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A B S T R A C T   

There is strong evidence that diabetes is closely linked with gut dysbiosis such that insults to the gut microbiota 
can lead to diabetes. Meanwhile, since diabetes can be caused by a variety of tissue dysfunction, it would be ideal 
to develop single therapeutic strategies that aim at mitigating the condition and modulating the gut microbiota 
towards a healthy state. However, as it is difficult to define what a healthy gut microbiota is, the strategies would 
need to result in a healthy functional change in the microbiota. Recently, the use of functional foods for pro-
moting health and modulating the gut microbiota is on the rise and colored vegetables such as beetroot have 
shown promising results. Meanwhile, the possible mechanism by which beetroot consumption combats diabetes 
through gut microbiota modulation is not established. Therefore, in this work, we discuss our current knowledge 
about the possible mechanism by which beetroot exerts antidiabetic effects as well as the challenges and future 
perspectives in this field of research.   

1. Introduction 

High blood sugar levels, insulin resistance, and dyslipidemia are the 
hallmarks of type 2 diabetes mellitus (T2DM), a chronic condition that 
also causes damaged pancreatic beta cells and insulin resistance (Bellary 
et al., 2021). With approximately 8% of the world’s population affected 
by T2DM, this disease is of particular significance to global health care 
systems (Khan et al., 2020). Uncontrolled hyperglycemia is closely 
associated with the overproduction of reactive oxygen species (ROS), 
which causes oxidative stress and is a key component of T2DM patho-
physiology (Bhatti et al., 2022). 

In fact, diabetes is a risk factor for nephropathy (Chun & Park, 2020), 
cognitive dysfunction (Dao et al., 2023), cardiovascular events as well as 
micro- and macrovascular diseases (Mannucci et al., 2012). The body 
produces more dipeptidyl peptidase-IV (DPP-IV) as a result of T2DM, 
which inhibits the incretin system that regulates glucose homeostasis 
(Kasina & Baradhi, 2021). As a result, glycemic control has emerged as a 
crucial therapeutic approach for T2DM management. In the gut, 
pancreatic and intestinal glucosidases hydrolyze dietary carbohydrates 
to release glucose, which when absorbed, raises blood sugar levels (Liu 
et al., 2023). 

The gut microbiota has been linked to diabetes pathogenesis as it has 

been found to play a crucial role in host glucose metabolism (Amabebe 
et al., 2020). This was evident in a study involving men with insulin 
resistance who experienced improved insulin sensitivity after receiving 
the gut microbiota of non-diabetic donors (Kootte et al., 2017). Since 
dietary glucose is a major contributor to hyperglycemia, delaying di-
etary carbohydrate hydrolysis by inhibiting α-amylase and α-glucosidase 
activities has emerged as an effective therapeutic approach for the 
management of diabetes (DiNicolantonio et al., 2015). Meanwhile, liver 
problems, asthenia, nausea, and gastrointestinal discomfort have all 
been associated with the use of pharmacological therapeutics that block 
carbohydrate-digesting enzymes (DiNicolantonio et al., 2015). 

The prevalence of diabetes coupled with the side effects of existing 
antidiabetic drugs makes the search and development of safe non- 
pharmacological therapeutics for managing diabetes imperative. 
Considering that diabetes can be triggered by pancreatic problems and 
insulin resistance in the fat, liver and muscle cells, it is essential to 
develop therapeutic strategies that aim at mitigating the condition and 
modulating the gut microbiota towards a healthy state. However, as it is 
difficult to define what a healthy gut microbiota is, the strategies would 
need to result in a healthy functional change in the microbiota. 

Interestingly, plants and their metabolites have remained invaluable 
therapeutic sources for health promotion and modulation of the gut 
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microbial composition. Indeed, phytochemicals such as carotenoids, 
anthocyanins and betalains found in vegetables such as red beetroot 
(Beta vulgaris subsp. vulgaris) have potential antioxidant and glycemic 
control effects (Azizah et al., 2022; Li et al., 2022) and can therefore be 
used for combating the disease. Red beetroot (herein referred to as 
beetroot) is a vegetable high in nitrates, dietary fiber (Cava et al., 2012; 
Kale et al., 2018) and betalains which have anti-inflammatory, antiox-
idant and antidiabetic effects (Aliahmadi et al., 2021; Karimzadeh et al., 
2022). It also has a strong ability to modulate the gut microbiota (Wang 
et al., 2023). 

Despite the antidiabetic potential of the vegetable, the possible 
mechanisms by which it mitigates diabetes is not clearly understood. 
Therefore, in this work, we discuss our current knowledge about the 
antidiabetic potential of beetroot, the possible mechanisms by which it 
modulates the gut microbiota for diabetes remission and the future 
perspectives of its use as an antidiabetic functional food. 

2. Different bioactive compounds in beetroot and their 
functions 

High amounts of polyphenols, betalains, flavonoids, ascorbic acid, 
carotenoids, saponins and nitrate are present in beetroot (Chhikara 
et al., 2019) and the bioactive potentials of the vegetable has been re-
ported (Bangar et al., 2022). This section will further elaborate on some 
of the important bioactive components in red beetroot and their impact 
on the gut microbiota. 

2.1. Phenolic compounds and flavonoids 

Beetroot is a rich source of flavonoids and phenolic compounds 
(Fig. 1). A recent study reported that the total phenolic acids content in 
beetroot was 30.81 mg gallic acid equivalent/g dry weight (DW) (Des-
seva et al., 2020) while other studies report relatively lower levels 
(Vasconcellos et al., 2016; Wootton-Beard & Ryan, 2011). Beetroot peels 
also have very high levels of phenolic acids such as rutin, epicatechin, 
catechin hydrate, vanillic, protocatechuic, p-coumaric, syringic acids 
and caffeic acid (Maraie et al., 2014). A study showed that 100 g of DW 
of beetroot pomace extract contained 132.52 mg of ferulic acid, 5.12 mg 
vanillic acid, 1.13 mg p-hydroxybenzoic acid, 7.11 mg caffeic acid, 5.42 
mg Protocatechuic acid, 37.96 mg catechin, 0.39 mg epicatechin and 

