wave angular dispersion requirement (Eq. 2.32), which describes sta-

tionary propagating conical waves. These two explanations (X wave and ETWM)

of filamentation spectra have similarities: they both state that filamentation in

normal dispersion regime will spontaneously generate X waves. The difference

comes in the origin of X waves, the ETWM model explain the origin of the X

waves via linear scattering process, and do not gives explanation on filamentation

dynamics, specifically what are group velocities of split pulses, The X wave model

presumes the X waves are being generated due to material nonlinearity. Wave dy-

namics is explained as a relaxation toward the stationary mode. It should be noted

that it is not derived from any mathematical means, but is postulated referencing

numerical and experimental data. As an example of supercontinuum generation

and its complexity, next chapter will discuss the difference in supercontinuum

generated spectrum simply by changing initial beam diameter.
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(b)(a)

(c) (d)

Figure 2.10: Comparison of four filamentation models: (a) self-guiding model, (b) moving focus
model, (c) dynamical spatial replenishment and (d) conical X wave model.
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Chapter 3

Supercontinuum spectra
dependence on initial beam
diameter

Supercontinuum generation is a key element for creation of modern tunable

optical parametric generators. The super broad spectrum generated via tightly

focusing initial beam is coherent and allows to compress produced pulses till ex-

tremely short duration. Supercontinuum generation associated physical effects are

SPM, FWM, shock-front formation and others, common for all Kerr media. The

generated supercontinuum spectrum has angular dispersion which is associated

with X wave formation [30, 67]. The group and phase velocities of X wave can

take any particular value. The larger GV difference from GV at central frequency

leads to the wider supercontinuum spectra. The first analysis of generated su-

percontinuum spectra dependence on initial diameter was performed by Faccio et

al. [68]. It was noticed that the change of sample position respect beam focuss

(initial diameter and wave front change) changes the blue peak position, even if

beam energy is fixed.

To investigate more deeply the dependence of the supercontinuum spectra on

the initial beam size we carried out a series of numerical experiments with four

different initial beam diameters of 6 µm, 12 µm, 24 µm and 48 µm. That corre-

sponds to the 1.6 mm diameter FWHM Gaussian beam focussed by 5 cm, 10 cm,

20 cm, 40 cm focal length lenses. The 130 fs duration Gaussian pulses with central
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wavelength of 800 nm was in all cases. In all cases the spectral broadening be-

comes visible at different input energy. The larger initial beam diameter requires

the higher energy to initiate supercontinuum generation. The dependence of the

intensity maximum reached by filament (it takes place at some distance, usually

just before pulse splitting event) on the input energy is presented in Fig. 3.1. Note

that, in all cases the calculated lines have extremums at some input energy values.

Such limit intensity is known as a level of intensity clamping. When the input

energy exceeds the corresponding value of the intensity clamping the maximum

reachable intensity of the filament drops due to energy losses caused by MPA and

plasma generation, also due to multiple pulse splittings or/and multifilamentation.

The intersections of the calculated plots with the black horizontal line defines the

energy values when the filament maximum intensity during propagation reaches

32 TW/cm2 (at some propagation distance). As can be seen from Fig. 3.1 6 µm,

12 µm, 24 µm, 48 µm diameter beams reaches 32 TW/cm2 maximal intensity

when the input energy is 0.26 µJ , 0.282 µJ , 0.334 µJ and 0.466 µJ , respectively.
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Figure 3.1: The filament maximum intensity value dependence on input energy in sapphire
crystal for four different initial diameter 6 µm, 12 µm, 24 µm and 48 µm. Black horizontal line
represents the value of 32TW/cm2.

As it was mentioned the intense Gaussian pulse in Kerr medium undergo com-

plex spatio-temporal focusing till the moment when GVD splits it to 2 pulses: one
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Figure 3.2: (a) ”Blue” and ”red” pulse intensity dynamics during propagation in nonlinear
media, for four different input diameters (6 µm, 12 µm, 24 µm and 48 µm). The composition
of the red (b) and blue (c) pulse intensity dynamics for different input diameters. Zero distance
value correspond to the distance, when the blue pulse maximum intensity was reached.

is composed by red-shifted spectral components and propagates superluminaly,

the second pulse is composed by blue-shifted spectral components and propagates

luminaly i. e. with the group velocity nearly equal to the initial pulse. The

intensities of the red and blue pulses have different dynamics during the propa-

gation in nonlinear medium (see Fig. 3.2). It is evident, see Fig. 3.2a,c, that in

all investigated cases (diameters 6 µm, 12 µm, 24 µm and 48 µm) the blue pulse

reaches the same maximum intensity (32 TW/cm2 in our case), but at different

distances. However the red superluminal part have different maxima for different

input beam size (Fig. 3.2a,b). The blue-shifted pulse intensity dynamics seems

is not sensitive to the input beam diameter (Fig. 3.2 b), but the red part of the

filament becomes sensitive on focusing conditions: the larger input beam sustains

longer red pulse propagation with relatively high intensity (Fig. 3.2 c). Such

high intensity pulse propagating in Kerr medium generates new frequency com-

ponents via FWM process, accordingly to the phase matching conditions. The

intensity dependant phase matching was calculated using relation between the

group velocity and the pulse intensity, as it was described in [30]. The axial part

of the filament is usually addressed to the broad band spectrum and is called
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supercontinuum radiation. Obviously the axial radiation does not have angular

dispersion. However, off-axis radiation posses some angular dispersion and sat-

isfy the condition of X wave [7]. Computer simulation of the filamentation process

gives opportunity to analyze separately supercontinuum and spectrum of filament.

The spatio-temporal spectra (supercontinuum part, filament and intermediate) is

presented in Fig. 3.3, for 4 different input diameter. It is obvious, that the angular

dispersion is much more visible in the blue part than in red one. Note also, that

the limit values of the spectrum broadening in the blue side does not depend on

the beam focusing conditions (Fig. 3.4). This could be explained by the fact that

the maximum reached intensity of the blue peak was the same in all 4 cases (32

TW/cm2, see Fig. 3.2). However, the red-shifted pulse when the focusing is loose

(48 µm diameter) propagates over longer distance and keeps high intensity. That

causes more spectra broadening to the red side (see Fig. 3.4). The red-shifted

pulse nearly invariant propagation over long distances when the focusing is loose,

could be explained by conical wave large size energy reservoir, capable to refill

energy and suppress diffraction and nonlinear absorption. The red-shifted pulse

intensity is lower and group velocity is much less than the blue pulse, therefore it

does not exhausts the energy reservoir so quick as the blue pulse.
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Figure 3.3: Spatio-temporal spectrum intensity distributions for the case of 6 µm(a), 12 µm(b),
24 µm(c) and 48 µm(d) initial diameter pulses. In all cases the maximum intensity level was
32TW/cm2.

The angular dispersion of split pulses is different for the blue and red pulses

(see Fig. 3.5). The higher intensity of the split pulse makes the GV larger differ-

ence from central frequency GV (initial pulse). Both red and blue-shifted pulse
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Figure 3.4: On-axis supercontinuum spectrum for the four different initial beam diameters (6
µm, 12 µm, 24 µm and 48 µm). Pulse maximum intensity in all cases was fixed at 32TW/cm2.

angular dispersion has a gap in temporal frequencies. The right branch of the an-

gular dispersion curve of the blue-shifted pulse is fixed at the central wavelength

(800 nm), but the left branch moves to the blue side when the intensity of the blue

pulse is increasing. Notice, that shift to the blue side of the spectrum slows down,

and may look alike for distinct high intensity. However, the red pulse angular dis-

persion is totaly different. The red shifted components forms O-shaped angular

dispersion due to anomalous dispersion in that spectral region. The angular dis-

persion O-curve shrinks, and even disappears while increasing pulse intensity (see

Fig. 3.5 arrow down). Therefore during the pulse-splitting event, pulse produces

just blue-shifted axial components. The red shifted spectral components are gen-

erated via steep forward front (shock front), because of vanished phase matching

in this spectral area. When the red pulse intensity drops to certain value, the

phase matching condition for red shifted components becomes possible.

We also performed one numerical experiment of very tight focusing condition.

The input diameter was 3 µm. In such case the pulse intensity becomes immedi-

ately so high, that the generated plasma absorbs the trailing part of the pulse and

leads to formation of short superluminal pulse (see Fig. 3.6). Pulse becomes much

shorter, but also it contains much less energy and intensity. Further propagation
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to group velocity of the pulse). Blue lines depicts blue (luminal) pulse angular dispersion.
Different lines represents pulse intensity change from 5 TW/cm2 to 30 TW/cm2 by 5 TW/cm2.
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Figure 3.6: Tightly focused beam spatio-temporal intensity profile (a) and angular spectrum(b).
Initial (blue) and after some propagation in nonlinear medium (red) temporal profiles and spec-
trum are presented in (c) and (d) figures.

of such pulse may lead to filamentation, but the permanent damages persisting in

the material makes such regime unfeasible.
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3.1 Conclusions

The increase of initial beam diameter causes the enhancement of the red-shifted

part of the supercontinuum spectra. It can be associated with the larger geomet-

rical size of the reservoir capability to support longer red-shifted conical wave

propagation without remarkable intensity drop and without intensity clamping.

The insensitivity of the supercontinuum blue-shifted part to the beam initial diam-

eter is determined by the intensity clamping of the generated blue-shifted conical

wavepacket. Extreme spectra-broadening during filamentation and supercontin-

uum generation can be explained via intensity dependent phase-matching of the

blue- and red-shifted conical waves emerging after the pulse-splitting event. The

effect of the intensity clamping at some level predefines the edge values of the

supercontinuum spectra.
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Chapter 4

Ultrashort light pulse
filamentation in a liquid
scattering medium

Material related to this thesis chapter was published in [A1]

The extended explanation of filamentation process was presented in previous

chapters. As it was mentioned, the recent experiments, involving near-field detec-

tion proved spontaneous transformation of the input Gaussian beam into the non-

linear conical wave driven by complex interplay between self-focusing, nonlinear

losses (MPA) and diffraction [9]. The conical wave is composed of an intense nar-

row core (termed a filament), which carries just a small fraction of the total energy,

and an extended, low-intensity, but large energy reservoir, which travel locked as a

single quasistationary profile. Only the intense core interacts nonlinearly with the

medium, and so experiences nonlinear energy losses, while the extended energy

reservoir propagates linearly and continuously refills the core during its propaga-

tion. The refilling feature is universal and is observed in transparent solid-state,

liquid or gaseous media. To this regard light filaments were shown to survive

the collisions with the filament-size obstacles, such as atmospheric obscurants,

aerosols, water droplets [69, 70, 71] or artificial opaque screens [10]. By contrast,

filament propagation terminates if the extended energy reservoir is blocked [9, 72].

Such a dynamic coexistence of localized and extended counterparts in the conical
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wave offers many challenging tasks in applied research ranging from atmospheric

applications to extended-depth microprocessing of transparent solids.

To date, much effort has been directed to the filamentation in scattering media

with implications to long-range propagation, remote sensing and lightning control

in adverse atmospheric conditions, in the presence of rain, fog, aerosol scattering

and high turbulence [73, 74, 75, 76, 77], see also [78] for a comprehensive review

on the topic. Numerically, light scattering in the atmospheric propagation may

be simply simulated by introducing some energy dissipation through linear losses

[79] or using a stratified model consisting of a sequence of aerosol screens [80]. On

a smaller scale, many questions still remain open concerning the propagation of

narrow light beams in biological systems that are transparent but exhibit strong

scattering [81, 82]. To this regard, nonlinear propagation of the ultrashort light

pulses in biological systems opens many new challenges as localized in-depth non-

linear excitation of biological agents, two-photon microscopy within a tissue and

precise laser cutting [83, 84, 85], to mention a few.

