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ABSTRACT Electric vehicles (EVs) with increasingly large batteries and the rapid development of charging
infrastructure enable convenient long-distance electric mobility. Nevertheless, as charging or waiting for an
available charger may still take a significant fraction of the travel time, planning long routes is challenging.
We argue that, for the plans to be useful, the main challenge lies not in computing an optimal route under
some specific assumptions but in managing the inherent uncertainty. In particular, varying and uncertain
traffic results not only in similarly uncertain travel times but also in uncertain energy use and, thus, uncertain
required charging times. To model long EV routes, we propose Charge-Arrival-Time (CAT) profiles. A CAT
profile of a route captures the expected intervals and associated probabilities of arrival time and the arrival
charge level of the battery as well as any interdependence of the two. A rich underlying data model is used as
a starting point for a stepwise presentation of the mathematical model of CAT profiles. A heuristic algorithm
to select charging stops is presented to exemplify their use. Detailed simulations on the road network of
Germany show the benefits of precise modeling compared to alternative models.

INDEX TERMS Electric vehicle, long-distance EV routing, charge-arrival-time profiles, energy
consumption, first-in-first-out, time dependency, data modeling.

I. INTRODUCTION
Influenced by many factors, the electrification of transport
is accelerating. For example, the EU plans to ban all non-
zero-emission vehicles starting from 2035 [1]. The renewal
of the global fleet of vehicles is accompanied by the
gradual development of the necessary charging infrastructure.
Nevertheless, the availability of this infrastructure varies both
spatially and temporally. Thus, planning long EV trips with
charging stops currently involves a lot of uncertainty. The
uncertainty stems from many factors. Time-varying traffic
affects travel times as well as energy use, which, for EVs,
is highly sensitive to speed. Energy use, in turn, deter-
mines charging-station reachability and charging duration.
Charging duration can also involve waiting at busy charging
stations.

Managing this uncertainty is often important. For example,
quantifying the probability of arriving before a given deadline
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may be relevant in the case of delivering goods or following
a given schedule.

We argue that with the increased availability of collected
data and learned prediction models, careful data modeling is
of paramount importance.

The most advanced existing work on algorithms for EV
routing [2] does a careful modeling of charging (see Fig-
ure 1b), but driving is oftenmodeled somewhat simplistically.
Either it is assumed that network edges are assigned a given
constant travel time and energy use or a range of travel times
and corresponding energy usages are attached to each edge.
On the other hand, real-world navigation services, such as
Google Maps, use time-dependent road networks, where the
time it takes to traverse a given network edge or a path
depends on the time the traversal starts. This time dependence
is crucial, especially for longer trips and especially for electric
vehicles, where energy consumption is greatly affected by
travel speed.

There is a large body of work on routing in time-dependent
road networks [3]. Most of the work assumes a simple model,
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FIGURE 1. Tesla charging and energy consumption functions (adapted
from [6], [7]).

where the time of arrival at the starting vertex of an edge
determines an expected time of traversal of the edge. Such
an expected time can be computed from models based on
historical data. The real traversal time will, of course, most
probably differ from the expected time. The further into the
future a system tries to predict, the more inaccurate it will
likely be. That is why recently stochastic, time-dependent
edge weights were proposed [4], [5]. In the simplest of such
models, the likely time interval of traversal for a given edge or
a path ismodeled. To accommodate EVs, energy-use intervals
could be similarly modeled as well.

In this paper, we argue that decoupled modeling of
travel time and energy use does not capture the strong
inverse interdependence of these two variables. For example,
computing a conservative total trip time, one could take the
slowest travel times on the edges of the trip and add the
charging time derived from the highest energy use on the trip.
Though simple, this may be too conservative, as the slowest
travel times do not imply the highest energy use. Instead,
as Figure 1 shows, slow travel times may imply efficient
energy use. Specifically, going 80 km/h in a tight traffic, when
compared to cruising at 140 km/h, may save about 15 kWh
per 300 km of travel. This, in turn, translates to increased
range with a given battery or to 15 minutes of saved charging
time on a 60 kW charger.

Given a route, possibly with charging stops, we aim for
a model that would enable queries such as: What is the
probability that the vehicle will arrive at the destination not
later than 5 p.m.? If it arrives by that time, what would the
expected range of charge remaining in the battery be?

To address these data-modeling challenges, we propose
Charge-Arrival-Time (CAT) profiles. To the best of our
knowledge, this is the first data model that, for routes
with multiple charging stops, 1) assumes uncertain, time-
dependent travel times and energy use, 2) captures interde-
pendence between travel time and energy use, and 3) captures
charging curves and time-dependent uncertain waiting times
at chargers. A heuristic algorithm to select charging stops is
presented to exemplify the use of CAT profiles. The paper
also contributes with an extended simulation study on a
German road network. The study evaluates the use of CAT
profiles in contrast to alternative, more limited models.

FIGURE 2. A roadmap of the proposed model.

