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Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko Str. 24,
LT-03225 Vilnius, Lithuania
* Correspondence: roma.kacinskaite@mif.vu.lt
† These authors contributed equally to this work.

Abstract: The famous Selberg class is defined axiomatically and consists of Dirichlet series satisfying
four axioms (Ramanujan hypothesis, analytic continuation, functional equation, multiplicativity).
The Selberg–Steuding class S is a complemented Selberg class by an arithmetic hypothesis related to
the distribution of prime numbers. In this paper, a joint universality theorem for the functions L from
the class S on the approximation of a collection of analytic functions by shifts

(
L(s + ia1τ), . . . , L(s +

iarτ)
)
, where a1, . . . , ar are real algebraic numbers linearly independent over the field of rational

numbers, is obtained. It is proved that the set of the above approximating shifts is infinite, its lower
density and, with some exception, density are positive. For the proof, a probabilistic method based
on weak convergence of probability measures in the space of analytic functions is applied together
with the Backer theorem on linear forms of logarithms and the Mergelyan theorem on approximation
of analytic functions by polynomials.

Keywords: limit theorem; Selberg–Steuding class; universality; weak convergence

MSC: 11M06; 11M41

1. Introduction

Let {am : m ∈ N} be a sequence of complex numbers, and s = σ + it be a complex
variable. In analytic number theory, Dirichlet series

∞

∑
m=1

am

ms , σ > σ0,

are very important analytic objects. The latter series are of ordinary type, general Dirichlet series

∞

∑
m=1

ame−λms

where {λm} is an increasing to +∞ sequence of real numbers, are also studied. The majority
of the so-called zeta- and L-functions, including the Riemann zeta-function

ζ(s) =
∞

∑
m=1

1
ms , σ > 1,

and Dirichlet L-functions

L(s, χ) =
∞

∑
m=1

χ(m)

ms , σ > 1,

where χ(m) is a Dirichlet character, whose analytic properties play the crucial role for
investigation of prime numbers in the set N and arithmetic progressions, respectively, are
defined by Dirichlet series.
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Without a class of Dirichlet L-functions, there are several classes of Dirichlet series cul-
tivated in analytic number theory. Among them, the classes of Hurwitz-type zeta-functions,
Lerch zeta-functions, Matsumoto zeta-functions, Epstein zeta-functions, and others. The
famous number theorist A. Selberg in [1] introduced the class S of Dirichlet series including
some classical number theoretical zeta- and L-functions, and stated hypotheses on that
class. The Selberg class became an object of numerous studies. We recall the hypotheses
which satisfy the functions

L(s) =
∞

∑
m=1

a(m)

ms

of the class S . As usual, we denote by Γ(s) the Euler gamma-function.

1. For every ε > 0, the estimate a(m)� mε is valid.
2. There exists an integer α such that (s− 1)αL(s) is an entire function of finite order.
3. The function L(s) satisfies the functional equation

ΛL(s) = wΛL(1− s),

where

ΛL(s) = L(s)qs
J

∏
j=1

Γ(λjs + µj)

with positive numbers q and λj, and complex numbers w and µj such that <µj ≥ 0
and |w| = 1, and s denotes the complex conjugate of s.

4. The function L(s) has the representation

L(s) = ∏
p

Lp(s)

over the prime numbers with

log Lp(s) =
∞

∑
l=1

b(pα)

ps ,

and b(pl)� pθl , θ < 1
2 .

Much attention is devoted to the structure of the class S . For results, see Section 6.1
of [2]. In the theory of the class S , the degree of the function L ∈ S defined as

dL = 2
J

∑
j=1

λj

occupies an important place. For example, it is known that if 0 ≤ dL < 1, then L(s) ≡ 1,
while if dL = 1, then L(s) are the Riemann zeta-function, or shifted Dirichlet L-function
L(s + iθ, χ), θ ∈ R. There exists a conjecture that the class S consists of all automorphic
L-functions. For example, L-functions of normalized holomorphic new forms have a degree
dL = 2.

In this paper, we are interested in the universality of functions of the class S , i.e., on
the approximation of a whole class of analytic functions by shifts L(s+ iτ), τ ∈ R, L(s) ∈ S .
Recall that the universality property for ζ(s) which is a member of S was obtained by
S.M. Voronin in [3]. For an improved version of the Voronin theorem, we use the following
notation. Let D =

{
s ∈ C : 1

2 < σ < 1
}

, and let meas{A} denote the Lebesgue measure of
a measurable set A ⊂ R. Suppose that K ⊂ D is a compact set with connected complement,
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and f (s) is a continuous non-vanishing function on K and analytic in the interior of K.
Then, for every ε > 0,

lim inf
T→∞

1
T

meas
{

τ ∈ [0, T] : sup
s∈K
|ζ(s + iτ)− f (s)| < ε

}
> 0

(see [2,4–6]). A similar assertion also is true for all Dirichlet L-functions.
The first universality result related to the class S was obtained by J. Steuding in [2].