In this chapter the report on numerical and experimental results on the picosec-

ond laser pulse filamentation in a liquid scattering medium (aqueous suspension

of 2 µm polystyrene microspheres of different concentration) is presented. Exper-

imental and numerical results imply that strong scattering leads to distortions of

the filament energy reservoir developing an apparent speckle structure, but does

not greatly alter filament formation and propagation dynamics.

4.1 Scattering

Scattering of electromagnetic radiation is the process in which electromagnetic

radiation is deflected by particles in the matter through which it propagate. In

elastic scattering the photons of radiation are reflected; i.e. they bounce off the

atoms and molecules without any change of energy [86]. Optical radiation scatter

by particles is divided into two cases depending on the scattering particle size and

scattered wavelength ratio. If the particle diameter is less than 1/15 of wavelength,
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such scattering process is called Rayleigh scattering. If particles are larger than

1/15 of wavelength, the scatter process is usually called Mi scattering. G. A. Mi

developed particle scattering theory in 1908 and applied it to spherical particles,

but term ”Mi scatter” is in use even when the scattering particles are nonsymmet-

ric. In the limit of small particle size, the Mi theory becomes valid for Rayleigh

scattering. Rayleigh found that scattered intensity is inversely proportional to the

wavelength fourth power Iv ∼ 1
λ4

The scattering particle is composed of large number of molecules. Each molecule

behaves as an elementary dipole, oscillating in incident electro-magnetic field, and,

thus generating secondary electromagnetic waves i.e. scattered radiation. Such

approach is common both for Rayleigh and Mi scattering. However, there are

some important differences:

1. In Rayleigh scattering the dipoles radiate coherently, while the Mi scattering

is not composed by radiation of coherent dipoles: it is necessary to account

for the optical path in particle and its surrounding.

2. The fields irradiated by elementary dipoles during Rayleigh scattering inter-

fere and do not depend on the direction. In the Mi scattering the irradiated

fields by dipoles at different directions and positions have different phases.

Thus the interference result becomes dependant on angle: scattered wave

intensity has some angular distribution.

The most remarkable difference between Rayleigh and Mi scattering is com-

pletely different dependence on wavelength. The Mi scattering is produced by

large size particles and almost has no dependence on wavelength. On the con-

trary, Rayleigh scattering exhibits strong dependence on wavelength ( 1
λ4

), thus the

shorter (blue) radiation is scattered more effectively than longer (red) radiation.

From mathematical point of view Mi theory is Maxwell equation solution while

the elementary dipoles are positioned on a sphere surface and scattering centers are

defined by magnetic permittivity and electrical conduction [87, 88]. Result consist
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of sum series and could be easily found by computer. The Fig. 4.1 demonstrates

transition from Rayleigh to Mi scattering when the size of the particle is increasing.

The larger diameter of particles (d/λ¿¿1) causes the larger asymmetry between

forward and backward scattering. When the particle size is very big the forward

scattering dominates.
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Figure 4.1: Normalized scattered field angular dependence in three different cases, where λ is
wavelength and d - is particle diameter.

Scattering by very large particles (r � λ) is calculated by geometrical means,

accounting interference, reflection and refraction on particle surface. Light scat-

tering by very large particles determine aureole, rainbow and other effects in fog,

rain and etc.. Rayleigh scattering explains the blue color of the sky, while Mi

scatter the white color of the clouds.

4.2 Experiment setup and results

The experiment was carried out with chirped-pulse-amplification based Nd:glass

laser system (Twinkle, Light Conversion Ltd.) delivering λ = 1054 nm, 1 ps pulses

at 10 Hz repetition rate. The output laser beam was frequency doubled, attenu-
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ated and spatially filtered to yield a clean Gaussian profile at λ = 527 nm with

1.2 mm FWHM diameter. The second-harmonic beam was loosely focused by

a f=+500 mm lens down to 80 µm FWHM diameter onto the front-face of the

syringe-shaped cuvette with fused silica windows. The cuvette was filled either

with aqueous suspension of 2 µm diameter calibrated polystyrene microspheres,

provided by Vasmo Inc. (Indianapolis, IN) or with pure water for a comparative

study. The input pulse energy was set Ein = 6 µJ, so as to excite a single fil-

ament inside a cuvette filled with pure water at a distance z = 12 mm from its

front-face. The construction of the cuvette allowed to easily vary its length and

monitor the output beam near-field fluence profile, and therefore capture in detail

the propagation dynamics. In doing so, the output face of the cuvette was imaged

onto a 10-bit dynamic range Charge-Coupled Device (CCD) camera (COHU-6612

linked to Spiricon LBA-400PC frame grabber) by means of an achromatic f=+50

mm lens, with 7 × magnification.

Nd:glass Laser

BBO

λ/2 plate Polarizer Spatial filter Cuvette CCD camera

Imaging lensf=+ lens50 cm

Figure 4.2: Experimental setup.

Fig. 4.3 compares beam propagation and filament formation dynamics in the

absence (in pure water, Fig. 4.3 (a,c)) and in the presence (in aqueous suspension

of 2 µm polystyrene microspheres with 6000 mm−3 particle density, Fig. 4.3 (b,d))

of light scattering. The general side-views of a full-length propagation in a 40-mm-

long cuvette were taken by a digital photo camera using the same input energy of

Ein = 6 µJ. The most of scattered light is confined within a cone having vertex

angle of 10◦ indicated by light lines in Fig. 4.3 (b), whereas dark lines denote

the scattering angle to half maximum intensity, as calculated using Mie scattering

theory [89], and which are in good agreement with the experimental results. Laser

beam filamentation is visualized by the appearance of the white-light continuum
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emission and is detected using an orange filter that transmits only wavelengths

longer than 600 nm as shown in Fig. 4.3 (c) and (d). In order to observe an

appreciable signal from a side-view in pure water, a very diluted solution of the

scatterers in this case and increased exposure time was used.

0

10°

-10°

0 mm 10 20 30 40 0 mm 10 20 30 40

(a)

(c)

(b)

(d)

Figure 4.3: Side-view of the cuvette in the nonlinear propagation regime at Ein = 6 µJ: (a) pure
water, (b) aqueous solution of 2 µm polystyrene microspheres with 6000 mm−3 particle density.
(c) and (d) are the respective images recorded using an orange filter.

In pure water, beam filamentation starts at z = 12 mm from the input face as

seen from Fig. 4.3 (c), whereas in the presence of scattering, the nonlinear focus

and filament start point is shifted towards the output face, and under these exper-

imental settings still occurs within the cuvette length. Typical near-field images

of the radiation, which was detected by imaging the output face of the cuvette

onto a CCD camera and continuously varying the propagation length are shown

in Fig. 4.4. Although the scattering is found to affect the filament start position

resulting in somewhat farther point of the nonlinear focus, observations suggests

that even in the presence of strong scattering (energy losses up to 50%) the trans-

verse beam profile, which takes the shape of an intense central core (filament)

surrounded by an extended (conical) peripheral radiation is highly resistant to lo-

cal perturbations imposed by the scatterers. The peripheral part of the radiation

develops an apparent speckle structure, which is still able of refilling the nonlinear
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losses due to MPA experienced by the intense central core and linear losses due

to scattering experienced by the entire beam. Note that the diameter of a single

microsphere comprises ∼ 16% of the estimated filament FWHM width (12 µm).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Experimentally measured single-shot fluence profiles of the beam beyond the non-
linear focus: (a-c) in pure water, (d-f) in aqueous suspension of the polystyrene microspheres of
6000 mm−3, (g-i) - 8000 mm−3 aqueous polystyrene microspheres suspension at z = 12, 16, 20
mm. Window size is 0.3 mm x 0.3 mm.

4.3 The numerical model and results

The propagation in the scattering medium was modelled in the framework

of the NLSequation for the monochromatic field amplitude A with account for

diffraction, self-focusing, MPA [9] and with addition of a stochastic term, which

simulates size, properties and distribution of the scattering particles:

∂A

∂z
=

i

2k
(
∂2

∂x2
+

∂2

∂y2
)A+

iωn2

c
|A|2A− β(K)

2
|A|2K−2A− γA, (4.1)

where z is the propagation distance, ω is the carrier frequency, k = nω/c is the

wave number, n and n2 are the linear and nonlinear refractive indexes, respectively,

K is the order of MPA with β(K) being the MPA coefficient, and γ is the stochastic

complex function (specified in the text below). In simulations following values of
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the relevant parameters were used n = 1.33, n2 = 2.7 × 10−16 cm2/W, K =

3 (three photon absorption with account of water bandgap Eg = 6.5 eV) and

β(3) = 2 × 10−23 cm3/W2 as taken from Ref. [90]. Eq. 4.1 was solved by means

of commonly used split-step Fourier method. Specifically, the medium is divided

into a number of layers N of arbitrary thickness ∆z, and the propagation through

each particular layer was simulated in few passes. The full numerical procedure

is schematically depicted in Fig. 4.5(a) and is performed as follows: the first pass

through the N -th layer calculates the diffraction by solving equation

∂A

∂z
=

i

2k

(
∂2

∂x2
+

∂2

∂y2

)
A, (4.2)

by means of fast Fourier transform. Thereafter the same layer is passed again,

but just with account for self-focusing

∂A

∂z
=
iωn2

c
|A|2A. (4.3)

The third passage accounts for MPA

∂A

∂z
= −β

(K)

2
|A|2K−2A, (4.4)

and the last one for scattering

∂A

∂z
= −γA, (4.5)

where γ(x, y, z) is a complex numbers matrix describes the properties and location

of randomly distributed scattering particles. Specifically, its real part, Re[γ(x, y)],

describes the absorption, while its imaginary part, Im[γ(x, y)] describes the phase

shift (dephasing) introduced by a scattering particle. More generally, for N -th

layer, γ(x, y, zN ) represents a matrix of random complex values, characterizing

the properties of the scatterers: concentration, size and opacity, as illustrated in

Fig. 4.5(b). The calculation procedure is repeated within a next layer, with the
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last step involving the generation of a new matrix γ(x, y, zN ), which keeps particle

physical properties fixed and changing just their spatial distribution. The layer

thickness ∆z in our calculations was chosen to be an average distance between the

scattering particles, that is ∼ 45−55 µm for the scattering particle concentration

of 10000 to 6000 cm−3. The grid size in the (x, y) plane was 0.2 mm × 0.2 mm,

with 0.4 µm resolution and 218 pixels.

(a)

(b)

Dz Dz Dz

self-focusing

diffraction

MPA

scatering

diffraction diffraction

self-focusing self-focusing

MPA MPA

scatering scatering

Dz0 2Dz (N-1)Dz

z

NDz

Figure 4.5: (a) A schematic representation of the numerical procedure, (b) example of the
γ(x, y, z).

Since the actual properties of the scattering particles (refractive index, absorp-

tion, etc.) were not provided by the producer, the actual extinction experienced

by the laser beam was estimated from the energy loss due to scattering in the

linear propagation regime of an extended Gaussian beam with wavelength 527

nm, and power below the critical power for self-focusing. Experimental estima-

tion of the energy losses due to scattering in 10 mm cuvette, for 6000 mm−3,

8000 mm−3 and 10000 mm−3 particle density gives values of 40%, 49% and 57%,

respectively. In this measurement a 10-mm diameter iris aperture centered on

the beam propagation axis and Ophir Optronics energy meter with a photodiode

PE-10 were used. The iris aperture was placed 1 m after the cuvette in order to
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detect the energy confined within a cone with angle of 10 mrad. The measured en-

ergy losses corresponded to the extinction coefficient of 0.051 mm−1, 0.0673 mm−1

and 0.0844 mm−1, respectively, for particle concentrations indicated above. These

values were used for the calibration of the model.