The paper is structured as follows. Section II, in a sequence
of steps, formally defines and explains CAT profiles. As a
case study for the possible use of CAT profiles, Section III
presents a simple heuristic algorithm for choosing and
evaluating charging stops on a given route. The experimental
setup and results are described in Section IV. Section V
reviews related work. The paper ends upwith conclusions and
future work in Section VI.

II. MODELING LONG EV ROUTES
As presented in the introduction, our goal is to model
arrival times and arrival charge levels on long EV trips
with charging stops. In the following, we build up a formal
model, precisely defining a set of concepts. We do it step by
step, combining the following building blocks as shown in
Figure 2: the (relatively) static road-network infrastructure;
dynamic, time-dependent traffic information; EV-specific
information; and charging-station-specific information. The
arrows in the figure point from simpler concepts or groups
of concepts to more complex concepts that build on
them. The arrows are annotated with sub-concepts that
are relevant when defining the more complex concepts.
Finally, the numbers refer to the definitions later in this
section.

Table 1 summarizes the main notations used in the
following.

A. ROAD-NETWORK GRAPH
Definition 1: A road network is modeled as a directed

graph G = (V ,E). An edge e ∈ E is a 4-tuple e =
(u, v, l, hp), where u, v ∈ V are the start and the end vertices
of the edge, l ∈ R≥0 represents the length of the edge and
hp ∈ HP is a height profile of an edge which includes
all edge-specific information necessary to compute energy
consumption on the edge.

Note that hp implicitly includes the length of the edge, but
we represent it separately to simplify the presentation.
Definition 2: Charging station type function cs : V →

CST ∪{⊥} returns the type of a charging station, cst ∈ CST ,
available at a given vertex v ∈ V . The set CST represents
charging station types, each of which defines a type of a
plug and an available power level. If no charging station is
available at v, then cs(v) = ⊥.
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TABLE 1. Summary of the main notations.

Multiple types of charging stations or even one charging
station with multiple types of sockets at a single charging
location can be modeled by introducing several vertices
connected by the null-edges, which are edges of zero length.
Definition 3: A path P ∈ P models a simple path in a road

network. It is a sequence of edgesP = ⟨e1, e2, . . . , ep⟩, where
ei ∈ E , and ei.v = ei+1.u for 1 ≤ i < p. The path is required
to contain no cycles.

The number of edges in path P is denoted by |P| and the
i-th edge of P is denoted by Pi. A height profile of P, denoted
by P.hp, is a concatenation of the height profiles of its edges.
The length of path P is denoted by P.l =

∑|P|
i=1 P

i.l.

B. TIME-DEPENDENT TRAFFIC INFORMATION
We assume that the system maintains a comprehensive
historical traffic database. Such a database, possibly in
conjunction with traffic-prediction models and current traffic
information, enables the computation of time-dependent
traffic predictions relevant to route planning.

First, we assume that the time domain T (T ∼= R≥0) is
subdivided into a sequence of consecutive, half-open time
slots of equal length: T ′ = ⟨τ |τ = [τ⊢, τ⊣)∧τ⊣−τ⊢ = δ⟩.
Thus, each time point t ∈ T belongs to a unique time slot:
t ∈ τ (t) ∈ T ′. The length of a time slot, δ, is a global
system parameter determined primarily by the granularity
of the collected traffic information and the employed traffic
prediction models. It can range from a few minutes to as long
as an hour.
Definition 4: A travel-time function tt : P × T → R≥0×

R≥0 is a function that returns the expected travel-time interval
of a path P ∈ P when starting the traversal at a given time
t ∈ T .

In the following, we use tt = [tt(P, t)⊢, tt(P, t)⊣] to
denote the returned time interval and its two ends. A similar
notation is used for intervals of speed and battery charge level.
Given a specific departure time ts, the arrival time interval
is computed as at(P, ts) = [ts + tt(P, ts)⊢, ts + tt(P, ts)⊣].

To simplify the representation of tt , we assume its upper
and lower bounds are piece-wise linear functions, such that,
in each time slot, an upper (lower) bound is represented by a
single linear function.

To realistically model time-dependent travel times,
we require the tt function to satisfy the FIFO property—a
natural requirement that, although a vehicle A leaving at a
later time than another vehicle B can take less time to traverse
a path, A cannot arrive sooner than B [8], [9], [10], [11], [12].
If this property were not satisfied, waiting at some points on
the path could be necessary to minimize arrival time, which
contradicts common sense and reduces pruning opportunities
in routing algorithms.

The FIFO property can be also extended to uncertain travel
times [13], [14]:

∀P : t1 < t2 < t H⇒ P(at(P, t1) < t)

≥ P(at(P, t2) < t).

