
RESEARCH ARTICLE

Scikick: A sidekick for workflow clarity and

reproducibility during extensive data analysis

Matthew Carlucci1,2, Tadas Bareikis1,2, Karolis Koncevičius2, Povilas Gibas1,2,

Algimantas Kriščiūnas2, Art Petronis1,2, Gabriel OhID
1,2,3*

1 The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute,

Centre for Addiction and Mental Health, Toronto, Ontario, Canada, 2 Institute of Biotechnology, Life Sciences

Center, Vilnius University, Vilnius, Lithuania, 3 Stanford University School of Medicine, Stanford, California,

United States of America

* gabriel.oh@stanford.edu

Abstract

Reproducibility is crucial for scientific progress, yet a clear research data analysis workflow

is challenging to implement and maintain. As a result, a record of computational steps per-

formed on the data to arrive at the key research findings is often missing. We developed Sci-

kick, a tool that eases the configuration, execution, and presentation of scientific

computational analyses. Scikick allows for workflow configurations with notebooks as the

units of execution, defines a standard structure for the project, automatically tracks the

defined interdependencies between the data analysis steps, and implements methods to

compile all research results into a cohesive final report. Utilities provided by Scikick help turn

the complicated management of transparent data analysis workflows into a standardized

and feasible practice. Scikick version 0.2.1 code and documentation is available as supple-

mentary material. The Scikick software is available on GitHub (https://github.com/

matthewcarlucci/scikick) and is distributed with PyPi (https://pypi.org/project/scikick/) under

a GPL-3 license.

1. Introduction

Research reproducibility, in the many forms it takes [1–3], is essential to the scientific method.

Multiple insights can often be gained from a single large dataset, however, the breadth of such

investigations has placed a heavy burden on researchers who aim to practice full computa-

tional transparency. It is essential that analytical procedures are clearly documented through-

out an investigation, including details of their intent, background rationale, implementation,

and analysis outputs [4, 5]. In its absence, investigative decisions, assumptions, and results can

lose their context, and in turn, lower the quality of research communication [6].

Computational notebook formats (e.g., Jupyter Notebooks [7] and Rmarkdown [8]) and

their associated development environments have paved a path for streamlined generation and

sharing of computational results. Notebooks enable investigators to compile the analytical con-

text (i.e., text), implementation (code), and results (figures) within a single document. This

results in a report that reflects the entire process of analysis and serves as a transparent lens

into how computations unfolded.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0289171 July 27, 2023 1 / 8

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Carlucci M, Bareikis T, Koncevičius K,

Gibas P, Kriščiūnas A, Petronis A, et al. (2023)

Scikick: A sidekick for workflow clarity and

reproducibility during extensive data analysis.

PLoS ONE 18(7): e0289171. https://doi.org/

10.1371/journal.pone.0289171

Editor: Anna Bernasconi, Politecnico di Milano,

ITALY

Received: April 12, 2023

Accepted: July 13, 2023

Published: July 27, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0289171

Copyright: © 2023 Carlucci et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

https://orcid.org/0000-0002-7651-1312
https://github.com/matthewcarlucci/scikick
https://github.com/matthewcarlucci/scikick
https://pypi.org/project/scikick/
https://doi.org/10.1371/journal.pone.0289171
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289171&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289171&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289171&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289171&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289171&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289171&domain=pdf&date_stamp=2023-07-27
https://doi.org/10.1371/journal.pone.0289171
https://doi.org/10.1371/journal.pone.0289171
https://doi.org/10.1371/journal.pone.0289171
http://creativecommons.org/licenses/by/4.0/


In order to develop larger projects, there is a demand to use multiple notebooks within the

same analysis. To this end, in addition to best practice guidelines [9] and improvements to the

notebook format [10], tools have been designed for some specific project types; generating

reading materials on computational topics (e.g., bookdown [11] and Jupyter Book [12]) or

developing software packages fully within notebooks (e.g., nbdev [13]). However, these solu-

tions do not emphasize the ordered and interdependent execution of notebooks common to

computational research projects. As such, reproducibility is compromised when projects are

not configured to execute notebooks in the correct order, and transparency is compromised

when projects do not clearly document this execution order.

The clarity of notebook outputs gives it an advantage to tools whose main purpose is to con-

figure ordered computations (e.g., GNU Make [14], Snakemake [15], Nextflow [16], etc.). To

benefit from both toolsets, researchers often use them in tandem to reproducibly configure the

execution of a notebook collection. Further, researchers can produce graphical representations

of this configuration to transparently represent the execution to the reader. However, assem-

bling and maintaining these configurations throughout evolving projects is cumbersome.

