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Introduction

0.1 Relevance of the research

Nonlocal conditions are known for scientists for at least 150 years. For example,

in 1896 V.A. Steklov [93] investigated mathematical model of metal core cooling,

where nonlocal conditions were considered as a linear combination of the values of

unknown function and its derivatives in various boundary points (see [94, pp. 63–

75, Стеклов 1983]). Steklov considered heat equation

g
BU
Bt “ B

Bx

ˆ
k

BU
Bx

˙
´ mU, g “ cρ, x P r0, ls,

with initial condition Up0, xq “ fpxq, and boundary conditions of the general form

LpUq ” a1Upt, 0q ` a2
BUpt, 0q

Bx ` a3Upt, lq ` a4
BUpt, lq

Bx “ 0,

L1pUq ” b1Upt, 0q ` b2
BUpt, 0q

Bx ` b3Upt, lq ` b4
BUpt, lq

Bx “ 0,

(0.1)

where ak and bk (k “ 1, 2, 3, 4) are constant coefficients. We call nonlocal con-

ditions (0.1) as classical nonlocal boundary conditions because they link together

values of unknown function and its derivatives only on the boundary. Problems

with the same type classical NBCs were also investigated in 1933 by T. Carle-

man [14], in 1964 by R.W. Beals [8] and F.E. Browder [12].

In 1963 J.R. Cannon published an article [13], where the nonlocal integral

boundary condition ż 1

0

upx, tqdx “ φptq (0.2)

was considered. Nonlocal condition (0.2) links together values of the unknown

function on the boundary and in the inner domain. That is exactly the non-

local condition, which led to the new field of nonlocal problems and their nu-

merical modelling. Conditions are called nonlocal, when together (or instead of)

1



2 Introduction

with boundary conditions, another conditions, which connect solution (or/and its

derivatives) on boundary with inner domain, are formulated. Nonlocal conditions

arise mainly when the data on the boundary cannot be measured directly. It is

sometimes better to impose nonlocal conditions since the measurements needed

by a nonlocal condition may be more precise than the measurement given by a

local condition. Investigation of such problems is of special interest in the point of

general partial differential equations theory as well as in the point of mathematical

modelling applications.

Bitsadze–Samarskii nonlocal conditions

In 1969 A.A. Samarskii and A.V. Bitsazde made a report [10] about existence and

uniqueness of solutions of a Laplace equation

∆upx, yq “ 0, ´l ă x ă l, 0 ă y ă 1,

with boundary conditions

upx, 0q “ φ1pxq, upx, 1q “ φ2pxq, ´l ď x ď l,

up´l, yq “ φ3pyq, up0, yq “ upl, yq 0 ď y ď 1,

where φ1, φ2, and φ3 are known continuous functions. Starting from this paper,

conditions of the type

u|boundary “ aupξq ` b, ξ P inner domain, a, b P R

are called Bitsadze–Samarskii nonlocal conditions. In ten years (1977–1987) there

were published articles by N.I. Ionkin and coauthors [36, Ионкин 1977], [37, Ionkin

and Moiseev 1980], Samarskii [75, 1980] and others [91, Soldatov and Shkhanukov

1987] and [41, Капанадзе 1987]. Nowadays, problems with Bitsadze–Samarskii

conditions are investigated by a worldwide group of scientists. For example, in

2008 A. Ashyralyev published a paper [2], where he considered an elliptic problem

´u2ptq ` Auptq “ fptq p0 ď t ď 1q, up0q “ φ, up1q “ upλq ` ψ, 0 ď λ ă 1,

where A is a positive operator in an arbitrary Banach space. He proved the

coercive inequalities in Banach space for the solutions of the formulated problem,

and investigated solvability in different Banach spaces.
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The eigenspectrum analysis of Sturm–Liouville and elliptic finite difference

operators with two-point Bitsadze–Samarskii NBCs is made in 2015 by Elsaid et

al. [27]. The authors considered elliptic PDE

B2u

Bx2 ` B2u

By2 “ fpx, yq, 0 ă x ă 1, 0 ă y ă 1,

with the boundary conditions

upx, 0q “ u1pxq,

upx, 1q “ u2pxq,

up0, yq “ γ1up1, yq,

upξ, yq “ γ2up1 ´ ξ, yq,

where ξ, γ1, and γ2 are given constants such that 0 ă ξ ă 1 ´ ξ ă 1. Firstly,

the authors consider the eigenvalue problem for Sturm–Liouville finite difference

operator with given nonlocal boundary conditions and then the results obtained

from this problem are utilized to study the two-dimensional difference eigenvalue

problem. The eigenvalue analysis is made very similar, as in the articles of lithua-

nian mathematicians R. Čiegis, M. Sapagovas, A. Štikonas (see e.g. [17–19, 59]).

The authors, using the separation of variables technique, combined together the

properties and relations of one-dimensional problems to obtain the corresponding

ones of the two-dimensional case.

Multipoint nonlocal conditions

We call a nonlocal condition multipoint if it links values of the unknown function

and its derivatives on at least three points of the inner domain and boundary.

A general notion of multipoint condition is provided by B. Pelloni and D. Smith

[60, November 2015]. The authors consider initial-multipoint value problem (we

use authors’ notation)

rBt ` ap´ıBxqnqsqpx, tq “ 0 px, tq P p0, 1q ˆ p0, T q, (0.3)

qpx, 0q “ q0pxq x P r0, 1s, (0.4)

n´1ÿ

k“0

mÿ

r“0

brkjBk
xqpηr, tq “ gjptq, t P r0, T s, j “ 0, n´ 1, (0.5)
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where m,n P N, and 0 “ η0 ă η1 ă η2 ă ¨ ¨ ¨ ă ηm “ 1, brkj P C for k, j “ 0, n´ 1,

r “ 0, m. The authors assume gjptq P C8r0, T s with T ą 0 a fixed constant, and

that the initial datum is compatible with the boundary data in the sense that

q0 P Cnp0, 1q and
n´1ÿ

k“0

mÿ

r“0

brkjBk
xq0pηr, 0q “ gjp0q.

Coefficient a satisfies $
’&
’%

teıΦ : Φ P r0, πsu if n even,

tı,´ıu if n odd.

Condition (0.5) is called multipoint nonlocal condition.

An example of multipoint nonlocal initial boundary problem is provided by

D.G. Gordeziani et al. [29, 2010]. The authors try to find a regular solution of a

problem

Lupx̄q “ F px̄q, x̄ “ px0, . . . , xnq P Ω Ă R
n`1,

where

Lu “ ´
nÿ

i“0

B
Bxi

„
Kipx̄q Bu

Bxi


` Kpx̄qu,

Kip¨q ě αi “ const ą 0, i “ 0, n. Kp¨q satisfy boundary condition upx̄q “ φpx̄q,
x̄ P S̄Γ , where S̄Γ “ tx̄ : x0 P r0, 1s, x1, . . . , xn P Γ u, Γ is a boundary and general

nonlocal boundary conditions

α1

Bupx0, xq
Bx0

ˇ̌
ˇ̌
x0“0

` β1up0, xq “ γ1upη1, xq ` δ1
1

ξ1

ż ξ1

0

upx0, xqdx0 “ φ1pxq,

α2

Bupx0, xq
Bx0

ˇ̌
ˇ̌
x0“1

` β2up1, xq “ γ2upη2, xq ` δ2
1

1 ´ ξ2

ż 1

ξ2

upx0, xqdx0 “ φ2pxq,

where x “ px1, . . . , xnq, 0 ă ξ1 ď ξ2 ă 1; φ1, φ2, φ, and F are smooth functions;

0 ă η1 ď η2 ă 1, αi, βi, γi, δi (i “ 1, 2) are known parameters. The authors

proved the existence and uniqueness of the solutions of differential problem and

formulated difference analog of the formulated problem.

Multipoint boundary conditions are also investigated with nonlinear PDEs.

In the paper [21, Das et al. 2010] authors present an algorithm for the numerical

solution of the second order multi-point boundary value problem

u2pxq ` gpu, u1q “ fpxq, 0 ď x ď 1,

with classical initial condition and multipoint boundary condition

up0q “ α, up1q “
mÿ

i“1

αiupηiq ` γi,
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where ηi P p0, 1q, i “ 0, m, αi and γi are known constants. The algorithm is

based on the homotopy perturbation approach and the solutions are calculated in

the form of a rapid convergent series. The described method yields more realistic

series solutions that converge rapidly to the exact solutions.

Integral nonlocal conditions

Integral nonlocal conditions, among all the nonlocal problems, are worth of in-

vestigation as a natural generalization of discrete nonlocal conditions. Integral

conditions describes the relationship between boundary and inner domain as a

sort of some average. Conditions of such type often occur in problems related to

fluid mechanics [50, Нахушев 1982] and [85, Shelukhin 1993], hydrodynamics [84,

Шелухин 1995] and [16, Чудновский 1976], linear thermoelasticity [22, 23, Day

1983, 1985], vibrations [99, Volkodavov and Zhukov 1998], biology [51, Нахушев

1995], plasma theory [25, Diaz and Rakotoson 1996], particle diffusion [49, Mu et

al. 2010], heat conduction [13, Cannon 1963], etc.

One of the main authors investigating nonlocal integral conditions is L.S. Pul-

kina [43, 61–68]. In the article [64, 2011] Pulkina considers an equation

utt ´ paijpx, tquxi
q
xj

` cpx, tq “ fpx, tq (0.6)

in a bounded domain Ω P Rn with smooth boundary BΩ, Q is the cylinder

Ω ˆ p0, T q, T ă 8, S “ BΩ ˆ p0, T q is the lateral boundary of Q. Author

sets a problem: find a function upx, tq that is a solution of (0.6) in Q, satisfies

initial condition

upx, 0q “ φpxq, utpx, 0q “ ψpxq

and the following nonlocal integral condition for n ą 1:

α
Bu
Bν

ˇ̌
ˇ̌
S

`
ż

Ω

Kpx, tqupx, tqdx “ 0. (0.7)

Here Bu{Bν ” aijpx, tquxi
px, tqνi|S, νpxq “ pν1, . . . , νnq is an outward normal to

BΩ at the current point, Kpx, tq is given weight.

In a special case n “ 1 the lateral boundary of Q “ p0, lqˆp0, T q separates into

two parts: x “ 0 and x “ l. As a consequence nonlocal condition (0.7) separates
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into two nonlocal conditions:

γ1uxp0, tq ` ρ1

ż l

0

K1px, tqupx, tqdx “ 0,

γ2uxp1, tq ` ρ2

ż l

0

K2px, tqupx, tqdx “ 0,

where ρ21 `ρ22 ą 0. Pulkina proved the existence and uniqueness of the generalized

solution in the Sobolev space Ŵ 1
2 pQq “ tvpx, tq : v P W 1

2 pQq, vpx, T q “ 0u.
The existence and uniqueness of a strong solutions of the singular problem

with integral conditions for parabolic equation was proved by A.L. Marhoune and

A. Memou in [48, 2015]. The authors in the rectangle Ω “ r0, 1sˆr0, T s considered

the equation

Lu ” Bu
Bt ´ 1

x

B
Bx

ˆ
x

Bu
Bx

˙
“ fpx, tq,

with the initial condition

upx, 0q “ φpxq, x P r0, 1s,

the Dirichlet condition

up1, tq “ 0, t P r0, T s,

and the nonlocal condition

ż α

0

upx, tqdx`
ż 1

β

upx, tqdx “ 0, 0 ď α ď β ď 1, t P r0, T s,

with given functions φpxq and fpx, tq and the matching conditions

φp1q “ 0,

ż α

0

φpxqdx`
ż 1

β

φpxqdx “ 0.

Existence and uniqueness of solutions is proved using the energy inequalities.

Stable nonlocal hyperbolic difference problems

The main research object of this thesis is stability of FDS for hyperbolic problems,

so we mark up some articles dedicated to this thematic. The first one is written

by A. Ashyralyev and E. Ozturk in 2014 [4]. The authors investigate stability

of FDS for Bitsadze–Samarskii type nonlocal boundary value problem involving

integral condition. They consider elliptic differential equation in a Hilbert space

´ d2uptq
dt2

`Auptq “ fptq, 0 ă t ă 1, up0q “ φ, up1q “
ż 1

0

ρpλqupλqdλ`ψ (0.8)
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with the self-adjoint positive definite operator A with a closed domain DpAq Ă H .

Here, let fptq be a given abstract continuous function defined on r0, 1s with values

in H ; φ, and ψ are elements of DpAq and ρptq is a scalar function. The authors

consider fourth order of the accuracy difference scheme

´ uk`1 ´ 2uk ´ uk´1

τ 2
` Ayk ` τ 2

12
A2uk “ φk,

φk “ fptkq ` τ 2

12

ˆ
fptk`1q ´ 2fptkq ` fptk´1q

τ 2
` Afptkq

˙
, tk “ kτ, k “ 1, N ´ 1,

u0 “ φ,

uN “ τ

3
pρpt0qu0 ` ρptN quNq ` τ

3

˜
4

N{2ÿ

k“1

ρpt2k´1qu2k´1 ` 2

N{2´1ÿ

k“1

ρpt2kqu2k
¸

` φ

for the approximate solution of differential equation (0.8). The stability estimates

for the solution of this difference scheme are established. Since A is a self-adjoint

positive definite operator the authors can use some techniques of A.A. Samarskii

and A.V. Gulin [70, 1973]. The authors proved theorems on the stability estimates,

almost coercive stability estimates for the solution of difference scheme for elliptic

equations.

Quite exotic third order stable FDS for the hyperbolic multipoint nonlocal

boundary value problem is presented by O. Yildirim and M. Uzun [100, 2015].

The authors consider hyperbolic problem

d2uptq
dt2

` Auptq “ fptq, 0 ď t ď 1,

up0q “
nÿ

r“1

αrupλrq ` φ,

utp0q “
nÿ

r“1

βrutpλrq ` ψ,

where 0 ă λ1 ă λ2 ă . . . ă λn ď 1, A is a self-adjoint positive definite operator

with domain DpAq in a Hilbert space H . Authors associate above defined problem

with the corresponding third order of accuracy difference scheme

τ´2puk`1 ´ 2uk ` uk`1q ` 2

3
Auk ` 1

6
Apuk`1 ` uk´1q ` 1

12
τ 2A2uk`1 “ fk,

fk “ 2

3
fptkq ` 1

6
pfptk`1q ` fptk´1qq ´ 1

12
τ 2 p´Afptk`1q ` f 2ptk`1qq ,

tk “ kτ, 1 ď k ď N ´ 1, Nτ “ 1,
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`
I ´ ıτA2

˘
u0 “

nÿ

k“1

"
urλk{τ s ` τ´1

`
urλk{τ s ´ urλk{τ s´1

˘ˆ
λk ´

„
λk

τ

˙

`3

2

`
frλk{τ s ´ Aurλk{τ s

˘ˆ
λk ´

„
λk

τ


τ

˙2

` 7

6

`
f 1

rλk{τ s ´ τ´1A
`
urλk{τ s ´ urλk{τ s´1

˘˘

¨
ˆ
λk ´

„
λk

τ


τ

˙3
+

` φ,

`
I ` ıτA2

˘
τ´1pu1 ´ u0q “

nÿ

k“1

βk
 
τ´1

`
urλk{τ s ´ urλk{τ s´1

˘
`
`
frλk{τ s ´Aurλk{τ s

˘

¨
ˆ
λk ´

„
λk

τ


τ

˙
` 1

2!

`
f 1

rλk{τ s ´ τ´1A
`
urλk{τ s ´ urλk{τ s´1

˘˘ˆ
λk ´

„
λk

τ


τ

˙2

` 1

3!

`
f 2

rλk{τ s ´ Afrλk{τ s ` A2urλk{τ s

˘ˆ
λk ´

„
λk

τ


τ

˙3
+

` ψ ` f1,1τ,

where f1,1 “ tfp0q ` p´fp0q ` τf 1p0qq {2 ´ f 1p0qτ{3u.
This scheme is a third order of accuracy unconditionally stable difference

scheme for the approximate solution of hyperbolic multipoint nonlocal boundary

value problem in a Hilbert space with self-adjoint positive definite operator. The

stability is established without any assumptions in respect of grid steps h and τ .

More detailed literature review on a particular thematics is presented in the

introduction of each chapter.

0.2 Aims and problems

In this section we provide the directions of the research presented in this thesis.

‚ Stability conditions for the explicit FDS. In Chapter 1 we investigate the

explicit FDS for the hyperbolic problem with two integral boundary con-

ditions. We approximate integrals by the trapezoid formula and formulate

the two-layered FDS with the block transition matrix S. We investigate the

eigenstructure of this matrix, formulate and prove the sufficient stability

condition.

