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Abstract It seems that the literature suggests to go in
two opposing directions simultaneously. On the one hand,
many papers construct basis-independent quantities, since
exactly these quantities appear in the expressions for observ-
ables. This means that the mixing angles such as tan β in
the generic Two Higgs Doublet Model must drop out when
calculating anything physical. On the other hand, there are
many attempts to renormalize such mixing angles – this is
in the opposite direction to basis-independence. This basis-
dependent approach seems to bring gauge-dependence and
singular behaviour, both of which are required to be absent
in mixing renormalization. Most importantly, mixing angle
counterterms single out a preferred basis and further basis
rotations lead to inconsistencies. In contrast, we argue that
the bare mixing angles should be identified with the renor-
malized ones – this is the basis-independent approach – such
that all the mixing renormalization requirements are fulfilled
in a trivial and consistent manner.

1 Introduction

Nowadays, the renormalization procedure is mostly well-
established and is no longer considered to just “sweep infini-
ties under the rug”, however, this establishment is not com-
plete. For example, it does not seem that there is an agreed-
upon recipe for the renormalization of mixing angles and
the literature suggests a myriad of renormalization schemes
[1–11] to name a few. Even more so, there appears to exist
two different philosophies regarding the renormalization of
mixing angles, sometimes even used simultaneously [9] or
proposed as alternatives [10]. This is a rather unpleasant sit-
uation since particle mixing is present already in the quark
sector of the Standard Model (SM) as well as in nearly all
models with extended scalar sectors as compared to the SM.
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In slightly more detail, the two renormalization approaches
differ in whether the mixing angles receive counterterms or
not. The more common treatment is to introduce mixing angle
counterterms, which are rather inevitably related to the field
renormalization (e.g. [1]). In turn, this causes these mixing
counterterms to be gauge-dependent – an unwanted feature
– such that additional effort must be put in to separate the
gauge-independent part (e.g. [7]). The less common approach
is to trade the mixing matrix counterterms for the off-diagonal
mass matrix counterterms such that the bare mixing matrix
is already renormalized (e.g. [9]). It seems that the latter,
although not as popular, does not introduce downsides such
as unwanted gauge-dependence.

The fact that there are two rather different philosophies,
one of them in general leading to gauge-dependent mixing
angle counterterms, seems to be an expression of the fact
that mixing angles are basis-dependent and, therefore, not
physical quantities. For example, this has been rather explic-
itly noted in [12,13] at tree-level when considering basis-
independent methods for the Two Higgs Doublet Model
(THDM). An analogous statement on the redundancy of the
renormalization of mixing angles was also made in [10] in
the context of the THDM. Seeing that mixing angles are
basis-dependent is simple, for example, the flavour basis of
the SM has no mixing matrices, but rotation to the quark
mass-eigenstate basis produces the quark mixing matrix. Of
course, many other bases where the quarks are not in their
mass-eigenstates also contain some mixing matrix. The not
so simple point, which seems to cause a lot of confusion, is
whether and how to renormalize these basis-dependent quan-
tities.

In this work we do not intend to propose a particular
renormalization scheme, instead we want to establish a con-
ceptually consistent philosophy for the renormalization of
mixing angles such that renormalization schemes can later
be constructed. All of our upcoming arguments are geared
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to highlight renormalization scheme independent structures.
For example, in Sect. 3.2 we argue that the mixing matrix
counterterms are naturally associated with gauge-dependent
structures independently of a renormalization scheme, while
a specific scheme may make use of this structure or not. Fur-
ther, given the scheme-independent arguments, we conclude
that schemes in fact should make use of these structures by
not associating counterterms to mixing angles as is done in,
e.g. [14], where we propose a renormalization scheme for
fermions. The absence of mixing angle counterterms seems
to offer all of the required properties for mixing renormal-
ization [5,11,15] and is a step towards basis-independence.
Therefore, we consider this approach to be the consistent
one and the one that should be used in practice over the more
common approach with counterterms for mixing angles.