Although the model is developed for monochromatic wave and it does not

account for more specific features of the nonlinear medium owing to effective

nonlinear refractive index [91], effects of scattering dependence on the pulse du-

ration [92], a good qualitative agreement between numeric and experimental data

was obtained. Fig. 4.6 compares the simulated and experimentally measured flu-

ence profiles of the beam after 20 mm of propagation in aqueous suspension of

polystyrene microspheres with 8000 mm−3 particle density outlining a develop-

ment of apparent speckle structure in both cases. The only difference is observed

in the far periphery because a portion of scattered light at large angles is not

collected in the imaging lens in the experiment. Fig. 4.7 (a) compares measured

and numerically simulated filamentation dynamics (diameter of the central core,

i.e. filament, versus propagation distance).

(a) (b)

Figure 4.6: Numericaly retrieved (a) and experimentally measured (b) beam profiles after 20
mm propagation in aqueous suspension of polystyrene microspheres with 8000 mm−3 particle
density. Window size is 0.3 mm x 0.3 mm.

Note, that in numeric simulation, the 2 µm-particle introduces strong diffrac-

tion, and the Fourier transform algorithm fails when the diffracted light becomes

reflected from the boundary of the calculation window. This problem was solved in

two different ways: (i) by introducing a spatial filter after passing each layer: the

spatial filter cuts large angle spatial components, having no effect on the central
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part of the beam; (ii) by replacing the scattering particles with the effective ones,

which are larger in size and posses some effective absorption. In this case larger

particles introduce smaller diffraction, so that the diminished scattering losses are

”compensated” by the absorption. In the latter case we have used the effective

particles of 16 µm diameter and 0.15 mm−1 absorption coefficient. The compar-

ison between the two simulation approaches is illustrated in Fig. 4.7 (b). It can

be seen that both algorithms provide a very similar result concerning the beam

diameter, where a slight difference might be recognized only for larger particle

concentration and for longer propagation distance. However, in the case of effec-

tive particles, the speckle structure is less developed and thus leads to smoother

evolution of the beam diameter.
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Figure 4.7: (a) comparison of experimental data with numerical simulations of the filament
diameter during propagation in aqueous suspension of 2− µm polystyrene microspheres of dif-
ferent concentration. (b) comparison of numerical results obtained with different computation
algorithm, solid curves – introducing spatial filter, dotted curves – with larger effective particles.
See text for details.

4.4 Conclusions

In conclusion, the filamentation dynamics of the ultrashort light pulses in a

liquid scattering medium was investigated. It was shown that light scattering

introduced by the polystyrene microspheres shifts the nonlinear focus (emergence

of the filament) toward further propagation distance, and results in somewhat

larger filament diameter along with appearance of speckle structure in the pe-
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ripheral part of the beam. The developed monochromatic model, which accounts

for diffraction, self-focusing, MPA and light scattering, qualitatively reproduces

the relevant propagation features observed experimentally with picosecond light

pulses. The model is flexible in choosing the parameters of scattering particles

(density, size and transparency) and could be easily adopted to any other scatter-

ing medium.
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Chapter 5

Filamentation of highly elliptical
ultrashort pulsed laser beam

Material related to this thesis chapter was published in [A2,A3] and [C1,C2,C6-C8]

When the beam power well exceeds the critical power for self-focusing(P0 � Pc),

the beam breaks-up into Multiple Filaments (MF) [93, 94, 95]. The nature of

the multiple filamentation process is described in terms of growth of wave-front

perturbations (known as transverse modulation instability) and leads to random

filament distribution over a given transverse plane. Multiple filaments originating

from a single input beam exhibit high coherence properties and serve as a source

of multichannel white-light radiation [96], or may be used for phase-matched ul-

trafast Raman frequency conversion [97], production of plasma channels [98] and

guiding of microwave radiation [99]. However, most of the applications require

precise filament localization and high MF pattern reproducibility. Recently, a

variety of methods to control multiple filamentation had been developed. The

majority of the methods are based on the control of beam focusing conditions,

that is the modification of the input beam amplitude and phase, introducing a

beam astigmatism via tilted lens [100] or deformable mirror [101], grids and slits

for periodic amplitude modulation [80, 102] and phase masks [103]. Alternatively,

control of the MF patterns may be realized by the use of circularly polarized laser

beams [104], by doping liquid media with strongly nonlinearly absorbing dye [105]

and finally, by injection of a weak laser beam, which allows all-optical control of
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switching on and off the multiple filamentation process [106, 107].

Another solution of obtaining regular MF patterns is to introduce a certain

ellipticity on the input laser beam [108]. The break-up of elliptical laser beams

is universal, and regular MF patterns had been experimentally observed in water

[108], air [109], carbon disulfide [110], BK7 glass [111], and fused silica [112].

Regardless of the physical state of the nonlinear medium (solid, liquid or gas) even

slight input beam ellipticity overcomes the random nature of the beam break-up

and results in deterministic and highly reproducible MF patterns. It was recently

demonstrated that in the case of large beam ellipticity, light filaments evolve along

the major axis of the beam with constant spacing thus forming a periodic one-

dimensional MF array [113]. Despite of a wide range of potential applications

based on the periodicity of the MF array, specific factors determining the period

has not been explicitly studied yet. The major question still concerns the distance

between the adjacent filaments and the whole period of the MF array.

Giuliano in 1972 noticed [114], that elliptical beam critical self-focusing power

exceeds the critical power for round (radially symmetric) beams. Thus it is possi-

ble to use higher beam energies without optically breaking the material. The more

deep study on elliptical beam self-focusing was made by Cornoti with colleagues

[115] in 1990. The aberration-free model of beam focusing was considered i. e.

the beam maintains its shape during the self-focusing process

|E|2 =
E2

0

a (z) b (z)
exp

(
−
[

x

a (z)

]2

−
[

y

b (z)

]2
)

(5.1)

where a (z) and b (z) are beam diameters on x and y axis. Using this assumption

the NLS equation

∇2E + k2
(
1 + ε2|E|2

)
E = 0 (5.2)

might be divided into two coupled differential equations, which describes beam
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diameter evolution during propagation

k2d
2a

dz2
=

1

a3
− η

a2b
;

k2 d
2b

dz2
=

1

b3
− η

b2a
.

(5.3)

where η = Pel/Pc - critical power ratio. The elliptical beam critical power for

self-focusing was obtained from the solution of Eq. 5.3

Pel (e) =

(
e+ 1/e

2

)
Pc, (5.4)

where e = b(0)/a(0) is the beam ellipticity and Pc is rounded Gauss beam criti-

cal self-focusing power. Further the non-aberrative focusing model was extended

with addition of dispersion, saturating nonlinearity. However, findings were not

compared with numerical simulations or experiments. Later it was recognized,

that self-focusing is much more complex as it was thought. Beam undergo signif-

icant change of the envelope. It was noticed, that non-aberrative method is not

accurate and even misleading. Variational method was proposed to fix the prob-

lems [116], additionally the Gaussian envelope was replaced by super-Gaussian,

or sometimes hyperbolic secant. These methods usually called non-aberrative

paraxial, variational, or coupled axis. However, all of these methods are based on

false assumption, that propagating beam maintains its shape. Gross and Manas-

sah demonstrated [117], that non-aberrative model does not coincide with NLS

equation numerical simulation results. Furthermore it was noticed that elliptical

beam propagating in nonlinear medium transforms into radially symmetric, that

obviously contradicts non-aberrational propagation. The real critical self-focusing

power of elliptical beam derived from fitting numerical NLS equation simulation

results was determined by Fibich with Ilan [118]. Retrieved critical self-focusing

power dependence on beam elipticity was 60% less than it could be calculated
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from Eq. 5.4. The best retrieved approximation is

Pel (e) ≈ (0.4he + 0.6)Pc, (5.5)

here he =
e+1/e

2 . To explain such difference, the partial beam self-focusing model

was proposed. Thus only a part of the beam is able to change its shape and

undergo the collapse. As the evidence the elliptical beam reshaping to radially

symmetric is represented. The retrieved super-Gaussian beam critical power in

non-aberrative model was overestimated [59] too. In this chapter will be demon-

strated that self-focusing of high power beams with large ellipticity lead to for-

mation of periodic highly reproducible multifilament arrays.

5.1 2D numerical simulations of multiple filamentation dy-

namics

The time-integrated ultrashort pulse filamentation could be successfully de-

scribed by continuous-wave models [119]. In this section multiple filamentation

dynamics of monochromatic elliptical laser beam is studied by solving the NLS

equation, which accounts for diffraction, self-focusing and MPA [108]:

∂A

∂z
=

i

2k

(
∂2

∂x2
+

∂2

∂y2

)
A+

iωn2

c
|A|2A− β(K)

2
|A|2K−2A, (5.6)

where z is the propagation distance, ω is the carrier frequency, k = n0ω/c is the

wave number, n and n2 are the linear and nonlinear refractive indexes, respectively,

β(K) is the MPA coefficient with K being the order of the MPA. A is the complex

amplitude of the electric field, defined at the input (z = 0) as

Ain(x, y) = A0 exp

[
−2 ln 2

(
x2

a2
x

+
y2

a2
y

)]
, (5.7)

where ax and ay are FWHM beam widths along x and y axes, respectively.

Eq. (5.6) was solved numerically by split-step Fourier method with λ = 527 nm,

n0 = 1.46, n2 = 2.24 × 10−20 m2/W, K = 3, β(3) = 1 × 10−23 cm3/W2, taking

58



Chapter 5. Filamentation of highly elliptical ultrashort pulsed laser beam

the input beam dimensions ax = 1.3mm and ay = 0.17mm; 0.02mm as in the

experiment. The added 5 % amplitude noise on the input beam profile, was very

close to that evaluated experimentally. From the numerical simulations it was

verified that the initial amplitude of the added noise (in the range of 1 − 10 %)

does not greatly alter the final result (MF period in particular), at least in the

applied power range, what is in good agreement with the recent study concerning

multiple filamentation of circular laser beams [119]. The input intensity I0 was

varied from 30 GW/cm2 to 600 GW/cm2 so as to cover the range of experimental

values.

Fig. 5.1 (a)–(c) illustrates few examples of the near field intensity distribu-

tion of the beam vs propagation distance at I0 = 32 GW/cm2. The elliptical

input beam [Fig. 5.1 (a)] propagating in the nonlinear medium experiences 1-

dimensional self-focusing along its short (y) axis [Fig. 5.1 (b)] and eventually

breaks-up into 1-dimensional array of regularly spaced light filaments [Fig. 5.1

(c)]. The numerically simulated propagation dynamics are qualitatively consistent

with recent experimental observations of the beam propagation dynamics in water

[113]. Fig. 5.1 (d) plots the near field intensity distribution at I0 = 58 GW/cm2,

illustrating the formation of two-dimensional MF array. The simulated MF pat-

terns at the output of the sample (z = 45 mm) reproduce those recorded in the

experiment. More detailed comparison between the numerical and experimental

data is accomplished in terms of the MF array period, with the results being

summarized in section 5.3.