In other words, leaving later can not increase the probabil-
ity of arriving before any given time t . We interpret tt as a
single-bin histogram: the travel time is expected to be in the
interval with a given global confidence level (say 95%) and
it is assumed to be uniformly distributed inside the interval.
Then, the probability of arriving before t is proportional
to overlap of [0, t] and at and the FIFO condition can be
rewritten:

∀P : t1 < t2
H⇒ at(P, t1)⊣ ≤ at(P, t2)⊣ ∧ at(P, t1)⊢ ≤ at(P, t2)⊢

H⇒ t1 + tt(P, t1)⊣ ≤ t2 + tt(P, t2)⊣

∧ t1 + tt(P, t1)⊢ ≤ t2 + tt(P, t2)⊢

H⇒ tt(P, t1)⊣ − tt(P, t2)⊣ ≤ t2 − t1
∧ tt(P, t1)⊢ − tt(P, t2)⊢ ≤ t2 − t1

H⇒
tt(P, t2)⊣ − tt(P, t1)⊣

t2 − t1
≥ −1

∧
tt(P, t2)⊢ − tt(P, t1)⊢

t2 − t1
≥ −1.

The last two lines effectively require that the slope of the tt
upper (lower) bound is not less than−1 in any interval [t1, t2].
For this to be true, we formulate two requirements:
Requirement 1: The upper (lower) bound of the travel-time

interval is a continuous function.
Requirement 2: In each time slot, the upper (lower) bound

of the travel-time interval is a linear function with a slope
larger or equal to −1.
Example 1: Figure 3 presents an example of the travel

time function, tt . Solid lines visualize its upper and lower
bounds. Intervals tt1 and tt2 identify travel time when leaving
at t1 and t2, respectively. At the top of the figure, the
corresponding arrival-time intervals are presented along the
x-axis. Thus, if the trip starts at t1 = 1

2δ and travel time is
tt1 = [2δ, 3δ], the arrival time is at1 = [2 1

2δ, 3
1
2δ]. The

figure also shows an alternative upper and lower function
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FIGURE 3. Example travel-time function with alternative, non-FIFO
bounds.

bounds within time slot [2δ, 3δ) identified by two dashed
lines. For these bounds, the slope of the function is less than
−1, thus, for the departure time t2, the travel time interval
is ⋄tt2 = [0.5δ, 0.85δ], making the arrival time interval
⋄at2 = [3δ, 3.35δ], i.e., earlier than the end of at1. Therefore,
the alternative upper and lower bounds do not satisfy the FIFO
property.

The travel-time interval captures the concise summary of
expected traffic on a given path. It does not capture how
the speed varies on different parts of the path, which can be
captured by the speed profile.
Definition 5: A speed-profile function sp : P × T → SP

captures the expected speed variation along the path when
leaving at a given time.

The structure and size of the speed profile depend on
the capabilities of the underlying traffic-modeling system.
In the simplest case, it is just an expected interval of the
average speed along the path corresponding to the expected
travel-time interval: sp(P, t) = [P.l/tt(P, t)⊣, P.l/tt(P, t)⊢].
A richer speed profile may include individual speed intervals
for subpaths of a path, e.g., each Pi.
Definition 6: Given a time point, a waiting-time function

wt : V×T → R≥0×R≥0 returns the expected minimum and
maximum time one has to wait to start charging at a charger
of vertex v ∈ V . The waiting time is [0, 0] if there is at least
one available charger at the station.

Waiting to charge is equivalent to traveling on a zero-length
edge. Thus, Requirements 1 and 2 apply to the waiting-time
function as well.

Note that a charging station with a given charger type may
offer different charging powers depending on howmany other
cars are currently being charged at the station. This can be
modeled as multiple virtual charging stations with different
power levels and different waiting-time functions so that the
highest power level is least available (longer expected waiting
time) and the lowest power level is most available (shorter
expected waiting time).

C. ELECTRIC VEHICLE
A given EV is characterized by how it charges its batteries
and how it consumes energy while driving.
Definition 7: A charging function ch : CST × R≥0 ×

R≥0 → R≥0 is an EV-type-determined function that, given
a charging station type cst , a starting battery charge level cs
and a time period1t , returns the resulting battery charge level
ce = ch(cst, cs, 1t).
An inverse charging function ch−1 : CST ×R≥0×R≥0→

R≥0 computes how much time it takes to charge from one
charge level to another:1t = ch−1(cst, cs, ce). For example,
in Figure 1b it takes 20 minutes to charge a particular battery
from 8% to app. 30% and app. 70% at superchargers V2 and
V3, respectively.
Definition 8: An energy-consumption function ec : P ×

SP × R>0 → R × R is an EV-type-determined function,
that given a path P, a speed profile sp and an initial charge
level cs of the battery, returns an expected interval of charge
levels of the battery after traversing the path: c = [c⊢, c⊣] =
ec(P, sp, cs).

Energy-consumption function uses the height profile of P,
P.hp. It should also model energy recuperation on downhill
parts of the height profile. Thus, it is possible that c⊢ > cs
and/or c⊣ > cs. If c⊢ < 0, there may not be enough energy
in the battery to traverse the path and we say that the given
triple of the path, speed profile, and the initial charge is not
feasible.

Real-world energy-consumption functions are markedly
affected by weather conditions [15] and other context
variables. To simplify, we do not model this, but this could be
modeled as additional parameters of the energy consumption
function.