The paper is structured as follows: Sect. 2 introduces
nearly all the needed notation and relations, Sect. 3 is then
dedicated to providing arguments for having the mixing
angle counterterms set to 0. In particular, Sect. 3.1 is based
on basis-independence arguments, Sect. 3.2 discusses the
gauge-dependence and Sect. 3.3 considers the degenerate
mass limit. In Sect. 4 we give our conclusions.

2 Basis rotations and renormalization

In this section we set up the discussion of mixing, mass, and
field renormalization by generalizing the discussion found in
[10], while more specific arguments will be given in further
sections.

For simplicity, let us consider a system of real scalar fields

φ0 =

⎛
⎜⎜⎜⎝

φ0
1

φ0
2
...

φ0
n

⎞
⎟⎟⎟⎠ , (1)

where the 0 (sub)superscripts indicate that the fields are bare.
Now, one may relate the fields φ0 in the initial basis to some
other basis of the fields h0 via an orthogonal rotation matrix
R0

φ0 = R0h0. (2)

Considering the kinetic term in the Lagrangian in momentum
space we may write this relation as

K = φT
0

(
p2 − M2

0

)
φ0 (3a)

= hT0
(
p2 − RT

0 M2
0R0

)
h0 (3b)

= hT0
(
p2 − ˜M

2
0

)
h0 , (3c)

where T in the superscript stands for transposition, p2 is

the squared momentum, M2
0 ( ˜M

2
0) is the bare mass-squared

matrix in the φ0 (h0) basis, which is in general not diagonal.
We have used

RT
0 R0 = 1 (4)

in the momentum term and defined

˜M
2
0 = RT

0 M2
0R0. (5)

Apart from performing basis rotations, the fields may be
renormalized

φ0 = Zφ = (1 + δZ)φ. (6)

Here Z is the field renormalization constant, δZ is the corre-
sponding counterterm that can be considered to be of 1-loop
order, and φ stands for the vector of renormalized fields.
Analogously, the fields h0 may also be renormalized

h0 = ˜Zh =
(

1 + δ ˜Z
)
h. (7)

The renormalization procedure also requires counterterms
for the mass matrices

M2
0 = M2 + δM2,

˜M
2
0 = ˜M

2 + δ ˜M
2
,

(8)

where M2
(

˜M2
)

is the renormalized mass matrix and the

δM2
(
δ ˜M2

)
is the mass matrix counterterm in the φ (h)

basis. For the sake of the argument we also introduce mixing
matrix counterterms

R0 = R + δR (9)

such that both the bare and the renormalized mixing matrices
are orthogonal. The following property stems from orthogo-
nality at 1-loop

δ
(
RT

0 R0

)
= 0 ⇒ δRT R = −RT δR. (10)

Now, we should be able to apply the renormalization pro-
cedure to the kinetic term, Eq. (3), in any basis. For example,
taking Eqs. (3a) and (3c) we get

K = φT
{
p2 − M2 + δZT

(
p2 − M2

)
(11a)

+
(
p2 − M2

)
δZ − δM2

}
φ (11b)

= hT
{
p2 − ˜M

2 + δ ˜Z
T (

p2 − ˜M
2)

(11c)

+
(
p2 − ˜M

2)
δ ˜Z − δ ˜M

2}
h , (11d)

where we dropped all the terms non-linear in the countert-
erms. Alternatively, taking Eq. (3b), where the mixing matrix
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R0 is present, leads to the following

K = hT
{
p2 − ˜M

2 − RT δM2R

+δ ˜Z
T (

p2 − ˜M
2) +

(
p2 − ˜M

2)
δ ˜Z

−δRT R ˜M
2 − ˜M

2
RT δR

}
h, (12)

where we have

˜M
2 = RT M2R. (13)