Fig. 5.2 illustrates the dynamics of the far field (numeric simulation) spectra

plotted in (kx, ky) space, each of these correspond to the near field images pre-

sented in Fig. 5.1 (a)–(c). These plots demonstrate how the wave vector spectrum

of the input beam [Fig. 5.2 (a)] notably broadens along ky direction as a result

of self-focusing [Fig. 5.2 (b)], while the occurrence of distinct sidebands along kx

direction [Fig. 5.2 (c)] triggers the beam break-up into multiple filaments. The

position of the sidebands determines the period of the MF array. Closer inspection
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Figure 5.1: Numerical simulation of intense laser beam (ax = 1.7mm, ay = 0.17mm) propagation
in fused silica. Normalized near field intensity profile (a) at the input (z = 0 mm), (b) inside
(z = 40 mm), and (c) at the output (z = 45 mm) of the sample at I0 = 32 GW/cm2. (d) shows
the output beam profile at I0 = 58 GW/cm2.

revealed that the position of the sidebands is in fair agreement with the standard

modulational instability theory, which associates the break-up of intense laser

beams into multiple filaments with the growth of perturbations present in the

input beam wavefront by means of the four-wave parametric mixing process, as

described in detail in [120].
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Figure 5.2: Far-field intensity distribution (on a logarithmic intensity scale) plotted as (kx, ky)
spectra, corresponding to images shown in Fig. 5.1(a)–(c).

5.2 Multistep four-wave mixing model

Several alternative ways have been proposed to describe multiple filamentation

phenomena without numerical integration and which provide useful insights into

the underlying physics. In particular, a classical approach is based on the theory

of modulational instability [120], while the most recent work considers ray tracing

adopted to a nonlinear optical system [121]. In what follows, a simple analytical

model was introduced, which explains multiple filamentation as a sole result of

the multistep four-wave parametric interactions, occurring in the self-focusing

high power elliptical laser beam and reproduces in detail the basic features of

experimentally observed one- and two-dimensional MF arrays.

The schematic step-by-step representation of the interacting wave vectors is

shown in Fig. 5.3. Suppose an input monochromatic elliptical Gaussian beam with

the central wave vector ~k1, while its full k−vector spectrum is confined within an

ellipse depicted by a dashed line in the (kx, ky) plane, as shown in Fig. 5.3 (a).

In the first step, an input elliptical beam experiences self-focusing, which leads

to enrichment of its wave vector spectrum by new components (within an ellipse

depicted by a solid line) with a pair of vectors ~k4 among them, so that the non-

collinear phase matching condition for the four-wave parametric amplification

~k1 + ~k1 = ~k4 + ~k4 (5.8)
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(b)

(d)

(a)

(c)

Figure 5.3: Schematic illustration of the multistep four-wave mixing process in k−space. The
resulting wave vectors in each step are depicted by bold arrows. Shaded areas indicate that the
resulting vectors lie in a different plane than the initial ones. The each step is also explained by
showing 2D diagrams for transverse k vectors (depicted by circles). Black circles depicts pump
wave of the current step, the white circles depicts the generated components via FWM and
gray circles depicts waves generated in previous steps. The arrows in 2D diagrams describes the
direction of energy transfer. See text for description.

becomes satisfied, where

|~k1| =
2π

λ0
(n0 + n2I0), (5.9)

|~k4| =
2π

λ0
(n0 + 2n2I0), (5.10)

are the wave vectors, modified via local refractive index change due to the optical

Kerr effect. Assuming the monochromatic case and frequency-degenerate interac-

tion, the modulus of ~k1 is modified as a result of the self-phase modulation, and

which thus modifies the modulus of a weak signal ~k4 via cross-phase modulation,

therefore |~k4| is longer than |~k1| by 2πn2I0
λ0

. Here λ0 = 527 nm denotes the central

wavelength of the laser radiation. Note that vectors ~k1 and ~k4 lie in the (ky, kz)

plane with their endpoints located along ky axis. The second step considers four-

wave interaction between ~k1 and ~k4, which gives rise to occurrence of wave vectors
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~k2 and ~k3 as illustrated in Fig. 5.3 (b):

~k1 + ~k4 = ~k2 + ~k3. (5.11)

Here |~k2| = |~k3| = |~k4| and wave vectors moduli are modified via cross-phase

modulation. Note that the resultant phase matched vectors ~k2 and ~k3 lie in a

tilted plane [perpendicular to (ky, kz)], which is indicated by gray shading. The

endpoint locations of vectors ~k2 and ~k3 are symmetric with respect to principal

axes kx and ky, respectively. In the third step, vectors ~k2 and ~k3 interact with the

central vector ~k1, and generates ~k4′ and ~k4′′ components

~k2 + ~k2 − ~k1 = ~k4′ , (5.12)

~k3 + ~k3 − ~k1 = ~k4′′ ;

|~k4′ | = |~k4′′| = |~k4|, (5.13)

so as ~k4′ and ~k4′′ occur as shown in Fig. 5.3 (c) and (d), whose endpoints are

located along kx axis. Strictly speaking, in the case of monochromatic waves, the

phase matching conditions described by Eqs. (5.12) and (5.13) could be fulfilled

only by introducing a nonzero phase mismatch ∆k. In our experimental settings

the phase mismatch was found to be negligibly small (∆k ≈ 4 cm−1), so the wave

vectors ~k4′ and ~k4′′ could be generated with still reasonable efficiency. And finally,

~k4′ and ~k4′′ are parametrically amplified by the intense pump ~k1, in analogy with

the first step:

~k1 + ~k1 = ~k4′ + ~k4′′ . (5.14)

The phase-matched multistep four-wave processes therefore give rise to a par-

ticular set of wave vectors ~kj (j = 1, 2, 3, 4, 4′, 4′′). It should be noted that in

every four wave mixing step the pump ~k1 vector is one of the phase matched

vectors, because it has the biggest power. Power from pump moves to newly gen-
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erated waves, therefore phase matched FWM configuration where pump vector is

included is most efficient. Furthermore we assume a set of monochromatic waves

with central wave vectors ~kj generated at different steps of the four-wave mixing

process as replicas of the initial pump beam with the envelope Ain described by

Eq. (5.7):

Aj(x, y) = CjAin(x, y) exp [i(kj,xx+ kj,yy)], (5.15)

where kj,x and kj,y are the respective projections of the wave vectors ~kj . Here

arbitrary coefficients Cj represent weighted contributions to the amplitudes of

each wave. The output intensity pattern is calculated as a superposition of waves

described by Eq. 5.15:

I(x, y) =
∣∣∣∑Aj(x, y)

∣∣∣2. (5.16)

Figure 5.4 illustrates the resulting intensity distribution calculated for different

input beam intensities, and qualitatively reproduces the experimentally observed

MF patterns and the occurrence of the secondary filament bands in particular.

Values of Cj (C1 = 1.0, C2 = C3 = C4 = 0.6, C4′ = C4” = 0.4) in our calcu-

lation were chosen so as to obtain a distinct visibility contrast in the resulting

intensity distribution pattern. We note that in the present model Cj is a freely

chosen parameter, which, however, has just a weak effect on the period of the

MF array. Therefore periodic break-up of the elliptical laser beam along its long

axis is dictated by beating of the wave vector components along kx axis, while

the secondary MF bands originate from the beating of the wave vector compo-

nents distributed along ky axis. Also note that possible interactions between the

neighboring filaments as well as the input beam contraction due to self-focusing

are not accounted for.
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Figure 5.4: Numerical simulation using an analytical model: (a) input beam, (b) filament array
formed at I0 = 90 GW/cm2 and (c) I0 = 170 GW/cm2.

5.3 Comparison of theoretical model and 2D numerical

simulation results

For a qualitative comparison of the experimental data, numerical simulations

and the results obtained using an analytical model, in Fig. 5.5 plot the period

of the MF array vs the input beam intensity is presented. The data from the

numerical model and the experiment coincide fairly well in the full range of the

input intensities. It is worth mentioning that the MF period does not depend

on the input beam ellipticity, defined as ax/ay, at least while the input beam

ellipticity remains sufficiently large. In fact, these results suggest that the period of

the MF array may be efficiently controlled via the input beam intensity. For what

concerns the results obtained using an analytical model, the general trend closely

follows the results obtained for the beam break-up in planar waveguides [122].
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However, the results of analytical model notably depart from the experimental

and numerical data in the low intensity limit (30 − 60 GW/cm2), but fit the

data well for high (100− 600 GW/cm2) input intensities. These differences could

be explained by the fact that the analytical multistep four-wave mixing model

does not account for the beam propagation, where the input beam experiences

notable contraction due to self-focusing prior to break-up. As a result, the initial

intensity at which the multistep four-wave parametric processes are triggered,

remains undefined. However, a quantitative agreement between the data in the

intensity range of 30 − 60 GW/cm2 could be achieved with scaling the input

intensity in the analytical model by a factor of ∼ 3, so as Ian
0 = 3Iexp

0 , which

thus ”compensates” for the intensity change due to the beam contraction. The

resulting MF period after this adjustment is plotted by a bold dashed curve in

Fig. 5.5. Conversely, in the high intensity limit, the input conditions are those

that no beam contraction there occurs, and the results of the analytical model

coincide very well with the numerical and experimental data.
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Figure 5.5: Period of the MF array vs the input beam intensity. Experimental data points are
shown by solid triangles H, while the results of the numerical simulation are illustrated by �.
The results of the analytical model are plotted by curves, see text for details.

To summarize the results of above, it was demonstrated that intense highly el-
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liptical laser beam breaks-up into periodic one- and two dimensional arrays of light

filaments. Although the multiple filamentation is initiated by random amplitude

noise, it forms highly reproducible periodic MF patterns, whose periodicity may

be easily controlled via the input beam intensity. On simple physical grounds

the observed periodicity in the MF array could be understood within a simple

analytical framework of phase-matched multistep degenerate four-wave paramet-

ric interactions. The periodic break-up of the elliptical input beam is initiated

by noncollinear nearly degenerate four-wave parametric amplification of certain

wave vectors, which fulfil the phase-matching condition. The intensity depen-

dence of the period in the MF array is explained as due to modification of the

phase-matching condition by self- and cross-phase-modulation via nonlinear re-

fractive index. The results of the analytical model well explain the experimental

and numerical data at high input intensity and short nonlinear medium length,

where the initial beam does not undergo contraction dynamics. The model is still

feasible in explaining the results of the MF pattern formation in long samples

with lower input intensity, however, a correction on the input beam intensity and

diameter should be applied.

5.4 3D spatio-temporal analysis of the multiple filament

arrays formation

Although a significant progress in control and regularization of the MF ar-

rays has been achieved in practice, many aspects of the spatiotemporal dynamics,

which takes place within the MF array in dense dispersive media, are still poorly

investigated. The knowledge of temporal, and more generally speaking, spatiotem-

poral behavior of the individual light filaments comprising the MF array is vital

for understanding and optimization of the energy deposition in light and matter

interactions. Therefore the aim of this section is to study the spatiotemporal

dynamics that emerges in the MF regime, set by self-focusing of femtosecond el-

liptical laser beams in fused silica. Experimentally high resolution reconstruction
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of spatiotemporal intensity profiles of the light pulses within the entire MF array

can by done by three dimensional mapping technique [123] using ultrashort (30

fs) pulses. For numerical investigation of MF generation a numerical model that

qualitatively reproduces the experimental results and helps to identify some of the

key physical mechanisms behind the space-time dynamics of multiple filamenta-

tion process was developed.