0.25 mg rutin (Vulić et al., 2014). Some studies have shown that cooked 
beetroot and beetroot juice have higher phenolic contents than beetroot 
powder and chips due to loss during the drying process (Mella et al., 
2022; Vasconcellos et al., 2016). Four main groups of flavonoids namely 
betavulgarin, cochliophilin A, betagarin, and dihydroisorhamnetin have 
been identified in beetroot (Vulić et al., 2014) and potential anticancer 
flavanones such as betagarin and betavulgarin are present in beetroot 
leaves (Tan & Hamid, 2021). Other flavonoids in beetroots include 5-hy-
droxy-6,7-methylenedioxyflavone, 3,5-dihydroxy- 6,7-methylenedioxy-
flavanone, 2,5-dihydroxy-6, and 7-methylenedioxyisoflavone (Lim, 
2012; Rana et al., 2022). Most phenolic compounds are not readily 
absorbed in the upper gastrointestinal tract after consumption and they 
therefore reach the large intestine where they interact with gut micro-
biota (Quatrin et al., 2020). These phenolic compound promote the 
growth of gut bacteria such as Parabacteroides distasonis, Bifidobacterium 
sp., Prevotella sp., Bacteroides cellulosilyticus and Akkermansia muciniphila 
which play critical roles in host energy metabolism (Han et al., 2009; Liu 
et al., 2019). 

2.2. Carotenoids 

Carotenoids are abundant in beetroot and act as potent antioxidant, 
oxygen radical scavengers (Lim et al., 2023), anticarcinogens (Vrdoljak, 
2022) and immune stimulants (Riley et al., 2023) (Fig. 1). Beetroot flesh 
contains about 1.9 mg/100 g beta carotene (Rebecca, et al., 2014) and 
22 μg/100 g alpha carotene (Ceclu & Nistor, 2020) while beetroot leaves 
contain 11.64 μg/100 g beta carotene and 3.5 μg/100 g alpha carotene 
(Ceclu & Nistor, 2020). Beta carotene consumption has been shown to 
prevent oxidative stress and DNA strand breakage (Riso et al., 1999) and 
therefore promote health. Although beta carotene consumption may not 
significantly alter gut microbial α-diversity (Honarbakhsh et al., 2022; Li 
et al., 2021), β-carotene may increase the abundance of Roseburia, 
Lachnospiraceae and Parasutterella but decrease the populations of 
Dialister, Enterobacter and Collinsella in the gut. β-carotene can also 
promote the production of acetic acid, propionic acid and lactic acid by 
gut microbes which can reduce inflammatory biomarkers (Li et al., 
2023). 

Fig. 1. Major phenolic and flavonoid compounds in red beetroot that have potential anti-diabetic activity.  
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2.3. Betalains 

Based on their chemical structure and composition, betalains, can be 
classified as betaxanthin (yellow pigment) and betacyanin (red pigment) 
(Fig. 2). Betaxanthin can be subdivided into vulgaxanthin-I and 
vulgaxanthin-II (Ravichandran et al., 2013). Betacyanins such as pre-
betanin, betanin, isobetanin, and neobetanin have been identified in 
beetroot peel (Nemzer et al., 2011). Previous studies showed that dried 
beetroot extracts contained 20.75 mg/g of betacyanins and 19.01 mg/g 
of betaxanthins. Another study showed that betanin was the most 
abundant pigment in red beetroot juice (312.47 mg/100 g DW) followed 
by vulgaxanthin I (104.08 mg/100 g DW), isobetanin (71.28 mg/100 g 
DW), betanidin (18.2 mg/100 g DW) and isobetanidin (4.6 mg/100 g 
DW) (Slavov et al., 2013). Using eutectic solvents for betacyanin 
extraction from red beetroot can yield about 400 mg/100 g of the dye 
(Hernández-Aguirre et al., 2021). Interestingly, consumption of beta-
lains may promote the growth of Akkermansia sp. which have beneficial 
effects against metabolic disorders such as insulin resistance and dia-
betes (Song et al., 2016). More so, betalains suppress Staphylococcus 
aureus and Pseudomonas aeruginosa attachment proliferation and pro-
liferation by inhibiting their biofilm production (Yong et al., 2019). 

3. Summary of recent clinical experiments on beetroot to 
control diabetes, and possible methods of improving the 
antidiabetic potentials of the vegetable 

3.1. Antidiabetic abilities of beetroot consumption 

The interest in using beetroot as a functional food for managing 
diabetes is fascinating due to the results observed in animal studies. In 
fact, several studies have demonstrated the antidiabetic potential of 
beetroot in vitro and in animal studies though a few positive outcomes 
have been observed in human studies. In diabetic rat models, for 
example, an ethanolic extract of red beetroot reduced fasting blood 
glucose, increased insulin levels, hepatic cholesterol levels, tri-
glycerides, and serum low-density lipoproteins (Al-Harbi et al., 2021). 
Similarly, in a single-blind cross-over controlled study, consumption of a 
beetroot juice significantly lowered postprandial glycemic and insulin 
response relative to volunteers who consumed a control beverage 
(Wootton-Beard et al., 2014). Only several clinical trial studies have 
investigated the effects of beetroot supplementation on glycemic control 
and lipid profile in T2DM patients and they have yielded mixed 

outcomes (Table 1). Such outcomes could be due to the inter-individual 
variations in gut microbiota, metabotypes as well as genetics (Daliri 
et al., 2021; Surono et al., 2022). 