Splitting the field counterterms into the symmetric and anti-
symmetric parts

δ ˜Z = δ ˜Z
S + δ ˜Z

A
, (14)

with
(
δ ˜Z

S)T = δ ˜Z
S
,

(
δ ˜Z

A)T = −δ ˜Z
A
, (15)

and by using Eq. (10) we may rewrite the kinetic term as

K = hT
{
p2 − ˜M

2 − RT δM2R

+δ ˜Z
S (

p2 − ˜M
2) +

(
p2 − ˜M

2)
δ ˜Z

S

−
[
˜M

2
, RT δR + δ ˜Z

A] }
h, (16)

where [. . . , . . . ] is the commutator. The commutator term
shows that the counterterms δR and δ Z̃

A
cannot be deter-

mined separately and only the combination RT δR + δ ˜Z
A

can be fixed, i.e. the mixing matrix counterterms are degen-
erate with the anti-symmetric part of the field renormaliza-
tion, which is a slightly more general version of the state-
ment made in [10]. This degeneracy implies that the mixing
may be renormalized through the (anti-symmetric part of
the) field renormalization, which is what enables, for exam-
ple, the scheme in [9]. However, we attempt to make the
statement stronger – the mixing angle/matrix counterterms
should always be included in the field renormalization. In the
following sections we give arguments for why one should set
δR = 0 by comparing Eqs. (11b), (11d), and (12) in terms of
basis-dependence and by discussing gauge-dependence and
the degenerate mass limit.

3 Arguments for having δR = 0

3.1 Basis independence

Basis-independent methods are often sought after since
observables must be expressed in terms of basis-independent
quantities, for example, see [12,13,16–18]. In a similar man-
ner it is desirable for the renormalization procedure to also
show some basis-independent features. For example, the
form of the renormalized kinetic term in Eqs. (11b) and (11d)

is the same although the bases are different – this is wel-
come. In contrast, the form of Eq. (12) is already different
due to additional mixing/rotation matrix counterterms, even
though all three equations (should) correspond to the same
bare kinetic term.

It is rather simple to see that Eq. (12) can be brought to
the form of Eq. (11d), by simply setting R0 = R ⇔ δR = 0
or, equivalently, by redefining the anti-symmetric part of the
field renormalization to include RT δR. Once δR no longer
appears we may easily equate Eqs. (11d) and (12) and get

δ ˜M
2 = RT δM2R. (17)

Further, Eqs. (11b) and (11d) correspond to the same bare
kinetic term if

˜Z = RT ZR (18)

and

φ = Rh. (19)

In more detail, with δR �= 0 one is, or at least should be,
free to perform a rotation by RT on the renormalized fields
h in Eq. (16)

K = h′ T {
p2 − M2 − δM2

+δZS
(
p2 − M2

)
+

(
p2 − M2

)
δZS

−
[
M2, δRRT + Rδ ˜Z

A
RT

] }
h′, (20)

Here h′ = Rh,1 we have used Eqs. (13) and (18) for the
symmetric part of the field renormalization. Evidently, all
the terms except for the one with δR contain quantities in
the basis of φ even though the fields are labeled as h′. This
means that one computes identical amplitudes in both the φ

and h′ bases, except that they are renormalized with different
sets of counterterms. The presence of the δR counterterm is
the source of inconsistency.

For one thing, because of the δR counterterm the basis
rotations of the anti-symmetric part of field renormalization
do not seem to follow the same law as the other counterterms.
For the symmetric part we could use Eq. (18), while the anti-
symmetric part gives

δZA != δRRT + Rδ ˜Z
A
RT . (21)

To preserve the same law of basis transformations, Eq. (18),
one must have δR = 0.

For another view at the inconsistency, one easily notices
that the δR counterterm in the basis h′ does not have an asso-
ciated renormalized parameter. This means that it is impos-
sible to form the bare mixing matrix R0 in the h′

0 basis, i.e.

1 For R0 = R one trivially has h′ = φ.
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the bare kinetic term no longer follows the form of Eq. (3)
and instead becomes

K′ = h′ T
0

{
p2 − M2

0

−
[
M2, δRRT + Rδ ˜Z

A
RT − δZA

]}
h′

0

�= K. (22)

Here we have used the inverse of h′
0 = Zh′. The only way

to preserve the bare kinetic term and more generally the bare
Lagrangian, which defines the theory, is for the commutator
term to vanish. However, this gets us back to Eq. (21) and
so, setting δR = 0 preserves not only the form of basis
transformations, but also the form of the bare Lagrangian.