Note that to compute ec, it may not be enough to check
the energy consumption just at the smallest and then at the
largest speeds captured in the speed profile. This is because
the energy consumption function, if expressed as kWh/km,
is a concave function (see Figure 1).
Definition 9: An electric vehicle is defined as a triple

EV = (b, ch, ec), where b ∈ R>0 is the vehicle’s
battery capacity, while ch and ec are its charging and
energy consumption functions, respectively. Note that the
values returned by ch and ec are required to be smaller
than b.

D. CHARGE-ARRIVAL-TIME PROFILE
The definitions presented up to this point model the result
of an EV traversing a path as an interval of the expected
final charge level of the battery, coupled with an interval of
the expected arrival time. The result can be thought of as a
bounding-box approximation of a curve that captures how the
final battery level depends on the arrival time.
Example 2: Figure 4 presents an example of a travel time

function that satisfies Requirements 1 and 2. Dashed diagonal
lines represent arrival times. For example, if the driver leaves
at ts = δ, the lower and upper bounds of the travel function,
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FIGURE 4. Example travel-time function.

FIGURE 5. Charge-arrival-time profile for ts =
1
2 δ.

tt⊢ and tt⊣, are δ and 3δ, respectively. Therefore, the earliest
and latest arrival times are 2δ and 4δ.
Figure 5 visualizes the results from Figure 4 and some ec

function, assuming ts = 1
2δ. The shaded rectangle illustrates

the bounding-box approximation of the function shown as the
curve in the figure.

Such an approximation is often too crude, particularly
as the predicted rectangle becomes larger toward the end
of a long route. This, in turn, will hinder decision-making
for algorithms. For example, when determining the needed
charging time after traversing a path, an algorithm should
be able to benefit from the fact that arriving later can be
partially compensated by a reduced charging time. This
occurs because later arrival time translates into lower average
speed, which is typically more energy-efficient, and thus may
result in a fuller battery at the end of the path. In Figure 5, this
is illustrated by the curve being close to c⊣ when the arrival
time is close to at⊣.
To capture this interdependence more accurately, we

assume that it is possible to partition the speed profile into

FIGURE 6. Speed profile and its partitioning.

speed intervals corresponding to subintervals of the travel-
time interval.
Definition 10: Given a speed profile sp(P, ts) and a

subinterval t ⊆ tt(P, ts) of the corresponding travel-time
interval, spt (P, ts) ⊆ sp(P, ts) denotes the narrowing of the
speed profile corresponding to t .

Figure 5 shows a partition of the arrival-time interval into
three sub-intervals based on Figure 4. Sub-intervals are time
slots or their parts that intersect the arrival-time interval.
This partition then generates a corresponding partition of
the travel-time interval (see the top of the figure). Finally,
Figure 6 illustrates a simple way to build a corresponding
partitioning of a speed profile. The intervals of average speed
on each edge of the path (solid lines) are subdivided into
sub-intervals of speed (dashed lines) that are proportional
to the travel-time sub-intervals. For example, traveling at
average speeds in intervals marked with b results in arrival
sometime during the arrival-time slot b.
Definition 11: Given an electric vehicle EV , a path P,

a departure time ts, and a starting battery charge level cs,
the charge-arrival-time (CAT) profile of P is defined as a
set of charge and arrival-time interval pairs with associated
probabilities:

cat(EV, P, ts, cs)

=

{ (
t, EV.ec(P, spt−ts (P, ts), cs), P(t)

)
|

t = τ ∩ at(P, ts) ∧ t ̸= ∅ ∧ τ ∈ T ′
}

where t − ts = [t⊢ − ts, t⊣ − ts] is the travel-time interval
corresponding to the arrival-time interval t and P(t) =
|t|/|at(P, ts)| is the probability of arriving during t . Let
CAT denote the set of all valid CAT profiles: CAT ⊂

2T ×T ×R×R×R[0,1] .
A CAT profile captures the expected battery charge interval

in each time slot of the arrival-time interval. Figure 5
illustrates a CAT profile as three rectangles—elements of
the profile. Each element of the profile is associated with
its probability, assuming a uniform distribution of the arrival
time in the predicted arrival time interval. If some of
the elements of a CAT profile have negative charge level
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FIGURE 7. Convolution of charge-arrival-time profiles.

values, the CAT profile is called infeasible. For s ∈ CAT ,
infeasible(s) if ∃(·, [c⊢, c⊣], ·) ∈ s : c⊢ < 0.

When multiple paths are concatenated into a route, the
arrival time interval of one path becomes the departure time
interval of another path. To this end, the CAT profile of a path
has to be defined for an interval of departure times.

First, we look at a case when the departure-time interval is
fully contained in a time slot. In Figure 4, the departure-time
interval [ 12δ, 1

1
2δ] (light blue) overlaps with two time slots.