Therefore, many rapidly developing projects cannot dedicate the resources necessary for this

level of transparency and reproducibility (Fig 1a).

Fig 1. Scikick workflow development use-case, practices, and features. a) An illustration of the problem Scikick aims to address. Left) A schematic of a

rendered computational notebook with contextual descriptions accompanying code and results demonstrating the clarity of the notebook format. Centre) A

minimal “notebook collection” where execution order of notebooks is undocumented and not configured, compromising both transparency and

reproducibility. Right) A graphical representation of a workflow management configuration which supplements the notebook collection to execute the

notebooks in the specified order. b) The illustration shows the main Scikick features used to manage a collection of notebooks throughout a project. An

unstructured collection of notebooks are initially executed by Scikick to generate a structured report. New content inside the workflow, including

modifications to a notebook, upstream modifications or the addition of new notebooks, are all detected by Scikick. Pending updates are computed by Scikick

to generate an up-to-date report which can be easily navigated. Users repeatedly apply the modification, state management, and execution features throughout

a project’s development.

https://doi.org/10.1371/journal.pone.0289171.g001

PLOS ONE Workflow clarity and reproducibility with Scikick

PLOS ONE | https://doi.org/10.1371/journal.pone.0289171 July 27, 2023 2 / 8

Funding: This project was supported by the

European Social Fund, ec.europa.eu/esf (project No

09.3.3-LMT-K-712-17-0008) under grant

agreement with the Research Council of Lithuania

(LMTLT; lmt.lt) awarded to A.P. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0289171.g001
https://doi.org/10.1371/journal.pone.0289171


To simplify and improve transparency during these projects, we developed Scikick, a mini-

malistic command-line utility for maintaining computational notebook workflows. Scikick

integrates the notebook format, workflow tools, and other elements necessary to streamline

data-intensive research [17]. Our tool is designed to promote the maintenance of computa-

tional workflow archives that are easily inspectable by a diverse scientific readership at all proj-

ect stages, conceptually extending the benefits of computational notebooks to computational

workflows.

2. Results

2.1 Feature overview

The features of Scikick are designed to maintain structure and re-executability while perform-

ing an investigation which spans multiple computational notebooks that may depend on one-

another. Notebooks are arranged into a workflow graph using Scikick’s command-line inter-

face, implemented with Python ver. 3.6+, to update the configuration file and inspect the

workflow state (Fig 1b). Notebooks are executed through Scikick’s Snakemake workflow con-

figuration and are compiled into a static report containing all data analysis outputs. Scikick

features are broadly separated into notebook, workflow, and repository management function-

alities that seamlessly work together.

2.1.1 Command-line interface overview. The main commands for accessing this func-

tionality are: “init”, “add”, “run”, and “status”. The “sk init” command checks for software

requirements and creates an empty configuration file within the project directory. The “sk

add” command is used to add notebooks and define the workflow graph. “sk run” calls on Sna-

kemake to execute notebooks in the specified order. Then, as notebooks are modified, the “sk

status” command displays which notebooks require (re)execution. Further usage information

can be found within the Scikick documentation and command-line help outputs.

2.2 Notebook execution and metadata capture

To promote easy access for recording results in a notebook format, Scikick supports a plurality

of file and notebook formats that are automatically executed using appropriate methods (e.g.,

R scripts are converted to Rmarkdown) to capture code, console, and graphical outputs in a

markdown document which would otherwise go unrecorded. All notebook outputs are com-

piled with Rmarkdown into a cohesive final report where the report navigation, which is auto-

matically configured by Scikick, allows readers to easily identify the notebook source file.

Scikick also logs useful technical information related to each notebook into the resulting mark-

down files, such as software versions, user defined functions, execution time, and versioning

history of the notebook. Usage of these features increases the amount of information available

to readers revisiting old computational archives.