The third and final view of the inconsistency may be seen
by considering why in Eq. (22) we have K′ �= K. We started
with the bare kinetic term in Eq. (3a), rotated it by R0 to
Eq. (3b), renormalized it to get Eq. (12), and tried to rotate
back into the φ basis by RT . However, instead of Eq. (11b)
the rotation took us into Eq. (20) and K′ in Eq. (22)! In other
words, we see that basis rotations and the renormalization
procedure do not commute, i.e. there is a difference if one
renormalizes the theory before or after basis rotations. This is
a rather awkward feature since there is nothing special about
basis rotations or renormalization and we should be work-
ing with the same theory in whichever basis we choose to
renormalize the theory. In turn, we formulate a consistency
condition, which we also imposed in [14], that basis rota-
tions should commute with the renormalization procedure.
This condition automatically requires the bare rotations to
be identified with the renormalized ones, i.e. R0 = R and
δR = 0.

The upshot is that having the bare rotation matrix set to
the renormalized one, R0 = R, allows to freely change the
basis at any point, be it for the bare fields as in Eq. (2) or the
renormalized ones in Eq. (19) while keeping the same form
of the Lagrangian. Alternatively, this may be rephrased as
having a basis-invariant set of counterterms, i.e. upon basis
rotations{
Z, δM2, δλ

}
⇒

{
˜Z, δ ˜M

2
, δ̃λ

}
(23)

but not{
Z, δM2, δλ

}
⇒

{
˜Z, δ ˜M

2
, δR, δ̃λ

}
, (24)

where δλ and δ̃λ stand for the counterterms of other param-
eters in the theory in the two respective bases.

There is also a formulation in slightly more philosoph-
ical terms. One of the main points of the renormalization
procedure is that it takes some measurement (observable)
as a reference point in order to make the theory predictive.
The standard book-keeping device of these measurements
are the counterterms. Since the observables must be basis-
independent it also makes sense to have a basis-independent

set of counterterms – this means δR = 0. Of course, one may
argue that things such as the Cabbibo–Kobayashi–Maskawa
(CKM) matrix [19,20] elements can be measured and, hence,
should receive counterterms. However, the CKM matrix itself
can in principle be expressed in terms of the initial (renor-
malized) mass matrices of the up- and down-type quarks. It is
the renormalization of these mass matrices that provides a set
of basis-independent counterterms and also ensures cancel-
lations of UV divergences. Put in another way, in a diagonal
mass basis, measurement of the mixing angles and masses is
the same as measuring the non-diagonal mass matrix in some
initial basis. In turn, mixing matrices may still be used as they
are a nice way of parameterizing the mixing, but it should
not be forgotten that they are derived and basis-dependent
quantities and, hence, should not have counterterms.

In the two following sections we show that setting δR to
0 is not only conceptually consistent, but also of practical
importance.

3.2 Gauge dependence

Let us consider the case with δR �= 0 and see how it leads to
difficulties. One of the requirements for the mixing renormal-
ization is that it should be gauge-invariant [5,11,15]. How-
ever, this is a rather complicated task because of Eq. (16) and
the degeneracy between δZA and RT δR. A way to investi-
gate gauge dependence is via the Nielsen Identities [21,22],
which allow to take gauge derivatives of the self-energies.