Let us consider its first half ts = [ 12δ, δ] that is fully contained
in the first time slot. To build its CAT profile, for each of
the time slots of the arrival-time interval, the corresponding
maximal travel-time interval has to be computed. In the
figure, the inclined region d contains all trips with arrival
times between 3δ and 4δ. The shaded part of that region
corresponds to the relevant departure-time interval. It is easy
to see that the region corresponds to travel times spanning
from 2δ to 3 1

4δ (see the two black dots in the figure). This
interval can then be used to narrow down the speed profile and
compute the corresponding element of the CAT profile. This
element and the other two can be seen in Figure 7. Figure 7a
shows the CAT profile for ts = [δ, 1 1

2δ].
Definition 12: Restricted travel-time function t̂t⊢(P, ts, ta)

computes the interval of possible travel times given an
interval of departure times, ts = [t⊢s , t⊣s ], and an interval of
arrival times, ta = [t⊢a , t⊣a ]. The details of the computation of
t̂t can be found in Appendix.

Then, formally, we augment Definition 11 to work on any
ts ⊂ τ , τ ∈ T ′:

cat(EV, P, ts, cs)

=
{(
t, EV.ec(P, spt̂t(P,ts,t)(P, ts), cs), P(t)

) ∣∣
t = τ ∩ at(P, ts) ∧ t ̸= ∅ ∧ τ ∈ T ′

}
.

Here, P(t) = |t|/|at(P, ts)| and at(P, ts) = [at(P, t⊢s )
⊢,

at(P, t⊣s )
⊣]. Due to the FIFO property, these two points are

enough to define the arrival-time interval. The speed profile
for an interval of departure times ts is defined as a union of
the speed profiles of all time points of the interval.

If a departure time interval spans multiple time slots,
each time slot will have a probability associated with it.
For example, if the departure time interval corresponds to
the arrival time interval of the previous leg of a route, the

probabilities are derived from the elements of that leg’s
CAT profile. To construct a CAT profile for a departure
time interval, we compute a convolution of the probability
distribution of the departure time and the time-dependent
probability distribution of travel time, represented by the CAT
profiles of each time slot within the departure time interval.
This is achieved by ‘‘summing up’’ these CAT profiles. More
specifically, we iterate through all the arrival time slots, and
for each time slot, we compute the minimum bounding box
of the relevant profile elements, as well as their probability.
Figure 7a illustrates a CAT profile formed by summing the
two profiles in Figures 7b and 7c. The two profiles are first
constructed for the two equal halves of the departure time
interval [ 12δ, 1

1
2δ], each associated with an equal probability

of 1
2 . Then, for example, the element from 3δ to 4δ in the

sum of the two profiles is a minimum bounding box of the
corresponding two elements—one from Figure 7a and one
from Figure 7b. The probability of this element is equal to
1
2 ·

2
5 +

1
2 ·

2
5 =

2
5 .

We term this operation a convolution of a set of CAT
profiles with associated probabilities:
Definition 13 (Convolution): Given a set S ⊂ CAT ×

R[0,1] of CAT profiles, their sum (convolution) is defined as
follows⊕

S =
{(⊔

e∈Sτ
e.t,

⊔
e∈Sτ

e.c,
∑

e∈Sτ
e.Pe · e.Pcat

) ∣∣
Sτ =

{〈
(t, c, Pe), Pcat

〉
∈

⋃
S | t ⊆ τ

}
∧Sτ ̸= ∅ ∧ τ ∈ T ′

}
,

where
⊔
I = [mini∈I i

⊢,maxi∈I i
⊣] denotes the minimum

bounding interval of either time or charge interval sets, and,
for simplicity, it is assumed that the probability of a CAT
profile in S, Pcat , is associated with each element of the CAT
profile. Note that the convolution of a set of CAT profiles is
a CAT profile as well.

The second line of the definition takes a subset of the
union of all the elements of the CAT profiles—the set Sτ

that contains only the elements with arrival-time intervals in
a given time slot τ . Then, the minimum bounding box of Sτ is
constructed as one element of the summed CAT profile. This
process is repeated for all non-empty Sτ sets.

We can now define the CAT profile for an arbitrary
departure time interval. First, assuming that the departure
time is uniformly distributed in the departure time interval,
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we construct the corresponding flat CAT profile that also
captures the departure charge and probabilities. The profile is
flat, as the lower and upper charge bounds of all the elements
are equal to the departure charge. Defining the input as a
CAT profile is useful when modeling multi-leg routes where
a uniform distribution of the departure time can no longer be
assumed starting from the second leg of a route, as described
below.
Definition 14: Given a departure time interval ts and a

starting battery charge level cs, the corresponding flat CAT
profile is defined as follows:

fcat(ts, cs) =
{ (
t, [cs, cs], |t|/|ts|

)
| t = τ ∩ ts

∧ t ̸= ∅ ∧ τ ∈ T ′
}
.

Then, given such a flat CAT profile fcat , an electric vehicle
EV , and a path P, the CAT profile of P is defined as follows:

cat(EV, P, fcat) =
⊕ {
⟨cat(EV,P, t, cs), P⟩ |(

t, [cs, cs], P
)
∈ fcat

}
.