3.2. Strategies for improving the antidiabetic effects of beetroot 

Most studies about the antidiabetic potential of beetroot have 
focused on fresh beetroot (Aliahmadi et al., 2021; Karimzadeh et al., 
2022) but not much is known about the potential anti-diabetic activities 
of fermented beetroot. Meanwhile, it is well established that fermenta-
tion with lactic acid bacteria and yeast can bioactivate, biotransform, 
and increase the release of bound bioactive compounds from the food 
matrix to augment their health promoting effects (Zhao et al., 2021). 
Recently, we recorded a significant increase in the antioxidant activity, 
DPP-IV inhibitory potential and inhibition of carbohydrate hydrolyzing 
enzyme activities when beetroot was fermented with Latilactobacillus 
curvatus PN39MY (Daliri, Balnionytė, et al., 2023; Daliri, Ofosu, Chel-
liah, & Oh, 2023). During fermentation, components of beetroot such as 
betanin (the main red-violet component in beetroot) can be converted 
by microbial deglucosylation into aglycones such as betanidin and iso-
betanidin (Czyżowska et al., 2006). Such aglycones produced after 
cutting-off the β-D-glucosyl residues of betanin demonstrate improved 
potential health benefits than the parent compounds (Wybraniec et al., 
2011). Although fermentation also produces other metabolites besides 
aglycone molecules, the levels of aglycones can be increased drastically 
when certain specific bacteria are used for the fermentation process. 
Bacteroides thetaiotaomicron (Wardman et al., 2022), L. casei, L. planta-
rum, Streptococcus thermophilus, L. acidophilus, L. delbrueckii ssp. bulgar-
icus, L. fermentum and several Bifidobacterium species possess active 
β-D-glycosidases (β-D-glucoside glucohydrolase, E.C. 3.2.1.21) (Ko 
et al., 2022; Michlmayr & Kneifel, 2014) and may be useful for gener-
ating aglycones of betalains (Fig. 3). Saccharomyces cerevisiae also have 
β-D-glycosidases (Tang et al., 2013) which could produce aglycones 
during fermentation. Other metabolites of bioactive relevance such as 
neobetanin may also be generated during fermentation by microbial 
dehydrogenases (Qin et al., 2022). Most of the metabolites produced 
after the fermentation process are usually readily absorbed through the 
gut epithelium via passive diffusion (Xiao, 2017), thereby increasing 
their bioavailability. It is therefore essential to identify beneficial mi-
crobes that can be used for the development of antidiabetic functional 
foods (see Fig. 4). 

Apart from using bacteria as cell factories for generating bioactive 

Fig. 2. General structures of betalamic acid (a), betacyanins (b) and betaxanthins (c) Betanin: R1––R2––H. R3 = amine or amino acid group. Adapted from Baião 
et al. (Baião et al., 2017). 
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Table 1 
Effects of beetroot consumption on T2DM patients and healthy volunteers.  

Group Study Population Method Dose Duration Outcome 

Type 2 
diabetes 
patients 

Karimzadeh et al. 
(2022) 

45 patients (31 males), 53.99 ± 9 years. 
Duration of disease = 6.43 ± 3.31 years 

Stratified block 
randomized control trials 

12 ml of concentrated 
beet root juice, twice 
daily 

12 
weeks 

Compared with the control group, beetroot juice reduced IL-6 (− 0.1 vs.0.83, 
P = 0.001), TNF-α (− 1.28 vs. 5.51, P = 0.001), and NF-κB (− 0.03 vs. 0.36, P 
= 0.005) 

Karimzadeh et al. 
(2023) 

38 patients (n = 19 in beetroot group and n 
= 19 in placebo group), 54 ± 9 years. 
Duration of disease = 6.43 ± 3.3 years 

Simply randomized, 
parallel-group, controlled, 
and open-label trial 

24 ml of concentrated 
beetroot juice, once per 
day 

12 
weeks 

Compared with the baseline, significant reductions in plasma insulin (14.55 
± 7.85 vs. 10.62 ± 6.96, P = 0.014) and homeostasis model assessment of 
β-cell function (HOMA-B) (3.96 ± 0.83 vs. 3.63 ± 0.75, P = 0.038) 

Bahadoran, 
Norouzirad, et al. 
(2021) 

64 patients (n = 35 in beetroot group and n 
= 29 in placebo group), 54.0 ± 8.5 years 
(47.9% were male), Duration of disease =
8.5 ± 6.1 years 

Randomized double-blind 
placebo controlled trial 

5 g of beetroot powder, 
once per day 

24 
weeks 

No effect on metabolic parameters 

Gilchrist et al. (2013) 27 patients (18 males), 67.2 ± 4.9 years, 
Duration of disease = 13.6 ± 8.1 years 

Double-blind, randomized, 
placebo-controlled 
crossover trial 

250 ml of beetroot 
juice, once per day 

2 weeks No improvement in insulin sensitivity 

Aliahmadi et al. 
(2021) 

44 patients (10 males), 57 ± 4.5 years. 
Duration of disease ≥5 years 

Quasi-experimental study 100 g of raw beetroot 
powder, once per day 

8 weeks Reduction in fasting blood sugar levels (− 13.53 mg/dL), glycosylated 
hemoglobin (− 0.34%), apolipoproteinB100 (− 8.25 mg/dL), aspartate 
aminotransferase (− 1.75 U/L), alanine aminotransferase (− 3.7 U/L), 
homocysteine (− 7.88 μmoL/l), and a significant increase in total antioxidant 
capacity 

Bahadoran, 
Norouzirad, et al. 
(2021) 

9 healthy adults and nine T2DM patients Randomized crossover 
study 

270 ml of beetroot 
juice, once per day 

Once Reduced blood glucose levels significantly after consuming white bread 

Healthy 
volunteers 

Olumese and Oboh 
(2016) 

30 subjects (18 males) aged 19–29 years, 
(FBS ≤2 5.6 mmol/L) and BMI less than 25 
kg/m2 

Not reported 10% beetroot juice, 
once per day 

6 weeks Reduced blood glucose levels from 76.1 mg/dL to 49.8 mg/dL, decrease the 
values of insulin obtained during the intervention period from 9.42 μ IU/ml 
to 1.16 μ IU/ml 

Wootton-Beard et al. 
(2014) 

16 subjects (6 males), 27 ± 5 years, 23⋅3 ±
2.8 kg/m2 

Randomized, single-blind, 
cross-over design 

225 ml of concentrated 
beetroot juice, once per 
day 

Once Significant lowering of the postprandial insulin response 

Shepherd et al. 
(2016) 

16 young adults (26.6 ± 6 year), BMI = 24.6 
± 3.1 kg/m2 

Double-blind, placebo- 
controlled, randomized 
control trial 

140 ml concentrated 
beetroot juice, once per 
day 

Once No effect on plasma glucose, C-peptide, or incretin concentration 

15 adults (59.2 ± 6 year), BMI = 26.36 ±
3.8 kg/m2 

No effect on plasma glucose, C-peptide, or incretin concentration 

Chang et al. (2018) 10 volunteers (1 male and 9 females), aged 
20–24 years and BMI ranging from 
16⋅7–26⋅8 kg/m2 

Randomized crossover 
study 

270 ml of concentrated 
beetroot juice, once per 
day 

Once Reduced blood glucose levels significantly after consuming white bread  
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components in beetroot, treatment of beetroot with specific β-D-glyco-
sidases under controlled temperature and pH could yield aglycones. 
Indeed, a combination of high temperature and fermentation could 
further improve the bioactivity of beetroot products since microbial 
transformation and thermal degradation could generate new com-
pounds (Daliri, Balnionytė, et al., 2023; Daliri, Ofosu, et al., 2023). 
Similarly, treating beetroot with appropriate imidases under the right 
conditions could yield betalamic acid (a strong antioxidant compound). 
Betalamic acid can also be obtained by high temperature treatment of 
beetroot (Xu et al., 2023) and by alkaline hydrolysis (Miguel, 2018). 