For concreteness, let us proceed in the basis of the fields
h and consider the 1-loop case, for which the derivative w.r.t.
the gauge parameter ξ of the bare self-energy �0

(
p2

)
is

[22]2

∂ξ�
0
(
p2

)
= �T

(
p2

) (
p2 − ˜M

2)

+
(
p2 − ˜M

2)
�

(
p2

)
, (25)

where � is a correlation function involving BRST sources,
describes the gauge-dependence of �0

(
p2

)
, and is a matrix

in flavour space. Just as for the field renormalization in
Eq. (14), we may split � in its symmetric and anti-symmetric
parts, then the Nielsen Identity becomes

∂ξ�
0
(
p2

)
= �S

(
p2

) (
p2 − ˜M

2)

+
(
p2 − ˜M

2)
�S

(
p2

)

−
[
˜M

2
,�A

]
. (26)

2 Note that achieving this form requires the inclusion of tadpole dia-
grams (or at least the gauge-dependent ones) in the self-energy. This
can be understood in terms of the Fleischer-Jegerlehner scheme [23,24],
which ensures that the theory is at the true minimum such that modifi-
cation of the Nielsen identity with δt in Eq. (6) in [22] does not arise.
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Let us also consider the self-energy �
(
p2

)
renormalized as

in Eq. (16)

�
(
p2

)
= �0

(
p2

)
− RT δM2R

+δ ˜Z
S (

p2 − ˜M
2) +

(
p2 − ˜M

2)
δ ˜Z

S

−
[
˜M

2
, RT δR + δ ˜Z

A]
. (27)

Now, we may take the gauge derivative of the renormalized
self-energy and arrive at

∂ξ�
(
p2

)
= −RT ∂ξ δM2R

+
(
∂ξ δ ˜Z

S + �S
) (

p2 − ˜M
2)

+
(
p2 − ˜M

2) (
∂ξ δ ˜Z

S + �S
)

−
[
˜M

2
, RT ∂ξ δR + ∂ξ δ ˜Z

A + �A
]
. (28)

Here we assumed ˜M
2

and R to be gauge-independent. It
is evident that the field counterterms as well as δR are nat-
urally associated with gauge-dependent structures. In turn,
it is rather hard to fix δR in a gauge-independent way since
that immediately requires an additional renormalization con-
dition to break the degeneracy between the field and mixing
matrix counterterms. Once again, the easiest way around this
is to simply set δR = 0.

In contrast, the mass counterterm RT δM2R is not asso-
ciated with any gauge-dependent structure and so it can
be defined in a naturally gauge-independent way, only
non-physical renormalization conditions can induce gauge-
dependence in the mass counterterm.

3.3 Non-singular degenerate mass limit

If one keeps δR �= 0 and manages to renormalize it in a
gauge-independent way, the counterterm will still be prob-
lematic. To see this, let us for simplicity explicitly choose a
basis where the mass matrix is diagonal

˜M
2 = diag

(
m2

1, . . . , m2
n

)
(29)

and take Eq. (27)

�i j

(
p2

)
= �0

i j

(
p2

)
−

(
RT δM2R

)
i j

+δ Z̃ S
i j

(
p2 − m2

j

)
+

(
p2 − m2

i

)
δ Z̃ S

i j

−
(
m2

i − m2
j

) ((
RT δR

)
i j

+ δ Z̃ A
i j

)
. (30)

Here i, j are flavour indices, the non-bold notation (where
appropriate) indicates matrix elements, and the counterterm(
RT δM2R

)
i j is in general not diagonal even if ˜M

2
is.

Further, the counterterms must cancel the UV divergences
in the bare self-energy independently of the chosen scheme,
hence, we only take the UV parts, although the arguments
carry over to the finite parts without difficulty. In addition,
the UV divergences in the bare-self energy must be accom-
panied by the same structures as the counterterms, since oth-
erwise one could not use the counterterms to cancel the UV
divergences, or at least could not do so for every momentum
p2. As the structures with p2 − m2

i and p2 − m2
j multiply

the symmetric part of the field renormalization, which is not
related with δR, we simply drop such terms (as indicated by

�����p2 − m2
i, j ) for simplicity. With these considerations and as

well taking only off-diagonal terms with i �= j we have

�0
i j

(
p2

)∣∣∣�
��p2−m2

i, j

UV
=

(
RT δM2R

)
i j

+
(
m2

i − m2
j

) ((
RT δR

)
i j

+ δ Z̃ A
i j

)
.