Let, for L ∈ S ,

σL = max
(

1
2

, 1− 1
dL

)
and DL = {s ∈ C : σL < σ < 1}. In addition to the hypothesis 4 of the class S , it was
required the existence of a polynomial Euler product

L(s) = ∏
p

m

∏
j=1

(
1−

αj(p)
ps

)−1

, αj(p) ∈ C. (1)

Moreover , one more arithmetic condition

lim
x→∞

1
π(x) ∑

p≤x
|aj(p)|2 = κ (2)

with a certain positive κ and π(x) = ∑p≤x 1 was used. Denote by KL the class of compact
subset of the strip DL with connected complements, and by H0L(K), K ∈ KL, the class of
continuous non-vanishing functions on K that are analytic in the interior of K. Denote by Ŝ
the class satisfying hypotheses of the class S , and (1) and (2). Then, the following theorem
is true [2].

Theorem 1. Suppose that L ∈ S ∩ Ŝ. Let K ∈ KL and f (s) ∈ H0L. Then, for every ε > 0,

lim inf
T→0

1
T

meas
{

τ ∈ [0, T] : sup
s∈K
|L(s + iτ)− f (s)| < ε

}
> 0.

We note that the class S ∩ Ŝ consists of all functions satisfying axioms 2 and 3 of class
S , and (1) and (2).

In [7], Theorem 1 was improved, namely, the condition (1) was not used. More
precisely, Theorem 1 is valid for L ∈ S satisfying (2).

For zeta- and L-functions, the joint universality also is considered. In this case, a collec-
tion of analytic functions is simultaneously approximated by a collection of shifts of zeta- or
L-functions. The first result in this direction also belongs to S.M. Voronin. In [8], he obtained
the joint universality for Dirichlet L-functions with nonequivalent characters and applied it
for a theorem on joint functional independence of L-functions. More general results on joint
universality were obtained for the periodic and periodic Hurwitz zeta-functions as well as
for Matsumoto zeta-function (see, for example, [9–12]). Joint universality theorems also
can be proved using only one zeta- or L-function with different shifts. Our aim is to obtain
a joint universality theorem for functions from the Selberg–Steuding class S1 of functions
belonging to the class S and satisfying the condition (2). The main result of the paper is the
following theorem.
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Theorem 2. Suppose that L ∈ S1, and real algebraic numbers a1, . . . , ar are linearly independent
over the field of rational numbers Q. For j = 1, . . . , r, let Kj ∈ KL and f j(s) ∈ H0L(Kj). Then,
for every ε > 0,

lim inf
T→∞

1
T

meas
{

τ ∈ [0, T] : sup
1≤j≤r

sup
s∈Kj

|L(s + iajτ)− f j(s)| < ε

}
> 0.

Moreover, “liminf” can be replaced by “lim” for all but at most countably many ε > 0.

The proof of Theorem 2 is based on weak convergence of probability measures in the
space of analytic functions.

2. Limit Lemmas on a Group

We start to consider the weak convergence of probability measures with a case of one
compact group. Denote by B(X) the Borel σ-field of a topological space X, and define
the set

Ω = ∏
p∈P

γp,

where P denotes the set of all prime numbers, and γp = {s ∈ C : |s| = 1} for all p ∈ P.
By the classical Tikhonov theorem, the infinite-dimensional torus Ω, with the product
topology and operation of pairwise multiplication, is a compact topological Abelian group.
Define one more set

Ωr = Ω1 × . . .×Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then, again, by the Tikhonov theorem, Ωr is a compact
topological Abelian group. Therefore, on (Ωr,B(Ωr)), the probability Haar measure mH
can be defined. This gives the probability space (Ωr,B(Ωr), mH). For p ∈ P, denote by
ωj(p) the pth component of an element ωj ∈ Ω, j = 1, . . . , r, and by ω = (ω1, . . . , ωr) the
elements of Ωr. Let, for brevity, a = (a1, . . . , ar).