The definition computes the convolution of all the relevant
CAT profiles—the cat profiles of all the departure time slots.

E. ROUTES WITH CHARGING STOPS
Given the data modeling described so far, the source vertex
vs ∈ V and the destination vertex vd ∈ V , our aim is to model
feasible and fast routes from vs to vd . A route should indicate
which charging stops to use, how to drive between them, and
the amount of charge needed at each stop.

It is important to note that for a path to be feasible, charging
at each charging stop has to be conservative, taking into
account the most energy-inefficient driving on the remainder
of the route, as given by the CAT profiles. On the other
hand, such a conservative charging time at a given stop u will
vary depending on the battery’s energy level, which, in turn,
depends on how the initial part of the route before u was
driven. Therefore, instead of specifying the required charging
time, it is more sensible to indicate the required charge level
that the battery must reach at u before continuing on the rest
of the route.
Definition 15: A route is a sequence R = ⟨(c1,P1),

(c2,P2), . . . , (cr ,Pr )⟩, where Pi ∈ P is a path between
charging stops and ci ∈ R>0 is a charge level that the battery
has to be charged to at the beginning of path Pi, for 1 ≤ i ≤ r .
All paths, except possibly the first, start with a charging
station: cs(P1i .u) ̸= ⊥, for 1 < i ≤ r . Finally, all consecutive
paths of a route are connected to each other: P|Pi|i .v = P1i+1.u,
for 1 ≤ i < r .

A pair of a charge level and a path constitutes a leg of a
route and we denote Ri the i-th leg of a route. A sub-route
from the k-th to the l-th leg of a route is denoted as Rk..l .
Finally, the prefix of a route without the last leg is denoted as
R−1 = R1..|R|−1.
Before defining the CAT profile of a route, we first define

the waiting and charging time. Both definitions involve

adding a scalar to an interval, which results in the addition of
the scalar to both ends of the interval: i+h = [i⊢+h, i⊣+h].
Definition 16: The function wct computes the waiting and

charging time interval for a vehicle EV at vertex vc to reach
the charge level ce starting from the charge level cs if arriving
within the time interval t ⊂ τ , τ ∈ T ′:

wct(EV, vc, t, cs, ce)

=


[0, 0] if cs ≥ ce,[
wt(vc, t⊢)⊢,wt(vc, t⊣)⊣

]
+

EV.ch−1(cs(vc), cs, ce) otherwise.

If charging is not necessary, the function returns [0, 0].
Otherwise, it calculates the sum of the maximal waiting
interval if arriving within t and the charging time.
Definition 17: Given an electric vehicle EV , a route R =
⟨(c1,P1), (c2,P2), . . . , (c|R|,P|R|)⟩, a departure time ts, and a
starting battery charge level cs, the CAT profile ofR is defined
as follows:

cat(EV, R, ts, cs)

=



cat
(
EV,P1, fcat

(
ts + wct

(
EV,P11, [ts, ts], cs, c1

)
, c1

))
if |R| = 1,

cat
(
EV,P|R|,

⊕{〈
fcat

(
[t⊢ + w⊢, t⊣ + w⊣], c|R|

)
, P

〉 ∣∣
w = wct

(
EV,P1

|R|, t, c
⊢, c|R|

)
∧

(t, c, P) ∈ cat
(
EV,R−1, ts, cs

)})
otherwise.

The CAT profile of a one-leg route, |R| = 1, is simply
a CAT profile of the leg’s path. However, to account for
charging at the beginning, a waiting/charging-time interval
is added to the departure time.

For a multi-leg route, the CAT profile is defined recur-
sively. First, the CAT profile of the prefix of the route, R−1,
is computed (as seen in the last line of the definition). Then,
the time interval of each element of the profile is shifted in
time by adding the necessary waiting/charging-time interval
w to it. Next, each such interval is converted into a flat CAT
profile, dividing it into time-slot-sized elements. Finally, all
these flat CAT profiles are convoluted to get the departure flat
CAT profile as an input for computing the CAT profile of the
last leg, which is the CAT profile of the entire route.

Figure 8 demonstrates an example of computing the
departure flat CAT profile for the next leg of a route. Let the
CAT profile shown in Figure 5 represent the CAT profile of
a prefix of a route. The top of Figure 8 displays an example
waiting-time function for the relevant time slots. The three
rectangles in Figure 8 illustrate the three elements of the CAT
profile shifted in time according to the waiting-time function.
The values of the lower and upper bounds of the waiting-time
function used for shifting are highlighted as black points on
the graphs of the bounds. For example, the time interval of
element b ([2δ, 3δ]) was altered by adding 1

4δ to its beginning
and 3

4δ to its end.
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FIGURE 8. Waiting-time function and CAT profile with waiting and
charging.