4. Diabetes-associated gut dysbiosis and the impact of beetroot 
on gut microbial ecology 

4.1. Diabetes-associated gut dysbiosis 

Accumulating evidence show that the gut microbiota of diabetics and 
non-diabetics are different (Larsen et al., 2010). To understand the 
causality between gut microbiota and diabetes, Cani et al. (Cani et al., 
2008) fed mice with high-fat diet (HFD) to alter their gut microbiota. 
The HFD-fed mice exhibited dramatic changes in the gut microbiota (a 
decrease in the levels of Lactobacillus spp., Bifidobacterium spp. and 
Bacteroides-Prevotella spp.), high plasma lipopolysaccharide concentra-
tions (an indicator of metabolic endotoxemia), inflammation, intestinal 
permeability and high bold glucose levels compared to control mice. 
Treating the mice with ampicillin and neomycin however altered their 
gut microbiota, reduced metabolic endotoxemia to a level similar to that 
of the control mice, significantly reduced cecal endotoxin contents, 
reduced blood glucose and restored gut membrane permeability. In a 

similar study, administration of vancomycin and polymyxin B was 
shown to drastically reduce the levels of lithocholic acid (LCA) and 
deoxycholic acid (DCA) producers such as Clostridium cluster XI, Clos-
tridium cluster XIVa and B. fragilis and their metabolites (LCA and DCA). 
This resulted in altered liver glycogen metabolism, bile acid and 
cholesterol biosynthesis and reduced blood glucose levels (Kuno et al., 
2018). This is because, microbial LCA and DCA are farnesoid X receptor 
agonists which suppress gluconeogenesis, lipogenesis and fatty acid 
synthesis (Han et al., 2021). These studies provide evidence that gut 
dysbiosis can cause diabetes. Similar to animal studies, gut microbial 
dysbiosis is also well documented in diabetic patients (Karlsson et al., 
2013). In a recent literature review of forty-two human studies reporting 
the relationship between diabetes and gut microbiota, the populations of 
Akkermansia, Bifidobacterium, Faecalibacterium, Bacteroides and Rose-
buria genera were significantly reduced in T2DM, while the genera of 
Fusobacterium, Blautia and Ruminococcus genera were significantly 
increased in T2DM patients (Gurung et al., 2020). 

The introduction of a complete and stable bacteria community in the 
gut to repair or replace the altered native microbiota has yielded some 
promising outcomes (Ng et al., 2022). For instance, in a randomized, 
double-blind controlled study of insulin-resistant men, patients received 
the gut microbiota from lean body mass donors. Analysis of the exper-
imental results demonstrated that fecal microbiota transplantation 
(FMT) improved insulin sensitivity and also increased the number of 
butyrate-producing gut bacteria (Vrieze et al., 2012). Although an in-
crease or restoration in the levels of butyrate-producing bacteria is 
thought to be responsible for the disease remission after FMT (Capper 
et al., 2020; Ng et al., 2022; Vrieze et al., 2012), the specific bacteria that 
need to be restored for the remission are yet to be established. 

Fig. 3. Bioconversion of betanin into various metabolites with improved biological activities. The reactions by which the metabolites are produces are indicated 
below the list of bacteria. 
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Furthermore, the functional changes that occur in the microbial com-
munity following the treatment of diabetic patients with FMT are still 
unclear. This is particularly important because the gut microbial profile 
of the recipient tend to differ from the donor’s gut microbiota over time, 
due to host immunity (Littmann et al., 2021) and diet (Lee et al., 2017) 
although the health effect may remain. However, as the gut microbiota 
is directly involved in diabetes and its management, strategies aimed at 
modulating the gut microbiota and its functions remain imperative. 

4.2. Beetroot modulation of microbial structure and function in diabetes- 
associated dysbiosis 

The modulatory effects of beetroot on the gut microbiota have been 
attributed to its constituents (de Oliveira et al., 2021) as they can pro-
mote the growth of microbes that can metabolize them while inhibiting 
others. This is particularly true because the ability of resident bacteria to 
utilize dietary components for growth directly influences their abun-
dance in the gut (Agans et al., 2018). For instance, recent studies with 
healthy volunteers demonstrated that beetroot consumption can in-
crease the population of Akkermansia muciniphila (a known butyrate 
producer) and decrease the abundance Bacteroides fragilis (Wang et al., 
2023). Researchers reported that beetroot consumers had high levels of 
fecal butyrate which was associated with the high levels of betacyanin 
catabolites in beetroot (Wang et al., 2023). In general, betalains are 
poorly absorbed in the upper gastrointestinal tract (Clifford et al., 2017; 
Sawicki et al., 2018) and can therefore reach the large intestine to 
modulate the gut microbiota. This was demonstrated in a study in which 
consumption of betacyanin promoted the growth of Akkermansia, 
Mucispirilum, and Anaerotruncus species in diabetic mice (Henning et al., 
2017). The antimicrobial activity of betalains against gram-positive 
bacteria is also well established (Velićanski et al., 2011; Vulić et al., 
2013; Yong et al. 2017, 2018) and this may likely play a role in the 
ability of beetroot consumption to alter the gut microbial profile. 