Now, we will prove a limit lemma on weak convergence for

QT,a(A) =
1
T

meas
{

τ ∈ [0, T] :
((

p−a1τ : p ∈ P
)
, . . . ,

(
p−arτ : p ∈ P

))
∈ A

}
,

A ∈ B(Ωr), as T → ∞. For its proof, we apply the following result of A. Baker (see [13]).

Lemma 1. Suppose that the logarithm log λ1, . . . , log λr of algebraic numbers λ1, . . . , λr are
linearly independent over Q. Then, for any algebraic numbers β0, β1, . . . , βr not all simultaneously
zero, the inequality

|β0 + β1 log λ1 + . . . + βr log λr| > h−C,

where h is the maximum of the heights of the numbers β0, β1, . . . , βr, and C is an effective constant
depending on r, λ1, . . . λr and the maximum of the powers of the numbers β0, β1, . . . , βr, is valid.

Lemma 2. Suppose that a1, . . . , ar are real algebraic numbers linearly independent over Q. Then,
QT,a converges weakly to the Haar measure mH as T → ∞.

Proof. For the proofs of weak convergence of probability measures on groups, it is conve-
nient to use the method of Fourier transforms. Thus, denote by FT,a(k1, . . . , kr), kj = (k jp :
k jp ∈ Z, p ∈ P), j = 1, . . . , r, the Fourier transform of QT,a, i.e.,

FT,a(k1, . . . , kr) =
∫

Ω

( r

∏
j=1

∏
p∈P

∗
ω

kjp
j (p)dQT,a

)
,
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where the star ∗ shows that only a finite number of integers k jp is distinct from zero. By the
definition of QT,a, we have

FT,a(k1, . . . , kr) =
1
T

∫ T

0

( r

∏
j=1

∏
p∈P

∗p−ajkjpτ

)
dτ

=
1
T

∫ T

0
exp

{
− iτ

r

∑
j=1

aj ∑
p∈P

∗k jp log p
}

dτ. (3)

Obviously ,

FT,a(0, . . . , 0) = 1, (4)

where 0 is a collection consisting from zeros. Now, suppose that (k1, . . . , kr) 6= (0, . . . , 0).
Let, for brevity, k = (k1, . . . , kr),

Aa,k
de f
=

r

∑
j=1

aj ∑
p∈P

∗k jp log p = ∑
p∈P

∗cp log p,

where

cp =
r

∑
j=1

ajk jp.

In this case, there exists j such that kj 6= 0. Therefore, k jp are not all zero. Since
the numbers aj are linearly independent over Q, the algebraic numbers cp are not all
simultaneously zero. It is well known that the set {log p : p ∈ P} is linearly independent
over Q. Therefore, for Aa,k, Lemma 1 is applicable, and we obtain that Aa,k 6= 0. Hence,
integrating in (3), we find

FT,a(k1, . . . , kr) =
1− exp

{
− iTAa,k

}
iTAa,k

.

This together with (4) shows that

lim
T→∞

FT,a(k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) 6= (0, . . . , 0),

and the lemma is proved because the right-hand side of the last equality is the Fourier
transform of the Haar measure mH .

We will apply Lemma 2 to obtain a joint limit lemma in the space of analytic functions
for absolutely convergent Dirichlet series. Denote by H(DL) the space of analytic on DL
functions equipped with topology of uniform convergence on compacta, and set

Hr(DL) = H(DL)× . . .× H(DL)︸ ︷︷ ︸
r

.

Let θ > 0 be a fixed number,

vn(m) = exp
{
−
(

m
n

)θ}
, m, n ∈ N,

and

Ln(s) =
∞

∑
m=1

aL(m)vn(m)

ms .
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Since aL(m)� mε and vn(m) is decreasing exponentially with respect to m, the latter
series is absolutely convergent in any half-plane σ > σ0. Extend the functions ωj(p), p ∈ P,
j = 1, . . . , r, to the set N of all positive integers by

ωj(p) = ∏
pl‖m

ωl
j(p), m ∈ N,

where pl‖m means that pl |m but pl+1 - m, and define

Ln(s, ωj) =
∞

∑
m=1

aL(m)ωj(m)vn(m)

ms , (5)

the series also being absolutely convergent for σ > σ0. Define

Ln(s, ω) =
(

Ln(s, ω1), . . . , Ln(s, ωr)
)
,

and hn : Ωr → Hr(DL) by hn(ω) = Ln(s, ω). Since the series Ln(s, ωj), j = 1, . . . , r, are
absolutely convergent in any half-plane, the mapping hn is continuous. Therefore, every
probability measure P on (Ωr,B(Ωr)) defines the unique probability measure Ph−1

n on
(Hr(DL),B(Hr(DL))), where

Ph−1
n (A) = P(h−1

n A), A ∈ B(Hr(DL)).