Figure 8 also displays the conservative charge intervals,
equal to the difference between the charge level ci required
for the next leg and the lower end of the charge interval
of the CAT profile’s element. Figure 9 demonstrates how
these charge intervals are then translated into the required
charging times using the charging function of the vertex at
the beginning of the next leg. For example, the charging time
relevant to element b of the CAT profile is 1tb = 5

4δ. Thus,
both ends of b’s time interval are shifted by that amount,
resulting in an interval shown in the bottom center of Figure 8.
The same is done for elements a and d of the profile. The time
intervals are then converted into flat CAT profiles. As part
of the conversion, they are divided into time-slot elements
with probabilities proportional to the lengths of the elements.
For example, the shifted b is divided into [3 1

2δ, 4δ] with a
probability of 1

3 and [4δ, 5δ] with a probability of 2
3 . The

shifted flat CAT profiles a, b, and d are then convoluted, and
the result is shown at the top of the figure: t = [3 1

2δ, 5δ].
The figure also demonstrates how the probabilities of the
elements of the resulting flat CAT profile are computed. For
example, the element [3 1

2δ, 4δ] receives the probability of
1
3 ·

1
3 +

4
9 ·

1
3 =

7
27 .

The computed flat CAT profile t encodes the interval of
departure times after charging to ci. In addition, assuming the
uniform distribution of departure times within each element
of the CAT profile, the expected departure time can be
computed using the probabilities of its elements. As shown
by the red triangle in Figure 8, it is the weighted sum of the
centers of the elements: 7

27 · 3
3
4δ +

20
27 · 4

1
2δ.

The example highlights the advantages of modeling a CAT
profile as a set of profile elements rather than a single pair

FIGURE 9. Using charging function to compute charge times.

of arrival-time and charge intervals (as illustrated by the
shaded bounding rectangle in Figure 5). As introduced in
Section II-D, themore precise modeling allows for leveraging
the dependencies between the arrival time and the final
charge. In this example, element a of the profile represents
the earliest arrival times but also requires the longest charging
time before the next leg, while the opposite is true for element
d . This results in the departure-time intervals of elements
coalescing into a shorter departure flat CAT profile. In this
example, the resulting departure-time interval t has the length
of 1 1

2δ. As illustrated in Figure 8, if a simple ‘‘bounding
rectangle’’ CAT profile were used, the departure-time interval
would be tc = [4δ, 6δ], with the length of 2δ. In summary,
fine-grained profiles with temporal granularity matching the
granularity of the collected traffic data limit the growth of
uncertainty in multi-leg routes.

III. USING CAT PROFILES
The development of advanced algorithms for route planning
that take full advantage of the richness of CAT profiles is
out of the scope of this paper. Nevertheless, in this section,
we strive to demonstrate the use of CAT profiles in a context
of a relatively simple heuristic algorithm.

Given a known path, computed, e.g., by existing online
navigation services, the presented algorithm chooses charg-
ing stops along the path with the goal of achieving the earliest
probable arrival time. The probable arrival time of a route
can be computed from the CAT profile of the route given
a required probability of arrival (for example, 75%). Recall
that the route R is defined as a sequence of pairs (c,P) where
c is the level to be charged before traversing path P (see
Definition 15). We start with the given guide path P from
source s to destination d . Parts of the calculated route, R =
⟨(c1,P1), . . . , (c|R|,P|R|)⟩, compose P with minor deviations
due to detours to reach and depart charging stations, i.e.,
P ≃

⊔
(ci,Pi)∈R Pi.

Due to the FIFO property, optimizing the probable earliest
arrival time amounts to choosing charging stations and
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FIGURE 10. Flowchart diagram of the algorithm.

charge-to levels at the stations so that the total charging
and waiting time at the stations is minimized. Note though
that striving exclusively for the earliest arrival time may
sometimes result in undersireble routes with too many
charging stops. As described later, we introduce an algorithm
parameter α to control the number of charging stops, with
possible sacrifices to the arrival time.

Figure 10 presents the main steps of the algorithm as a
high-level flowchart diagram. First, the reachable path is
calculated. If the destination is along the reachable path, the
route is found. Otherwise, charging stations along the path
are identified, and the best one is selected according to a
scoring function (described in the following). There could
be situations when there are no charging stations, thus, the
algorithm has to stop, as the destination is not reachable. If the
station is found, the route can be constructed further. If the
route contains only one leg, it is updated. If there are more
legs, the newly found station is compared to the previous
one. If the current station has a better score, the previous leg
is updated to set the battery SoC to the minimum required
level that would be enough to reach the newly found charging
station. In both cases, a new leg is constructed using the rest of
the path. The algorithm then loops to the first step to calculate
the reachable path.

Algorithm 1 provides more details. The algorithm takes
four inputs: EV , a guide path P, a departure time ts, and
an initial state of charge c. The algorithm then returns a
calculated route, R. It employs several temporary variables:
vc and vp denote current and previous graph nodes within the
road network where charging is planned, and P◁ represents a
path reachable with the current state of charge.