(31)

Here lies part of the problem: in the literature there are many
schemes (e.g. [1,25–28]) where the off-diagonal mass coun-
terterm

(
RT δM2R

)
i j is set to 0. Another part is that in the

degenerate mass limit, i.e. mi → m j , the bare self-energy
in Eq. (31) does not vanish in general, but the mixing and
field counterterms are multiplied by m2

i − m2
j , which does

vanish in this limit. In such schemes the UV divergences
in Eq. (31) must be canceled with the counterterms δR or

δ ˜Z
A

, but this is only possible if these counterterms are pro-

portional to
(
m2

i − m2
j

)−1
. In other words, the counterterms

δR or δ ˜Z
A

must be singular in the degenerate mass limit for
the cancellation to work out. In turn, these singularities can
cause numerical problems, which are required to be absent
for the mixing renormalization [11].

Alternatively, the non-diagonal mass counterterm can nat-
urally cancel the non-vanishing terms without being singular.
Also note that according to Sect. 3.2 (and with the diagonal
mass matrix) the gauge-dependent parts vanish in the degen-
erate mass limit [11,29] so that the mass counterterms can be
defined in a gauge-independent way. Even when the renor-
malization is performed in a basis where the (renormalized)
mass matrix is diagonal the corresponding counterterm has
to be a matrix with possible non-trivial off-diagonal elements
depending on the particular model – this avoids singularities
in the degenerate mass limit. Out of �0

i j only terms which are

gauge-independent and proportional to m2
i − m2

j could pos-
sibly be included in δR such that it is non-singular and gauge-
invariant. However, this is a step towards basis-dependence
and it is best to keep δR = 0 and to avoid inconsistencies
altogether.

Finally, even without considering the degenerate mass
limit, the non-diagonal mass counterterms are essential to
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ensure that all the relevant UV divergences cancel out with-
out the need for a non-trivial δR as is explicitly done in
[9,14]. These explicit schemes with δR = 0, where the UV
divergences are properly taken care of, reinforce the more
general and scheme-independent arguments laid out in this
paper.

4 Conclusions

In this paper we have considered the interplay between basis
rotations of the fields and the renormalization procedure. In
particular, we have found that adding counterterms to mix-
ing angles is a step towards basis-dependence and introduces
various problems. For one thing, counterterms of mixing
angles are naturally associated with gauge-dependent struc-
tures, while at the same time a gauge-independent definition
of them is likely to be singular in the degenerate mass limit.
Neither of these two properties are welcome, since the former
makes physical amplitudes gauge-dependent and the latter
can cause numerical instabilities. More importantly, mixing
angle counterterms obstruct the form of basis transforma-
tions such that the renormalization procedure does not com-
mute with basis rotations – we see this as an inconsistency
and a step towards basis-dependence. In contrast, stepping in
the direction of basis-independence by setting mixing angle
counterterms to 0 completely avoids inconsistencies together
with all the gauge-dependence and singular behaviour prob-
lems. We conclude that the basis-independent approach is
practically far more simple, consistent and should be taken.
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sions regarding Appendix A.

Author contributions Not applicable.

Funding The authors have no relevant financial or non-financial inter-
ests to disclose.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: No data was
generated during this research.]

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Code availability Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A

A note on the renormalization group with δR = 0

The renormalization group running of various parameters
can be determined from the counterterms (given dimensional
regularization is used), however, our proposal is to set δR to
0. Therefore, in this section we want to clarify what happens
with the running of mixing angles when the corresponding
counterterm is trivial.

We begin by considering the bare mass matrix in some
arbitrary basis, which is renormalization scale (s) indepen-
dent

s
∂

∂s
M2

0 = 0 . (A1)

Henceforth we will abbreviate the derivative as3

s
∂

∂s
= ∂

∂ ln s
≡ ∂s . (A2)

Returning to the mass, we may renormalize it and simply
get

∂sM2 = −∂sδM2 . (A3)

Changing to some other basis via Eqs. (13) and (17) we have

∂s

(
R ˜M

2
RT

)
= −∂s

(
Rδ ˜M

2
RT

)
. (A4)

Next we take the ln s derivatives

R∂s ˜M
2
RT = − R∂sδ ˜M

2
RT − ∂sR ˜M

2
RT (A5)

− R ˜M
2
∂sRT − ∂sRδ ˜M

2
RT

− Rδ ˜M
2
∂sRT .