2.3 Concurrent management of automation and reporting

As a project matures and more analyses are added, it is reasonable to expect that long note-

books will be broken up into many smaller notebooks [9] in order to focus on specific topics,

reduce resource usage (e.g., memory and runtime), and simplify computing environment

namespaces. Creation of notebooks which depend on one-another during this stage puts new

strains on automating the workflow while also ensuring the report remains transparent. There-

fore, Scikick provides simple features to define dependence between notebooks and to manage

each notebook’s state. After authoring a new notebook and placing it in the workflow graph,

the status of all notebooks can be verified by the user. Any pending notebook executions will

PLOS ONE Workflow clarity and reproducibility with Scikick

PLOS ONE | https://doi.org/10.1371/journal.pone.0289171 July 27, 2023 3 / 8

https://doi.org/10.1371/journal.pone.0289171


run in an appropriate order to overwrite older outputs such that results represent a procedural

execution of each notebook’s code. Finally, embedding notebook results and the order of note-

book executions into a final report in a human-readable format allows for the report archive to

be fully understood by readers (e.g., Fig 2).

2.4 Demonstrations and guides

A series of vignettes in the Scikick documentation (S1 File; https://github.com/

matthewcarlucci/scikick) includes a quick-start guide, a comprehensive user manual, details

Fig 2. Report and project map generated by Scikick for the single-cell RNA sequencing analysis demonstration. A series of notebooks shown in the

file tree under the “notebooks” directory were added to the project’s “scikick.yml” YAML configuration file using the command-line interface. The

notebooks were executed to generate the displayed HTML archive (orange border) which resides in the “report” directory. A workflow graph (“Project

Map”) was automatically generated by Scikick using the graphviz.dot format [18]. The graph illustrates the order of notebook executions, outlines the

organization of the project’s source code, and allows for report navigation such that a reader can trace the provenance of results among the notebooks.

Each grouping (grey box) represents a series of notebooks that were used to analyze an individual transcriptomic dataset with a final group containing

two notebooks used to perform a combined analysis of the datasets. The red node represents the current notebook results page being viewed in the

report. A table of contents is provided on the left for each page in the report.

https://doi.org/10.1371/journal.pone.0289171.g002

PLOS ONE Workflow clarity and reproducibility with Scikick

PLOS ONE | https://doi.org/10.1371/journal.pone.0289171 July 27, 2023 4 / 8

https://github.com/matthewcarlucci/scikick
https://github.com/matthewcarlucci/scikick
https://doi.org/10.1371/journal.pone.0289171.g002
https://doi.org/10.1371/journal.pone.0289171


on methods and design, as well as a demonstration of Scikick’s capabilities through an analysis

of single-cell RNA sequencing (scRNA-seq) datasets [19]. Here, we demonstrated how the

implementation of a complex workflow involving data inspection, quality control, normaliza-

tion, dimensionality reduction, and data exploration, is managed through the usage of Scikick.

This allowed the pursuit of nonlinear avenues of investigation across multiple datasets and

project stages and automatically embedded a navigable graph of the workflow within the

archive (Fig 2).

Fig 3. Developing Scikick projects to maturation with continuous analysis. a) This schematic illustration represents a configuration for an

automated re-execution of a Scikick project. Local development of notebook collections with Scikick proceeds as described in Fig 1b. Upon pushing a

version of the project’s source code to a remote server (GitLab), the project is executed utilizing resources of a SLURM compute cluster where each

notebook is submitted in parallel as cluster jobs. To provide fixed software environments for the remote machines, Singularity containers are defined in

the Scikick configuration file. The final reproducible report is stored alongside the code that produced it as a “verified report”, which is known to have

executed from start to finish within the specified software environment. b) A sample of the ‘Continuous Integration’ section of GitLab shows versions of

the analysis that are executed as they are “pushed” to the GitLab server, as configured in (a). Some versions encountered errors which were rapidly

addressed which may have been detected much later if re-execution was not performed. Successful analysis verification runs store a final Scikick report

on the server, alongside the source code that produced it, where results may be inspected at any time in the future, and further, may be precisely

reproduced with usage of the specified container.

https://doi.org/10.1371/journal.pone.0289171.g003

PLOS ONE Workflow clarity and reproducibility with Scikick

PLOS ONE | https://doi.org/10.1371/journal.pone.0289171 July 27, 2023 5 / 8

https://doi.org/10.1371/journal.pone.0289171.g003
https://doi.org/10.1371/journal.pone.0289171


2.5 Project management with robust versioned archives

Advanced practices such as “Continuous Analysis” [20] provide schemes for producing verifi-

able end-to-end runs of computational analyses by ensuring that code can execute from start

to finish within a specified software environment. Despite having verified a machine-readable

workflow in this way, maintaining an archive that is also human-readable is a difficult, but nec-

essary, complementary task [9]. Crucial to this practice, Scikick projects remain reader-ready

throughout their development with the use of features such as a simplistic configuration and a

navigable project graph (Fig 2). Additionally, Scikick projects can be stored entirely as plain

text and sets a clear structure for which files are tracked with version control, further simplify-

ing the adoption of Continuous Analysis on version control platforms (e.g., GitHub, GitLab,