The study of experimental and numerical spatiotemporal dynamics of the mul-

tiple filament arrays excited by self-focusing of intense elliptical laser beams in

fused silica will be presented in sections 5.5 and 5.6. Results demonstrate that al-

though multiple filament arrays emerge as apparently regular patterns in the space

domain, the spatiotemporal dynamics of the individual filaments is governed by

the input-beam power and the input-beam ellipticity. In the case of moderate

input-beam ellipticity, the individual filaments propagate in curved trajectories

arising from skewed (spatiotemporal) coherence. The spatiotemporal propagation

dynamics is regularized by increasing the input-beam ellipticity, and in part due

to permanent modifications of fused silica that occur under intense irradiation.

In this case, strong pulse reshaping and shock-front generation is observed, which

yields a regular array of very short (< 5 fs) superluminally propagating localized

peaks in the leading front, followed by the sub-pulses centered on the input-pulse

top, and trailed by subluminally propagating pulses with rather complex trans-

verse intensity distribution.

5.5 3D numerical model

The propagation dynamics of the ultrashort-pulsed elliptical light beams in

the nonlinear medium with cubic nonlinearity was studied using one-directional

propagation equation for the linearly polarized wave with the complex envelope

A(t, x, y, z):
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∂A

∂z
+

∫ ∫ ∫ −∞
+∞

T (t′, x′, y′)A(t− t′, x− x′, y − y′, z)dx′dy′dt′ =

iω0n2

c
|A|2A− β(K)

2
|A|2K−2A− σ

2
(1 + iω0τc)ρA, (5.17)

where z is the propagation variable, t is the temporal coordinate corresponding

to the frame of reference moving with the GV of the pulse vg = ∂ω
∂k

∣∣
ω0

, ω0 is the

carrier frequency, k(ω) = ωn(ω)/c is the wave number, k0 = k(ω0), n and n2 are

the linear and nonlinear refractive indexes, respectively, c is the speed of light in

vacuum, K is the order of the MPA, β(K) is the MPA coefficient, ρ is the free

electron density, σ is the cross-section for electron-neutral inverse bremsstrahlung

and τc is the electronic collision time in the conduction band. The evolution of

the wave envelope due to diffraction and material dispersion was accounted via

”medium response” function:

T (t, x, y) =

∫ ∫ ∫ −∞
+∞

D(Ω, kx, ky) exp
[
− i(Ωt− kxx− kyy)

]
dΩdkxdky, (5.18)

where Ω = ω − ω0 is the frequency detuning from the carrier frequency, and kx

and ky are the transverse components of the wavevector. Eq.5.17 was solved using

the split step method, accounting for full material dispersion and diffraction in

the non-paraxial case through a parameter

D(Ω, kx, ky) =
√
k(ω0 + Ω)2 − k2

x − k2
y − k0 −

Ω

vg
, (5.19)

which describes the spectral phase shift. The dynamics of the free electron den-

sity was assumed is contributed by the multiphoton and avalanche ionization only,

neglecting electron diffusion and recombination terms owing to a sufficiently long

lifetime of the electron plasma (170 fs [124]), which exceeds the input-pulse dura-
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tion. The evolution equation for the electron density is then given by

∂ρ

∂t
=

β(K)

K~ω0
|A|2K +

σ

Eg
ρ|A|2, (5.20)

whereEg denotes the medium bandgap. The cross-section for inverse bremsstrahlung

reads as

σ =
e2τc

cn0ε0m(1 + ω2
0τ

2
c )
, (5.21)

where m = 0.635me is the reduced electron-hole mass. The calculations were

performed for tp = 130 fs pulses with central wavelength λ0 = 800 nm, using the

following relevant parameters of the fused silica: n0 = 1.45 and the full dispersion

relation from [125], n2 = 2.8 × 10−16 cm2/W [126], Eg = 7.8 eV, and K = 6,

assuming a single photon energy ~ω0 = 1.5 eV. The parameters of the electron

plasma were evaluated using the formalism described in [127], which yielded the

six photon absorption coefficient β(6) = 1.1× 10−66 cm9/W5 and σ = 7.3× 10−22

m2, taking the electronic collision time in the conduction band τc = 1.7 fs [124].

The input-pulse was defined as an elliptical Gaussian beam characterized by

FWHM beam widths ax and ay along x and y axes, respectively, and by FWHM

pulse duration tp:

A(t, x, y, z = 0) = A0 exp

[
−2 ln 2

(
t2

t2p
+
x2

a2
x

+
y2

a2
y

)]
. (5.22)

The calculations were performed by adding 5% intensity noise to the input

beam. We note that the numerical simulations allowed only qualitative compar-

ison between the numerical and experimental data: the period of the simulated

MF array and the diameter of the individual filaments were smaller by a factor

of 2 ÷ 4, as compared to the experimentally measured values. This issue will be

discussed in more detail the next section. Nevertheless, the numerical simula-

tions enabled capturing the propagation dynamics (versus z) and corresponding

spatiotemporal evolution of the MF array in detail, as well as calculation of the
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spatiotemporal spectra, whose intensity range extends over more than 6 orders of

magnitude and therefore not possible to measure experimentally.

And finally, intensity cross-correlation function of the output (test) pulses with

30-fs probe pulses via sum-frequency generation process was simulated, as it was

performed in the experiment. Therefore we have calculated the intensity cross-

correlation function between the test pulse at the output of the fused silica sample

It(t, x, y, z = L), where L is the sample length, and 30-fs Gaussian probe pulse:

Icc(t, x, y) =

∫
It(t, x, y)Ip(t− τ, x, y)dτ =

1

2π

∫
St(Ω, x, y) exp

(
−

Ω2τ2
p

16 ln 2

)
exp(−iΩt)dΩ, (5.23)

where Icc(t, x, y) is the cross-correlation intensity (intensity of the sum-frequency

signal), St(Ω, x, y), is the power spectrum of the test pulse, τp is the probe pulse

duration, and τ is the time delay.

5.6 Numerical modeling results of modulation instability

driven multifilamentation

In the experiment, formation of the MF arrays was investigated in two par-

ticular cases: using moderate (ay/ax = 3.5) and high (ay/ax = 6.8) input-beam

ellipticity. In the first case, the dimensions of the input beam at the input face of

the fused silica sample were set as ax = 80 µm and ay = 280 µm (ay/ax = 3.5).

The self-focusing dynamics of the elliptical light beams is well known from previ-

ous studies: an intense elliptical input-beam undergoes self-focusing in its shorter

dimension (ax) and eventually breaks-up into multiple filaments, arranged in a

(quasi)periodic MF pattern along the longer dimension of the beam [113, 128].

With present experimental settings, a distinct MF array starts to emerge at the

output of 20-mm fused silica sample with the input-beam energy of Ein > 10 µJ.

Figure 5.6 summarizes the experimental results obtained with the input-beams
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Figure 5.6: Central cross-section in the y-t plane of the experimentally measured spatiotemporal
intensity distribution in the MF array, excited by (a) 12 µJ and (c) 14 µJ energy pulses with
moderate input-beam ellipticity. Panels (b) and (d) show the corresponding time-integrated
images.
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Panels (b) and (d) show the corresponding time-integrated images.
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of moderate ellipticity. The central cross-section in the y-t plane of the spatiotem-

poral intensity profile of the MF array excited by Ein = 12 µJ pulses is illustrated

in Fig. 5.6(a). Although the temporal reshaping of the pulses comprising the indi-

vidual filaments is barely visible, the striking feature of the MF array is that the

individual filaments propagate in curved trajectories. It is also interesting that the

time integration of the full spatiotemporal intensity profile yields a periodic MF

pattern, as illustrated in Fig. 5.6(b), which is familiar to that captured directly

with the time-integrating CCD camera [128].

With slightly higher input energy (Ein = 14 µJ), the number of the individual

filaments increases, the pulse break-up regime sets in, and the measured spa-

tiotemporal intensity profile increases in complexity, as illustrated in Fig. 5.6(c).

In this case, short temporal peaks emerge in the leading front (whose origin and

features will be discussed later), while the remaining spatiotemporal intensity dis-

tribution acquires a complex shape and shows a superficial resemblance with the

propagation of intense femtosecond pulses in air, in the so called optically turbu-

lent regime [129], which recently has also been revealed from numerical simulations

of the propagation of infrared and ultraviolet pulsed beams in fused silica [130].

The curvature of the individual filament trajectories becomes apparently three-

dimensional, the time-integrated MF pattern becomes deteriorated; note how the

centers of the individual filaments deviate from a straight central x = 0 line, as

shown in Fig. 5.6(d).

The results of numerical simulation are presented in Fig. 5.7 and qualitatively

reproduce the essential features observed experimentally: the curvature of the in-

dividual filament trajectories, occurrence of the short temporal peaks, and showing

how the complexity of the spatiotemporal picture increases with increasing the

input-beam energy. Also note, how these apparently irregular structures ”merge”

into quasi-regular MF patterns in the time-integrated representation. However,

we note the marked differences in the period of the MF array and the diameter of

the individual filaments, as obtained by the numerical simulations and measured
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Figure 5.8: Numerically simulated evolution of (top panel) spatiotemporal intensity distribution
in the y-t plane and (bottom panel) corresponding spatiotemporal spectrum of the self-focusing
elliptical beam of moderate input-beam ellipticity at Iin = 250 GW/cm2.

experimentally. For instance, by comparing the results depicted in Fig. 5.6(b)

and Fig. 5.7(b), the experimental data suggests the MF period of 85 µm and

FWHM diameter of the individual filament of 30 µm, whereas these values ob-

tained from the numerical simulation are 30 µm and 5 µm, respectively. Indeed, in

the earlier study [90], it was found that the filament diameter is intimately related

to the nonlinear losses, which reflect the contribution of the MPA and electron

plasma. However, there remains an unresolved problem of matching of these two

quantities, as obtained from the simulation and from the experiment, because of

the uncertainties in knowledge of the relevant plasma parameters and because of

the limitations of the theoretical model itself. As a result, the differences in the

filament diameter by a factor of 2 were obtained in the case of three and four

photon absorption [90]. In the present case, the nonlinear losses associated with

6-photon absorption, therefore it is not surprising that the differences in relevant

parameters characterizing the MF array are even larger.

Despite the aforementioned differences, the results of numerical simulation pro-

vide useful insights into formation dynamics of the MF array. Specifically, the

origin of the curved filament trajectories may be interpreted in terms of so-called
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hidden (or skewed) coherence between waves arising from nonlinear interactions

[31]. These space-time trajectories rely on the phase-matching conditions and

are featured by emergence of the X-shaped spatiotemporal spectrum, as recently

demonstrated in the case of the three-wave parametric interactions [131, 132]. In

our case, the governing process is the four-wave interaction. Indeed, the four-wave

parametric interaction mediates the beam break-up [128] and generates the fields

that are self-correlated along specific spatiotemporal trajectories as well. A closer

look at the early spatiotemporal dynamics is presented in Fig. 5.8, where we plot

the magnified portion of the numerically simulated spatiotemporal intensity distri-

bution and its spatiotemporal spectrum as a function of the propagation distance

z. Note, how the intensity modulation at the beam center manifests itself along

specific lines, that are skewed with respect to y and t axes at z = 6.5 mm, and

how these lines intensify and form a distinct ”net-shaped” intensity modulation

at z = 7 mm. At the same time, the corresponding spatiotemporal spectra de-

velop a clearly distinguishable X-shaped profiles, whose arms are directed along

the phase-matching lines. The increased intensity modulation (at z = 9 mm)

provides centers of attraction, that precede formation of light filaments. On the

other hand, the X-shaped spatiotemporal spectra are unambiguously linked to

the X-wave formation in the filamentation regime [33], and therefore sets the link

between formation of the MF array and X-wave generation.