Beetroot components not only selectively promote the growth of gut 
microorganisms but can also modulate their functions by upregulating 

(Agans et al., 2018; McIntosh et al., 2012) or downregulating microbial 
gene expression which can influence host physiology. Since gut micro-
organisms contribute to the digestion of complex carbohydrates, pro-
teins and fats in the host by expressing enzymes required for the 
hydrolysis of these compounds (Oliphant & Allen-Vercoe, 2019), the 
ability to modulate their functions would be critical for gut health. In a 
recent study, consumption of fermented beetroot was found to inhibit 
the growth of Enterobacteriaceae, suppress their β-glucosidase produc-
tion and inhibit the overall β-glucosidase activity in the gut (Klewicka 
et al., 2009). In fact, gut bacteria belonging to the Enterobacteriaceae 
family (Klewicka et al., 2009) and Bacteroides species (Xu et al., 2003) 
possess numerous active glycoside hydrolases in their genomes and can 
express α-glucosidases, β-glucosidases, α-galactosidases, α-man-
nosidases, β-galactosidases, β-glucuronidases, β-fructofuranosidases, 
endo-1,2-β-xylanases and amylases (Xu et al., 2003). A reduction in the 
populations of these bacteria would therefore influence complex car-
bohydrate metabolism in the gut. Meanwhile, though fermented beet-
root may modulate the structure and function of the gut microbiota, the 
specific component(s) in the fermented samples that were involved in 
the bacteria and enzyme inhibition would need to be investigated to 
understand the mechanism behind its (their) activities. It is however 
noteworthy that, although consumption of beetroot can significantly 
affect specific microbial groups in the gut, the levels of certain bacteria 
characteristic of a given disease condition may remain unaltered even 
after intervention (Fragiadakis et al., 2020; Walker et al., 2011) and 
remission. This therefore makes a complete reversal of the diabetes gut 
microbial profile to its initial profile before the onset of the disease 
almost impossible. 

4.3. Direct and indirect mechanisms by which beetroot mitigates diabetes 

4.3.1. Direct effect on the host 
Beetroot may directly mitigate diabetes by inhibiting carbohydrate 

hydrolysis and glucose metabolism. Indeed, glucose released from car-
bohydrate digestion and increased gluconeogenesis in the liver of 

Fig. 4. Possible mechanism by which betanin directly inhibit carbohydrate digestion and glucose metabolism to mitigate diabetes.  
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diabetic patients are the main causes of hyperglycemia (Jiang et al., 
2020). Therefore, inhibiting the activities of carbohydrate-digesting 
enzymes and controlling hepatic carbohydrate metabolism in the host 
would drastically reduce postprandial blood glucose levels (Hedrington 
& Davis, 2019). In a recent study, we demonstrated that fermentation of 
beetroot with L. curvatus PN39MY significantly increased its anti--
α-glucosidase ability (Daliri, Balnionytė, et al., 2023; Daliri, Ofosu, et al., 
2023). Results from other studies have shown that betanins in beetroot 
can inhibit both α-amylase and α-glucosidase thereby reducing glucose 
release from food (Koss-Mikołajczyk et al., 2019; Montiel-Sánchez et al., 
2021). Betanin consumption can also promote glycolysis by activating 
glucokinase and pyruvate kinase while decreasing gluconeogenic en-
zymes such as glucose-6-phosphatase and fructose-1,6-bisphosphatase 
in the liver (Dhananjayan et al., 2017). In addition, beetroot nitrates 
can generate nitric oxide which plays a crucial role in glucose transport 
in adipocytes and myocytes, increases glucose oxidation and decreases 
glycogenesis (Jobgen et al., 2006). The ability of beetroot to control 
glucose metabolism could account for the significant reduction in fasting 
blood glucose levels in diabetic patients after they consumed beetroot 
juice (Aliahmadi et al., 2021; Bahadoran Mirmiran et al., 2021). 

Beetroot may also alleviate diabetes due to its antioxidant abilities. 
In fact, hyperglycemia induces rapid fragmentation of mitochondria, 
which offsets the production of ROS –generating substrate by the Krebs 
cycle. This results in an upsurge in ROS production (Nishikawa et al., 
2000; Rena et al., 1999; Yu et al., 2006) which activates intracellular 
formation of precursors of advanced glycation end products (AGEs) and 
the overexpression of AGE receptors as well as their activating ligands 
(Brownlee, 2005). These AGE precursors modify intracellular proteins 
that regulate gene transcription (Kim et al., 2012) as well as other 
extracellular matrix molecules to alter cell signaling resulting in cellular 
dysfunction (Ahmad et al., 2022). Recent studies have demonstrated the 
antioxidant and radical scavenging abilities of beetroot flavonoids, 
phenolics and betalains, suggesting that beetroot has the potential to 
prevent oxidative damage to lipid molecules and DNA (Esatbeyoglu 
et al., 2014). Betalains are immonium derivatives of betalamic acid that 
have an aromatic amino molecule capable of radical stabilization. The 
ability of betalain to donate electrons is directly related to this stabili-
zation (Slimen et al., 2017). Due to the fact that radicals are 
electron-deficient molecules, betalains can provide electron density to 
the half-filled orbital and maintain its stability. For betaxanthins, the 
amount of hydroxy and imino residues present determines their anti-
oxidant activity (Gliszczyńska-Świgło et al., 2006). Acylation is known 
to increase the antioxidant activity of betacyanin while glycosylation 
decreases it. Furthermore, 6-O-β-glycosylated betacyanins are more 
effective in scavenging free radicals than their 5-O-β-glycosylated 
counterparts (Gliszczyńska-Świgło et al., 2006). Betanin triggers cellular 
antioxidant defense by inducing the transcription factor nuclear factor 
erythroid 2-related factor 2 which increases levels of heme oxygenase 1 
protein and cellular glutathione as well as transactivation of para-
oxonase 1 (Esatbeyoglu et al., 2014). This may be the reason why con-
sumption of betanin reduces oxidative stress by increasing the activity of 
antioxidant enzymes, terminating lipid peroxidation and reversing liver 
damage in Wistar rats fed with HFD (da Silva et al., 2019). Meanwhile, 
indicaxanthin is a chain-terminating lipoperoxyl radical-scavenger 
which inhibits lipid oxidation by inducing a lag phase and decreasing 
the rate of lipid oxidations reaction (Tesoriere et al., 2007). 