BitBucket, etc.). Lastly, demanding knowledge needed to use advanced computing is reduced

for Scikick projects; minimal additional configuration can achieve distributed notebook execu-

tions over a cluster’s resources in a prespecified container environment (e.g., Docker [21], Sin-

gularity [22], etc.). Since all Scikick projects use the same execution and reporting methods, a

single configuration of continuous analysis on a given set of computational infrastructure can

be applied to all projects. We implemented such a configuration on common academic infra-

structure which monitors source code for changes and re-runs scientific analysis automatically

(Fig 3). Altogether, Scikick methods are sufficiently flexible to implement as part of a variety of

computing infrastructure and environments.

3. Conclusion

Computational notebooks have provided transparency to research reporting, and yet require

supporting tooling for the analysis of large-scale datasets with many investigative branches.

Projects lack access to streamlined build tools to support computational notebooks, and there-

fore lose the reproducibility and transparency needed for auditing analyses. Scikick provides

the ability to maintain clarity of data analysis and research workflow development all the way

through to verified analysis archives. Scikick can be used to execute polyglot projects, and

underlying tooling updates (e.g., Quarto [23]) may improve language agnosticism in the

future. Well-structured and annotated investigative projects, supported by the use of tools like

Scikick, will help improve transparency to allow for more rigorous review and thereby improve

reliability of scientific works.

Supporting information

S1 File. Scikick 0.2.1 source code and documentation.

(ZIP)

Acknowledgments

The authors thank all of those involved in providing comments throughout the development

of Scikick which provided valuable feedback for the design and usage of the tool.

Author Contributions

Software: Matthew Carlucci, Tadas Bareikis, Karolis Koncevičius, Povilas Gibas, Algimantas

Kriščiūnas.

Supervision: Karolis Koncevičius, Art Petronis, Gabriel Oh.

Writing – original draft: Matthew Carlucci, Gabriel Oh.

PLOS ONE Workflow clarity and reproducibility with Scikick

PLOS ONE | https://doi.org/10.1371/journal.pone.0289171 July 27, 2023 6 / 8

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0289171.s001
https://doi.org/10.1371/journal.pone.0289171


Writing – review & editing: Matthew Carlucci, Tadas Bareikis, Karolis Koncevičius, Povilas

Gibas, Algimantas Kriščiūnas, Art Petronis, Gabriel Oh.

References
1. Goodman SN, Fanelli D, Ioannidis JPA. What does research reproducibility mean? Sci Transl

Med. 2016 Jun 1; 8(341):341ps12. https://doi.org/10.1126/scitranslmed.aaf5027 PMID:

27252173

2. MunafòMR, Nosek BA, Bishop DVM, Button KS, Chambers CD, du Sert NP, et al. A manifesto for

reproducible science. Nature Human Behaviour. 2017 Jan 10; 1(1):1–9. https://doi.org/10.1038/

s41562-016-0021 PMID: 33954258

3. Plesser HE. Reproducibility vs. Replicability: A Brief History of a Confused Terminology. Front

Neuroinform. 2018; 11. Available from: http://dx.doi.org/10.3389/fninf.2017.00076 PMID:

29403370

4. Claerbout JF, Karrenbach M. Electronic documents give reproducible research a new meaning. In:

SEG Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists; 1992. p.

601–4.

5. Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, et al. Enhancing reproducibility for

computational methods. Science. 2016 Dec 9; 354(6317):1240–1. https://doi.org/10.1126/science.

aah6168 PMID: 27940837

6. Hutson M. Artificial intelligence faces reproducibility crisis. Science. 2018 Feb 16; 359(6377):725–6.

https://doi.org/10.1126/science.359.6377.725 PMID: 29449469

7. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, et al. Jupyter Note-

books–a publishing format for reproducible computational workflows. In: Loizides F, Scmidt B, edi-

tors. Positioning and Power in Academic Publishing: Players, Agents and Agendas. IOS Press;

2016. p. 87–90.

8. Xie Y, Allaire JJ, Grolemund G. R Markdown: The Definitive Guide. Taylor & Francis, CRC Press;

2018. 303 p.