In the second experiment, the dimensions of the input beam were set as ax =

90 µm and ay = 610 µm, producing high (ay/ax = 6.8) input-beam ellipticity. The

threshold for emergence of the MF array in this case was found at Ein = 48 µJ.

Figure 5.9(a) plots the measured spatiotemporal intensity distribution of the MF

array excited with Ein = 58 µJ input pulses. It worth mentioning that in this

case the experimental and numerical MF periods and filament diameters differ by

a factor of 2. The emerging spatiotemporal picture exhibits much more regularity

as compared with the picture discussed above. Specifically, the individual fila-

ments experience well-distinguished temporal and spatial reshaping, trajectories
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Figure 5.9: (a) Central cross-section in the y-t plane of the experimentally measured spatiotem-
poral intensity distribution and (b) time-integrated image of the MF array, excited by 58 µJ
energy pulses with high input-beam ellipticity; (c), (d) show the corresponding cross-correlation
data obtained by the numerical simulation with Iin = 180 GW/cm2.

of the individual filaments are no longer curved, although skewed spatiotemporal

substructures are still present at the beam periphery. Three distinct arrays of sub-

pulses may be identified: very short superluminally (with respect to the GV of the

input pulse) propagating localized peaks in the leading front, which are followed

by longer sub-pulses centered on the input-pulse top, and trailed by subluminally

propagating sub-pulses at the back front, which form fork-shaped spatiotemporal

structures; see also the isointensity plot in Fig. 5.10, which is provided for illustra-

tive reasons and clearly outlines the basic features. The experimental observations

are qualitatively reproduced by the numerical simulations, illustrated in Figs. 5.9

(c) and (d).

By comparing Figs. 5.9 and 5.10 and taking into account the findings in early

propagation dynamics, the emerging spatiotemporal dynamics within the MF ar-

ray could be interpreted in terms of the interplay between the X-wave formation

and development of shock-fronts, which are considered to play the key role in the

single filament dynamics [30, 133]. At the leading front, very short, equally spaced

(in the direction perpendicular to the propagation direction) localized peaks (the

leading shock-fronts) line-up into a distinct temporal head of the MF array. The

FWHM duration of each of the peaks was estimated from the cross-correlation
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Figure 5.10: Spatiotemporal isointensity surface at 45% maximum intensity level of the MF
array depicted in Fig. 5.9(a) and (b).

data and was found to be close to 30 fs, that corresponds to the length of the

probe pulse itself. This indicates that the actual temporal width of the leading

shock-fronts is much shorter. Indeed, their duration, as estimated from the nu-

merical simulation, is close to 5 fs. These extremely short shock-fronts advance

the input pulse (whose top is centered at t=0), and that is a clear signature of

their superluminal propagation. Indeed, the superluminal propagation of the lead-

ing shock-fronts was recently captured in the single filament propagation regime

in dense media with normal GVD by time-gated angular spectrum characteriza-

tion [133], time-resolved optical polarigraphy [134] and shadowgraphy [135]. The

leading shock-fronts experience strong self-compression and comprise an apparent

bow-shaped front of the MF array: note, how the shortest and the most advanced

peaks reside in the center of the beam, where the input-beam intensity is the

highest and where the beam break-up and pulse splitting events occur first. Also

note, how the pulse splitting is absent in the very periphery of the beam, where

the input-beam intensity is the lowest.

The occurrence of distinct central sub-pulses at t=0 (at the top of the input-

pulse), which are only marginally present in the numerical simulation, might be

attributed to permanent structural change of fused silica under intense pulse ir-
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radiation. Indeed, intense long-term irradiation at 1 kHz repetition rate induces

permanent guiding channels with slightly higher refractive index due to material

densification [136]. These channels trap and guide the radiation from the closest

vicinity. To our opinion, the guiding effect also contributes to the ”straighten-

ing” of the propagation trajectories of the individual filaments. Note also that

skewed spatiotemporal structures still persist away from the beam center, as seen

in Figs. 5.9(a) and (c).

At the trailing front, an array of subluminally propagating (and therefore de-

layed with respect to the input pulse top) shock-fronts are formed as well, how-

ever, with substantial differences as compared to the single filament dynamics.

The complex trailing spatiotemporal structure is likely produced by a collective

interplay between extended conical tails of the neighboring filaments, central sub-

pulses and trailing shock-fronts and by electron plasma contribution. It is worth

mentioning that this structure is two dimensional and is located only at the cen-

ter of the y-t plane, as evident from the isointensity plot in Fig. 5.10. Note also,

how these complex trailing formations blur the time-integrated MF pattern, as

seen from Figs. 5.9(b) and (d). Yet, exact physical mechanisms responsible for

the formation of complex trailing spatiotemporal part in the MF array are still

pending to be disclosed.

5.7 Conclusions

In conclusion, experimental and numerical investigation of the spatiotempo-

ral behavior of the MF arrays excited by intense elliptical laser beams in fused

silica revealed a number of interesting features. Although intense elliptical input-

beams carrying femtosecond light pulses break-up into regular and quasi-periodic

MF patterns in the space domain, the spatiotemporal behavior of the individual

filaments exhibits surprising features, which depend on the input-beam ellipticity

and power. In the case of moderate input-beam ellipticity, the individual fila-

ments propagate in curved trajectories and form complex spatiotemporal struc-
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tures, which resemble optically turbulent propagation. These features originate

from skewed (spatiotemporal) coherence arising in phase-matched four-wave in-

teractions within self-focusing elliptical light beam. Conversely, the input-beams

with high ellipticity break-up into (quasi)regular spatiotemporal patterns, featur-

ing a distinct bow-shaped temporal head of the MF array, composed of extremely

short peaks, which originate from the interplay between the X-wave and shock-

front formation, and share many common with the single filament dynamics. In

particular, extremely short (∼ 5 fs) and localized (FWHM width of 20 µm) shock-

fronts at the leading edge propagate at superluminal velocity with respect to the

GV of the input pulse. Each individual filament in the MF array is almost a replica

of its neighbor, just with different temporal position of the leading shock-front,

indicating when, earlier or later, the pulse splitting event occurs as a function

of the local input-beam intensity. The trailing spatiotemporal part of the MF

array reveals a number of specific features, that are likely promoted by collective

interactions among weak and extended conical tails of the neighboring filaments,

central sub-pulses, trailing shock-fronts and by electron plasma contribution. It

is interesting to note, that MF array period closely follows theoretically predicted

through four wave mixing process Fig. 5.11, only the period has to be multiplied

by two. Also the diameter of the filament is too times smaller than in experiment.

The difference factor two in numerical and experimental filament diameters which

are formed in water is common [90].
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Figure 5.11: Period of the MF array vs the input beam intensity. Experimental data points are
shown by solid triangles H, while the results of the 2D numerical simulation are illustrated by
� and 3D numerical simulation are illustrated by N. The results of the analytical model are
plotted by curves, see text for details.

And finally, our findings might be of use by providing useful hints for better

understanding and optimization of light and matter interactions, concerning en-

ergy localization and deposition processes in dense dispersive media in particular;

the knowledge that is on demand for many practical applications.
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Chapter 6

Extreme events and Rogue waves
in a bulk Kerr media

Material related to this thesis chapter was published in [A4,A5,A6] and [C9,C11]

Rogue or freak waves are well known in hydrodynamics, referring to statistically

rare giant waves that occur on the surface oceans and seas, see for instance [137]

for a review. From a general point of view, rogue waves, or more generally,

rogue (extreme) events represent an extreme sensitivity of the nonlinear system

to the initial conditions. Indeed, recently rogue-wave-like behavior was shown to

be inherent to diverse nonlinear physical environments: propagation of acoustic

waves in superfluid helium [138], variation of local atomic density in Bose-Einstein

condensates [139], ion-acoustic and Alfvén wave propagation in plasmas [140], and

propagation of acoustic-gravity waves in the atmosphere [141].

As it was mentioned rogue or extreme events (frequently termed rogue waves)

are rare high-amplitude events, observed in various physical systems, where non-

linear wave interactions take place [142]. The occurrence probability of rogue

events is described by so-called extreme-value or heavy-tailed (L-shaped) statis-

tical distribution, which suggests that events with very high amplitude (as com-

pared to the mean value) occur much more frequently than could be expected

from normal-value (Gaussian) statistics. A considerable progress in understand-

ing the rogue waves in hydrodynamics and optics has been achieved thanks to

close analogy between the underlying physical mechanisms that initiate rogue
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wave formation [143, 144]. Optical rogue waves [145] are extensively studied in

one-dimensional optical systems, i.e. photonic crystal fibers, where nonlinear light

propagation gives rise to complex temporal behavior and spectral superbroaden-

ing. Here optical rogue waves manifest themselves as high amplitude red-shifted

soliton pulses [145] and blue-shifted dispersive waves [146] that emerge from noise-

seeded modulation instability, with soliton collisions identified as the main mech-

anism responsible for rogue wave formation [147]. The rogue-wave-like behavior

in optical fibres was observed with different pulsewidths, ranging from continuous

wave to picosecond and femtosecond pulses [148, 149, 150], and under a variety

of operating conditions [151, 152, 153].

Extreme-value statistics are also inherent to various nonlinear optical systems,

where dimensionality and nonlinear wave dynamics is more complex as compared

to optical fibers: nonlinear optical cavities [154], nonlinear optical lattices [155],

nonlinear waveguides [156] and ultrashort pulse filamentation [157]. The latter

case is of particular interest, since it represents an ultimate regime of light and

matter interaction, and the nonlinear dynamics is governed by the interplay of self-

focusing and self-phase modulation, white-light continuum generation, diffraction,

nonlinear absorption, free-electron plasma generation and space-time effects [58].

On the other hand, filamentation phenomena find a broad spectrum of applica-

tions, ranging from atmospheric analysis [78] to laser micromachining [158], and

therefore the stability issues of the filaments are of primary importance.

More recently, rogue wave-like behavior was observed in bulk media, in the

femtosecond filamentation regime in gasses (air) [157] and liquids (water) [11] and

predicted to occur in even more complex regimes of propagation, such as multi-

ple filamentation [130]. In contrast to optical fibres, where nonlinear dynamics

takes place only in one (temporal) dimension, in the filamentation regime, the

nonlinear wave interaction occurs in full three-dimensional space. Optical rogue

waves in bulk media are therefore not linked to soliton dynamics and formation

of particular soliton pulses with extreme characteristics; here, due to space-time
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coupling, they emerge from modulational instability-mediated pulse splitting and

energy redistribution in space and time, taking a form of the X waves [11], which

are weakly localized nondiffractive and nondispersive wave packets spontaneously

occurring in media with normal GVD [159, 30].

In this chapter the numerical model is presented, with afterward discussion on

a class of optical rogue events, that occur in three-dimensional space geometries

as distinct from the widely studied one- or two-dimensional systems. In three-

dimensional space, strong space-time coupling may lead to emergence of rogue

events that bear some specific features, namely, a trailing peak with a lower-

than-average intensity albeit with a wider spectrum. We show that these extreme

events are associated to X-wave formation in the normal group-velocity-dispersion

regime, as opposed to the temporal solitons observed in the anomalous regime in

optical fibres.