For A ∈ B(Hr(DL)), define

PT,n,a(A) =
1
T

meas
{

τ ∈ [0, T] : Ln(s + iaτ) ∈ A
}

,

where
Ln(s + iaτ) =

(
Ln(s + ia1τ), . . . , Ln(s + iarτ)

)
.

Moreover , a property of preservation of weak convergence under continuous map-
pings (see, for example, Theorem 5.1 of [14]), leads to the following lemma.

Lemma 3. Suppose that a1, . . . , ar are real algebraic numbers linearly independent over Q. Then,

PT,n,a converges weakly to the measure Vn
de f
= mHh−1

n as T → ∞.

Proof. By the definitions of PT,n,a and QT,a, and the mapping hn, for every A ∈ B(Hr(DL)),
we have

PT,n,a(A) =
1
T

meas
{

τ ∈ [0, T] :
((

p−ia1τ : p ∈ P
)
, . . . ,

(
p−iarτ : p ∈ P

))
∈ h−1

n A
}

= QT,a(h−1
n A) = QT,ah−1

n (A).

Thus , PT,n,a = QT,ah−1
n . Thus, the continuity of hn, Lemma 2 and Theorem 5.1 of [14]

prove the lemma.

Consider one more measure

P̂T,n,a(A) =
1
T

meas
{

τ ∈ [0, T] : Ln(s + iaτ, ω̂) ∈ A
}

, A ∈ B(Hr(DL)).

Lemma 4. Suppose that a1, . . . , ar are real algebraic numbers linearly independent over Q. Then,
P̂T,n,a with every ω̂ ∈ Ωr also converges weakly to the measure Vn as T → ∞.

Proof. Define the mapping ĥn : Ωr → Hr(DL) by ĥn(ω) = Ln(s, ωω̂). Then, the mapping
ĥn remains continuous, and repeating the arguments of the proof of Lemma 3, we obtain

that P̂T,n,a converges weakly to the measure V̂n
de f
= mH ĥ−1

n as T → ∞. By the definitions
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of ĥn and hn, we have ĥn(ω) = hn(h(ω)) with h(ω) = ωω̂. At this moment, we use the
invariance of the Haar measure mH , i.e., that

mH(ωA) = mH(Aω) = mH(A)

for all A ∈ B(Ωr) and ω ∈ Ωr. Thus, we find

V̂n = mH(hnh)−1 = (mHh−1)h−1
n = mHh−1

n = Vn.

3. Limit Theorems

In this section, we will prove a joint limit theorem for the function L(s) from class S1.
More precisely, we will consider the weak convergence for

PT,a(A)
de f
=

1
T

meas
{

τ ∈ [0, T] : L(s + iaτ) ∈ A
}

, A ∈ B(Hr(DL)),

where
L(s + iaτ) =

(
L(s + ia1τ), . . . , L(s + iarτ)

)
,

as T → ∞. For the proof, we will apply Lemmas 3 and 4, some ergodicity results, and
estimates for difference |L(s + iaτ)− Ln(s + iaτ)|. We start with the latter problem.

Recall the metric in the space Hr(DL). For g1, g2 ∈ H(DL), define

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
.

Here, {Kl : l ∈ N} ⊂ DL is a sequence of compact embedded sets such that

∞⋃
l=1

Kl = DL,

and each compact set K ⊂ DL lies in Kl for some l. Then, ρ is a metric in H(DL)
inducing the topology of uniform convergence on compacta. For g

1
= (g11, . . . , g1r),

g
2
= (g21, . . . , g2r) ∈ Hr(DL), taking

ρ(g
1
, g

2
) = max

1≤j≤r
ρ(g1j, g2j),

we have a metric in Hr(DL) inducing the product topology.

Lemma 5. Suppose that a1, . . . , ar are arbitrary real numbers. Then,

lim
n→∞

lim sup
T→∞

1
T

∫ T

0
ρ(L(s + iaτ), Ln(s + iaτ))dτ = 0.

Proof. Let the number θ come from the definition of vn(m), and

ln(s) =
s
θ

Γ
(

s
θ

)
ns.