‚ Stability conditions for the weighted FDS. In Chapter 2 we investigate a

class of weighted FDS with one weight parameter. We use the generalized

characteristic functions to investigate eigenspectrum (complex and real) of

discrete problem. We obtain the structure of eigenspectrum, formulate and
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prove stability conditions according to boundary parameters and weights of

FDS.

‚ Stability regions for the FDS with two weights. In Chapter 3 we consi-

der a class of weighted FDS with two weights. Numerically modelling char-

acteristic functions we obtain stability regions and restrictions on weights

σ1 and σ2.

‚ Stability of the weighted FDS with partial integrals. In Chapter 4 we

generalize the hyperbolic problem. We investigate integral boundary condi-

tions of the general type. We obtain equivalence conditions for the Sturm–

Liouville problem (which can be generalized to the evolution equations) to

the algebraic eigenvalue problem. These conditions obtained assuming a

general type of integral conditions (containing weight functions in the in-

tegral NBCs). Moreover, we investigate hyperbolic problem with partial

integrals in the boundaries.

0.3 Methods

The research methodology of this thesis is based of the approximation of hy-

perbolic equations by finite difference scheme. We use functional and complex

analysis to investigate the spectrum of the difference operators. We use numerical

integration to approximate integrals in the boundary conditions. We use Java and

Maple for mathematical modelling and simulation of the experiment.

0.4 Defended Statements

• The sufficient stability condition of the explicit FDS for hyperbolic equation

with integral NBCs is γ0 ` γ1 ă 2 under the condition τ ď h.

• The sufficient stability condition of the weighted FDS (with one weight σ)

for hyperbolic equation with integral NBCs is γ0`γ1 ă 2 and σ ą 1
4

´ 1
τ2λmax

.

• The FDS for hyperbolic equation with integral NBCs (with one weight σ)

is unstable if the spectrum has complex eigenvalues.
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• The weighted FDS for hyperbolic equation with integral NBCs (with two

weights σ1 and σ2) has a stability region if σ1 ě σ2. If the spectrum is real,

then the second stability condition is σ1 ` σ2 ě 1{2.

• The stability region of weighted FDS for hyperbolic equation with integral

NBCs (with two weights σ1 and σ2) is bounded if σ1 ´ σ2 ă 1{2, elsewise

stability region unbounded.

0.5 Originality

The research object of this doctoral thesis is the stability of finite difference ap-

proximation of the hyperbolic one-dimensional problem with nonlocal integral

boundary conditions. Most of the results presented in this doctoral thesis are

new for the formulated problem and have not appeared before in the scientific

literature. Some methods used in the investigation of the referred problem have

been recently used by scientists to investigate other fields of mathematical physics.

However, application of these methods to the hyperbolic problems is completely

new. We hope, that the present thesis is a step in generalization the theory of

approximation of nonlocal initial boundary value problems.

0.6 Applications

Modern problems of natural sciences lead to necessity of generalization of classical

mathematical physics problems and to formulate qualitatively new problems, in-

cluding nonlocal problems for differential equations. In the past several decades,

many physical phenomena have been formulated into nonlocal mathematical mo-

dels: electrolytic refining of non-ferrous metals [47, Lyubanova 2014], deformation

of metals under high strain rates [1, Ahada et al. 2014; and references therein],

the phenomena of Ohmic heating (see [28, Fan et al. 2014] and [56, Olmstead et

al. 1994] and references therein), thermal electricity [26, Du and Fan 2013], super-

conductivity [11, Van Bockstal and Slodička 2015], flow of fluids through fissured

rocks [92, Soltanalizadeh et al. 2014], etc.
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Stability analysis is an essential part of the concepts in the theory of nu-

merical schemes. In the numerical modelling of linear PDEs stability notion,

along with consistency notion, are two main characteristics of FDS, which lead to

the convergence of the scheme. Obtained stability conditions are useful numer-

ically modelling any processes described by hyperbolic equations (dynamics of

ground waters with NBCs of type [9, Beilin 2001] and [24, Dehghan 2005], oscilla-

tions [30, Gordeziani and Avalishvili 2000], irrigation models [83, Сербина 2007],

electromagnetic field [101, Золина 1966], etc). Eigenspectrum analysis results can

be used for constructing new difference schemes and for the investigations of the

stability regions of certain finite difference schemes.

0.7 Dissemination of results

Publications

The results of the doctoral research are published in five research papers. Two

papers are published in journals indexed by ISI Web of Science

1. J. Novickij, A. Štikonas, On the stability of a weighted finite difference

scheme for wave equation with nonlocal boundary conditions, Nonlinear

Anal. Model. Control, 19(3):460–475, 2014.

2. F.F. Ivanauskas, Yu.A. Novitski, and M.P. Sapagovas. On the stability of an

explicit difference scheme for hyperbolic equations with nonlocal boundary

conditions, Differ. Equ., 49(7):849–856, 2013 (transl. from: Ф.Ф. Иванаус-

кас, Ю.А. Новицкий, М.П. Сапаговас, Об устойчивости явной разност-

ной схемы для гиперболических уравнений с нелокальными краевыми

условиями, Дифференц. Уравнения, 49(7), c. 877–884, 2013).

Three papers are published in the proceeding of the conferences

3. J. Novickij, A. Skučaitė, and A. Štikonas, On the Stability of a Weighted

Finite Difference Scheme for Hyperbolic Equation with Integral Boundary

Conditions, In Proc. Numerical Mathematics and Advanced Applications

— ENUMATH 2015, Lect. Notes Comput. Sci. Eng., Vol. 112, Springer

International Publishing, 2016 (Accepted, in press).
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4. J. Novickij, A. Štikonas, On the equivalence of discrete Sturm–Liouville

problem with nonlocal boundary conditions to the algebraic eigenvalue prob-

lem, Liet. matem. rink. Proc. LMS, Ser. A, 56:66–71, 2015.

5. J. Novickij, A. Štikonas, On the stability of a finite difference scheme with

two weights for wave equation with nonlocal conditions, Liet. matem. rink.

Proc. LMS, Ser. A, 55:22–27, 2014.

Conferences

The results of this thesis were presented in the following international conferences:

• Hyp2016, Aachen, Germany, August 1–5, 2016.

• Actual Problems in Theory of Partial Differential Equations, dedicated to

the centenary of Andrey V. Bitsadze, Moscow, Russia, June 15–18, 2016.

• MMA2016, Tartu, Estonia, June 1–4, 2016.

• ENUMATH2015, Ankara, Turkey, September 14–18, 2015.

• MMA2015, Sigulda, Latvia, May 26–29, 2015.

• MMA2014, Druskininkai, Lithuania May 26–29, 2014.

• MMA2013 & AMOE2013, Tartu, Estonia, May 27–30, 2013.

• MMA2012, Tallinn, Estonia, June 6–9, 2012.

The results of the thesis were also presented in the local LMD53–LMD56 con-

ferences in 2012–2015 years and in the mathematical seminar of Department of

Differential Equations and Numerical Mathematics on May 24, 2016.

Conference abstracts

• J. Novickij and A. Štikonas, On the Stability of Discrete Nonlocal Hyperbolic

Boundary Problem, Hyp2016 abstracts, Aachen, Germany, 2016.

• J. Novickij and A. Štikonas, On the stability of discrete hyperbolic equa-

tion with nonlocal integral boundary conditions, Тезисы докладов, Москва,

2016.
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• J. Novickij and A. Štikonas, On the stability of discrete nonlocal hyperbolic

boundary problem, Abstracts of MMA2016, Tartu, Estonia, 2016.

• J. Novickij, A. Skučaitė, and A. Štikonas, Spectrum analysis of the weighted

finite difference scheme for the wave equation with the nonlocal integral

boundary conditions, Book of abstracts, European conference on numerical

mathematics and advanced applications, Ankara, Turkey, 2015.

• J. Novickij and A. Štikonas, Spectrum analysis of the weighted finite diffe-

rence scheme for the wave equation with integral boundary conditions, Ab-

stracts of MMA2015, Sigulda, Latvia, 2015.

• J. Novickij and A. Štikonas, Stability of the weighted finite-difference scheme

for hyperbolic equation with two nonlocal integral conditions, Abstracts of

MMA2014, Druskininkai, Lithuania, 2014.

• J. Novickij and A. Štikonas, An analysis of properties of weighted diffe-

rence schemes for nonlocal hyperbolic problems, Abstracts of MMA2012 &

AMOE2013, Tartu, Estonia, 2013.

• J. Novickij, F. Ivanauskas, and M. Sapagovas, On the stability of an ex-

plicit difference scheme for hyperbolic equations with nonlocal boundary

conditions, Abstracts of MMA2012, Tallinn, Estonia, 2012.

Training courses

During the doctoral studies were made several research visits:

• Two week visit to Trento, Italy, Trento Winter School on Numerical Methods

2015, February 2–13, 2015.

• One week visit to Barcelona, Spain, JISD2014, Universitat Politècnica de

Catalunya, June 16–20, 2014.
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Chapter 1

Stability of an explicit finite

difference scheme

1.1 Introduction

In the last decades, the demand to study processes described by equations of

mathematical physics with rather complicated nonclassical additional conditions

has increased. Throughout this thesis we are interested in the stability of the finite

difference schemes for nonclassical hyperbolic problems. The main principles of

the general theory of stability for difference schemes were started to investigate

by A.A. Samarskii in the mid 1960’s [72–74]. In the article [72, Самарский 1967]

the author considers two sets of difference schemes, the two-layer

Bptqypt` τq ´ yptq
τ

` Aptqyptq “ φptq, yp0q “ y0, y0 P HN , 0 ď t “ tj ă t0,

and the three-layer

Bptqypt` τq ´ ypt´ τq
2τ

` Rptq pypt` τq ´ 2yptq ` ypt´ τqq ` Aptqyptq “ φptq,

yp0q “ y0, ypτq “ y1, y0, y1 P HN .

A difference scheme is interpreted as an operator equation in the Euclidean space.

Necessary and sufficient stability conditions are formulated in the form of energy

inequalities. The stability is formulated as the lack of increase with time of the

solution energy norm, which is defined by a self-adjoint positive operator.

In the cases, when boundary conditions are nonlocal, transition operator is

not self-adjoint and even not positive. One of the articles, investigating stability

15
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of the difference schemes with nonlocal boundary condition is a work of Gulin et

al. [33, 2001]. Authors consider parabolic equation

Bu
Bt “ B2u

Bx2 , upx, 0q “ u0pxq, 0 ă x ă 1, t ą 0,

with nonlocal boundary conditions

Bu
Bxp0, tq “ Bu

Bxp1, tq, up0, tq “ 0.

The authors obtained the necessary and sufficient stability condition

0 ă τ ď 1

λk

ˆ
2 ´ |pk|

λk
?
∆k

˙
, pk “ ´2

h
sin 2πkh, k “ 1, m,

where ∆k “ rkβk´α2
k ą 0, for the difference scheme in a special norm in Euclidean

space HD, where

D “

»
– 1 αk

r´1
k αk βk

fi
fl

is the self-adjoint positive operator D : H Ñ H , (rk “ 1 for k “ 1, m´ 1 and rm “
0.5, αk, βk ą 0, k “ 1, m) which defines the energy norm }y}D “

a
pDy,Dyq).

Hyperbolic problems with nonlocal integral boundary conditions have not been

studied so broadly as, say, parabolic or elliptic problems. A. Ashyralyev and

N. Aggez in the paper [3, 2011] dealt with the stability of a difference scheme for

the multidimensional hyperbolic equation

B2upt, xq
Bt2 ´

mÿ

r“1

parpxquxr
qxr

“ fpt, xq, x “ px1, . . . , xmq P Ω, 0 ă t ă 1,

with the initial conditions

up0, xq “
1ż

0

αpρqupρ, xq dρ` φpxq, utp0, xq “ ψpxq, x P Ω,

one of which is an integral condition, and the classical boundary condition

upt, xq “ 0, 0 ă t ă 1, x P S,

where Ω is the open unit cube in m-dimensional Euclidean space

Ω “ tx “ px1, . . . , xmq : 0 ă xj ă 1, 1 ď j ď mu Ă R
m

with boundary S, Ω “ Ω Y S, αrpxq ě α ą 0 (x P Ω), φpxq, ψpxq (x P Ω) and

fpt, xq (t P p0, 1q, x P Ω) are given smooth functions. Stability conditions in the

class L2 were obtained.
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The stability of difference schemes for the nonlocal hyperbolic problems was

studied by A. Ashyralyev and O. Yildirim in [5, 2011]. Multidimensional hyper-

bolic equation with Dirichlet condition is considered

$
’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

B2upt, xq
Bt2 ´

mÿ

r“1

parpxquxr
qxr

“ fpt, xq,

x “ px1, . . . , xmq P Ω, 0 ă t ă 1,

up0, xq “
nÿ

j“1

αjupλj, xq ` φpxq, x P Ω,

utp0, xq “
nÿ

k“1

βkutpλk, xq ` ψpxq, x P Ω,

upt, xq “ 0, x P S,

here Ω “ tx “ px1, . . . , xmq : 0 ă xj ă 1, 1 ď j ď mu is the open unit cube in the

m-dimensional Euclidean space Rm with boundary S, Ω “ Ω Y S. Stability

conditions in a special norm }¨}L2h
were obtained and numerical analysis was

done.

The existence and uniqueness of solutions of differential equations were studied

in [44, Kozhanov and Pul’kina 2006] and [63, Пулькина 2004].

The hyperbolic equation

B2upx, tq
Bt2 ´ B2upx, tq

Bx2 “ F px, tq, 0 ă x ă 1, 0 ă t ď T,

with the initial conditions

upx, 0q “ rpxq, utpx, 0q “ spxq, 0 ď x ď 1,

the Dirichlet boundary condition

up0, tq “ pptq

and the nonlocal integral boundary condition

1ż

0

upx, tq dx “ qptq, 0 ă t ď T.

was considered by M. Ramezani et al. in [69, 2008]. Numerical methods combining

the finite difference method and the spectral method were suggested for solving

such equations.
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In this chapter, we give a sufficient condition for the stability of an explicit

difference scheme for a hyperbolic equation with nonlocal integral boundary con-

ditions. By using a method applied earlier to parabolic equations with nonlo-

cal boundary conditions [79, Sapagovas 2012], we rewrite a three-layer difference

scheme in the form of an equivalent two-layer scheme. By analyzing the spectrum

of the transition matrix of the two-layer scheme, we obtain sufficient conditions for

the stability of the three-layer scheme depending on the parameters occurring in

the integral boundary conditions. To analyze the stability of a difference nonlocal

hyperbolic problem, we use an explicit three-layer difference scheme and approxi-

mate the nonlocal boundary conditions by the trapezoid quadrature formula. By

representing this scheme in the form of a second-order operator-difference equation

and by using some transformations, one can obtain a two-layer scheme equivalent

to this three-layer scheme [71, p. 364, Самарский и Гулин 1989]. To study the

spectrum of the transition matrix of the two-layer scheme, we define the norms of

matrices and vectors. The analysis of the structure of the spectrum of the tran-

sition matrix (see [81, Sapagovas et al. 2012] and [78, Сапаговас и Штиконас

2005]) and the use of a generalized nonlinear eigenvalue problem permit one to

state the main result of the present paper, a sufficient condition for the stability

of an explicit difference scheme for hyperbolic equations with integral boundary

conditions.

This chapter is based on an article, published together with Profs. Feliksas

Ivanauskas and Mifodijus Sapagovas [39, 2013].

1.2 Notation

In this thesis we consider the one-dimensional in space hyperbolic equation with

corresponding classical and nonclassical boundary and initial conditions. We are

interested in the numerical solutions of the formulated problem. Obviously, the

numerical solution of the mathematical problem does not correspond to the dif-

ferential solution for all values of the unknown function in a certain domain. The

classical way (e.g. [77, Samarskii 2001]) to overcome this is to define a finite set of

points in the problem’s domain and look for the numerical solutions only on the

points of this set. Any such set of simulation elements is called a grid (in some
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literature a term mesh is used. Grids are typically a set of simulation elements

that have a well defined structure to their alignment, while meshes are often more

general, they may be unstructured and use various shapes of elements). The iso-

lated points are called grid nodes. A function U , defined on the grid nodes, is

called a grid function. We consider x P r0, Ls and t P r0, T s. Throughout this

thesis we use the following grids.