Many aspects of the White-Light Continuum (WLC) generation in thin (typ-

ically, of few-millimeter thickness) bulk media share a close similarity with the

filamentation phenomena, since the threshold for white-light continuum genera-

tion almost coincides with the threshold for self-focusing and filamentation. The

part of chapter 6 is dedicated to the statistical study of the WLC generation in

a sapphire plate, which reveals that in the certain input-pulse energy interval the

blue-shifted spectral components of the WLC exhibit large shot-to-shot intensity

variations that obey extreme-value statistical distribution. The explanation of L

shaped statistics of spectral intensity through pulse splitting, and the suppression

of it through intensity clamping will be presented also.

6.1 Numerical model for rogue wave analysis

In order to quantitatively reproduce the experimental results and characterize

the spatiotemporal structure of the extreme events the numerical simulations were

used. The extended NLS equation was solved, which in the spectral domain reads
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as

∂S(Ω, k⊥)

∂z
+ iD(Ω, k⊥)S(Ω, k⊥) = SN (Ω, k⊥), (6.1)

where z is the longitudinal coordinate, Ω = ω−ω0 is the frequency detuning from

the carrier frequency ω0, and k⊥ is the transverse wave number. The function

D(Ω, k⊥) describes linear propagation and accounts for diffraction in the non-

paraxial case, full dispersion for distilled water [160], and linear absorption:

D(Ω, k⊥) =

√
k(ω0 + Ω)2 − k2

⊥ − k0 −
Ω

νg
− iα(Ω), (6.2)

where νg = ∂ω
∂k |ω0 is the GV of the pulse, k(ω) = ωn(ω)/c is the wave number,

k0 = k(ω0), and α(Ω) is the absorption coefficient. The complex amplitude of the

pulse A(t, r, z) and S(Ω, k⊥) are related via Fourier - Hankel transform:

A(t, r, z) =

∫ +∞

−∞

∫ +∞

0

S(Ω, k⊥)eiΩtJ0(k⊥r)k⊥ dk⊥
dΩ

2π
, (6.3)

where t is the temporal coordinate corresponding to the frame of reference moving

with the GV of the pulse and r is the radial coordinate. SN (Ω, k⊥) is the spectral

representation of the nonlinear terms namely:

SN (Ω, k⊥) =

∫ +∞

−∞

∫ +∞

0

N(t, r)e−iΩtJ0(k⊥r)r drdt (6.4)

where

N(t, r) =
iω0n2

c
|A|2A− n2

c

∂

∂t
(|A|2A)− β(K)

2
|A|2K−2 − σ

2
(1 + iω0τc)ρA. (6.5)

The nonlinear term includes the instantaneous Kerr effect, self-steepening, mul-

tiple photon absorption, and the effect of free electron plasma.
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6.2 Spatiotemporal rogue waves in femtosecond filamen-

tation

The rogue wave generation was studied by filament generation in water. The

bandgap of water is Eg = 6.5 eV and a single photon energy is ~ω0 = 1.5 eV

(at 800 nm). That corresponds to MPA order K = 5. MPA coefficient was

taken as β(5) = 1.1× 10−51 cm7/W4, the cross section for electron-neutral inverse

bremsstrahlung was σ = 4.7 × 10−22 m2, and the electronic collision time in the

conduction band is τc = 3 fs [90]. The values of β(5) and σ were evaluated using the

formalism described in [127], the plasma dynamics was accounted for in the same

manner as in [27], including multiphoton and avalanche ionization and neglecting

electron diffusion and recombination owing to sufficiently longer lifetime of the

electron plasma as compared to the pulse width [161]. Absorption coefficient

values in the visible and infrared were combined using data from [162] and [163].

The calculations were performed for input Gaussian pulsed beam with 60 µm

diameter, tp = 130 fs FWHM pulsewidth, central wavelength λ0 = 800 nm and

the input-beam intensity of I0 = 133 GW/cm2. In order to simulate the output

statistics, we have modified the input-beam by introducing 2% intensity noise,

0.5% phase noise and 0.3% energy noise. The noise has Gaussian distribution and

was implemented using Box-Muller transform of uniformly distributed random

numbers.

The occurrence of extreme events in the filamentation regime is readily ob-

servable in the extreme-value statistics of the spectral intensity, which exhibits

characteristic L-shaped distribution. Fig. 6.1(a) illustrates the statistics of 3500

numerically simulated single-shot spectra. Multiple gray curves show the individ-

ual single-shot spectra, whose average spectral intensity profile is overplotted by

a black curve. The widest and the narrowest spectra are highlighted by the red

and blue curves, respectively.

A more detailed statistical analysis of these spectra is presented in Fig. 6.1 (b)
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Figure 6.1: (a) The 3500 numerically simulated single-shot spectra (gray curves). The average
spectrum is shown by the black curve, the widest and the narrowest extremes are highlighted
by the red and blue curves. Frequency distributions of the spectral intensity at: (b) 635 nm, (c)
710 nm. (d) Statistics of the spectral intensity across the entire wavelength range.
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Figure 6.2: (a) The 5000 experimentally measured single-shot spectra of the filament (gray
curves) recorded at 1.23 Pcr. Curve designations are the same as in Fig. 6.1(a), while the input
spectrum is plotted by the dashed curve. Frequency distributions of the spectral intensity at:
(b) 635 nm, (c) 710 nm. Insets show a magnified portion of the long tails. (d) statistics of the
spectral intensity across the entire spectral detection range.
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and (c) by plotting the frequency distribution of the spectral intensity at partic-

ular wavelengths of 635 nm and 710 nm, respectively. At 635 nm, the spectral

intensity exhibits a clear right-tailed distribution. The spectral intensity of the

most prominent extreme events is more than 10-20 times larger than the aver-

age. Interestingly, at 710 nm, the L-shaped distribution is left-tailed, i.e. showing

that in the same dataset there is a number of events exposing small-intensity

extremes. A closer look at Fig. 6.1(a) reveals that these marginal spectra have

different shapes: those with the highest spectral intensity at 650 nm exhibit a

dip around 710 nm, and vice versa. Hence, the observed statistics at different

wavelengths is determined by the change of the spectral shape due to correlation

between frequency components that occur in the self-phase modulation-induced

spectral broadening [36]. Fig. 6.1(d) combines the statistics of the spectral inten-

sity across the entire spectral detection range, where (logarithmic) color coding

renders the normalized frequency of the spectral intensity at a particular wave-

length. Notice that distinct extreme events occur mostly on the blue-shifted side

of the spectrum.

Note here, that in the presentation of the numerical results, we have added

an artificial noise at the level, which corresponds to experimental detection range

of the fiber spectrometer. The numerical data fairly recovers all the essential

statistical features captured experimentally. The statistical results obtained by

the experimental measurements are shown in Fig. 6.2. Fig. 6.2(a) illustrates 5000

individual axial spectra, panels (b) and (c) show the statistical distributions of

the spectral intensity at 635 and 710 nm, respectively, and which are summarized

for the entire spectral range in panel (d).

The relevant question is how the extreme events in the spectral intensity man-

ifest themselves in the space-time domain? In the fiber environment, rogue waves

are associated with the red-shifted soliton pulses of extreme amplitude, which

emerge in the region of anomalous group-velocity dispersion. However, the tem-

poral dynamics in femtosecond filamentation is different: the spectral broadening
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Figure 6.3: (Color online) (a)-(c) spatiotemporal and (d)-(f) on-axis intensity profiles corre-
sponding to the spectra highlighted in Fig. 6.1(a). See text for details.

during self-focusing of the ultrashort light pulses in a medium with normal group-

velocity dispersion is linked to pulse splitting and shock-front dynamics, where

the leading shock-front is associated with the red-shifted axial radiation, and the

trailing shock-front with the blue-shifted axial radiation [164]. A more general

view of this concept was proposed in the framework of two split nonlinear X-

waves, one traveling at subluminal and another at superluminal velocities with

respect to the GV of the input Gaussian pulse, and whose localization is ensured

by the off-axis, conical part of the beam (conical emission) [7, 30, 133].

Figures 6.3(a)-(c) show the numerically simulated spatiotemporal intensity dis-

tributions, that correspond to the narrowest, the average and the widest spectra,

respectively, as highlighted in Fig. 6.1(a), indicating formation of the split X-

waves. Panels (d)-(f) show the corresponding on-axis temporal intensity profiles,

which highlight pulse splitting events and formation of optical shocks, that are

recognized by weak and rapidly decaying oscillations at the pulse fronts. No-

tably, major differences between the three different cases are observed only in the

trailing X-wave, whose spatiotemporal extent and on-axis intensity exhibit great
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variability if compared with the leading peak.

6.3 The emergence and suppression of the rogue wave

statistics

From more detailed statistical investigations carried out for WLC generation

in sapphire by varying the input-pulse energy from 0.2 to 1 µJ, it was found

that distinct L-shaped statistical distributions were characteristic just to spectral

components in the blue edge of the WLC spectrum. Moreover, the L-shaped

statistics were observed only within a narrow input-energy interval between 0.40

and 0.46 µJ, when the blue edge of the WLC was confined in the wavelength

interval of 480 − 590 nm. In order to quantitatively explain this finding, further

examination of spectral broadening dynamics versus the input-pulse energy was

performed. The measured average (over 2000 laser shots) wavelength of the WLC

blue edge, which was detected at a fixed intensity level of 10−3.5 Imax, where

Imax is the peak spectral intensity around 800 nm. The corresponding numerical

simulations were performed using the numerical model, which solves the extended

NLS equation, and which accounts for diffraction, dispersion, the instantaneous

Kerr effect, self-steepening, 5-photon absorption, and the effect of free electron

plasma, as described in detail in [11] and section 6.1. The noise was not included

in the simulations, thus yielding fairly average values of the wavelength and peak

intensity. The experimental and numerical data are compared in Fig. 6.4(a).

The experimentally measured non-Gaussian statistical distributions of the WLC

spectral intensity at the blue edge were quantified by using a three-parameter

Weibull fit function [147]:

f (x) = C
(
x− x0

l

)k−1

exp

(
−
(
x− x0

l

)k)
, (6.6)

where k, l and x0 are shape, scale and location parameters, respectively, and C is

the normalization constant. The shape parameter k, which characterizes the skew-
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Figure 6.4: (a) Dynamics of the spectral broadening expressed as the wavelength of the blue
edge. Dashed curve depicts the peak intensity inside the sapphire sample. (b) Shape parameter
of the Weibull fit function vs input-pulse energy. Shaded area marks the energy (intensity)
range where extreme-value statistics is detected. (c)-(e) Numerically simulated on-axis intensity
profiles. Dashed curve shows the input-pulse.

ness of the statistical distribution is plotted in Fig. 6.4(b). Note that for nearly-

symmetric distributions that were recorded at the lowest (Ein < 0.3µJ) and at

the highest (Ein > 0.6µJ) input-pulse energies, the fit function given by Eq. 6.6

yielded high k-values, but also a large error, therefore these data points were not

included in the plot. Summarizing the results illustrated in Figs. 6.4(a) and 6.4(b),

we conclude that the dynamics of the spectral broadening undergoes three distinct

stages, that are linked to the temporal dynamics of the pulse and resulting peak

intensity inside the nonlinear medium, as shown by a dashed curve in Fig. 6.4(a),

and where the blue-shifted spectral components of the WLC exhibit different sta-

tistical distributions. The initial WLC generation stage (Ein = 0.28 − 0.40µJ)

is mainly associated with self-phase modulation-induced almost symmetric spec-

tral broadening, where no extreme-value statistics were detected. In the time

domain, the pulse profile becomes gradually reshaped [Fig. 6.4(c)], however no
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pulse splitting occurs yet. The second stage (Ein = 0.40−0.46µJ) is related to an

abrupt increase of the peak intensity, which clearly indicates the pulse splitting

event. The spectral broadening is governed by highly asymmetric pulse splitting,

pulse front steepening and generation of the shock-front at the trailing edge of the

pulse, as shown in Fig. 4(d), which is consistent with WLC generation scenario

[164]. On the other hand, the spectral broadening might be described in terms

of four-wave mixing and occurrence of two split X waves in full three-dimensional

space [30], whose mutual interaction provides suitable phase matching condition

for generation of the blue-shifted spectral components. In this stage, the build-up

of the intense trailing pulse (which may be called transient stage of WLC genera-

tion) strongly depends on the input-pulse intensity. In fact, this suggests that any

small intensity variation (intensity noise) in the input beam has a large impact on

the resulting peak intensity of the trailing pulse, thus giving rise to the observed

rogue-wave-like statistical distribution. In the final stage of the WLC generation

(Ein > 0.46µJ), the spectral broadening markedly slows down and finally stops

at Ein = 0.55µJ as the intensity of the trailing pulse is clamped at ∼ 41TW/cm2

due to MPA (5-photon, in our case). The corresponding intensity profile is shown

in Fig. 6.4(e). Here the dynamical picture settles and no extreme events occur.