3 The usual notation of the scale is μ, but then the derivative might be
confused with a Lorentz one so we have opted for the letter s.
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To simplify a little we multiply by RT on the left and by R on
the right, and then use relations stemming from orthogonality,
i.e. RT R = 1 ⇒ ∂sRT R = −RT ∂sR, such that we arrive
at

∂s ˜M
2 = − ∂sδ ˜M

2 +
[
˜M

2 + δ ˜M
2
, RT ∂sR

]
. (A6)

Here we may restore the bare mass matrix

∂s ˜M
2
0 =

[
˜M

2
0, R

T ∂sR
]

. (A7)

Here we get that the bare mass matrix depends on the scale
s as long as ∂sR �= 0, which is in contradiction with general
principles. In turn, it must be the case that the rotation matrix
does not depend on the scale s

∂sR = 0 . (A8)

Let us consider Eq. (A6) in more detail in a basis where
˜M

2 = diag.
(
m2

1, . . . ,m
2
n

)
as in Eq. (29). In addition, let us

keep only 1-loop contributions, which means that the terms

like ∼ δ ˜M
2
RT ∂sR are automatically of higher order and

can be neglected. Even more so, as we have not specified
a scheme, the renormalized masses mi are not necessarily
the physical (pole) masses mi , but can receive corrections.
However, when taken non-trivial, ∂sR is at least of 1-loop
order so that we can think of the renormalized masses as the
physical ones and the corrections contribute only at higher
orders. With these considerations Eq. (A6) becomes

∂sm
2
i = −∂sδ ˜M

2
i j +

(
m2

i − m2
j

) (
RT ∂sR

)
i j

. (A9)

The consistent option, which ensures that the bare mass
matrix does not run with scale, is to take Eq. (A8) such that
Eq. (A9) becomes

∂sm
2
i = −∂sδ ˜M

2
i j . (A10)

This means that once the renormalized mass is diagonalized
at some scale, it will not remain diagonal at some other scale,
i.e. ˜M i j (s0) = diag. and ˜M i j (s1) �= diag. Of course, at the
new scale s1 one can perform another basis change such that
the renormalized mass is again diagonal.

The inconsistent option is to keep the running of R, which,
however, allows to keep the renormalized mass diagonal at all
scales so that we have for the diagonal components (i = j)

∂sm
2
i = −∂sδ ˜M

2
i i (A11)

and for the off-diagonal terms (i �= j) we have

(
m2

i − m2
j

) (
RT ∂sR

)
i j

= ∂sδ ˜M
2
i j . (A12)

With this option one can in principle define the running of
rotation (mixing) matrices, but this immediately brings back

the problematic factor of
(
m2

i − m2
j

)−1
, which is associated

with gauge-dependence and the singular mass limit as per
Sects. 3.2 and 3.3. This factor is also found in works by other
authors, for example, in [30–32] in the context of fermions
and for scalars in [33]. If Eq. (A12) is used, in a roundabout
way it also defines a mixing matrix counterterm by relating
it to the mass counterterm, which is similar to the approach
of [7]. However, as per discussion in Sect. 3, mixing matrix
counterterms should not be used.

In conclusion, in a fully consistent treatment the mixing
angles should not run with the scale, although that means
the running of all elements of the mass matrix. It may seem
that the diagonalization of the renormalized mass matrix at
every scale implies the running of the rotation matrix, but
this implication is rather put in by hand. In principle, at every
scale one is free to choose any basis so that between scales
the rotation matrices are not related and, therefore, there is
no natural running. One can only impose this running, by
selecting a class of rotation matrices that diagonalizes the
renormalized matrix at every scale, but this is non-physical

and brings the singular factor of
(
m2

i − m2
j

)−1
in Eq. (A12)

(after expressing ∂sR).