Then, the Mellin formula

1
2πi

∫ b+i∞

b−i∞
Γ(s)c−sds = e−c, b, c > 0,
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implies the representation (see, for example, [2])

Ln(s) =
1

2πi

∫ θ1+i∞

θ1−i∞
L(s + z)ln(z)

dz
z

,

where θ1 > 1
2 . Hence, by the residue theorem,

Ln(s)− L(s) =
1

2πi

∫ −θ2+i∞

−θ2−i∞
L(s + z)ln(z)

dz
z

+ R(s), (6)

where θ2 > 0 and

R(s) = Res
z=1−s

L(s + z)
ln(z)

z
= â · ln(1− s)

1− s
, â = Res

s=1
L(s).

Let K ⊂ DL be an arbitrary compact set. We fix ε > 0 such that σL + 2ε ≤ σ ≤ 1− ε
for all s = σ + it ∈ K, and put θ2 = σ − σL − ε. Then, θ2 > 0 for σ + it ∈ K. This and
equality (2), for s = σ + it ∈ K and a ∈ R, gives

Ln(s + iaτ)− L(s + iaτ)

�
∫ ∞

−∞
|L(σL + ε− σ + σ + it + iaτ + iv)| ·

∣∣∣∣ ln(σL + ε− σ + iv)
σL + ε− σ + iv

∣∣∣∣dv + |â|
∣∣∣∣ ln(1− s− iaτ)

1− s− iaτ

∣∣∣∣.
Taking v in place of t + v, we have, for s ∈ K,

Ln(s + iaτ)− L(s + iaτ)

�
∫ ∞

−∞
|L(σL + ε + iaτ + iv)| · sup

s∈K

∣∣∣∣ ln(σL + ε− s + iv)
σL + ε− s + iv

∣∣∣∣dv + |â| sup
s∈K

∣∣∣∣ ln(1− s− iaτ)

1− s− iaτ

∣∣∣∣.
Hence,

1
T

∫ T

0
sup
s∈K
|L(s + iaτ)− Ln(s + iaτ)|dτ

�
∫ ∞

−∞

(
1
T

∫ T

0
|L(σL + ε + iaτ + iv)|dτ

)
sup
s∈K

∣∣∣∣ ln(σL + ε− s + iv)
σL + ε− s + iv

∣∣∣∣dv

+|â| · 1
T

∫ T

0
sup
s∈K

∣∣∣∣ ln(1− s− iaτ)

1− s− iaτ

∣∣∣∣dτ

de f
= I(1)T + I(2)T . (7)

It is known [2] that, for fixed σL < σ < 1,∫ T

−T
|L(σ + it)|2dt�σ,L T.

This, for the same σ and v ∈ R, gives∫ T

0
|L(σ + iaτ + iv)|2dτ =

1
a

∫ aT+v

v
|L(σ + it)|2dt�σ,a T(1 + |v|). (8)

Using the well-known estimate

Γ(σ + it)� exp{−c|t|}, c > 0, (9)

we find that, for all s ∈ K,

ln(σL + ε− s + iv)
σL + ε− s + iv

�θ nσL+ε−σ

∣∣∣∣Γ(1
θ
(σL + ε− σ + it + iv)

)∣∣∣∣
�θ n−ε exp{−c1|v− t|}
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�θ,K exp{−c2|v|}, c1, c2 > 0.

This and (8) show that

I(1)T �ε,L,θ,a,K� n−ε
∫ ∞

−∞
(1 + |v|)

1
2 exp{−c2|v|}dv�ε,L,θ,a,K n−ε. (10)

Similarly, by (9), for s ∈ K,

ln(1− s− iaτ)

1− s− iaτ
�θ n1−σ exp{−c3|t + aτ|} �θ,K,a n1−σL−2ε exp{−c4|τ|}, c4 > 0.

Thus,

I(2)T �θ,K,a n−ε 1
T

∫ T

0
exp{−c4|τ|}dτ �θ,K,a

log T
T

.

The latter estimate, (10) and (7) prove that, for every compact set K ⊂ DL,

lim
n→∞

lim sup
T→∞

1
T

∫ T

0
sup
s∈K
|L(s + iaτ)− Ln(s + iaτ)|dτ = 0.

Therefore, the lemma follows from the definitions of the metrics ρ and ρ.

Now, for ω ∈ Ωr, let

L(s, ω) =
(

L(s, ω1), . . . , L(s, ωr)
)
,

where

L(s, ωj) =
∞

∑
m=1

aL(m)ωj(m)

ms , j = 1, . . . , r.

Then, it is known [2] that the latter series, for almost all ωj, are uniformly convergent
on the compact subset of the half-plane σ > σL. Since the Haar measure mH is the product
of the Haar measures mjH on (Ωj,B(Ωj)), we have that L(s, ω) is the Hr(DL)-valued
random element. Moreover, an analogue of Lemma 5 is valid.