ωh :“
 
xi : xi “ ih, i “ 0, N

(
; h “ L{N,

ωh
1{2 :“

 
xi´1{2 “ pxi´1 ` xiq{2, i “ 1, N, x´1{2 “ x0, xN`1{2 “ xN

(
;

hi`1{2 “ xi`1{2 ´ xi´1{2, i “ 0, N,

ωτ :“
 
tj : tj “ jτ, j “ 0,M

(
; τ “ T {M,

ωh :“ tx1, . . . , xN´1u , rωτ :“
 
t1, . . . , tM

(
, ωτ :“

 
t1, . . . , tM´1

(
,

where N ` 1 and M ` 1 are the numbers of grid points for x and t directions,

accordingly, and N , M ě 2.

We use notation U
j
i :“ Upxi, tjq for the grid function, defined on the grid

(or parts of it) ωh ˆ ωτ . Instead of writing indices we denote qU j :“ U j´1 and

pU j :“ U j`1 on grids rωτ and ωτ Ytt0u, respectively. We define a space grid operator

δ2x : ωh Ñ ωh,
`
δ2xU

˘
i
:“ Ui´1 ´ 2Ui ` Ui`1

h2
,

and the time grid operators

Bt : ω
τ Ñ rωτ , BtU :“ U ´ qU

τ
,

B2
t : ω

τ Ñ ωτ , B2
tU :“

qU ´ 2U ` pU
τ 2

.

1.3 Statement of the problem

Consider the hyperbolic equation

B2upx, tq
Bt2 ´ B2upx, tq

Bx2 “ fpx, tq, x P p0, 1q, t P p0, T s, (1.1)

with the classical initial conditions

upx, 0q “ φpxq, x P r0, 1s, (1.2)
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Bupx, 0q
Bt “ ψpxq, x P r0, 1s, (1.3)

and the nonlocal integral boundary conditions

up0, tq “ γ0

1ż

0

upξ, tq dξ ` µ1ptq, t P r0, T s, (1.4)

up1, tq “ γ1

1ż

0

upξ, tq dξ ` µ2ptq, t P r0, T s, (1.5)

where γ0 and γ1 are given numerical parameters and fpx, tq, φpxq, ψpxq, µ1ptq,
and µ2ptq are given functions.

Remark 1.1. The initial data of the hyperbolic problem, stated in Chapters 1–4

is compatible with the boundary data up to the required smoothness.

Now we state a discrete analog of the differential problem (1.1)–(1.5).

1.4 Finite difference schemes

The principle of finite difference schemes consists in approximating the differential

operator by replacing the derivatives in the equation using differential quotients.

The domain is partitioned in space and in time and approximations of the solu-

tion are computed at the space or time points. The approximation error is an

error between the numerical and exact solutions. In this section we consider the

wave equation (1.1) with the initial conditions (1.2)–(1.3). Nonclassical boundary

conditions (1.4)–(1.5) are considered separately.

The main concept of any finite difference scheme is based of the definition of

the derivative of a continuously differentiable in the interval x P r0, Ls function u

u1pxq “ lim
hÑ0

upx` hq ´ upxq
h

.

Below we state some FDS concepts about approximation of derivatives (e.g. [77,

Samarskii 2001], [7, Бахвалов 2011]).

Approximation of the first order derivatives. When h tends to 0, the

quotient in the right-hand side provides an approximation of the derivative. There



1.4 Finite difference schemes 21

are some approximations, according to the chosen point in the neighbourhood of

point x

u1pxq « upx` hq ´ upxq
h

, (right difference derivative)

u1pxq « upxq ´ upx´ hq
h

. (left difference derivative)

If the function is smooth enough in the neighbourhood of x, it is possible to

expand it in a Taylor series. This allows one to quantify the approximation error.

Suppose u P C3 in the neighbourhood of x P r0, Ls, then for any h ą 0 we have

upx` hq “ upxq ` hu1pxq ` h2

2
u2pxq ` h3

6
u3px`q, (1.6)

upx´ hq “ upxq ´ hu1pxq ` h2

2
u2pxq ´ h3

6
u3px´q, (1.7)

where, x` P rx, x` hs and x´ P rx´ h, xs.
Big O notation. Suppose fpxq and gpxq are two functions defined on some

subset X Ă R. We write

fpxq “ Opgpxqq

if and only if there exists constant C such that

|fpxq| ď C|gpxq|, x P X.

For example, X “ p´ε,`εq, ε ą 0, is zero neighborhood.

Using the definition of the difference derivative we have

upx` hq ´ upxq
h

“ u1pxq ` h

2
u2pxq ` Oph2q,

upxq ´ upx´ hq
h

“ u1pxq ´ h

2
u2pxq ` Oph2q.

By subtracting Taylor series expansions (1.6) and (1.7), thanks to the intermediate

value theorem, we have

upx` hq ´ upx´ hq
2h

“ u1pxq ` h2

6
u3px˘q, (central difference derivative)

where x˘ P rx ´ h, x` hs. So, the approximation errors are

upx` hq ´ upxq
h

´ u1pxq “ Ophq,
upxq ´ upx´ hq

h
´ u1pxq “ Ophq,

upx` hq ´ upx´ hq
2h

´ u1pxq “ Oph2q.
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Approximation of the second order derivatives. Suppose u P C4r0, Ls.
Like previously, we use Taylor expansions up to fourth order

upx` hq “ upxq ` hu1pxq ` h2

2
u2pxq ` h3

6
u3pxq ` h4

24
up4qpx`q,

upx´ hq “ upxq ´ hu1pxq ` h2

2
u2pxq ´ h3

6
u3pxq ` h4

24
up4qpx´q,

Using the intermediate value theorem, we write

upx ´ hq ´ 2upxq ` upx` hq
h2

“ u2 ` h2

12
up4qpx˘q.

So, the second order difference derivative approximates u2 of the order 2, this

means pupx´ hq ´ 2upxq ` upx` hqq {h2 ´ u2 “ Oph2q.

1.5 Explicit finite difference scheme

We consider a rectangular domain ωh ˆ ωτ . We write the original differential

equation (1.1) at the point pxi, tjq P ωh ˆ ωτ

B2upxi, tjq
Bt2 ´ B2upxi, tjq

Bx2 “ fpxi, tjq

Using Taylor expansion, we obtain

upxi, tj´1q ´ 2upxi, tjq ` upxi, tj`1q
τ 2

´ upxi´1, tjq ´ 2upxi, tjq ` upxi`1, tjq
h2

“ fpxi, tjq ` Epxi, tjq,

where

Epxi, tjq “ h2

12

B4upx˘
i , tjq

Bx4 ´ τ 2

12

B4upxi, t˘j q
Bt4 “ Opτ 2 ` h2q

is a truncation error of the approximation of wave equation (1.1). We consider

finite difference scheme

B2
tU ´ δ2xU “ F, pxi, tjq P ωh ˆ ωτ , (1.8)

where F :“ F
j
i “ fpxi, tjq.

The initial conditions (1.2)–(1.3) are approximated as follows with the accu-

racy Oph2q

U0 “ Φ, xi P ωh, (1.9)

BtU
1 “ Ψ, xi P ωh, (1.10)
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x

t

t0

t1

tM´1

tM

h

τ

xi “ ih xN

tj “ jτ

pxi´1, tjq pxi, tjq pxi`1, tjq

pxi, tj´1q

pxi, tj`1q

Fig. 1.1: Grid stencil and computation algorithm of the explicit three-layer FDS:
— known values, — computed stencil values, — computed boundary values.

where Φ :“ Φi “ φpxiq and Ψ :“ Ψi “ ψpxiq ` τ
2

pδ2xU0 ` fpxi, t0qq. The order of

the approximation of Eq. (1.10) is Opτ 2q.
We replace the boundary conditions by the trapezoid quadrature formula

U
j`1
0 “ γ0h

˜
U

j`1
0 ` U

j`1
N

2
`

N´1ÿ

i“1

U
j`1
i

¸
` µ1

j`1, (1.11)

U
j`1

N “ γ1h

˜
U

j`1
0 ` U

j`1
N

2
`

N´1ÿ

i“1

U
j`1
i

¸
` µ2

j`1. (1.12)

The error of approximation of trapezoid formula is u2pξ, tqh2{2, where ξ P r0, 1s,
and is of the order Oph2q.

Finally, we have formulated difference problem (1.8)–(1.12) with an order of

approximation of hyperbolic boundary-value problem (1.1)–(1.5) equals to Opτ 2`
h2q.

The five-point stencil of the explicit FDS is shown on Fig. 1.1. The unknown

value on the j` 1 layer is computed using the known values on j and j´ 1 layers.

The general algorithm of solving hyperbolic boundary-value problem is shown

on Fig. 1.1. The values of the grid ωh on first and second (j “ 0 and j “ 1)

time layers are known from two classical initial conditions. Then, using explicit

FDS stencil, values of the grid ωh on the third layer are found. Then, using the

boundary conditions values U3
0 and U3

N are calculated. Repeating this algorithm

for the remaining time layers, one can solve the problem numerically.
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1.6 von Neumann stability

There are two basic concepts in the theory of numerical schemes. These are the

notions of consistency and stability. For the numerical scheme to be useful it

is important, that both of these properties are fulfilled. For a linear PDE Lax–

Richtmyer theorem is valid [46, Lax and Richtmyer 1956]

consistency ` stability ðñ convergence.

A finite difference approximation is considered consistent if by reducing the grid

and time step size, the truncation error terms could be made to approach zero. In

that case the solution to the difference equation would approach the true solution

to the PDE.

A finite difference approximation is stable if the errors decay as the compu-

tation proceeds from one layer to the next. Stability of a finite difference approx-

imation is assessed using Von-Neumann stability analysis (see e.g. [38, Isaacson

and Keller 1994] and [90, Smith 1985]).

For linear constant coefficient finite difference schemes such as (1.8), a complete

stability analysis is possible, because the numerical algorithm equations can be

solved exactly by separation of variables. This means then that any solution of

the scheme can be written as a Fourier expansion. Assume we have a Fourier

expansion in space of desired function

upx, tq “
ÿ

ω

ûptqeıωx.

Now, we take just one term and evaluate it at point pxi, tjq

upxi, tjq « ûptjqeıωxi

These expressions can be plugged directly into any finite difference scheme to

check for stability. The growth rate (in some literature amplification factor)

G is defined as

G “
ˇ̌
ˇ̌ ûptj`1q
ûptjq

ˇ̌
ˇ̌ ,

where ûptjq “ 1
2π

şπ
´π
upx, tjqe´ıωxdx. For stability we need

G ď 1 for all ω. (1.13)
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Conditional stability means the stability on a certain condition.

Since the operator of the FDS (1.8)–(1.12) is not symmetric and positively

defined (due to nonlocal boundary conditions), we cannot apply the energy norm

stability analysis methods. So, in this thesis we use the spectral stability analysis.

1.7 Definition of matrix and vector norm

We define the norm of any mˆ m matrix M as follows

}M}2 “
b

max
1ďiďm

λipM˚Mq “ σmaxpMq,

where M
˚ is the conjugate transpose of M and σmax is the largest singular value

of M. If M is normal matrix (commutes with its conjugate transpose MM
˚ “

M
˚
M) then

σmaxpMq “ ρpMq :“ max
1ďiďm

|λipMq| .

We define the associated vector norm by the formula

}V}2 “
d

mÿ

i“1

|Vi|2. (1.14)

According to [71, p. 353, Самарский и Гулин 1989], a sufficient stability

condition of the two-layer scheme is

}M} ď 1,

where }¨} is an arbitrary norm, M is a transition matrix of two-layer scheme.

1.8 Reduction to a two-layer scheme

From conditions (1.11) and (1.12), treated as a system of two linear equations with

two unknowns U j`1
0 and U j`1

N , we express these unknowns via U j`1
i , i “ 1, N ´ 1,

and obtain

U
j`1
0 “

γ0h

ˆ
µ2

j`1 ` 2
N´1ř
i“1

U
j`1
i

˙
´ µ1

j`1p2 ´ γ1hq

2 ´ hpγ0 ` γ1q
, (1.15)

U
j`1

N “
γ1h

ˆ
µ1

j`1 ` 2
N´1ř
i“1

U
j`1
i

˙
´ µ2

j`1p2 ´ γ0hq

2 ´ hpγ0 ` γ1q
. (1.16)
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By substituting expressions (1.15) and (1.16) into Eq. (1.8) for i “ 1 and i “ N´1,

we rewrite system (1.8)–(1.12) in the form

IU j`1 ` BU j ` IU j´1 “ τ 2F, (1.17)

B “ ´
`
2I ´ τ 2Λ

˘
, (1.18)

where I is the identity matrix, U j is pN ´ 1q-vector, F “
` rF1, . . . , rFN´1

˘J
, where

rFi “ Fi, i “ 2, N ´ 2 and rFi “ rFi

`
Fi, µ1, µ2

˘
, i “ 1, N ´ 1, and

Λ “ 1

h2

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

2 ´ a ´1 ´ a ´a ´a . . . ´a ´a ´a ´a
´1 2 ´1 0 . . . 0 0 0 0

0 ´1 2 ´1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . ´1 2 ´1 0

0 0 0 0 . . . 0 ´1 2 ´1

´b ´b ´b ´b . . . ´b ´b ´1 ´ b 2 ´ b

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

, (1.19)

a “ hγ0

1 ´ h
2

pγ0 ` γ1q
, b “ hγ1

1 ´ h
2

pγ0 ` γ1q
,

is pN ´ 1q ˆ pN ´ 1q matrix.

Remark 1.2. A conversion of expressions (1.15) and (1.16) to algebraic prob-

lem (1.17) is possible under the condition pγ0 ` γ1q ‰ 2{h. A general case of

equivalence of the boundary value problem to the algebraic one is investigated in

the Section 4.4.

We represent the three-layer scheme (1.17) as an equivalent two-layer scheme [71,

p. 364, Самарский и Гулин 1989]. To this end, we supplement the scheme (1.17)

with the trivial condition U j “ U j

¨
˝ U j`1

U j

˛
‚“

¨
˝ 2I ´ τ 2Λ ´I

I 0

˛
‚
¨
˝ U j

U j´1

˛
‚`

¨
˝ τ 2f j

0

˛
‚. (1.20)

We define the 2pN ´ 1q-vector

V j`1 “

¨
˝ U j`1

U j

˛
‚.

This vector combines the solution of the difference problem at points of two time

layers. Now system (1.20) can be represented as

V j`1 “ SV j ` G, (1.21)
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where

S “

¨
˝ 2I ´ τ 2Λ ´I

I 0

˛
‚“

¨
˝ ´B ´I

I 0

˛
‚, G “

¨
˝ τ 2F

0

˛
‚.

According to [80, Sapagovas 2008] and [31, Гулин и др. 2006], one can study the

stability conditions for the two-layer difference scheme (1.21) by analyzing the

spectrum of the matrix S. Note that the matrix S, as well as the matrix Λ is

nonsymmetric.

1.9 Matrix S spectrum structure

Let µ be an eigenvalue of the matrix S; i.e., consider the eigenvalue problem

detpS ´ µIq “ 0. (1.22)

Lemma 1.3. The following equality for block matrix is valid

det

¨
˝ K L

M 0

˛
‚“ detM det p´Lq,

where K, L, and M are arbitrary n ˆ n matrices.

Proof. The proof follows from a decomposition like

det

¨
˝K L

M 0

˛
‚“ p´1qn¨n`n det

¨
˝ M 0

´K ´L

˛
‚ “ det

¨
˝
¨
˝ M 0

´K I

˛
‚
¨
˝ I 0

0 ´L

˛
‚
˛
‚

“ detM det p´Lq.

It follows from this lemma, that

det

¨
˝´B ´ µI ´I

I ´µI

˛
‚ “ det

¨
˝ ´B ´ µI ´I ´ µB ´ µ2

I

I 0

˛
‚

“ det
`
µ2
I ` µB ` I

˘
.

So, we have a nonlinear eigenvalue problem

`
µ2
I ` µB ` I

˘
V “ 0, (1.23)

which is rather well studied for the case of symmetric matrix B (e.g., see [45, p.

23, Lancaster 1966]). We have thereby proved the following assertion.
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Lemma 1.4. The eigenvalues of the matrix S coincide with the eigenvalues of the

generalized nonlinear eigenvalue problem (1.23).

Note that the number of eigenvalues of problem (1.23) is 2pN´1q, where N´1

is the order of the matrix B.

Let us clarify the relationship between the eigenvalues µ of the matrix S of

order 2pN ´ 1q and the eigenvalues λ of the matrix Λ of order pN ´ 1q. To this

end, we present the assertion proved in [79, Сапаговас 2012].