Recent studies have shown that some components of beetroot (spe-
cifically betanin) may inhibit the formation of AGE by binding to 
methylglyoxal (the main intermediate in the formation of AGE), making 
them unavailable for the formation of AGE. Although betanin may not 
directly bind to serum proteins to inhibit the formation of AGE, thermal 
degradation products of betanin such as betalamic acid can bind to 
bovine serum albumin at positions LYS920 and SER930, disabling it 
from binding with sugars (Xu et al., 2023). These antioxidant and 
anti-AGE effects of betanin may account, at least in part to the reduced 
glycated hemoglobin (HbA1c) levels observed in diabetes patients when 

fed with beetroot juice (Aliahmadi et al., 2021) and in mice after they 
were fed with betanin-loaded liposomes (Amjadi et al., 2019). 

4.3.2. Indirect effect on the host through gut microbiota modulation 
It is evident that the gut microbiota influences gut permeability and 

inflammation (Liu et al., 2021), host glucose and lipid metabolism as 
well as insulin sensitivity (Aw & Fukuda, 2018). In view of this, we 
discuss the indirect mechanisms by which beetroot and its components 
modulate the gut microbiota for diabetes remission. 

Recent studies have demonstrated that the gut microbiota can in-
fluence glucose homeostasis by altering gut hormones in the host 
(Gérard & Vidal, 2019). For instance, sulphate-reducing bacteria have 
been shown to produce H2S which can trigger the p38 mitogen-activated 
protein kinase (MAPK) pathway to increase glucagon-like peptide-1 
(GLP-1) secretion from by colonic GLP-1–secreting L-cells (Pichette 
et al., 2017). However, Enterococcus faecalis (which is overly represented 
in diabetics but reduced during treatment and in healthy individuals (Su 
et al., 2015)) can secrete the metalloprotease GelE which disrupts the 
gut epithelia and cleaves GLP-1 to upset glucose homeostasis (LeValley 
et al., 2020). Meanwhile, beetroot consumption promotes the levels of 
Bifidobacterium spp and Lactobacillus spp in the gut (de Oliveira et al., 
2023) which produce metabolites that enhance glucose transporter-4 
translocation through IRS-1/PI3K/Akt insulin signaling pathway in 
L-cells (Kim et al., 2014) and the liver (Li et al., 2017) to mitigate insulin 
resistance. Indeed, many gut Lactobacilli produce metabolites with 
potent α-glucosidase inhibitory abilities that retard glucose release from 
complex carbohydrates, thereby reducing postprandial hyperglycemia 
(Panwar et al., 2014). In addition, gut Bifidobacterium and Lactobacillus 
have bile salt hydrolases which convert primary conjugated bile salts to 
secondary bile acids (Golubeva et al., 2017; Ishimwe et al., 2015). 
Secondary bile acids such as 6α-hydroxylated bile acid can activate the 
TGR5-GLP1R axis to increase the release of incretin hormone and signal 
transduction (Makki et al., 2023). Beetroot consumption also promotes 
the production of butyrate which acts as a ligand of G-protein coupled 
receptors (GPCR41 and GPCR43) that stimulate entero-endocrine l-cells 
to release PYY, GLP-1 and GLP-2 (Allin et al., 2015). 

Additionally, there is increasing evidence to show that alterations in 
gut microbiota fatty acid metabolism play a role in diabetes pathogen-
esis. In fact, diabetic patients have reduced expression of gut microbial 
genes involved in the biosynthesis of short chain fatty acids, whereas 
this is not the case in healthy patients (Vatanen et al., 2018). Further-
more, patients with β-cell autoantibodies have low populations of 
butyrate-producing bacteria in their gut (de Goffau et al., 2013) and this 
accounts for the low levels of butyrate levels observed in their stools. 
Meanwhile, beetroot consumption increases the levels of Lactobacillus 
spp which produce butyrate. Butyrate in turn can inhibit histone 
deacetylation (Steliou et al., 2012) to stimulate mitochondria biogenesis 
and fatty acid oxidation (Hong et al., 2016) which alters insulin 
signaling (Chriett et al., 2017) in the host. Butyrate also activates 
browning and up-regulates fatty acid β-oxidation genes CPT1α, PPARα 
and ACOX1 in adipocytes (Zhang et al., 2023). In the gut, A. muciniphila 
can increase lipid metabolism by activating Lxr, Cpt1 and HMG-CoA 
synthase genes which are involved in fatty acid, cholesterol and bile 
acid metabolism (Derrien et al., 2011; Lukovac et al., 2014). Hence, 
beetroot modulates members of the microbiota to regulate host fatty 
acid metabolism and energy expenditure, which is important for the 
control of T2DM (Denisenko et al., 2020). 

Further, diabetes is associated with low-grade inflammation char-
acterized by elevated levels of circulating pro-inflammatory cytokines, 
chemokines and inflammatory proteins (Pesaro et al., 2021) and gut 
bacteria have been shown to modulate inflammation. Gut bacteria such 
as Fusobacterium, Blautia and Ruminococcus are overrepresented during 
diabetes (Gurung et al., 2020) and these bacteria trigger 
pro-inflammatory metabolites that activate pro-inflammatory cytokines 
in the host (Brennan et al., 2021; Juste et al., 2014). In fact, Fusobacte-
rium nucleatum metabolites and vesicles can provoke the infiltration of 
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inflammatory cells, such as macrophages, creating a pro-inflammatory 
microenvironment (Rubinstein et al., 2013). When macrophages are 
infected with F. nucleatum, they induce the release of inflammatory cy-
tokines such as NF-κB, IL-6, IL-8, IL-10 and IL-18 (Engevik et al., 2021; 
Rubinstein et al., 2013). Similarly, some B. fragilis strains can produce 
B. fragilis toxin which can induce the cleavage of E-cadherin and IL-8 
secretion via β-catenin, NF-κB, and MAPK pathways in the gut epithe-
lium (Lee et al., 2022). However, beetroot consumption promotes the 
populations of bacteria such as A. muciniphila (Gurung et al., 2020) 
whose extracellular vesicles and metabolites may stimulate 
anti-inflammatory cytokines (Raftar et al., 2022) by suppressing TNF-α, 
IFN-γ and IL-8 expression in the gut (Zhai et al., 2019) resulting in 
improved glucose metabolism (Abot et al., 2023). A. muciniphilla buty-
rate also suppresses NF-κB/Rel activation and inhibits the expression of 
IL-8 in the gut (Kinoshita et al., 2002). 