Appendix B

A note on tan β in the THDM

Having mentioned the THDM mixing angle β in the abstract
we see it fitting to make a few comments regarding this angle
and our proposal to set the corresponding counterterm to 0.
For simplicity, let us assume CP-conservation such that there
is no mixing between the CP-odd and CP-even states. Then,
given the bare Higgs doublets (i = 1, 2)

�0
i =

(
z0 +
i

1√
2

(
v0
i + h0

i + iσ 0
i

)
)

, (B13)

we have

(
z0 ±

1
z0 ±

2

)
= R (β)

(
G0 ±
H0 ±

)
,

(
σ 0

1
σ 0

2

)
= R (β)

(
G0

A0

)
,

(
h0

1
h0

2

)
= R (α)

(
h0

H0

)
.

(B14)
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Here the angle β rotates to the mass eigenstates of the charged
and CP-odd bosons, while the angle α rotates to the CP-even
mass eigenstates, G0 ± and G0 are the charged and neutral
bare Goldstone bosons, h, H are the CP-even mass eigen-
states, A0 is the CP-odd one, and H0± is the charged one. vi
are the respective vacuum expectation values.

The literature on the renormalization of angles α and β

is rather vast, e.g. [10,11,15,24,27,34–37]. Both angles are
used to rotate to the mass eigenstates, but the literature seems
to treat them slightly differently. For example, one can find
approaches, where the angle α has a trivial counterterm like in
the appendix of [10]. On the other hand, the angle β seems
to always get a counterterm, perhaps, because one always
wants to have a clear handle on the physical and non-physical
degrees of freedom and one usually starts from a basis where
the Goldstone bosons together with the angle β are evident.
In such a basis one usually renormalizes the angle β. On yet
another hand, one could choose the so-called Higgs-basis,
where the angle β simply does not appear and in turn does
not require a counterterm.

Given the discussion in this paper, it should be possible to
set both counterterms δα and δβ to 0 while still cancelling
all the relevant UV divergences. The remedy seems to be the
introduction of non-diagonal mass counterterms even if the
renormalized mass is a diagonal one. We are aware of two
explicit schemes, where a non-diagonal mass matrix takes
care of all the UV divergences without introducing a coun-
terterm for mixing angles: for squarks in a Minimal Super-
symmetric Standard Model [9] and for fermions in [14] in
general. We propose that the same could be done also for the
renormalization angles α and β. For example, Eqs. (4.17) and
(4.30) in [10] already imply that this can be done for the angle
α since the UV divergences can be taken care of by the mass
counterterm. Analogously, Eq. (31) in our paper can lead to
the same conclusion in the context of the THDM. The same
approach can in principle be taken for the angle β. However,
this approach for β may be cumbersome in practice, since
the mass structure m2

i − m2
j no longer appears. This happens

because one of the masses always corresponds to a would-be
Goldstone boson and is 0.4 On the other hand, there seems
to be no other natural condition for the angle β counterterm,
for example, the authors in [36] simply introduce a condition
by hand and require δβ to be the gauge-independent part of a
relevant self-energy, but could have come up with some other
renormalization condition.

Another subtle point regarding the angle β is that it can
be promoted to a physical parameter if, for example, a Z2

symmetry is imposed on the THDM. However, the takeaway
is that this angle is a physical parameter onlywith respect to a
certain basis [13] and it still should not receive a counterterm.

4 The mass for the Goldstone comes from the gauge-fixing term, which
is not renormalized in the linear Rξ gauges [38].

One can see this by writing down a generic THDM potential
in terms of basis-invariants as in [13] or in the Higgs basis
such that the angle β does not appear. The Z2 symmetry
then can be imposed on this form of the Lagrangian even if
it may be realized in more complicated ways than in some
preferred basis. Imposing this symmetry does not introduce
new parameters, but can only restrict the already available
ones. Further, one can renormalize in this basis – this does
not introduce a counterterm for the angle β – and afterwards
rotate to some preferred basis, where the Z2 (or some other)
symmetry is more evident. Then, one can still measure the
angle β but it does not need a counterterm.
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