Consider the eigenvalue problem

$
’’’’’’’’’&
’’’’’’’’’%

Ui´1 ´ 2Ui ` Ui`1

h2
` λUi “ 0, i “ 1, 2, . . . , N ´ 1,

U0 “ γ0h

˜
U0 ` UN

2
`

N´1ÿ

i“1

Ui

¸
` µ1,

UN “ γ1h

˜
U0 ` UN

2
`

N´1ÿ

i“1

Ui

¸
` µ2.

If h ă 2{pγ0 ` γ1q, then, for arbitrary values of the parameters γ0, γ1 P R, all

eigenvalues λ of the matrix Λ are real and distinct; in addition, the following

assertions hold.

1. If γ0 ` γ1 ă 2, then all eigenvalues are positive.

2. If γ0 ` γ1 “ 2, then λ “ 0 is an eigenvalue, and the remaining N ´ 2

eigenvalues are positive.

3. If γ0 ` γ1 ą 2, then one eigenvalue is negative, and the remaining ones are

positive.

Remark 1.5. The extended version on the formulated assertion is presented in the

Chapter 2.

In all three cases, the positive eigenvalues λk can be found from the relation

λk “ 4

h2
sin2 αkh

2
,

where the αk are the solutions of the equation

tan
αk

2
“ 2

hpγ0 ` γ1q
tan

αkh

2

in the interval p0, 2πNq.
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By substituting an eigenvector Vk, k “ 1, N ´ 1 of matrix Λ into equation

(1.23) we obtain

µ2
IVk ` µBVk ` IVk “

“
µ2λkpIq ` µλkpBq ` λkpIq

‰
Vk “ 0.

Hence it follows that

µ2λkpIq ` µλkpBq ` λkpIq “ 0, k “ 1, N ´ 1. (1.24)

Lemma 1.6. For the three-layer scheme (1.8)–(1.12), to each eigenvalue λk (k “
1, N ´ 1) of the matrix Λ there correspond two eigenvalues µ1

k and µ2
k of the matrix

S:

µ
1,2
k “

ˆ
1 ´ τ 2λk

2

˙
˘
dˆ

1 ´ τ 2λk

2

˙2

´ 1. (1.25)

Proof. From relation (1.18) we obtain

λkpIq “ 1, λkpBq “ ´p2 ´ τ 2λkq, λkpIq “ 1.

By substituting these values into (1.24) and solving the resulting equation, and

by making simple transformations, we get relations (1.25).

Lemma 1.7. Let λk and Vk, be an eigenvalue and an eigenvector, respectively,

of the matrix Λ, and let µm
k , m “ 1, 2, be the eigenvalues of the matrix S, corres-

ponding to λk, µ
1
k ‰ µ2

k. Then

W
m
k “

¨
˚̊
˝

Vk

1

µm
k

Vk

˛
‹‹‚, m “ 1, 2, (1.26)

are linearly independent eigenvectors of the matrix S.

Proof. Consider the expression SW
m
k . By using formulas (1.22), (1.26), and

µm
k BVk ` IVk “ ´pµm

k q2IVk ðñ ´BVk ´ 1

µm
k

IVk “ µm
k IVk,

we obtain the equation
¨
˝ ´B ´I

I 0

˛
‚
¨
˝ Vk

1
µm
k

Vk

˛
‚“

¨
˝ ´BVk ´ 1

µm
k

IVk

IVk

˛
‚“ µm

k

¨
˝ Vk

1
µm
k

Vk

˛
‚, (1.27)

where m “ 1, 2. Equation (1.27) coincides with the definition of an eigenvalue

of the problem SW
m
k “ µm

k W
m
k , m “ 1, 2. The inequality µ1

k ‰ µ2
k provides the

linear independence of the eigenvectors V
1
k and V

2
k.
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Theorem 1.8. For the three-layer scheme (1.8)–(1.12), the relation ρpSq “ 1

holds for any h ą 0 and τ ď h if and only if all eigenvalues λk of the matrix Λ

are nonnegative.

Proof. We use relations (1.25) and estimate |µm
k | pk “ 1, N ´ 1, m “ 1, 2) de-

pending on λk. Then, on the basis of the assumptions of the theorem on the sign

of eigenvalues of the matrix Λ we obtain the inequality λk ě 0, which is equivalent

to the condition γ0 ` γ1 ď 2; therefore,

λk “ 4

h2
sin2 αkh

2
ď 4

h2
.

Consider the following cases separately.

1. λk ą 0 and µm
k P R, m “ 1, 2. Consequently, |1 ´ τ 2λk{2| ą 1, which is

equivalent to the inequalities τ 2λk{2 ă 0 and τ 2λk{2 ą 2. However, for this

problem, we have 0 ă τ 2λk{2 ă 2 (since τ ą 0, λk ą 0, τ 2λk{2 ď 2τ 2{h2 ď
2); therefore, this case is impossible.

2. The case of λk ą 0 and µm
k P C, m “ 1, 2, is possible if |1 ´ τ 2λk{2| ă 1 or,

which is the same 0 ă τ 2λk{2 ă 2. Then

µm
k “

ˆ
1 ´ τ 2λk

2

˙
˘ ı

d

1 ´
ˆ
1 ´ τ 2λk

2

˙2

,

|µm
k |2 “

ˆ
1 ´ τ 2λk

2

˙2

` 1 ´
ˆ
1 ´ τ 2λk

2

˙2

“ 1,

where m “ 1, 2.

3. If λk ă 0, then at least one of the eigenvalues does not satisfy the stability

condition, because

|µm
k | “

ˇ̌
ˇ̌
ˇ̌
ˆ
1 ` τ 2|λk|

2

˙
˘
dˆ

1 ` τ 2|λk|
2

˙2

´ 1

ˇ̌
ˇ̌
ˇ̌ ą 1,

where m “ 1, 2.

4. If λk “ 0, then |µm
k | “ 1, m “ 1, 2.

It follows from the second and the fourth cases that the assertion of the theorem

holds.
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Therefore, a sufficient condition for the stability of the difference scheme (1.8)–

(1.12) is given by the inequality γ0 ` γ1 ă 2 under the condition τ ď h.

Remark 1.9. If γ0 ` γ1 “ 2, then, by Theorem 1.8, ρpSq “ 1, but one of the

eigenvalue of the matrix Λ is zero. The corresponding values µ1
k and µ2

k defined

by relation (1.25) coincide and are equal to unity. Consequently, the vectors v1,2k

are not linearly independent in this case.

1.10 Numerical experiment

We take a model problem such that the function upx, tq “ x3 ` t3 is an analytic

solution of problem (1.1)–(1.5). Then we obtain the problem

B2upx, tq
Bt2 ´ B2upx, tq

Bx2 “ 6t´ 6x, x P p0, 1q, t P p0, T s, (1.28)

upx, 0q “ x3,
Bupx, 0q

Bt “ 0, (1.29)

up0, tq “ γ0

1ż

0

upx, tq dx` t3 ´ γ0

ˆ
1

4
` t3

˙
, (1.30)

up1, tq “ γ1

1ż

0

upx, tq dx` 1 ` t3 ´ γ1

ˆ
1

4
` t3

˙
. (1.31)

We apply the difference scheme (1.8)–(1.12) (with known functions f , φ, ψ, µ1,

and µ2) to the differential problem (1.28)–(1.31). We find the maximum relative

error by the formula

∆U “ max
0ăiăN

ˇ̌
ˇ̌upxi, tMq ´ UM

i

upxi, tMq

ˇ̌
ˇ̌ ,

where upxi, tMq is the analytic solution of the differential problem (1.28)–(1.31)

at the point x “ xi, t “ tM , and U j
i is the solution of the corresponding difference

problem.

As follows from the Table 1.1, the maximum relative error of the model prob-

lem for sufficiently small T (T “ 1) remains a quantity of the same order under

small changes of the parameter γ0 ` γ1 (1.8 ď γ0 ` γ1 ď 2.2), occurring in the

boundary conditions. For larger T (T “ 50), there is a sharp jump (followed by

further growth) in the maximum relative error as the solution of the difference

problem crosses the line γ0 ` γ1 “ 2, which shows that the difference scheme
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Table 1.1: Maximum relative error in the numerical experiment.

γ0 ` γ1
∆U

T “ 1 T “ 10 T “ 50

0 3.1 ¨ 10´10 6.8 ¨ 10´13 1.4 ¨ 10´13

0.2 6.1 ¨ 10´8 1.2 ¨ 10´10 4.5 ¨ 10´13

0.4 1.3 ¨ 10´7 1.8 ¨ 10´10 1.4 ¨ 10´12

0.6 2.2 ¨ 10´7 9.2 ¨ 10´11 2.4 ¨ 10´12

...
...

...
...

1.4 8.3 ¨ 10´7 3.2 ¨ 10´10 9.0 ¨ 10´12

1.6 1.1 ¨ 10´6 1.8 ¨ 10´9 2.9 ¨ 10´12

1.8 1.4 ¨ 10´6
2.9 ¨ 10´9

3.3 ¨ 10´11

2.0 1.9 ¨ 10´6
1.5 ¨ 10´7

3.0 ¨ 10´8

2.2 2.4 ¨ 10´6
9.0 ¨ 10´5

1.2 ¨ 1013

2.4 3.1 ¨ 10´6 6.1 ¨ 10´3 1.4 ¨ 1023
...

...
...

...
3.8 1.8 ¨ 10´5 2.2 ¨ 106 5.3 ¨ 1066
4 2.4 ¨ 10´5 2.2 ¨ 107 6.1 ¨ 1071

h “ 0.001 and τ “ 0.0005.

is unstable in the domain γ0 ` γ1 ą 2. In turn, this shows that the condition

γ0 ` γ1 ď 2 is sufficient for the stability of our difference scheme for sufficiently

large values of the parameter T .

1.11 Conclusions and final remarks

• For the explicit three-layer scheme, the relation ρpSq “ 1 holds for any h ą 0

and τ ď h if and only if all eigenvalues λk of the matrix Λ are nonnegative.

• A sufficient condition for the stability of the explicit finite difference scheme

is given by the inequality γ0 ` γ1 ă 2 under the condition τ ď h.

Remark 1.10. When studying the spectrum of the matrix S, one encounters the

problem on the equivalence of the norm } ¨ }2 and the classical norms used in

numerical methods. The equivalence for a similarly defined norm was proved by

A.V. Gulin in [31, 32] under different boundary conditions.

Remark 1.11. Note one more important fact if there exists a λ pΛq ă 0, then

|µ pSq | ą 1. It follows from this inequality (since |λ pSq | ď }S}), that any norm of

the matrix S is strictly larger than unity, }S} ą 1. It follows that the instability

of a difference scheme in the norm } ¨ }2 leads to the instability of that scheme in

an arbitrary norm.



Chapter 2

Stability of a weighted finite

difference scheme

2.1 Introduction

In this chapter, we investigate a wide class of finite difference schemes — weighted

schemes. Approximating differential problem, we consider weight σ P R in the

finite difference scheme:

U pσq :“ σU j`1 ` p1 ´ 2σqU j ` σU j´1. (2.1)

This allows us to investigate the full class of difference schemes. When σ “ 0 we

have explicit scheme, at σ “ 1{2 the scheme is Crank–Nicolson, and at other σ

values the scheme is implicit.

In this chapter we use Characteristic Function method introduced in [98,

Štikonas and Štikonienė 2009]. The spectrum and characteristic functions for

eigenvalues of Sturm–Liouville problem are widely investigated in 2005–2007 by

S. Pečiulytė, O. Štikonienė, A. Štikonas, and M. Sapagovas in [58, 59, 82, 96]. For

example, the following problems

´u2 “ λu, t P p0, 1q,

with one classical boundary condition up0q “ 0 and other nonlocal boundary

condition

up1q “ γupξq or up1q “ γ

ż ξ

0

uptq dt or up1q “ γ

ż 1

ξ

uptq dt,

33
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where γ P R, 0 ď ξ ď 1, were investigated. There exist eigenvalues of two types:

the first type eigenvalues do not depending on γ, and the second type eigenvalues

which do not depend on γ [82, Sapagovas and Štikonas 2005]. The complex eigen-

values exist for these problems. Complex eigenvalues of these Sturm–Liouville

problems (with integral boundary condition) were investigated in [86–88, Skučaitė

et al. 2010, 2013, 2015].

We obtain a sufficient condition for the stability of a weighted difference scheme

for a hyperbolic equation with nonlocal integral boundary conditions. By using a

method applied earlier to explicit difference scheme for hyperbolic equations with

nonlocal boundary conditions [39, Ivanauskas et al. 2013], we rewrite a three-layer

difference scheme in the form of an equivalent two-layer scheme. By analyzing

the spectrum of the transition matrix of the two-layer scheme, we obtain sufficient

conditions for the stability of the three-layer scheme depending on the parameters

occurring in the integral boundary conditions and not depending on the weight

parameter used in scheme.

To obtain the stability estimates of a difference nonlocal hyperbolic problem,

we use a weighted three-layer difference scheme and approximate the nonlocal

integral conditions by the trapezoid quadrature formula. By representing this

scheme in a form of the second-order operator-difference equation and by using

some transformations, one can obtain a two-layer scheme equivalent to this three-

layer scheme [77, p. 364, Samarskii 2001]. To study the spectrum of the transition

matrix of the two-layer scheme, we define special norms of matrices and vectors.

The analysis of the structure of the spectrum of the transition matrix [81, Sapago-

vas et al. 2012] and [82, Sapagovas and Štikonas 2005] and the use of a generalized

nonlinear eigenvalue problem permit one to state the main result of the present

paper, a sufficient condition for the stability of a weighted difference scheme for

hyperbolic equations with integral boundary conditions.

This chapter is based on an article, published in 2014 [54, Novickij and Štikonas].

2.2 Notation

In this chapter notations defined in Chapter 1 are valid. Let H and H be spaces

of real grid functions on ωh and ωh, respectively. If U and V are grid functions,
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then the following notation is valid

rU, V s :“
Nÿ

i“0

UiVihi`1{2 “ U0V0h

2
` pU, V q ` UNVNh

2
, U, V P H, (2.2)

pU, V q :“
N´1ÿ

i“1

UiVih, U, V P H. (2.3)

Remark 2.1. Notation (2.2) is used for the approximation of an integral by a

trapezoid quadrature formula

r1, V s “ V0
h

2
`

N´1ÿ

i“1

Vih` VN
h

2
.

Lemma 2.2. The following relation is valid

r1, e˘ızxs “ r1, e˘ızp1´xqs “ h sin pz{2q tan´1 pzh{2qe˘ız{2, z P C, x P ωh. (2.4)

Proof. First, we calculate r1, yis, where yi, i “ 0, N , y P C, is a power function.

If y ‰ 1

r1, yis “ h

˜
1 ` yN

2
`

N´1ÿ

i“1

yi

¸
“ h

˜
1 ` yN

2
`

`
yN ´ y

˘

py ´ 1q

¸
“ h

`
yN ´ 1

˘
py ` 1q

2py ´ 1q ,

r1, yN´is “ h

2
yN `

N´1ÿ

i“1

yN´ih` h

2
y0 “ h

2
yN `

N´1ÿ

i“1

yih` h

2
y0 “ r1, yis.

Now, we substitute exponential function y “ eızh, z ‰ 0, instead of power function

r1, e˘ızxs “ r1, e˘ızp1´xqs “ he˘ız{2
`
eız{2 ´ e´ız{2

˘ ı
2
tan´1 pzh{2q

“ he˘ız{2 sin pz{2q tan´1 pzh{2q.

If y “ 1, then

r1, 1s “ h

2
` pN ´ 1qh` h

2
“ Nh “ 1.

Using Euler’s formula, we obtain

r1, sin pzxqs “ r1, sin pzp1 ´ xqqs “ h sin2 pz{2q tan´1 pzh{2q, (2.5)

r1, cos pzxqs “ h sin pz{2q cos pz{2q tan´1 pzh{2q, (2.6)

and, using the fact that trapezoid formula is exact for linear polynomials, we also

have

r1, 1s “ 1, r1, xs “ 1{2, (2.7)

and

r1, p´1qis “ 0, r1, p´1qixis “ 1

4
h2

`
p´1qN ´ 1

˘
“

$
’&
’%
0, for even N,

h2

2
, for odd N.

(2.8)
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2.3 Problem formulation

Consider the hyperbolic equation

B2u

Bt2 ´ c2
B2u

Bx2 “ fpx, tq, px, tq P p0, Lq ˆ p0, T s, (2.9)

with the classical initial conditions

u|t“0 “ φpxq, x P r0, Ls, (2.10)

Bu
Bt

ˇ̌
ˇ̌
t“0

“ ψpxq, x P r0, Ls (2.11)

and the additional nonlocal integral boundary conditions

up0, tq “ γ0

Lż

0

upx, tq dx` vlptq, t P r0, T s, (2.12)

up1, tq “ γ1

Lż

0

upx, tq dx` vrptq, t P r0, T s, (2.13)

where fpx, tq, φpxq, ψpxq, vlptq, and vrptq are given functions, and γ0 and γ1 are

given real parameters. We are interested in sufficiently smooth solutions of the

nonlocal problem (2.9)–(2.13).