Lemma 6. Suppose that a1, . . . , ar are arbitrary real numbers. Then, for almost all ω ∈ Ωr,

lim
n→∞

lim sup
T→∞

1
T

∫ T

0
ρ
(

L(s + iaτ, ω), Ln(s + iaτ, ω)
)
dτ = 0.

Proof. It is known [2] that, for almost all ω ∈ Ω,∫ T

−T
|L(σ + it, ω)|2dt�σ,L T.

Therefore, repeating the proof of Lemma 5, we obtain that, for a compact set K ∈ DL
and real number a,

1
T

∫ T

0
sup
s∈K
|L(s + iaτ, ω)− Ln(s + iaτ, ω)|dτ �ε,L,θ,a,K n−ε (11)

with certain ε > 0. In this case, in the analogous of estimate (7), we have not the second
term on the right-hand side. Since mH = m1H × . . .×mrH , estimate (11) and the definitions
of the metrics ρ and ρ prove the lemma.

Now, we are ready to consider the measure PT,a.
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Theorem 3. Suppose that real algebraic numbers a1, . . . , ar are linearly independent over Q. Then,
on (Hr(DL),B(Hr(DL))), there exists a probability measure P such that PT,a converges weakly
to P as T → ∞.

Proof. Recall that a family of probability measures {Q} on (X,B(X)) is called tight if,
for every ε > 0, there exists a compact set K = K(r) ⊂ X such that

Q(K) > 1− ε

for all Q.
Denote by Vnj marginal measures of the measure Vn, j = 1, . . . , r. Since the series for

Ln(s) is absolutely convergent, we obtain by a standard way that the sequence {Vnj : n ∈ N}
is tight, j = 1, . . . , r. Then, for every ε > 0, there exists a compact set Kj ⊂ H(DL) such that,
for all n ∈ N,

Vnj(Kj) > 1− ε

r
, j = 1, . . . , r. (12)

Let K = K1 × . . .× Kr. Then, K is a compact set in Hr(DL). Moreover, by (12), for all
n ∈ N,

Vn(Hr(DL) \ K) ≤
r

∑
j=1

Vnj(H(DL) \ Kj) < ε.

Thus,
Vn(K) > 1− ε

for all n ∈ N. Hence, the sequence {Vn} is tight. Therefore, by the Prokhorov theorem,
see [14], the sequence {Vn} is relatively compact. This means that every sequence of {Vn}
contains a subsequence {Vnk} weakly convergent to a certain probability measure P on
(Hr(DL),B(Hr(DL))) as k→ ∞.

Denote by Xn the Hr(DL)-valued random element having the distribution Vn, and by
D−→ the convergence in distribution. Then, we have

Xnk
D−−−→

k→∞
P. (13)

On the certain probability space with measure µ, define the random variable ξT which
is uniformly distributed on [0, T]. Moreover, let

XT,n,a = XT,n,a(s) = Ln(s + iaξT)

and
YT,a = YT,a(s) = L(s + iaξT).

By Lemma 3,

XT,n,a
D−−−→

T→∞
Xn, (14)

and Lemma 5 implies, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ
{

ρ(YT,a, XT,n,a) ≥ ε
}

≤ lim
n→∞

lim sup
T→∞

1
εT

∫ T

0
ρ
(

L(s + iaτ), Ln(s + iaτ)
)
dτ = 0.
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This together with relations (13) and (14) shows that all hypotheses of Theorem 4.2
from [2] are satisfied. Therefore,

YT,a
D−−−→

T→∞
P, (15)

and this proves the theorem.

By (15), the measure P is independent on the sequence {Xnk}. Since the sequence
{Xn} is relatively compact, it follows that

Xn
D−−−→

n→∞
P. (16)

On (Hr(DL),B(Hr(DL))), define one more measure

P̂T,a(A) =
1
T

meas{τ ∈ [0, T] : L(s + iaτ, ω) ∈ A}

for almost all ω ∈ Ω. Then, by (15), Lemmas 4 and 6, similarly as above, we obtain the
analogue of Theorem 3.

Theorem 4. Suppose that real algebraic numbers a1, . . . , ar are linearly independent over Q. Then,
P̂T,a also converges weakly to the measure P as T → ∞.

4. Identification of the Measure P

For the proof of Theorem 2, the explicit form of the limit measure in Theorems 3 and 4
is needed. For this, some elements of ergodic theory can be applied.