Increased gut membrane permeability is common among T2DM pa-
tients and results in the leakage of gut microbes and toxins into the 
bloodstream (Zhao et al., 2020). This compromised gut membrane 
integrity can be caused by the overexpression of extracellular vesicles by 
some pathobionts in the gut during diabetes. For instance, Fusobacterium 
nucleatum extracellular vesicles can activate receptor-interacting protein 
kinase 1 and receptor-interacting protein kinase 3 resulting in gut 
epithelia necroptosis and membrane dysfunction (Liu et al., 2021). 
Meanwhile, A. muciniphila (whose populations are boosted by beetroot 
consumption) produce extracellular vesicles which can mitigate gut 
membrane permeability by stimulating intestinal tight junction protein 
expression through the activation of adenosine 
monophosphate-activated protein kinase (AMPK) in the gut epithelium 
(Chelakkot et al., 2018). Furthermore, the outer membrane protein of 
A. muciniphila, Amuc_1100, can stimulate the expression of occludin and 
tight junction protein-1 which enhance gut membrane integrity (Riley 
et al., 2023). In addition, Amuc_1100 can inhibit intestinal cannabinoid 
receptor type 1 which could reduce gut permeability (Plovier et al., 
2017). A recent study has demonstrated that A. municiphilla as well as 
their cell membrane proteins can upregulate and activate intestinal 
cAMP-responsive element-binding protein H which increases tight 
junction proteins claudin-5 and claudin-8 expression to improve gut 
integrity (Wade et al., 2023). Moreover, butyrate produced by 
A. municiphilla may also protect membrane integrity by enhancing the 
expression of zonula occludens and also through the peroxisome 
proliferator-activated receptor γ pathway (Kinoshita et al., 2002). 
Consumption of beetroot could therefore boost the levels of beneficial 
commensal microbes that enhance gut membrane integrity during dia-
betes management. 

5. Challenges and future perspectives 

Despite the tendency of beetroot consumption to improve diabetic 
conditions, factors such as variations in gut enteroypes, and metabolic 
phenotypes a play crucial role in the outcome of dietary interventions 
(Dahal et al., 2022; Mayneris-Perxachs et al., 2020). Even in healthy 
subjects (control groups), their metabotypes and enterotypes may differ 
though they display the same phenotypes (Kang et al., 2016). In fact, the 
type and amount of food-derived compounds that reach the gut micro-
biota is strongly affected by the digestive and metabolic efficiency of the 
individual. More so, with the exception of A. muciniphilla and butyrate, 
there is no consensus on which other specific beneficial gut bacteria and 
metabolites are enriched after beetroot consumption. For this reason, 
future microbiota studies would need to stratify participants based on 
their genetic, gut enterotype and metabotype diversity to reveal a more 
personalized effect of beetroot interventions on health and disease. 

In addition, current studies pertaining to the effects of beetroot on 
diabetes and the gut microbiota have focused on individual potential 
causal bacteria while neglecting the mycobiome and virome which 
symbiotically interact with the bacteria. This is particularly important 
because the quality and function of the gut mycobiome (Mingaila et al., 

2023; Salamon et al., 2021; Van Syoc et al., 2023) and virome (Fan et al., 
2023; Yang et al., 2021) are altered during diabetes and by dietary in-
terventions. For this reason, grouping microbial consortia based on 
functional similarities would provide a clearer information of the 
community-level dynamics of the gut microbiota in health and disease. 
Meanwhile, knowledge on bacteriophages that may control the levels 
and functions of gut commensal bacteria in diabetes is crucial for un-
derstand the etiology of diabetes caused by gut microbial dysbiosis. This 
is plausible because phages usually infect bacteria and affect their 
metabolism, survival and death (Daliri, Ofosu, Chelliah, Lee, & Oh, 
2020; Seed et al., 2014). It is therefore possible that these phages could 
influence certain nonpathogenic bacteria to display pathogenic pheno-
types when the gut homeostasis is compromised. In such a case, certain 
bacteria regarded as beneficial may be overrepresented in the diseased 
group and yet overlooked though they may be key players in the disease 
(Daliri, Balnionytė, et al., 2023; Daliri, Ofosu, et al., 2023). 

Meanwhile, it is anticipated that essential microbial products such as 
A. muciniphila extracellular vesicles and Amuc_1100 proteins would be 
purified and their effective doses needed to mitigate the leaky gut 
associated with diabetes would be determined. In the meantime, it 
would be interesting to know whether or not beetroot actually triggers 
the production of these A. muciniphila products in the gut and in fer-
menters (in vitro). This would enable the overproduction of these mol-
ecules as safe and affordable non-pharmacological therapies for 
combating diabetes. Moreover, in the near future, a new generation of 
analytical techniques is expected to emerge that will model cause-and- 
effect relationships and determine the targets of such non- 
pharmacological therapeutic treatments. 

6. Conclusions 

Although beetroot possesses great anti-diabetic potential, the results 
of beetroot consumption in diabetic patients are inconsistent, probably 
due to differences in the experimental designs and variations in the 
enterotype and metabotype of the patients/subjects. Stratification of the 
experimental groups, taking into account their genetics, enterotypes and 
metabolic phenotypes, may allow the full potential of beetroot to be 
realized. However, food processing strategies such as fermentation, 
enzyme treatment and heating could improve the levels of antidiabetic 
compounds in the vegetable. Once consumed, these compounds could 
significantly alter the microbial profile and function of the gut by 
affecting host glucose clearance, energy metabolism, inflammation and 
gut barrier function, while suppressing populations of pathobionts in the 
gut. The mechanism described in this work could at least, in part account 
for the antidiabetic potential of beetroot. 
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Flynn, I., Khochanskiy, D., Moya-Pérez, A., Peterson, V., Rea, K., Murphy, K., 
Makarova, O., Buravkov, S., Hyland, N. P., Stanton, C., Clarke, G., Gahan, C. G. M., 
Dinan, T. G., & Cryan, J. F. (2017). Microbiota-related changes in bile acid and 
tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse 
model of autism. EBioMedicine, 24, 166–178. https://doi.org/10.1016/j. 
ebiom.2017.09.020 

Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., & 
Shulzhenko, N. J. E. (2020). Role of gut microbiota in type 2 diabetes 
pathophysiology. EBioMedicine, 51, Article 102590. https://doi.org/10.1016/j. 
ebiom.2019.11.051 