For the sum of integral parameters we use notation γ “ γ0 ` γ1. Without loss

of generality, we use transformation x “ Lx1 to investigate the problem in the

interval r0, 1s instead of r0, Ls. Then new c1 “ c{L. Further we consider c1 “ 1 for

simplicity.

Now we state a difference analog of the differential problem (2.9)–(2.13). We

define a weighted FDS approximating the original differential equation (2.9)

B2

tU ´ δ2xU
pσq “ F, pxi, tjq P ωh ˆ ωτ , (2.14)

where σ is a weight parameter. The initial conditions are approximated as follows

U0 “ Φ, xi P ωh, (2.15)

BtU
1 “ Ψ, xi P ωh. (2.16)

Boundary conditions are approximated by trapezoid formula

U0 “ γ0r1, Us ` Vl, tj P rωτztt1u, (2.17)



2.4 Equivalence of schemes 37

UN “ γ1r1, Us ` Vr, tj P rωτztt1u. (2.18)

In the problem (2.14)–(2.18) we approximate functions f , φ, ψ, vl and vr by grid

functions F , Φ, Ψ , Vl, and Vr.

Remark 2.3. Properly choosing right-hand side functions in (2.14)–(2.18) one can

obtain required approximation accuracy. For example, if Ψ “ ψ ` 0.5τpδ2xU0 `
f 0q the differential problem (2.9)–(2.13) is approximated by (2.14)–(2.18) with

accuracy Opτ 2 ` h2q.

2.4 Equivalence of the three-layer scheme to a

two-layer scheme

Equations (2.17)–(2.18) is a system of two linear equations for unknowns U0 and

UN . We express these unknowns via inner points Ui, i “ 1, N ´ 1, and obtain

U0 “ rγ0p1, Uq ` rVl, (2.19)

UN “ rγ1p1, Uq ` rVr, (2.20)

where rγ0 “ γ0d
´1, rγ1 “ γ1d

´1, d “ 1 ´ hγ{2 ‰ 0; rVl “ pVl ` hcqd´1,

rVr “ pVr ´ hcqd´1, c “ pγ0Vr ´ γ1Vlq{2.

Remark 2.4. The restriction on coefficient d “ 1 ´ hγ{2 ‰ 0 is set in order

to the equivalence of the boundary value problem (2.14)–(2.18) to the algebraic

problem (2.21). More detailed equivalence is investigated in the Section 4.4.

By substituting expressions (2.19) and (2.20) into Eq. (2.14) for i “ 1 and

i “ N ´ 1 we rewrite it in the form

ApU ` BU ` CqU “ τ 2F, (2.21)

A “ C “ I ` τ 2σΛ, B “ ´2I ` τ 2p1 ´ 2σqΛ, (2.22)
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where pU “ U j`1, qU “ U j´1, j “ 1, N ´ 1; A, B, C, and

Λ “ 1

h2

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

2 ´ rγ0h ´1 ´ rγ0h ´rγ0h . . . ´rγ0h ´rγ0h ´rγ0h
´1 2 ´1 . . . 0 0 0

0 ´1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 ´1 0

0 0 0 . . . ´1 2 ´1

´rγ1h ´rγ1h ´rγ1h . . . ´rγ1h ´1 ´ rγ1h 2 ´ rγ1h

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

(2.23)

are pN´1qˆpN´1q matrices, I is the identity matrix, and F “
` rF1, . . . , rFN´1

˘J
,

where rFi “ Fi, i “ 2, N ´ 2 and rFi “ rFi

`
Fi, Vl, Vr

˘
, i “ 1, N ´ 1.

Remark 2.5. Let suppose that all eigenvalues of matrix Λ are real. In this case

detA ą 0 if the following condition is satisfied (follows from matrix A form (2.22))

´ 1

τ 2maxp0, λmaxq ă σ ă ´ 1

τ 2minp0, λminq . (2.24)

Matrix A
´1 exists for such σ.

We represent the three-layer scheme (2.21) as an equivalent two-layer scheme

(analogously as in Chapter 1).

Ŵ “ SW ` G, (2.25)

where

Ŵ “

¨
˝

pU
U

˛
‚, W “

¨
˝ U

qU

˛
‚, S “

¨
˝ ´A

´1
B ´I

I 0

˛
‚, G “

¨
˝ τ 2A´1

F

0

˛
‚.

(2.26)

Remark 2.6. The structure of two-layer scheme is the same that in Chapter 1.

The main difference is the structure of matrices A, B, and C.

2.5 Structure of the spectrum of the matrix Λ

Eigenvalue problem

ΛU “ λU,
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for pN ´ 1q ˆ pN ´ 1q matrix Λ is equivalent to the eigenvalue problem for the

difference operator with nonlocal boundary conditions

´ δ2xU “ λU, U P ωh, (2.27)

U0 “ γ0r1, Us, UN “ γ1r1, Us. (2.28)

First, note one important property of the three-layer scheme (2.21).

Lemma 2.7. The matrices A, B, and C of the three-layer scheme (2.21) defined

by relations (2.22) have a common system of eigenvectors.

Remark 2.8. The lemma can be stated in a different form: the eigenvectors of the

matrix Λ are eigenvectors of the matrices A, B, and C.

Lemma 2.9 (See Sapagovas 2012 [79]). For arbitrary values of the parameters

γ0, γ1 P R, all eigenvalues λ of the matrix Λ are real and simple, moreover, the

following assertions hold

1) if γ “ γ0 ` γ1 ă 2, then all eigenvalues are positive;

2) if γ “ 2, then there exists one zero eigenvalue, other eigenvalues are positive;

3) if 2 ă γ ă 2{h, then there exists one negative eigenvalue, all other are positive.

Now we specify few additional properties of eigenvalues λ, which are not stated

in Lemma 2.9.

Remark 2.10. First, we enumerate all the eigenvalues λ1 ă . . . ă λN´1 of the

problem (2.27)–(2.28) in the ascending order using the classical case γ0 “ 0,

γ1 “ 0 (in this case γ “ 0).

Lemma 2.11. Additional properties of the eigenvalues are valid

1) if γ ă 2, then λ P p0, 4{h2q;

2) if γ Õ 2{h, then λ1 Ñ ´8;

3) if γ “ 2{h, then boundary conditions (2.17)–(2.18) are not equivalent to con-

ditions (2.19)–(2.20);

4) if γ Œ 2{h, then λ1 Ñ `8;
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5) if γ ą 2{h, then all the eigenvalues λ are positive.

Proof. We further prove all the properties in the following eigenspectrum investi-

gation.

Instead of investigating eigenvalues λ P C we use a bijection λ “ λpqq from

domain Cq to C

λ “ 4

h2
sin2 qh

2
, q :“ α ` ıβ, (2.29)

where Cq “ tq “ α : 0 ă α ă π{huYtq “ ıβ : β ě 0uYtq “ π{h ` ıβ : β ě 0u. The

points q “ 0 and q “ π{h are the branch points of the map (2.29). Therefore every

eigenvalue λi “ λpqiq conforms to qi, i “ 1, N ´ 1 and vice versa. A numeration

of tq1, . . . , qN´1u coincides with the numeration of tλ1, . . . , λN´1u (tλ2, . . . , λN´1u
and tq2, . . . , qN´1u, for γ “ 2{h).

Now we investigate the spectrum of matrix Λ in detail.

a) the case of q ‰ 0, q ‰ π{h. The general solution of (2.27) is of the form

U “ C0 cos pqxq ` C1 sin pqxq , x P ωh.

By substituting it into (2.28) we have

`
γ0r1, cos pqxqs ´ 1

˘
C0 ` γ0r1, sin pqxqsC1 “ 0,

`
γ1r1, cos pqxqs ´ cos q

˘
C0 `

`
γ1r1, sin pqxqs ´ sin q

˘
C1 “ 0.

(2.30)

A nontrivial solutions of system (2.30) exist if its determinant is equal to zero

γ0r1, sin pqxq cos q ´ cos pqxq sin qs ´ γ1r1, sin pqxqs ` sin q “ 0,

or simplifying this formula we have

´γ0r1, sin pqp1 ´ xqqs ´ γ1r1, sin pqxqs ` sin q “ 0.

Using expression (2.4) we get an equation for q

γh ¨ sin
2 pq{2q cos pqh{2q
sin pqh{2q “ sin q. (2.31)

In this formula functions sin pqh{2q and cos pqh{2q are never equal to zero in

Cqz t0, π{hu (since a sine function has only real zero points in a complex plane

and function sin pqh{2q has no zero points in the interval p0, π{hq). We rewrite

Eq. (2.31) in the form

sin pq{2q ¨
`
γh sin pq{2q ´ 2 cos pq{2q tan pqh{2q

˘
“ 0. (2.32)
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The roots of Eq. (2.32) can be found from two equations

sin pq{2q “ 0, (2.33a)

γh sin pq{2q ´ 2 cos pq{2q tan pqh{2q “ 0. (2.33b)

The roots of Eq. (2.33a) are called Constant Eigenvalue points (see [98, Štikonas

and Štikonienė 2009]) because they do not depend on γ, and

q2k “ 2kπ, k “ 0, N0, N0 :“ tpN ´ 1q{2u. (2.34)

The roots of Eq. (2.33b) depend on γ. Such type of roots is called Nonconstant

Eigenvalue points.

Now we divide this equation by sin pq{2q and get expression for γ

γ “ 2h´1 tan´1 pq{2q tan pqh{2q. (2.35)

A function γ “ γpqq is called Complex-Real Characteristic Function (CF) [98].

The roots q2k`1, k “ 0, N1, N1 :“ tN{2u can be found as γ-points of the CF (2.35).

b) the case of λ “ q “ 0. In this case the general solution of (2.27) is

Ui “ C0 ` C1ih.

By substituting it into (2.28) we have

C0 “ γ0 pC0 ` C1{2q ,

C0 ` C1 “ γ1 pC0 ` C1{2q .

A nontrivial solution exists if

0 “

∣∣∣∣∣∣

γ0 ´ 1 γ0{2
γ1 ´ 1 γ1{2 ´ 1

∣∣∣∣∣∣
“

∣∣∣∣∣∣

´1 γ0{2
1 γ1{2 ´ 1

∣∣∣∣∣∣
“

∣∣∣∣∣∣

´1 γ0{2
0 γ{2 ´ 1

∣∣∣∣∣∣
“ 1 ´ γ{2.

So, we have zero eigenvalue, when γ “ 2.

c) the case of q “ π{h (λ “ 4{h2). Now the general solution of (2.27) is

Ui “ p´1qi pC0 ` C1ihq .

For even N we have (see (2.8))

C0 “ 0,

C0 ` C1 “ 0,
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(a) The case of odd number of grid points,
N “ 5 (h “ 1{5).

(b) The case of even number of grid points,
N “ 6 (h “ 1{6).

Fig. 2.1: Generalized characteristic function γpπqq.

and for this case only trivial solution exists. For odd N we obtain

C0 “ ´γ0h2C1{2,

C0 ` C1 “ γ1h
2C1{2.

A nontrivial solution exists if

0 “

∣∣∣∣∣∣

1 γ0h
2{2

1 1 ´ γ1h
2{2

∣∣∣∣∣∣
“

∣∣∣∣∣∣

1 γ0h
2{2

0 1 ´ γh2{2

∣∣∣∣∣∣
“ 1 ´ γh2{2.

So, eigenvalue λ “ 4{h2 exists for odd N if γ “ 2{h2.

Remark 2.12. The generalized CF, is plotted on Fig. 2.1. All the N ´ 1 roots of

Eq. (2.32) belong to a union of three intervals tq “ α P r0, π{hsu Y tq “ ıβ : β ě
0uYtq “ π{h` ıβ : β ě 0u (if γ “ 2{h then we have N´2 roots). We plot a graph

of function (2.35) in each interval: γ “ γpαq, α P r0, π{hs; γ :“ γ´pβq “ γpıβq,
β ě 0; γ :“ γ`pβq “ γpπ{h ` ıβq, β ě 0. We combine them on one graph of

Real CF. Finally, we add vertical lines q “ α “ 2πk, k “ 0, N1, which correspond

to CEs, and get generalized CF. As one can see Real CF asymptotes coincide

with CE points. We plot CF γpπαq graph in Fig. 2.1, so that in the classical

case (γ0 “ 0, γ1 “ 0) graph intersects α axis in the integer values (the index of

eigenvalues). We note that CF is smooth at the point q “ 0 for all N ; CF is

smooth at the point q “ π{h for odd N only and has a pole at this point for even

N .
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Remark 2.13. The generalized CF on Fig. 2.1 describes an eigenspectrum for all

γ P R. According to [98, Štikonas and Štikonienė 2009] at the critical points (the

points, where γ1pqq “ 0), two real eigenvalues merge and two conjugate complex

eigenvalues appear.

All CE points are poles of CF. For even N we have additional pole at q “ π{h.
So, we have poles at points:

pk “ 2πk, k “ 1, . . . , tN{2u.

Zeroes of CF are at the points

zl “ 2πl ´ π, l “ 1, . . . , tN{2u.

Lemma 2.14. Real CF is decreasing function in the intervals p`8ı; 0q, p0; p1q,
pp1; p2q, . . . , ppM´1; pMq, ppM ; π{hq, and pπ{h;`8ıq, where M “ tN{2u.

Proof. Functions y1 “ x tanh´1 x, x ą 0 and y2 “ x tan´1 x, 0 ă x ă π are

decreasing and y1, y2 ă 1 (see [57, Pečiulytė 2007]).

Consider following functions for h P p0, 1q:

g1phq “ sinh phxq
hx

, x ą 0; g2phq “ sin phxq
hx

, 0 ă x ă π

h
.

The derivatives of these functions are

g1
1phq “ sinh phxq

h2x

`
1 ´ xh tanh´1 pxhq

˘
ă 0;

g1
2phq “ sin phxq

h2x

`
1 ´ xh tan´1 pxhq

˘
ă 0.

So, the inequalities

sinh phxq
hx

ą sinh x

x
, x ą 0;

sin phxq
hx

ą sin x

x
, 0 ă x ă π

h
,

are valid for h P p0, 1q, or

sinh phxq ´ h sinh x ą 0, x ą 0; sin phxq ´ h sin x ą 0, 0 ă x ă π

h
.

Real CF in for β P p`8ı; 0q is equal to

γ´pβq “ 2

h

cosh
`
β

2

˘

sinh
`
β

2

˘ ¨ sinh
`
βh

2

˘

cosh
`
βh

2

˘ ,
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and the derivative is equal to

γ1
´pβq “ ´ sinh phβq ´ h sinh β

2h sinh2
`
β

2

˘
cosh2

`
βh

2

˘ ă 0.

Analogously, for α P p0, π{hq,

γ´pαq “ 2

h

cos
`
α
2

˘

sin
`
α
2

˘ ¨ sin
`
αh
2

˘

cos
`
αh
2

˘ ,

γ1
´pαq “ ´ sin phαq ´ h sinα

2h sin2
`
α
2

˘
cos2

`
αh
2

˘ ă 0.

We proved that Real CF is decreasing function in the intervals p`8ı; 0q, p0; p1q,
. . . , ppM´1; pMq. So, in each interval ppk, pk`1q, k “ 1, . . . ,M ´ 1 we have exactly

one eigenvalue point.

Since limβÑ`8 γ´pβq “ 2{h, we have one negative eigenvalue for 2 ă γ ă 2{h,
and one positive eigenvalue 0 ă q1 ă 2 for γ ă 2. For γ ď 2 all eigenvalues are

found.

If γ ą 2 situation depends on N : if N is even, then negative, zero eigenvalues

and positive λ1 ă 2 eigenvalue do not exist, and q1 P pπ{h; π{h` 8ıq; if N is odd,

then q1 P ppM ; π{hq for γ ą 2{h2 and q1 P pπ{h; π{h ` 8ıq for 2{h ă γ ă 2{h2.
CF is decreasing in pπ{h; π{h` 8ıq, because in this interval we have exactly one

eigenvalue point.

We note, that γ1pπ{hq “ 0 for odd N , but the point q “ π{h is a first order

branch point for λ “ λpqq and complex eigenvalues at this point do not appear.

The same situation is for the branch point q “ 0.

Conclusion 2.15. Matrix Λ has only real eigenvalues.