For brevity, we set

a(τ) =
((

p−ia1τ : p ∈ P
)
, . . . ,

(
p−iarτ : p ∈ P

))
, τ ∈ R,

and define
E(τ, ω) = a(τ)ω, ω ∈ Ωr.

Then, E(τ, ω) is a measurable measure preserving transformation of the group Ωr, and
{E(τ, ω) : τ ∈ R} form a group of these transformations. For A ∈ B(Ωr), let
A(τ) = E(τ, A). If the sets A and A(τ) differ one from another at most by a set of
mH-measure zero, then the set A is called invariant. All invariant sets form a σ-field. If this
field consists only of sets of mH-measure 1 or 0, then the group {E(τ, ω)} is called ergodic.

Lemma 7. Suppose that real algebraic numbers a1, . . . , ar are linearly independent over Q. Then,
the group {E(τ, ω) : τ ∈ R} is ergodic.

Proof. The characters χ of the group Ωr are of the form

χ(ω) =
r

∏
j=1

∏
p∈P

∗
ω

kjp
j (p), (17)

where the sign ∗means that only a finite number of integers k jp is not zero. This already
was used in the proof of Lemma 2 for the definition of the Fourier transform of the measure
QT,a. Suppose that A is an invariant set with respect to {E(τ, ω)}, and χ is a nontrivial
character of Ωr, i.e., χ(m) 6≡ 1. Then, by (17), (k1, . . . , kr) 6= (0, . . . , 0), and thus Aa,k 6= 0
in the notation used in the proof of Lemma 2. Therefore, there exists a real number τ0
such that

χ(a(τ0)) = exp{−iτ0 Aa,k} 6= 1. (18)
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Take the indicator function IA of the set A. In virtue of invariance of the set A, we
have

IA
(
a(τ0)ω

)
= IA(ω)

for almost all ω ∈ Ωr. Hence, denoting by ĝ the Fourier transform of a function g, we find

ÎA(χ) = χ
(
a(τ0)

) ∫
Ωr

IA
(
a(τ0)ω

)
χ(ω)dmH

= χ
(
a(τ0)

) ∫
Ωr

IA(ω)χ(ω)dmH = χ
(
a(τ0)

)
ÎA(χ).

Therefore, in view of (18),

ÎA(χ) = 0. (19)

Now, suppose that χ0 denotes the trivial character of Ωr, and ÎA(χ0) = c. Then, taking
into account (19), we have

ÎA(χ) = c
∫

Ωr
χ(m)dmh = ĉ(χ)

for an arbitrary character χ of Ωr. This shows that IA(ω) = c for almost all ω ∈ Ωr.
However, IA is the indicator function of the A, thus, IA(ω) = 1 or IA(ω) = 0 for almost all
ω ∈ Ωr. In other words, mH(A) = 1 or mH(A) = 0, and the lemma is proved.

Denote by PL the distribution of the Hr(DL)-valued random element L(s, ω), i.e.,

PL(A) = mH
{

ω ∈ Ωr : L(s, ω) ∈ A
}

, A ∈ B(Hr(DL)).

Lemma 8. The measure P in Theorems 3 and 4 coincide with PL.

Proof. Suppose that A is a continuity set of the measure P, i.e., P(∂A) = 0, where ∂A
denotes the boundary of A. Then, Theorem 4 together with the equivalent of weak con-
vergence of probability measure in terms of continuity sets (see, for example, Theorem 2.1
of [14]) yields

lim
T→∞

P̂T,a(A) = P(A). (20)

On (Ωr,B(Ωr), mH), define the random variable

θ(ω) =

{
1 if L(s, ω) ∈ A,
0 otherwise.

Lemma 7 implies the ergodicity of the random process θ
(
E(τ, ω)

)
. Therefore, by the

Birkhoff–Khintchine ergodic theorem (see, for example, [15]), we obtain

lim
T→∞

1
T

∫ T

0
θ
(
E(τ, ω)

)
dτ = Eθ = PL(A), (21)

where Eθ is the expectation of θ. However, by the definitions of E(τ, ω) and θ,

1
T

∫ T

0
θ
(
E(τ, ω)

)
dτ =

1
T

meas
{

τ ∈ [0, T] : L(s + iaτ, ω) ∈ A
}
= P̂T,a(A).

This and (21) show that
lim

T→∞
P̂T,a(A) = PL(A).