9. Rule A, Birmingham A, Zuniga C, Altintas I, Huang SC, Knight R, et al. Ten simple rules for writing and

sharing computational analyses in Jupyter Notebooks. PLoS Comput Biol. 2019 Jul; 15(7). https://doi.

org/10.1371/journal.pcbi.1007007 PMID: 31344036

10. Lau S, Drosos I, Markel JM, Guo PJ. The Design Space of Computational Notebooks: An Analysis of 60

Systems in Academia and Industry. In: 2020 IEEE Symposium on Visual Languages and Human-Cen-

tric Computing (VL/HCC). 2020. p. 1–11.

11. Xie Y. bookdown: Authoring Books and Technical Documents with R Markdown. 1st ed. Chapman and

Hall/CRC; 2016.

12. Executable Books Community. Jupyter Book [Internet]. 2020. https://zenodo.org/record/4539666

13. Howard J, Gugger S. Fastai: A Layered API for Deep Learning. Information. 2020 Feb 16; 11(2):108.

14. Gough B. GNU Scientific Library Reference Manual—Third Edition. 3rd ed. Network Theory Ltd.;

2009.

15. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, et al. Sustainable data analy-

sis with Snakemake. F1000Res. 2021 Jan 18; 10(33):33. https://doi.org/10.12688/f1000research.

29032.2 PMID: 34035898

16. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables repro-

ducible computational workflows. Nat Biotechnol. 2017 Apr 11; 35(4):316–9. https://doi.org/10.1038/

nbt.3820 PMID: 28398311

17. Reiter T, Brooks PT, Irber L, Joslin SEK, Reid CM, Scott C, et al. Streamlining data-intensive biology

with workflow systems. Gigascience. 2021 Jan 13; 10(1). Available from: http://dx.doi.org/10.1093/

gigascience/giaa140 PMID: 33438730

18. Gansner ER, North SC. An open graph visualization system and its applications to software engineer-

ing. Softw Pract Exp. 2000 Sep; 30(11):1203–33.

19. Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, et al. Orchestrating single-cell

analysis with Bioconductor. Nat Methods. 2019 Dec 2; 17(2):137–45. https://doi.org/10.1038/s41592-

019-0654-x PMID: 31792435

20. Beaulieu-Jones BK, Greene CS. Reproducibility of computational workflows is automated using contin-

uous analysis. Nat Biotechnol. 2017 Mar 13; 35(4):342–6. https://doi.org/10.1038/nbt.3780 PMID:

28288103

PLOS ONE Workflow clarity and reproducibility with Scikick

PLOS ONE | https://doi.org/10.1371/journal.pone.0289171 July 27, 2023 7 / 8

https://doi.org/10.1126/scitranslmed.aaf5027
http://www.ncbi.nlm.nih.gov/pubmed/27252173
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
http://www.ncbi.nlm.nih.gov/pubmed/33954258
http://dx.doi.org/10.3389/fninf.2017.00076
http://www.ncbi.nlm.nih.gov/pubmed/29403370
https://doi.org/10.1126/science.aah6168
https://doi.org/10.1126/science.aah6168
http://www.ncbi.nlm.nih.gov/pubmed/27940837
https://doi.org/10.1126/science.359.6377.725
http://www.ncbi.nlm.nih.gov/pubmed/29449469
https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1371/journal.pcbi.1007007
http://www.ncbi.nlm.nih.gov/pubmed/31344036
https://zenodo.org/record/4539666
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
http://www.ncbi.nlm.nih.gov/pubmed/34035898
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/28398311
http://dx.doi.org/10.1093/gigascience/giaa140
http://dx.doi.org/10.1093/gigascience/giaa140
http://www.ncbi.nlm.nih.gov/pubmed/33438730
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41592-019-0654-x
http://www.ncbi.nlm.nih.gov/pubmed/31792435
https://doi.org/10.1038/nbt.3780
http://www.ncbi.nlm.nih.gov/pubmed/28288103
https://doi.org/10.1371/journal.pone.0289171


21. Merkel D. Docker: lightweight linux containers for consistent development and deployment. Linux J.

2014; 2014(239):2.

22. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One.

2017 May 11; 12(5):e0177459. https://doi.org/10.1371/journal.pone.0177459 PMID: 28494014

23. Quarto [Internet]. [cited 2023 Feb 24]. https://quarto.org/

PLOS ONE Workflow clarity and reproducibility with Scikick

PLOS ONE | https://doi.org/10.1371/journal.pone.0289171 July 27, 2023 8 / 8

https://doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pubmed/28494014
https://quarto.org/
https://doi.org/10.1371/journal.pone.0289171