In general (except the case of γ “ 2{h) the eigenvectors are real and form

the complete eigenvector system tV1, . . . ,VN´1u (we have N ´ 2 eigenvectors

tV2, . . . ,VN´1u, when γ “ 2{h). We call two eigenvectors equal if they are

linearly dependent. These eigenvectors can be expressed by general formula

Vki “ sin pqkxiq ´ γ0r1, sin pqkpxi ´ xqqs, k P 1, N ´ 1. (2.36)

Note that qk “ qkpγq. So, Vki also depends on γ. Eq. (2.36) can be rewritten as

Vki “ sin pqkp1 ´ xiqq ´ γ1r1, sin pqkpxi ´ xqqs, k P 1, N ´ 1.
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Remark 2.16. We can rewrite Eq. (2.36) in such forms

a) if qk “ αk P p0, π{hq then

Vi “ sin pαkxiq ´ γ0r1, sin pαkpxi ´ xqqs; (2.37)

b) if q1 “ ıβ (γ P p2, 2{hq) then

V1i “ sinh pβxiq ´ γ0r1, sinh pβpxi ´ xqqs; (2.38)

c) if q1 “ π{h ` ıβ (γ P p2{h, 2{h2q if N is odd; γ P p2{h,8q if N is even) then

V1i “ p´1qi
`
sinh pβxiq ´ γ0r1, sinh pβpxi ´ xqqs

˘
; (2.39)

d) if q1 “ 0 (γ “ 2) then

V1i “ xi ´ γ0r1, xi ´ xs “ xi ´ γ0pxi ´ 1{2q; (2.40)

e) if qN´1 “ π{h (γ “ 2{h2, N is odd) then

V1i “ p´1qip´γ0h2 ` 2xiq. (2.41)

Expressions (2.40)–(2.41) are the limit versions of the formula (2.36) at the

points q “ 0 and q “ π{h (as well as Eqs. (2.37)–(2.39)).

2.6 Stability of finite difference scheme

First, we note one important property of the three-layer scheme (2.21) with

pN ´ 1q ˆ pN ´ 1q matrices A, B, and C defined by Eqs. (2.22)–(2.23). We

use notation λkpAq, λkpBq, λkpCq for the k-th eigenvalue of matrix A, B or C

accordingly. We investigate the case of the complete N ´ 1 eigenvector system

tV1, . . . ,VN´1u (in the case γ ‰ 2{h).

Lemma 2.17. The matrices A, B, and C have a common system of eigenvec-

tors. More precisely, the eigenvectors of the matrix Λ are the eigenvectors of the

matrices A, B, and C.

Proof. The eigenvectors of the matrix Λ are also the eigenvectors of the unit

matrix I. So, since A, B, and C are the linear combination of matrices I and Λ,

the formulated lemma is valid.
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Let µ be the eigenvalue of the 2pN ´ 1q ˆ 2pN ´ 1q matrix S (see Eq. (2.26)).

We have

detpS ´ µIq “ det

¨
˝´A

´1
B ´ µI ´I

I ´µI

˛
‚

“ det

¨
˝´A

´1
B ´ µI ´µ2

I ´ A
´1
Bµ ´ I

I 0

˛
‚

“ det
`
Aµ2 ` Bµ ` C

˘
det

`
A

´1
˘
.

(2.42)

We get a characteristic equation for the eigenvalues of the generalized nonlinear

eigenvalue problem

`
µ2
A ` µB ` C

˘
U “ 0, U ‰ 0. (2.43)

Problem (2.43) is rather well studied for the case of symmetric matrices A, B,

and C (e.g., see [45, p. 23, Lancaster 1966]). We note that the eigenvalues µ of

the matrix S coincide with the eigenvalues of the generalized nonlinear eigenvalue

problem (2.43). The number of eigenvalues of problem (2.43) is 2pN ´ 1q. Let

us clarify the relationship between the eigenvalues µ of the matrix S and the

eigenvalues λ of the matrix Λ.

By substituting an eigenvector Vk of matrix Λ (see Eq. (2.36)) into Eq. (2.43),

we obtain

`
µ2
A ` µB ` C

˘
Vk “

`
µ2λkpAq ` µλkpBq ` λkpCq

˘
Vk “ 0. (2.44)

So, eigenvalues of the matrix S satisfy the quadratic equation

µ2λkpAq ` µλkpBq ` λkpCq “ 0, k “ 1, N ´ 1. (2.45)

Lemma 2.18. Each eigenvalue λk
`
Λ
˘
, k “ 1, N ´ 1 corresponds to two eigen-

values µ1
k and µ2

k of the matrix S:

µm
k “ ´bk ˘

b
b2k´1, m “ 1, 2, (2.46)

where bk “ p´1 ` τ 2p1{2 ´ σqλkq { p1 ` τ 2σλkq , k “ 1, N ´ 1.

Proof. Using relations (2.22), we calculate λkpAq “ λkpCq “ 1 ` τ 2σλk, λkpBq “
´2`τ 2p1´2σqλk. By substituting these values into (2.45) and solving the resulting

equation, we obtain relations (2.46) for eigenvalues of matrix S.
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Remark 2.19. Equation (2.46) determines the relation between eigenvalues µm
k and

λk. The value of µm
k can be complex as well as real, depending on the parameters

σ, τ and eigenvalues λk.

Lemma 2.20. Let λk and Vk be an eigenvalue and an eigenvector of the matrix

Λ, respectively. Let µ1
k and µ2

k be the eigenvalues of matrix S corresponding to λk,

µ1
k ‰ µ2

k. Then

W
m
k “

¨
˝ Vk

pµm
k q´1

Vk

˛
‚, m “ 1, 2, k “ 1, N ´ 1, (2.47)

are linearly independent eigenvectors of the matrix S.

Proof. Consider the eigenvalue problem SW “ µm
k W, m “ 1 or m “ 2. Using

definition of matrix S (see Eq. (2.26)), we have
¨
˝´A

´1
B ´I

I 0

˛
‚
¨
˝W1

W2

˛
‚“ µm

k

¨
˝W1

W2

˛
‚, m “ 1, 2, k “ 1, N ´ 1, (2.48)

where W “
`
W1,W2

˘J
is an eigenvector. So, two equalities are valid

´A
´1
BW1 ´ W2 “ µm

k W1, (2.49)

W1 “ µm
k W2. (2.50)

Substituting Eq. (2.50) into Eq. (2.49) and multiplying it by µm
k A, we get an

analogue of formula (2.44): ppµm
k q2A`µm

k B`AqW1 “ 0. Every Vk, k “ 1, N ´ 1,

satisfies Eq. (2.44) with µ “ µm
k . So, we can take W1 “ Vk, k “ 1, N ´ 1. Then

from Eq. (2.50) it follows that W2 “ pµm
k q´1

Vk.

Remark 2.21. If µ1
k ‰ µ2

k, k “ 1, N ´ 1, then we have 2pN ´1q linear independent

eigenvectors W
m
k , m “ 1, 2, k “ 1, N ´ 1, which form a complete eigenvector

system. If eigenvalues µm
k , m “ 1, 2 are complex, then eigenvectors W

m
k are also

complex.

A polynomial satisfies the root condition if all the roots of this polynomial are

in the closed unit disc of complex plane and roots of magnitude 1 are simple [34,

Hairer et al. 1987] and [71, Samarskii and Gulin 1989]. For polynomial of the

second order

Aµ2 ` Bµ ` C, A ‰ 0, B, C P C, (2.51)

the following theorem is valid.
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Theorem 2.22. (See [95, Štikonas 1998]) The roots of the second order polynomial

are in the closed unit disc of complex plane and those roots of magnitude 1 are

simple if

|C|2 ` |ĀB ´ B̄C| ď |A|2, (2.52a)

|B| ă 2|A|. (2.52b)

We rewrite the quadratic equation (2.45) in a form

ppµq :“ aµ2 ´ 2pa´ ηqµ ` a “ 0, (2.53)

where a “ 1` τ 2σλ P R, η “ τ 2λ{2 P R. For this real polynomial ppµq, inequality

(2.52a) is trivial, and ppµq has two complex roots of magnitude 1. The strong

inequality (2.52b) ensures that these roots are simple [95, Štikonas 1998]. So,

polynomial ppµq satisfies the root condition if and only if

|a ´ η| ă |a| (2.54)

(see (2.52b)).

Remark 2.23. If polynomial (2.45) satisfies the root condition, then ρpSq “ 1.

Theorem 2.24. If γ ă 2 and

σ ą 1

4
´ 1

τ 2λmax

, (2.55)

then the weighted FDS (2.14)–(2.18) is stable.

Proof. Let us analyze condition (2.54). If a ď 0, then a ă a ´ η ă ´a. In this

case, we have η ă 0 or λ ă 0, which contradicts the assumption γ ă 2. If a ą 0,

then ´a ă a´ η ă a. If γ ă 2, then λk ą 0, k “ 1, N ´ 1, and inequality η{2 ą 0

is valid. So, we have a ą η{2 ą 0. We rewrite the inequality a ą η{2 as

σ ą 1

4
´ 1

τ 2λ
. (2.56)

If σ ą 1{4 ´ 1{pτ 2λmaxq, then (2.56) is valid for all λk, k “ 1, N ´ 1.

Remark 2.25. The obtained inequality (2.55) is an analogue of the stability in-

equality for three-layered difference schemes with classical Dirichlet boundary

conditions (see [77, Samarskii 2001]).
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Remark 2.26. While γ ă 2, the eigenvalues λk, k “ 1, N ´ 1, are in the interval

p0, 4{h2q. So, we can use inequality

σ ě 1

4
´ h2

4τ 2

instead of the condition (2.55). If σ ě 1{4, then the weighted FDS in uncondi-

tionally stable. If σ “ 0, then the FDS is stable under the condition τ ď h.

2.7 Conclusions and final remarks

‚ The sufficient stability condition (γ ă 2 and σ ą 1{4 ´ 1{pτ 2λmaxq) for the

three-layered weighted finite difference scheme is obtained.

‚ The weighted FDS in unconditionally stable under the condition σ ě 1{4
(γ ă 2).

‚ The stability condition (2.55) for the weight σ is the same as in the classical

case γ0 “ γ1 “ 0.

‚ The spectrum of the matrix Λ is investigated. Eigenvalues are real, and

eigenvectors form a complete system (except the case of γ “ 2{h).

‚ The spectrum of Λ is qualitatively different for the cases of odd and even

number of grid points N .

‚ If γ ą 2{h2 and the number of grid points N is odd, then the spectrum of

matrix Λ is in the interval p0, 4{h2q (as well as in the case of γ ă 2).

‚ If γ ą 2{h, then all the eigenvalues λk, k “ 1, N ´ 1, are positive, but eigen-

value λmax could be greater than 4{h2. This affects the condition on σ.





Chapter 3

Stability of finite difference scheme

with two weights

3.1 Introduction

Two-weight finite difference schemes for evolution equations are investigated by

authors infrequently. One can find an investigation of two-weight scheme for a

time-dependent advection-diffusion problem in the article of N.M. Chadha and

N. Madden [15, 2011]. The authors consider the numerical solution of a one-

dimensional advection-diffusion problem

BΦ
Bt ` LΦ “ 0, L :“ a

BΦ
Bx ´ ǫ

B2Φ

Bx2 , for px, tq P p0, lq ˆ p0, T s,

subject to the boundary and initial conditions

Φp0, tq “ g0ptq, Φpl, tq “ glptq, t P r0, T s,

Φpx, 0q “ fpxq, x P r0, ls.

The authors consider following difference operators:

LN
φ uj :“ p´ǫδxx ` aδxquj, where δx :“ φD´ ` p1 ´ φqD0,

where D0 is the standard discrete centered approximation, and D´ is the left

approximation. The authors then introduce the parameter θ that weights the

scheme between being implicit and explicit in nature:

δtΦ
n
j ` LN

φ pθΦn`1
j ` p1 ´ θqΦn

j q “ 0, j “ 1, N ´ 1, n “ 1,M.
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θ “ 0 and φ “ 0 correspond to forward Euler with central differencing; θ “ 0 and

φ “ aδt{δx give the standard Lax-Wendroff scheme; θ “ 1 and φ “ 0 give the

backward Euler method with central differencing; θ “ 1{2 gives Crank-Nicolson

type methods.

The authors investigate monotonicity, stability regions and optimal values of

the parameters, illustrating results with the numerical experiments.

In this chapter we investigate the stability region of the FDS with two parame-

ters (see [77, Samarskii 2001]) for the hyperbolic equation with two integral NBCs.

By using the root criterion (see [95, Štikonas 1998] and [40, Jachimavičienė et al.

2014]) we obtain regions on a complex plane, where FDS is stable. A.A. Samarskii

in book [77, 2001], using the energy inequality technique, obtained the stability

conditions for the classical hyperbolic problem. We have generalized the results

presented in [54, Novickij and Štikonas 2014], by using more general scheme. We

note, that FDS with more general boundary conditions may have complex eigen-

values.

This chapter is based on an article, published in 2014 [53, Novickij and Štikonas].

3.2 Finite difference scheme

Consider the wave equation

B2u

Bt2 ´ c2
B2u

Bx2 “ fpx, tq, px, tq P p0, Lq ˆ p0, T s, (3.1)

with the classical initial conditions

u|t“0 “ φpxq, x P r0, Ls, (3.2)

Bu
Bt

ˇ̌
ˇ̌
t“0

“ ψpxq, x P r0, Ls (3.3)

and integral NBC

up0, tq “ γ0

Lż

0

upx, tq dx` vlptq, t P r0, T s, (3.4)

up1, tq “ γ1

Lż

0

upx, tq dx` vrptq, t P r0, T s, (3.5)
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where fpx, tq, φpxq, ψpxq, vlptq, and vrptq are given functions, and γ0 and γ1

are given real parameters. We are interested in sufficiently smooth solutions of

the nonlocal problem (3.1)–(3.5). We can investigate problem (3.1)–(3.5) in the

interval r0, 1s instead of r0, Ls using transformation x “ Lx1. Then new c1 “ c{L.

Further we consider c1 “ 1, without losing of generality, for simplicity.

Now we state a difference analogue of the differential problem (3.1)–(3.5).

We denote U pσq “ σ1 qU ` p1 ´ σ1 ´ σ2qU ` σ2 pU , σ1, σ2 P R. We define a FDS

approximating the original differential equation (3.1) (see [77, Samarskii 2001]):

B2

tU ´ δ2xU
pσq “ F, pxi, tjq P ωh ˆ ωτ . (3.6)

The initial conditions are approximated as follows:

U0 “ Φ, xi P ωh, (3.7)

BtU
1 “ Ψ, xi P ωh. (3.8)

We rewrite the boundary conditions:

U0 “ γ0r1, Us ` Vl, tj P rωτztt1u, (3.9)

UN “ γ1r1, Us ` Vr, tj P rωτztt1u. (3.10)

In the problem (3.6)–(3.10) we approximate functions f , φ, ψ, vl and vr by grid

functions F , Φ, Ψ , Vl, and Vr. In the case σ1 “ σ2 “ σ stability of FDS (3.6)–

(3.10) is equal to the one, investigated in [54, Novickij and Štikonas 2014] and

Chapter 2.

Equations (3.9)–(3.10) is a system of two linear equations for unknowns U0

and UN . We express these unknowns via inner points Ui, i “ 1, N ´ 1, and obtain

U0 “ rγ0p1, Uq ` rVl, (3.11)

UN “ rγ1p1, Uq ` rVr, (3.12)

where rγ0 “ γ0d
´1, rγ1 “ γ1d

´1, d “ 1 ´ hγ{2 ą 0; rVl “ pVl ` hcqd´1,

rVr “ pVr ´ hcqd´1, c “ pγ0Vr ´ γ1Vlq{2. By substituting expressions (3.11) and

(3.12) into Eq. (3.6) for i “ 1 and i “ N ´ 1 we rewrite it in the form

ApU ` BU ` CqU “ τ 2F, (3.13)
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A “ I ` τ 2σ1Λ, B “ ´2I ` τ 2p1 ´ σ1 ´ σ2qΛ, C “ I ` τ 2σ2Λ, (3.14)

where A, B, C, and

Λ “ 1

h2

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

2 ´ rγ0h ´1 ´ rγ0h ´rγ0h . . . ´rγ0h ´rγ0h ´rγ0h
´1 2 ´1 . . . 0 0 0

0 ´1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 ´1 0

0 0 0 . . . ´1 2 ´1

´rγ1h ´rγ1h ´rγ1h . . . ´rγ1h ´1 ´ rγ1h 2 ´ rγ1h

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

(3.15)

are pN´1qˆpN´1q matrices, I is the identity matrix. Finally, F “
` rF1, . . . , rFN´1

˘
⊺

,

where rFi “ Fi, i “ 2, N ´ 2 and rFi “ rFi

`
Fi, Vl, Vr

˘
, i “ 1, N´1. The spectrum of

matrix Λ is fully investigated in §3 of paper [54, Novickij and Štikonas 2014] and

Chapter 2 of this dissertation. According to that paper’s Lemma 1 and Remark 2

under certain conditions (γ ă 2) spectrum is real and is in the interval p0, 4{h2q.
We represent the three-layer scheme (3.13) as an equivalent two-layer scheme

Ŵ “ SW ` G, (3.16)

using notations

Ŵ “

¨
˝

pU
U

˛
‚, W “

¨
˝ U

qU

˛
‚, S “

¨
˝ ´A

´1
B ´I

I 0

˛
‚, G “

¨
˝ τ 2A´1

F

0

˛
‚.