Thus, in view of (20), P(A) = PL(A) for all continuity sets A of P. It is well known
that continuity sets constitute the defining class. Thus, P = PL.
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It remains to find a support of the measure PL. We recall that the support of PL is a
minimal closed set SL such that PL(SL) = 1.

Let
SL = {g ∈ H(DL) : g(s) = 0 or g(s) ≡ 0}.

Lemma 9. The support of the measure PL is the set Sr
L.

Proof. It is known that the support of the measure

PL(A)
de f
= mjH{ωj ∈ Ωj : L(s, ωj) ∈ A}, A ∈ B(H(DL)), j = 1, . . . , r,

is the set SL (see [2] or [7]). Since the space H(DL) is separable, we have

B(Hr(DL)) = B(H(DL))× . . .×B(H(DL))︸ ︷︷ ︸
r

.

Therefore, it suffices to consider the measure PL on rectangular sets

A = A1 × . . .× Ar, Aj ∈ B(H(DL)), j = 1, . . . , r.

Moreover, mH = m1H × . . .×mrH . These remarks show that

mH
{

ω ∈ Ωr : L(s, ω) ∈ A
}
=

r

∏
j=1

mjH{ωj ∈ Ωj : L(s, ωj) ∈ Aj}.

This and the minimality of the support prove the lemma.

5. Proof of Theorem 2

Theorem 2 follows from Theorem 3, Lemmas 8 and 9, and the Mergelyan’s theorem
on the approximation of analytic functions by polynomials (see [16]).

Proof of Theorem 2. Case of lower density:
By the Mergelyan theorem, there exist polynomials p1(s), . . . , pr(s) such that

sup
1≤j≤r

sup
s∈Kj

| f j(s)− epj(s)| < ε

2
. (22)

Let

Gε =

{
(g1, . . . , gr) ∈ Hr(DL) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− epj(s)| < ε

}
.

Then, in view of Lemma 9, Gε is an open neighborhood of an element
(
ep1(s), . . . , epr(s)

)
of the support Sr

L of the measure PL. Therefore, by a property of the support,

PL(Gε) > 0. (23)

Hence, by Theorem 3, Lemma 8, and the equivalent of weak convergence in terms of
open sets (see, for example, Theorem 2.1 of [14]),

lim inf
T→∞

PT,a(Gε) ≥ PL(Gε) > 0.

Thus, by the definitions of PT,ε and Gε,

lim inf
T→∞

1
T

meas
{

τ ∈ [0, T] : sup
1≤j≤r

sup
s∈Kj

|L(s + iajτ)− epj(s)| < ε

2

}
> 0. (24)
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Define one more set

Aε =

{
(g1, . . . , gr) ∈ Hr(DL) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− f j(s)| < ε

}
.

Then, in view of (22), we have Gε ⊂ Aε. This and (24) show that

lim inf
T→∞

1
T

meas
{

τ ∈ [0, T] : sup
1≤j≤r

sup
s∈Kj

|L(s + iajτ)− f j(s)| < ε

}
> 0.

Case of density: The boundaries ∂Aε of the set Aε do not intersect for different values
of ε. Therefore, PL(∂Aε) > 0 at most for countable many ε > 0, i.e., Aε is a continuity set of
PL for all but at most countable many ε > 0. Moreover, since Gε ⊂ Aε, we have PL(Aε) > 0
by (23). Therefore, Theorem 3, Lemma 8, and the equivalent of weak convergence in terms
of continuity sets (see Theorem 2.1 of [14]) yield

lim
T→∞

PT,a(Aε) = PL(Aε) > 0

for all but at most countably many ε > 0. This and the definitions of PT,a and Aε complete
the proof of the theorem.

6. Concluding Remarks

Let L(s) be a function from the Selberg–Steuding class. Combining algebraic, analytic,
and probabilistic methods, we obtain a theorem on simultaneous approximations of a
collection of analytic functions

(
f1(s), . . . , fr(s)

)
in the strip DL = {s ∈ C : σL < σ < 1}

by a collection of shifts
(

L(s + ia1τ), . . . , L(s + iarτ)
)
, where a1, . . . , ar are real algebraic

numbers linearly independent over the field of rational numbers, and σL > 1
2 is a certain

number depending on L. More precisely, we proved that the set of the above shifts has a
positive lower density, or even positive lower density for all but not most countable many
accuracies of approximation. Thus, the set of approximating shifts is infinite.

It is important that the measure Vn is independent of the used shift and converges
weakly to the measure PL. This result can be used for the proof of other joint theorems
on joint approximation of analytic functions by more complicated shifts including dis-
crete shifts.
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