This in fact suggests that the intensity clamping acts as the mechanism, which

suppresses occurrence of the extreme events. The extreme events therefore occur

only within a narrow input-pulse energy (intensity) range, which is defined by the

pulse splitting and intensity clamping.

6.4 Deterministic extreme events in femtosecond filamen-

tation

It is proved both experimentally and numerically, that pulsed wavepacket un-

dergoes rapid noise cleaning during self-focusing [165, 166, 167]. The high intensity

spots and tiny phase variations (noise) become spatio-temporally diffused (due to

combined action of dispersion, diffraction, nonlinearity and absorption). Due to
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such smoothing of the wavepacket, the two input pulses with equal energy, but

with different noise distribution, evolve into two distinct profiles having differ-

ent intensity and energy, as shown in Fig. 6.5. The most drastic change occurs

near the filamentation threshold. Since the pulses generated by laser possesses

some variations of the envelope (even having identical energy), it leads to some

wandering of the filament at the output.
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Figure 6.5: Blue and red lines present two initial pulse/beam intensity profiles having the
same energy, but different random modulation. Two black lines show the intensity profiles
which coincides to the integral energy remaining after noise cleaning by diffraction, dispersion,
nonlinearity and absorption. Note the difference in intensities of the pulse profiles after noise
cleaning.

The understanding, that energy is the main parameter which defines forma-

tion of the filament, supports the idea of the deterministic nature of the rogue

events. In order to verify it we did several numeric experiments. In the first one,

the large number of the filaments were formed (calculated) starting from clean

Gaussian wavepackets, having different initial intensity but the same beam size

and duration. Since the experimentally measured laser power fluctuations nearly

correspond to the normal distribution, which is described by Gaussian proba-

bility density function, we also did calculations with the initial pulse intensity

distributed accordingly to normal distribution. Four different cases correspond-

ing to four different mean intensity value of the initial pulse (125 GW/cm2, 130

GW/cm2, 135 GW/cm2, 140 GW/cm2) were investigated. The standard variation
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(variance) was the same in all cases. Results are presented in Fig. 6.6. It seems

possible to get good coincidence with the experimental data statistics, and to

demonstrate appearance of extreme events (L-shaped statistics) just by changing

mean value i.e. the center of the Probability Density Function (PDF). In normal

GVD region after the pulse splitting into two X waves filament becomes nearly

formed, and extreme value statistics becomes evident both in red and blue part

of the spectrum (see Fig. 6.6). Due to nonsymmetric pulse splitting the trailing

blue-shifted pulse has much higher intensity than the leading red-shifted pulse.

The refractive index dependence on intensity tunes phase matching conditions

for the FWM process, therefore phase matching becomes possible within wide

range of blue part of spectra and much less in the red part. So near the filament

formation threshold the small variation of the input intensity (< 1%) leads to

appearance of huge variation of the output spectra, (especially in blue part) and

appearance of the L-shaped probability distribution. The maximum of extreme

events takes place at 130 GW/cm2 mean input intensity value. At higher intensity

the extreme value (L-shaped) statistics becomes suppressed (Fig. 6.6 (i)) due to

intensity clamping [168, 169].

The proposed deterministic rogue event model is very versatile. It is possible

to analyze the extreme event statistics not only by altering mean input intensity

value (center of PDF), but also by changing intensity variation width (see Fig.

6.7). The increase of the standard deviation from 1 GW/cm2 to 3 GW/cm2

(see Fig. 6.7) induces the abrupt growth of the instabilities at the output. The

statistical spectrum analysis (see Fig. 6.7 (e-g)) reveals the drastic increase in

maximum reached deviation from average intensity value, and some shift to the

blue side of the spectrum.
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The main idea of the our deterministic model rests on the PDF transformation

within nonlinear dynamic system. It also describes the PDF symmetrization and

suppression of the extreme value statistics caused by intensity clamping effect

(intensity saturation). Such scenario is common for many nonlinear systems. It

was shown, recently, that the parametric amplifier within some parameter range

shows L-shaped rogue-wave-like statistics which could be washed-out by saturat-

ing amplifier [168].

6.5 Conclusions

Under investigated experimental conditions, the extreme events in the fem-

tosecond filamentation regime are identified as large space-time coupled intensity

fluctuations and formation of an X-wave at the trailing edge of the input pulse.

The results are significantly different with respect to one-dimensional fibre settings

in which extreme events are associated to higher-than-average intensities. The

three-dimensional extreme event needs to be visualized in full three-dimensional

rather than in a reduced one-dimensional space: indeed, in Fig. 6.3(c) we im-

mediately notice that the extreme event is associated to the clear formation of

an X-wave with largely extended conical tail, i.e. of a truly space-time coupled,

three-dimensional wave-packet. Due to the ubiquity of space-time coupled effects

in three-dimensional systems the similar rogue X-wave formation and wave lo-

calization events in other settings involving e.g, acoustic [170] and even seismic

waves [171] might be observed.

It was also demonstrated that the rogue-wave-like statistics of the spectral

intensity of the WLC generated in a wide-bandgap solid (sapphire) are observed

only in the transient stage of the WLC generation, and are associated with pulse

splitting and build-up of intense trailing pulse, that strongly depend on the input-

pulse intensity. The intensity clamping was found to be a mechanism which

suppresses the occurrence of the extreme events. These findings also explain why

the extreme events in WLC generation in bulk medium are observed only in a
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narrow input-energy (intensity) interval.

The proposed rogue wave deterministic model based on the nonlinear transfor-

mation of the PDF, allowed to reveal the emergence of the rogue wave statistics.

It was demonstrated, that the blue-shifted and red-shifted conical waves formed

after the pulse splitting event are amplified via FWM process, when the inten-

sity dependent phase matching transforms the normally distributed input to the

L-shaped output.
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Conclusions

1. The Gaussian beam in nonlinear scattering medium reshapes into conical

wave, namely, light filament and is capable to propagate distances over

many Rayleigh range. It is shown that light scattering introduced by the

polystyrene microspheres shifts the nonlinear focus (emergence of the fila-

ment) toward further propagation distance, and results in somewhat larger

filament diameter along with appearance of speckle structure in the periph-

eral part of the beam.

2. It is demonstrated that intense highly elliptical laser beam breaks up into

periodic one- and two-dimensional arrays of light filaments. Although the

multiple filamentation is initiated by random amplitude noise, it forms highly

reproducible periodic multiple filaments patterns, whose periodicity may be

easily controlled via the input beam intensity. The observed periodicity in

the multiple filaments array could be understood within a simple analytical

framework of phase-matched multistep degenerate four-wave parametric in-

teractions. The periodic breakup of the elliptical input beam is initiated by

noncollinear nearly degenerate four-wave parametric amplification of certain

wave vectors, which fulfil the phasematching condition. The intensity de-

pendence of the period in the multiple filaments array is explained as due to

modification of the phase-matching condition by self-phase and cross-phase

modulation via nonlinear refractive index.
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3. The spatiotemporal behavior of the individual filaments exhibits specific fea-

tures,which depend on the input-beam ellipticity and power. In the case of

moderate input-beam ellipticity, the individual filaments propagate in curved

trajectories and form complex spatiotemporal structures, which resemble op-

tically turbulent propagation. This small scale intensity structure originates

from skewed (X-shaped) coherence arising in phase-matched four-wave inter-

actions. The input beams with high ellipticity break up into (quasi) regu-

lar spatiotemporal patterns, featuring a distinct bow-shaped spatiotemporal

head of the multiple filaments array, composed of extremely short peaks,

which originate from the interplay between the X-wave and shock-front for-

mation, and share many commonalities with the single filament dynamics.

4. The extreme events in the femtosecond filamentation regime are identified in

the spectral domain, as either large or small extremes of the spectral intensity,

justified by right- or left-tailed statistical distributions, respectively. In the

time domain, the observed extreme events are associated with pulse splitting

and energy redistribution in space and manifest themselves as large space-

time coupled intensity fluctuations due to formation of X waves.

5. The rogue-wave-like statistics of the spectral intensity of the supercontinuum

generated in a wide-bandgap solid are observed only in the transient stage,

and are associated with pulse splitting and build-up of intense trailing con-

ical wave, that strongly depend on the input-pulse intensity. The intensity

clamping is found to be a mechanism which suppresses the occurrence of the

extreme events. These findings also explain why the extreme events genera-

tion in bulk medium are observed only in a narrow input-energy (intensity)

interval.

6. The appearance of the rogue wave statistics could be understood within the

deterministic model based on nonlinear transformation of the probability

density function.
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[36] P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel,
and J.-P. Wolf. Higher-order kerr terms allow ionization-free filamentation in gases. Phys.
Rev. Lett., 104:103903, 2010.
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[38] P. Béjot and J. Kasparian. Conical emission from laser filaments and higher-order kerr
effect in air. Opt. Lett., 36(24):4812–4814, 2011.
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[107] A. Dubietis, G. Tamošauskas, P. Polesana, G. Valiulis, H. Valtna, D. Faccio, P. Di Trapani,
and A. Piskarskas. Highly efficient four-wave parametric amplification in transparent bulk
kerr medium. Opt. Express, 15(18):11126–11132, 2007.
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[130] L. Bergé, S. Mauger, and S. Skupin. Multifilamentation of powerful optical pulses in silica.
Phys. Rev. A, 81:013817, 2010.

105



BIBLIOGRAPHY

[131] O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani. Emergence of x-
shaped spatiotemporal coherence in optical waves. Phys. Rev. Lett., 97:243903, 2006.

[132] O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani. X-shaped space-time
coherence in optical parametric generation. Phys. Rev. A, 76:033823, 2007.

[133] F. Bragheri, D. Faccio, A. Couairon, A. Matijošius, G. Tamošauskas, A. Varanavičius,
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pulse-to-pulse fluctuations in visible supercontinuum. Opt. Express, 18(26):27445–27454,
2010.

[152] A. Aalto, G. Genty, and J. Toivonen. Extreme-value statistics in supercontinuum genera-
tion by cascaded stimulated raman scattering. Opt. Express, 18(2):1234–1239, 2010.

[153] K. Hammani, A. Picozzi, and C. Finot. Extreme statistics in raman fiber amplifiers: From
analytical description to experiments. Opt. Commun., 284(10-11):2594–2603, 2011.

[154] A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi. Non-gaussian statistics and
extreme waves in a nonlinear optical cavity. Phys. Rev. Lett., 103:173901, 2009.
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