(3.17)

According to [54, Novickij and Štikonas 2014] eigenvalues µ of the matrix S

could be found as the roots of the quadratic equation

µ2λkpAq ` µλkpBq ` λkpCq “ 0, k “ 1, N ´ 1, (3.18)

where λk are the eigenvalues of the matrix Λ.

The aim of the following section is to investigate the spectrum of the weighted

FDS independently of boundary conditions.

3.3 Stability regions

In general, under various boundary conditions, eigenvalues of operator Λ could

be complex numbers. A polynomial ppµ, λq :“ apλqµ2 ` bpλqµ ` cpλq satisfies
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(a) σ1 “ 0.1k, σ2 “ 0, (b) σ1 “ 0.46 ` 0.02k, σ2 “ 0, (c) σ1 “ 0.5 ` 0.1k, σ2 “ 0,

k “ 1, 4 k “ 1, 3 k “ 1, 4

(d) σ1 ` σ2 “ 0.25, σ1 “ 0.07k, (e) σ1 ` σ2 “ 0.5, (f) σ1 ` σ2 “ 1, σ1 “ 0.1k,

k “ 1, 5 σ1 “ 0.48 ´ 0.05k, k “ 1, 3 k “ 1, 5

Fig. 3.1: Stability regions for different values of weights σ1 and σ2.

Fig. 3.2: Function z´1 “
z´1pσ1 ` σ2q.

Fig. 3.3: Function µ2 “
µ2pσ1 ´ σ2q.

the root condition if all the roots of that polynomial are in the closed unit disc

of complex plane and roots of magnitude 1 are simple (see [95, Štikonas 1998]

and [40, Jachimavičienė et al. 2014]). If polynomial ppµ, λq :“ apλqµ2`bpλqµ`cpλq
satisfies the root condition, then we say that λ is in stability region defined by

equation ppµ, λq “ 0. Denoting z :“ τλ and substituting it into (3.18) we have:

P pµ, zq :“ p1 ` zσ1qµ2 ´ 2

ˆ
1 ´ 1

2
p1 ´ σ1 ´ σ2qz

˙
µ ` p1 ` zσ2q “ 0, (3.19)

or expressing z:

zpµq “ ´ pµ ´ 1q2
σ1µ2 ` p1 ´ σ1 ´ σ2qµ ` σ2

. (3.20)
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Substituting µ “ eıϕ, ϕ P p´π,`πs into Eq. (3.19) we obtain the formula for the

boundary of the stability region:

zpϕq “ 2p1 ´ cosϕq p1 ´ pσ1 ` σ2qp1 ´ cosϕq ´ pσ1 ´ σ2qı sinϕq
p1 ´ pσ1 ` σ2qp1 ´ cosϕqq2 ` pσ1 ´ σ2q sin2 ϕ

. (3.21)

One can see that Re zpϕq is even function and Im zpϕq is odd function, so the

stability region is symmetric to the real axis (see Fig. 3.1), and boundary intersects

it in two points (except of the confluent region when σ1 “ σ2). If µ1 “ 1, then

the first intersection point z0 “ 0. By substituting µ1 “ ´1 to (3.19), we find the

second zpϕq intersection point with the real axis (see Fig. 3.2):

z´1 “ 4

1 ´ 2pσ1 ` σ2q . (3.22)

To find the second root µ2 of the Eq. (3.19), while the first µ1 “ ´1 we use Viète

formula µ1µ2 “ ´µ2 “ p1 ` zσ2q{p1 ` zσ1q and relation (3.22) for z´1:

µ2 “ 2pσ1 ´ σ2q ´ 1

2pσ1 ´ σ2q ` 1
. (3.23)

If σ1 ă σ2, then |µ2| ą 1 (see Fig. 3.3) and the root condition is not satisfied. For

the case σ1 “ σ2 “ σ we investigate the discriminant of P pµ, zq of (3.19):

DpP pµ, zqq “
`
pσ1 ´ σ2q2 ´ 2pσ1 ` σ2q ` 1

˘
z2 ´ 4z “ 0. (3.24)

One root of Eq. (3.24) is z0 “ 0, and the second root is:

z “ 4

1 ´ 2pσ1 ` σ2q ` pσ1 ´ σ2q2 . (3.25)

Using relation (3.22) we see, that z is on the boundary in the case of σ1 “ σ2 “ σ

and the contour of stability region is on the real axis. The contour consists of

two parts: r0, z´1s and pz´1, 0q. If σ “ 1{4, then z´1 “ 8, and if σ ą 1{4,
then z´1 ă 0 and the contour gets over the infinity to the negative values (see

Figs. 3.2 and 3.3). In this case the roots of (3.19) are µ “ e˘ıϕ. For σ1 ą σ2

we investigate a mapping z “ zpµq : Cµ Ñ Cz, which is conformal mapping at

the point µ “ ´1. We investigate the monotonicity of the mapping z at the

point µ “ ´1: z1p´1q “ ´4pσ1 ´ σ2q{p2pσ1 ` σ2q ´ 1q2. So, if σ1 ą σ2, then z is

decreasing at the point µ “ ´1, and z defines a boundary of stability region. If

σ1 ą σ2, then |µ2| ă 1 and the root condition is satisfied.
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(a) Characteristic function (b) Spectrum view on Cq (c) Spectrum view on Cλ

Fig. 3.4: Eigenspectrum of the numerical problem with one integral NBC.

Example 3.1. Let us take boundary conditions of the form up0, tq “ 0 and up1, tq “
γ1

ş3{4

1{4
upx, tq dx (differential SLP was studied in [19, Sapagovas et al. 2004]). The

spectrum of formulated discrete problem (integrals approximated with trapezoid

formula) was investigated in article [88, Skučaitė and Štikonas 2015]. The study is

based on the investigation of characteristic curves on the part of a complex plane

Cq, where λ “ 4{h2 sin2pπqh{2q (Fig. 3.4). The points of the spectrum belongs to

a spectrum curves. These curves Nj, j “ 1, 7 are shown in Figs. 3.4(b) and 3.4(c).

Every spectrum point moves along the spectrum curve while γ P p´8,`8q. One

can compare Fig. 3.4(c) with the stability regions shown in Fig. 3.1, keeping in

mind relation z “ τ 2λ.

The same situation is general for NBCs with not full integrals (see [88, Skučaitė

and Štikonas 2015]). Except some special cases there exist complex eigenvalues.

Corollary 3.2. FDS is unstable for sufficiently small τ ď τ˚ if the corresponding

SLP has complex eigenvalues.

Remark 3.3. If the corresponding SLP has complex eigenvalues then FDS can be

stable for some intervals of τ ą 0 only if we select special σ1 and σ2 values in the

case σ1 ą σ2, σ1 ` σ2 ą 0.5, γ0 “ 0, and γ1 ă γ˚. In the case γ0 ‰ 0 and γ1 ‰ 0

situation is more complex and is under investigation.
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3.4 Conclusions and final remarks

• FDS with two weight parameters has a stability region if σ1 ě σ2. If the

spectrum is in the interval p0,8q, then the second stability condition is

σ1 ` σ2 ě 1{2 (the same stability condition was obtained in [77, Samarskii

2001] for problem with classical boundary conditions and symmetrical and

positive matrix Λ).

• The stability region depends on the σ1 ´ σ2 value. While σ1 ´ σ2 ă 1{2 the

stability region is bounded, elsewise — unbounded.

• FDS is unstable for sufficiently small τ ď τ˚ if the corresponding Sturm–

Liouville problem has complex eigenvalues.

• For the case γ0 “ 0 and bounded γ1, if σ1 ą σ2 and σ1 ` σ2 ą 0.5 , then

FDS has stability regions.



Chapter 4

Stability of a weighted difference

scheme with generalized integral

conditions

4.1 Introduction

As a result of technological progress during the last couple decades, there has been

an interest investigating problems with rather complicated nonclassical conditions

modeling natural, physical, chemical and other processes. There often arise prob-

lems described by equations of mathematical physics. In connection with this fact

it is natural to investigate whether the problem is well-posed. To understand the

behaviour of real processes it is natural to investigate solvability condition on the

stationary problems. The solvability results for various type differential problems

with nonlocal conditions can be found in [20, Čiupaila et al. 2013].

The solvability of nonlocal problems for second-order ordinary differential

equations is investigated in [42, Kiguradze and Kiguradze 2011]. The authors

consider boundary value problem

u2 “ fpt, uq,
ż b

a

upi´1qpsqdφspsq “ ci pi “ 1, 2q,

where f : ra, bs ˆ R Ñ R is a function satisfying local Caratheodory conditions,

ci P R (i “ 1, 2), and φi : ra, bs Ñ R (i “ 1, 2) are functions of bounded variation

59



60 Generalized integral conditions

such that

φipaq “ 0, φipbq “ 1, pi “ 1, 2q,

with one of the following four conditions

φipsq ą 1 for a ă s ă b pi “ 1, 2q,

φipsq ă 0 for a ă s ă b pi “ 1, 2q,

φ1psq ą 1, φ2psq ă 0 for a ă s ă b pi “ 1, 2q,

φ1psq ă 0, φ2psq ą 1 for a ă s ă b pi “ 1, 2q.

The authors presented sufficient conditions which guarantee: solvability, unique

solvability, and the existence of at least three distinct solutions of formulated

problem.

The solvability of nonlocal multipoint boundary value problems for quasi-linear

systems of hyperbolic equations is presented in [6, Assanova and Imanchiev 2015].

The authors consider the following nonlocal multi-point boundary value problem

on Ω “ r0, T sˆr0, ωs for a second-order system of quasilinear hyperbolic equations

B2u

BtBx “ Apt, xqBu
Bx ` f

ˆ
t, x, u,

Bu
Bt

˙
, u P Rn,

mÿ

i“0

"
PipxqBupti, xq

Bx ` SipxqBupti, xq
Bt ` Uipxqupti, xq

*
“ φpxq, x P r0, ωs,

upt, 0q “ ψptq, t P r0, T s,

where upt, xq “ colpu1pt, xq, u2pt, xq, . . . , unpt, xqq is the unknown function, the

n ˆ n matrices Apt, xq, Pipxq, Sipxq, Uipxq, i “ 0, m, and the n-vector function

fpt, x, u, Bu
Bt

are continuous on Ω̄ˆRn ˆRn, the n-vector function φ is continuous

on r0, ωs, and the n-vector function ψ is continuously differentiable on r0, T s, 0 “
t0 ă . . . ă tm´1 ă tm “ T . The authors establish sufficient coefficient conditions

of the unique solvability of formulated problem by introducing some additional

functions and applying related results for families of multi-point boundary value

problems for systems of ordinary differential equations.

In this chapter we investigate the solvability of the discrete Sturm–Liouville

problem with two nonlocal boundary conditions of the general form. We investi-

gate the condition when the discrete Sturm–Liouville problem can be transformed

to an algebraic eigenvalue problem. We also provide the examples of the solvabil-

ity conditions for the most popular nonlocal boundary conditions.
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This chapter is based on an article, published in 2015 [55, Novickij and Štikonas]

and partly on [52, Novickij et al. 2015].

4.2 Notation

In this chapter notations defined in Chapter 1–3 are valid. We define the following

piecewise constant function

βpx; ξ0, ξ1q :“

$
’’’’’&
’’’’’%

0 x ă ξ0,

1 ξ0 ď x ď ξ1,

0 ξ1 ă x.
x10

β

ξ0

1

ξ1

,

where 0 ď ξ0 ă ξ1 ď 1; and its difference analog

χra,bspxjq “

$
’’’’’&
’’’’’%

0 xj ă a or xj ą b,

h
2

xj “ a or xj “ b,

h a ă xj ă b.
xj

χ

10 a

h
h
2

b

.

We use the following notation, to define discrete function in the inner domain

˝

U “

$
’&
’%
0 i “ 0, i “ N,

U otherwise.

We denote δji as the Kronecker delta

δ
j
i “

$
’&
’%
0 if j ‰ i,

1 if j “ i.

We also use the following sum notation

rU, V s “
Nÿ

i“0

UiVi, U, V P H.

4.3 Problem formulation

Consider the hyperbolic equation

B2u

Bt2 ´ c2
B2u

Bx2 “ fpx, tq, px, tq P p0, 1q ˆ p0, T s, (4.1)
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with the classical initial conditions

u|t“0 “ φpxq, Bu
Bt

ˇ̌
ˇ̌
t“0

“ ψpxq, x P r0, 1s, (4.2)

and the additional nonlocal integral boundary conditions

up0, tq “ γ0

1ż

0

β0pxqupx, tq dx` vlptq, t P r0, T s,

up1, tq “ γ1

1ż

0

β1pxqupx, tq dx` vrptq, t P r0, T s,

(4.3)

where fpx, tq, φpxq, ψpxq, vlptq, and vrptq are given functions, γ0 and γ1 are given

parameters, β0pxq and β1pxq are weight functions. Further we consider c1 “ 1

for simplicity. We are interested in sufficiently smooth solutions of the nonlocal

problem (4.1)–(4.3) (all the coefficients in (4.1)–(4.3) are smooth enough that the

solution U P C4,4). We consider piecewise constant weight functions β0pxq :“
βpx; ξ00 , ξ01q and β1pxq “ βpx; ξ10 , ξ11q.

4.4 Equivalence of discrete Sturm–Liouville

problem to the algebraic eigenvalue problem

Sturm–Liouville problem

We consider discrete Sturm–Liouville operator

LU :“ ´δpPδUq ` QU “ λU, xi P ωh, (4.4)

where P , Q are real functions and

pδpPδUqqi :“
Pi`1{2 pUi`1 ´ Uiq ´ Pi´1{2 pUi ´ Ui´1q

h2
,

with two nonlocal boundary conditions of general form

xk0, Uy “ γ0xn0, Uy, xk1, Uy “ γ1xn1, Uy, (4.5)

where x¨, ¨y is a linear functional, xki, Uy is the classical part and xni, Uy is a nonlo-

cal part of boundary conditions, i “ 0, 1. For example xδN , Uy “ UN , xδ0, Uy “
U0, xδi, δjy “ δ

j
i .
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Now we investigate the condition when problem (4.4)–(4.5) can be transformed

to the algebraic eigenvalue problem. The algebraic problem is degenerate if its

determinant equals to zero. We rewrite boundary conditions (4.5) in the following

form
@
k0 ´ γ0n0, δ

0
D
U0 `

@
k0 ´ γ0n0, δ

N
D
UN “ xγ0n0 ´ k0,

˝

Uy, (4.6)

@
k1 ´ γ1n1, δ

0
D
U0 `

@
k1 ´ γ1n1, δ

N
D
UN “ xγ1n1 ´ k1,

˝

Uy. (4.7)

Equations (4.6)–(4.7) form a system of linear equations respect to boundary values

of the function U
¨
˝xk0 ´ γ0n0, δ

0y
@
k0 ´ γ0n0, δ

N
D

xk1 ´ γ1n1, δ
0y

@
k1 ´ γ1n1, δ

N
D

˛
‚
¨
˝U0

UN

˛
‚“

¨
˝xγ0n0 ´ k0,

˝

Uy

xγ1n1 ´ k1,
˝

Uy

˛
‚. (4.8)

System (4.8) degenerates if

∣∣∣∣∣∣

xk0 ´ γ0n0, δ
0y

@
k0 ´ γ0n0, δ

N
D

xk1 ´ γ1n1, δ
0y

@
k1 ´ γ1n1, δ

N
D

∣∣∣∣∣∣
“ 0,

or in the expanded form

γ0γ1Dpn0, n1q ` γ0Dpn0, k1q ` γ1Dpn1, k0q ` Dpk0, k1q “ 0, (4.9)

where

Dpn0, n1q “

∣∣∣∣∣∣

xn0, δ
0y

@
n0, δ

N
D

xn1, δ
0y

@
n1, δ

N
D

∣∣∣∣∣∣
, Dpk1, n0q “

∣∣∣∣∣∣

xk1, δ0y
@
k1, δ

N
D

xn0, δ
0y

@
n0, δ

N
D

∣∣∣∣∣∣
,

Dpn1, k0q “

∣∣∣∣∣∣

xn1, δ
0y

@
n1, δ

N
D

xk0, δ0y
@
k0, δ

N
D

∣∣∣∣∣∣
, Dpk0, k1q “

∣∣∣∣∣∣

xk0, δ0y
@
k0, δ

N
D

xk1, δ0y
@
k1, δ

N
D

∣∣∣∣∣∣
.