Han, Y., Haraguchi, T., Iwanaga, S., Tomotake, H., Okazaki, Y., Mineo, S., Moriyama, A., 
Inoue, J., & Kato, N. (2009). Consumption of some polyphenols reduces fecal 
deoxycholic acid and lithocholic acid, the secondary bile acids of risk factors of colon 
cancer. Journal of Agricultural and Food Chemistry, 57(18), 8587–8590. https://doi. 
org/10.1021/jf900393k 

Han, S. Y., Song, H. K., Cha, J. J., Han, J. Y., Kang, Y. S., & Cha, D. R. (2021). Farnesoid X 
receptor (FXR) agonist ameliorates systemic insulin resistance, dysregulation of lipid 
metabolism, and alterations of various organs in a type 2 diabetic kidney animal 
model. Acta Diabetologica, 58, 495–503. https://doi.org/10.1007/s00592-020- 
01652-z 

Hedrington, M. S., & Davis, S. N. (2019). Considerations when using alpha-glucosidase 
inhibitors in the treatment of type 2 diabetes. Expert Opinion on Pharmacotherapy, 20, 
2229–2235. https://doi.org/10.1080/14656566.2019.1672660 

Henning, S. M., Yang, J., Shao, P., Lee, R.-P., Huang, J., Ly, A., Hsu, M., Lu, Q.-Y., 
Thames, G., Heber, D., & Li, Z. (2017). Health benefit of vegetable/fruit juice-based 
diet: Role of microbiome. Scientific Reports, 7, 2167. https://doi.org/10.1038/ 
s41598-017-02200-6 

Hernández-Aguirre, O. A., Muro, C., Hernández-Acosta, E., Alvarado, Y., & Díaz-Nava, M. 
(2021). Extraction and stabilization of betalains from beetroot (Beta vulgaris) wastes 
using deep eutectic solvents. Molecules, 26, 6342. https://doi.org/10.3390/ 
molecules26216342 

Honarbakhsh, M., Malta, K., Ericsson, A., Holloway, C., Kim, Y. K., Hammerling, U., & 
Quadro, L. (2022). β-carotene improves fecal dysbiosis and intestinal dysfunctions in 
a mouse model of vitamin A deficiency. Biochimica et Biophysica Acta (BBA)- 
Molecular and Cell Biology of Lipids, 1867(5), Article 159122. https://doi.org/ 
10.1016/j.bbalip.2022.159122 

Hong, J., Jia, Y., Pan, S., Jia, L., Li, H., Han, Z., Cai, D., & Zhao, R. J. O. (2016). Butyrate 
alleviates high fat diet-induced obesity through activation of adiponectin-mediated 
pathway and stimulation of mitochondrial function in the skeletal muscle of mice. 
Oncotarget, 7, 56071–56082. https://doi.org/10.18632/oncotarget.11267 

Ishimwe, N., Daliri, E. B., Lee, B. H., Fang, F., & Du, G. (2015). The perspective on 
cholesterol-lowering mechanisms of probiotics. Molecular Nutrition & Food Research, 
59, 94–105. https://doi.org/10.1002/mnfr.201400548 

Jiang, S., Young, J. L., Wang, K., Qian, Y., & Cai, L. (2020). Diabetic-induced alterations 
in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes 
mellitus. Molecular Medicine Reports, 22, 603–611. https://doi.org/10.3892/ 
mmr.2020.11175 

Jobgen, W. S., Fried, S. K., Fu, W. J., Meininger, C. J., & Wu, G. (2006). Regulatory role 
for the arginine–nitric oxide pathway in metabolism of energy substrates. The 
Journal of Nutritional Biochemistry, 17, 571–588. https://doi.org/10.1016/j. 
jnutbio.2005.12.001 

Juste, C., Kreil, D. P., Beauvallet, C., Guillot, A., Vaca, S., Carapito, C., Mondot, S., 
Sykacek, P., Sokol, H., Blon, F., Lepercq, P., Levenez, F., Valot, B., Carré, W., 
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Morrison, H. G., Antonopoulos, D. A., Rubin, D. T., & Eren, A. M. (2017). Tracking 
microbial colonization in fecal microbiota transplantation experiments via genome- 
resolved metagenomics. Microbiome, 5, 50. https://doi.org/10.1186/s40168-017- 
0270-x 

LeValley, S. L., Tomaro-Duchesneau, C., & Britton, R. A. (2020). Degradation of the 
incretin hormone glucagon-like peptide-1 (GLP-1) by Enterococcus faecalis 
metalloprotease GelE. mSphere, 5. https://doi.org/10.1128/mSphere.00585-19, 
00585-00519. 

Li, Z., Dai, Z., Shi, E., Wan, P., Chen, G., Zhang, Z., Xu, Y., Gao, R., Zeng, X., & Li, D. 
(2023). Study on the interaction between β-carotene and gut microflora using an in 
vitro fermentation model. Food Science and Human Wellness, 12(4), 1369–1378. 
https://doi.org/10.1016/j.fshw.2022.10.030 

Li, R., Li, L., Hong, P., Lang, W., Hui, J., Yang, Y., & Zheng, X. (2021). β-Carotene 
prevents weaning-induced intestinal inflammation by modulating gut microbiota in 
piglets. Animal bioscience, 34(7), 1221. https://doi.org/10.5713/ajas.19.0499 

Lim, T. K. (2012). Edible medicinal and non-medicinal plants (Vol. 1, pp. 656–687). 
Dordrecht, The Netherlands: Springer. 

Lim, K. C., Yusoff, F. M., Karim, M., & Natrah, F. M. (2023). Carotenoids modulate stress 
tolerance and immune responses in aquatic animals. Reviews in Aquaculture, 15, 
872–894. https://doi.org/10.1111/raq.12767 

Li, Z., Tian, J., Cheng, Z., Teng, W., Zhang, W., Bao, Y., Wang, Y., Song, B., Chen, Y., & 
Li, B. J. (2022). Hypoglycemic bioactivity of anthocyanins: A review on proposed 
targets and potential signaling pathways. Critical Reviews in Food Science and 
Nutrition, 1–18. https://doi.org/10.1080/10408398.2022.2055526 

Littmann, E., Lee, J.-J., Denny, J., Alam, Z., Maslanka, J., Zarin, I., Matsuda, R., 
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