(4.10)

In general case Eq. (4.9) describe a second degree algebraic curve on the plane

pγ0, γ1q. The classification of the curves of such type is given in [97, Štikonas 2011].

We call a set of points pγ0, γ1q, satisfying Eq. (4.9), the Degeneration Curve for

the problem (4.4)–(4.5).

We denote matrix

A “

¨
˝a00 a01

a10 a11

˛
‚“

¨
˝Dpn0, n1q Dpn0, k1q
Dpk0, n1q Dpk0, k1q

˛
‚. (4.11)

Each matrix A corresponds to one of the five types of Degeneration Curves. More

detailed classification is shown in Table 4.1. We have 16 types of matrices overall
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Table 4.1: Classification of the Degeneration Curves.

Case Curve in plane Matrix A

a00 a01 a10 a11
1 whole plane 0 0 0 0
2 empty set 0 0 0 a11
3a line 0 a01 0 0
3b 0 0 a10 0
3c 0 a01 0 a11
3d 0 0 a10 a11
3e 0 a01 a10 0
3f 0 a01 a10 a11
4a two lines a00 0 0 0
4b a00 a01 0 0
4c a00 0 a10 0
4d a00 a01 a10 a11 detA “ 0

5a hyperbola a00 a01 a10 a11 detA ‰ 0

5b a00 0 0 a11
5c a00 a01 0 a11
5d a00 0 a10 a11
5e a00 a01 a10 0

and one type is split into two cases (detA “ 0 and detA ‰ 0). So, the next

lemma is valid for the Degeneration Curve (as well as for the Characteristic Curve

in [97, Štikonas 2011]).

Lemma 4.1. A Degeneration Curve for problem (4.4)–(4.5) in the plane R2 can

be one of the following five types:

1. If Dpn0, n1q “ Dpk0, k1q “ Dpn0, k1q “ Dpk0, n1q “ 0 then the curve is

whole plane;

2. If Dpn0, n1q “ Dpn0, k1q “ Dpk0, n1q “ 0, Dpk0, k1q ‰ 0 then the curve is

empty set;

3. If Dpn0, n1q “ 0, Dpn0, k1q ‰ 0 or Dpn0, n1q “ 0, Dpk0, n1q ‰ 0 then the

curve is line;

4. If Dpn0, n1q ‰ 0 and detA “ 0 then the curve is union of vertical and

horizontal lines;

5. If Dpn0, n1q ‰ 0 and detA ‰ 0 then the curve is hyperbola.

Remark 4.2. We see, that Degeneration Curve in the plane R2 cannot be algebraic

curve such as ellipse, parabola, point, parallel lines, double line.
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Remark 4.3. If detA ‰ 0 then the line (Case 3) is neither vertical nor horizontal

(see Cases 3e,f in Table 4.1), otherwise we have single vertical or single horizontal

line (see Cases 3a-d in Table 4.1).

Remark 4.4. Investigated problem can be easily extended from plane R2 to the

cone T2 analogously as it was done in [97, Štikonas 2011].

Applications

Example 4.5 (Nonlocal integral boundary conditions). We consider Dirichlet in-

tegral boundary conditions with weights. The boundary conditions (4.5) are of

the form

xδ0, Uy :“ U0 “ γ0rχ0, Us, xδN , Uy :“ UN “ γ1rχ1, Us, (4.12)

where χ0 and χ1 are the weight functions. In the general case we have the following

nondegeneracy condition:
∣∣∣∣∣∣∣

1 ´ γ1χ
1
N{2 γ1χ

0
N{2

γ0χ
1
0{2 1 ´ γ0χ

0
0{2

∣∣∣∣∣∣∣
‰ 0.

The degeneration curve is of the following form

1

4

∣∣∣∣∣∣

χ0
0 χ0

N

χ1
0 χ1

N

∣∣∣∣∣∣
γ0γ1 ´ 1

2
χ0
0γ0 ´ 1

2
χ1
Nγ1 ` 1 “ 0;

If χ0 ” h and χ1 ” h, then the full integral which was investigated in [54,

Novickij and Štikonas 2014]. The degeneration curve is of the following form

´h

2
pγ0 ` γ1q ` 1 “ 0;

In the case of classical boundary conditions χ0 ” 0 and χ1 ” 0,the degeneration

curve is a whole plane (see Table 4.1 case 1).

Example 4.6 (Bitsadze–Samarskii NBC). We consider boundary conditions of the

Bitsadze–Samarskii form

xδ0, Uy “ γ0xδs0, Uy :“ γ0Us0, xδN , Uy “ γ1xδs1, Uy :“ γ1Us1 . (4.13)

In this case the degeneration curve is of the form
∣∣∣∣∣∣

δs00 δs0N

δs10 δs1N

∣∣∣∣∣∣
γ0γ1 ´ δs00 γ0 ´ δs1N γ1 ` 1 “ 0 (4.14)
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As one can see from Eq. (4.14) the classification for the degeneration curves in

the case of Bitsadze–Samarskii nonlocal boundary condition is the same as for

the integral conditions, except the coefficients. For the investigated case the

classifications depends on whether the nonlocal point is inner or boundary.

Example 4.7 (Multipoint NBC). We consider boundary conditions of the following

form

Up0q “ γ0

Nÿ

i“0

α0
iUpξiq, Up1q “ γ1

Nÿ

i“0

α1
iUpξiq,

where αk “ řN

j“0 α
j
kδj, k “ 0, 1; 0 ď ξ0 ă . . . ă ξN ď 1. We rewrite NBCs in the

following form

U0 “ γ0xα0, Uy, UN “ γ1xα1, Uy. (4.15)

The method of investigating multipoint case is similar to the method in Ex-

ample 4.6. The form of the degeneration curve is equivalent to the Eq. (4.14)

∣∣∣∣∣∣

αs0
0 δ

s0
0 αs0

N δ
s0
N

αs1
0 δ

s1
0 αs1

N δ
s1
N

∣∣∣∣∣∣
γ0γ1 ´ αs0

0 δ
s0
0 γ0 ´ αs1

N δ
s1
N γ1 ` 1 “ 0 (4.16)

Example 4.8 (Left and right rectangle rules for integral NBC). We consider bound-

ary conditions (4.15) with the following notation

rU, V sl :“
N´1ÿ

i“0

UiVih, rU, V sr :“
Nÿ

i“1

UiVih

corresponding to the left and right rectangle rules respectively. So the degenera-

tion curves are of the following forms:

hB0
0γ0 ´ 1 “ 0 for the left rectangle rule,

hB1
Nγ1 ´ 1 “ 0 for the right rectangle rule.

Remark 4.9. Examples 1–4 describe all the cases mentioned in the Table 4.1, ex-

cept of an empty set (case 2). This situation is valid when the boundary conditions

are of the following form

ż ξ1

ξ0

β0pxqUpx, tqdx “ a0,

ż ξ3

ξ2

β1pxqUpx, tqdx “ a1,

where 0 ă ξ0 ď ξ1 ă 1, 0 ă ξ2 ď ξ3 ă 1, a0, a1 P R, β0 and β1 are weight functions.
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Remark 4.10. The technique investigated in this section is suitable for defining

the solvability conditions for different stationary and non-stationary problems

with nonlocal boundary conditions. As one can see only the boundary conditions

are needed to define the solvability. It is enough to define the operators, corre-

sponding to the classical and nonlocal parts of the boundary conditions. Obtained

solvability condition mostly depends only on the values of the operators of the

nonlocal parts on the boundaries.

4.5 Difference problem

Now we state a difference analogue of the differential problem (4.1)–(4.3). We

define a weighted FDS approximating original differential equation (4.1):

B2

tU ´ δ2xU
pσq “ F,

`
xi, t

j
˘

P ωh ˆ ωτ , (4.17)

where σ is a weight parameter. The initial conditions are approximated as follows:

U0 “ Φ, BtU
1 “ Ψ xi P ωh, (4.18)

We rewrite boundary conditions using the defined inner products:

U0 “ γ0rχ0, Us ` Vl, tj P ωτ ,

Un “ γ1rχ1, Us ` Vr, tj P ωτ .
(4.19)

The functions χ0 and χ1 in the Eq (4.19) correspond to the weight functions in

Eq. (4.3). In the problem (4.17)–(4.19) we approximate functions f , φ, ψ, vl and

vr by grid functions F P H ˆ Hτ ; Φ, Ψ PH ; and Vl, Vr PHτ .

Remark 4.11. We consider without loss of generality that functions χ0 and χ1 are

defined on the uniform grid ωh.

Remark 4.12. Both boundary conditions (4.19) and the initial conditions (4.18)

are defined at the points t0 and t1. At these points conditions are consistent.

Properly choosing right hand side functions in (4.17)–(4.19) one can obtain re-

quired approximation accuracy. For example, if Ψ “ ψ ` 0.5τpδ2xU0 ` f 0q the

differential problem (4.1)–(4.3) is approximated by (4.17)–(4.19) with accuracy

Opτ 2 ` h2q.
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Finite difference scheme

Conditions (4.19) form a system of two linear equations for unknowns U0 and Un.

We express these unknowns via inner points Ui, i “ 1, n´ 1, and obtain

U0 “ γ̃0pχ̃0, Uq ` rV0, Un “ γ̃1pχ̃1, Uq ` rV1, (4.20)

where γ̃0 “ γ0d
´1, γ̃1 “ γ1d

´1 and

χ̃0 “
´
1 ´ hγ1χ

1
n

2

¯
χ0 ` hγ1χ

0
n

2
χ1, rV0 “ d´1

´hγ0
2
χ0
nVr `

´
1 ´ hγ1

2
χ1
n

¯
Vl

¯
,

χ̃1 “ hγ0χ
1
0

2
χ0 `

´
1 ´ hγ0χ

0
0

2

¯
χ1, rV1 “ d´1

´hγ1
2
χ1
0Vl `

´
1 ´ hγ0

2
χ0
0

¯
Vr

¯
,

d “ γ0γ1

4

∣∣∣∣∣∣

χ0
0 χ0

n

χ1
0 χ1

n

∣∣∣∣∣∣
´ 1

2
pγ0χ0

0 ` γ1χ
1
nq ` 1.

Problem (4.17), (4.20), according to section 4.4, can be transformed to the

algebraic problem if d ‰ 0.

By substituting expressions (4.20) into Eq. (4.17) for i “ 1 and i “ n ´ 1 we

rewrite it in the canonical three-layer form

ApU ` BU ` CqU “ τ 2F. (4.21)

Then, analogously as in Chapter 2, we represent the three-layer scheme (4.21) as

an equivalent two-layer scheme

Ŵ “ SW ` G, (4.22)

where

W “

¨
˝ U

qU

˛
‚, S “

¨
˝ ´A

´1
B ´A

´1
C

I 0

˛
‚, G “

¨
˝ τ 2A´1

F

0

˛
‚. (4.23)

Remark 4.13. The structure of two-layer scheme is the same that in Chapters 1

and 2. The main difference is the structure of matrices A, B, and C.

Spectrum Analysis

We investigate an eigenvalue problem

ΛU “ λU,
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for pn ´ 1q ˆ pn ´ 1q matrix Λ which is in general equivalent to SLP for the

difference operator with nonlocal boundary conditions

´δ2xU “ λU, U P ωh, (4.24)

U0 “ γ0rχ0, Us,

Un “ γ1rχ1, Us.
(4.25)

Instead of investigating eigenvalues λ P Cλ :“ C we use a bijection λ “ λpqq from

complex plane Cq to Cλ:

λ “ 4

h2
sin2 qh

2
, q :“ α` ıβ (4.26)

where Cq “ tq “ α : 0 ă α ă π{hu Y tq “ ıβ : β ě 0u Y tq “ π{h ` ıβ : β ě 0u.
The points q “ 0 and q “ π{h are the branch points of the map (4.26). So, every

eigenvalue λi “ λpqiq conforms to qi, i “ 1, n´ 1 and vice versa.

Now we investigate the spectrum of matrix Λ in detail. The general solution

of (4.24) in the case of q ‰ 0, q ‰ π{h is U “ C0 cos pqxq ` C1 sin pqxq, x P ωh.

By substituting it into (4.25) we have

`
γ0rχ0, cos pqxqs ´ 1

˘
C0 ` γ0rχ0, sin pqxqsC1 “ 0,

`
γ1rχ1, cos pqxqs ´ cos q

˘
C0 `

`
γ1rχ1, sin pqxqs ´ sin q

˘
C1 “ 0.

(4.27)

A nontrivial solutions of system (4.27) exist if its determinant is equal to zero

γ0γ1

∣∣∣∣∣∣

rχ0, cos pqxqs rχ0, sin pqxqs
rχ1, cos pqxqs rχ1, sin pqxqs

∣∣∣∣∣∣
´ γ0rχ0, sin qp1 ´ xqs ´ γ1rχ1, sin pqxqs ` sin q “ 0.

Example 4.14. If χ0,1

r0,1s ” 1, we have the following characteristic function (see

[54, Novickij and Štikonas 2014])

pγ0 ` γ1qh
sin2 pq{2q cos pqh{2q

sin pqh{2q ´ sin q “ 0.

If χ0 ” 0 and χ1 “ χrξ1,ξ2s the characteristic function is the following (see

[89, Skučaitė 2016])

γ1h

2
´ sinpπqq

cospπξ1qq ´ cospπξ2qq ¨ tanpπqh{2q “ 0.
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4.6 Conclusions and final remarks

• If boundary conditions satisfy the relation γ0γ1Dpn0, n1q ` γ0Dpn0, k1q `
γ1Dpn1, k0q ` Dpk0, k1q “ 0, then the three-layer finite difference scheme is

not defined.

• The Degeneration Curve in the plane R2 could only be algebraic curve such

as hyperbola, line and two lines. Two trivial cases (whole plane and empty

set) are also possible.

• The characteristic function for the discrete hyperbolic problem with partial

integral nonlocal boundary conditions is found.



Conclusions

• The sufficient stability condition of the explicit FDS for hyperbolic equation

with integral NBCs is γ0 ` γ1 ă 2 under the condition τ ď h.

• The weighted FDS (with one weight σ) in unconditionally stable under the

condition σ ě 1{4 for γ0 ` γ1 ă 2. This means that there are no restrictions

on τ and h.

• Λ eigenvalues of the weighted FDS (with one weight σ) are real, and eigen-

vectors form a complete system (except the case of γ0 ` γ1 “ 2{h).

• The Λ spectrum of the weighted FDS (with one weight σ) is qualitatively

different (in some sense) for the cases of odd and even number of grid points

N .

• If 2 ą γ0 ` γ1 ą 2{h2 and the number of grid points N is odd, then the Λ

spectrum is in the interval p0, 4{h2q.

• The sufficient stability condition of the weighted FDS (with one weight σ)

for hyperbolic equation with integral NBCs is γ0`γ1 ă 2 and σ ą 1
4

´ 1
τ2λmax

.

• The FDS for hyperbolic equation with integral NBCs (with one weight σ)

is unstable if the spectrum has complex eigenvalues.

• The weighted FDS for hyperbolic equation with integral NBCs (with two

weights σ1 and σ2) has a stability region if σ1 ě σ2. If the spectrum is real,

then the second stability condition is σ1 ` σ2 ě 1{2.

• The stability region of weighted FDS for hyperbolic equation with integral

NBCs (with two weights σ1 and σ2) is bounded if σ1 ´ σ2 ă 1{2, elsewise —

undounded.
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[52] J. Novickij, A. Skučaitė and A. Štikonas. Spectrum analysis of the weighted
finite difference scheme for the wave equation with the nonlocal integral boundary
conditions. In European Conference on Numerical Mathematics and Advanced
Applications ENUMATH2015). Ankara, Turkey, September 14-18 2015. (Mini-
Symposium: Numerical and theoretical study of nonlocal problems)
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[96] A. Štikonas. The Sturm–Liouville problem with a nonlo-
cal boundary condition. Lith. Math. J., 47(3):336–351, 2007.
http://dx.doi.org/10.1007/s10986-007-0023-9.
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