Firstly, the algorithm initiates a route with a leg represented
by the initial state of charge, c and the full path, P (step 3).
Then, the algorithm searches for charging stations along the
path. All charging stations are mapped to the nearest graph
nodes of the road network, and charging station type function
returns ⊥ if there is no possibility of charging at a particular
node (see Definition 2). In the beginning, path P represents
the full path, and during iterations, it is segmented into pieces
when creating route legs as the algorithm progresses. The
algorithm continues until the destination becomes reachable,
which is when the remaining path P falls within the reachable
area (steps 5–26).

Algorithm 1 Calculation of a Heuristic Route
Input: EV ,P, ts, c ∈ R≥0
Output: R— a suggested route
1: Let vc, vp ∈ V be nodes with a charging station
2: Let P◁ ∈ P be a path
3: R← ⟨(c,P)⟩ {The initial SoC and pre-computed path}
4: R′← ⟨(c, ∅)⟩ {R′ is R with an empty last path}
5: repeat
6: P◁← reachPrefix(P,EV , cat(EV,R′, ts, c))
7: if P ̸= P◁ then
8: vp← vc

9: vc← bestStation(EV ,P◁, cat(EV,R′, ts, c))
10: if vc = ⊥ then
11: return ⊥
12: end if
13: if |R| = 1 then
14: R1 = (c1,P1)← (·,Ps,v

c
)

15: else
16: R|R| = (c|R|,P|R|)← (·,Pv

p,vc )
17: if ecr(vc,EV , catR

|R|
) >

ecr(vp,EV , catR
|R|−1

) then
18: R|R| = (c|R|,P|R|) ←

(minReq(R−1,R|R|), ·)
19: updateCAT(catR

|R|−1
)

20: end if
21: end if
22: P← Pv

c,d

23: R← R ⊔ (mSoC(EV , vc),P)
24: R′← R|R|−1 ⊔ (mSoC(EV , vc), ∅)
25: end if
26: until P = P◁
27: return R

During each iteration, the algorithm calculates P◁, the
maximum prefix of P that can be reached if leaving with
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EV.b (or c, if this is the first iteration) in the middle of time
interval encoded in the cat of R′, which is a route computed
so far, up to and including the last chosen charging station.
Such a prefix route can be computed by the modified energy
consumption function (see Definition 8). If the remaining part
of the trip does not fall into the reachable area, the algorithm
searches for a charging station (steps 6–7). The previous
station, vp, is set to point to the last station at vc, and the
next suitable station, vc, is found (9). If no such station exists,
the route can’t be constructed, and the algorithm returns an
undefined route (11). This represents an extreme case where
no charging stations can be reached with a current state of
charge.

The bestStation function is used by the algorithm in step
(9) to find a suitable charging station.We sketch themain idea
behind this function, which finds a station that is neither too
close to the start of the path nor too inefficient in charging.
The function considers and scores all the charging stations
located within a certain narrow spatial buffer along path P◁.
For the station at v, a heuristics-based score is calculated
based on the CAT profile of the path leading to the station:

score(EV ,P·,v, cat)

= α · ecr(v,EV , cat)+ (1− α) · P·,v.l, where

ecr(v,EV , cat)

=
EV .b·mSoC − cat.c⊢

awct(EV , v, cat.t, cat.c⊢,EV .b·mSoC)
.

In the formula above, P·,v represents the path from the
previous charging station to the current one, v, while cat
is its CAT profile. Parameter α ∈ [0; 1] is an algorithm
parameter that affects a number of charging stops along the
route. Smaller α values nudge the algorithm to plan fewer
charging stops even at the cost of some increase in the
probable arrival time. Setting α to one completely switches
off the consideration of the number of charging stops.

Function ecr represents the effective charging rate, calcu-
lated by dividing the worst-case energy amount required to
reach the maximum charge level mSoC by the value of awct ,
which is the average waiting and charging time at v if arriving
during cat.t and charging from cat.c⊢ to EV .b·mSoC . Due to
the characteristics of their charging curves, mSoC of 80% is
usually suggested for fast chargers.

The discovery of a new node with a charging station
impacts the route legs leading to it (steps 13–21). If the route
has only one leg, this leg contains the initial state of charge
and the original pre-computed path. Only the path of the tuple
is updated by setting it to the path Ps,v

c
from the source s to

the newly identified vertex vc. If the route has multiple legs,
the last leg of the path is updated by setting it to the path
from the previous to the current station (16). Also, if the route
has multiple legs, the charging rate, ecr , is compared at the
current and previous charging stations, vc and vp, respectively.
If ecr is better at the current station, then the last leg’s state
to charge is updated by setting it to the minimum state (18)

FIGURE 11. Example of route search.

necessary to traverse the leg R|R| after charging at the end of
R−1 (route without the last leg). Moreover, the CAT profile
of the last leg is also updated accordingly.

After the last leg of the route is updated, the remaining
path P is set to the path from the current charging station
to the destination, Pv

c,d , and a new leg is added to the route
(steps 22, 23). The preliminary state to charge for the new leg
is set to the maximum possible level that can be achieved for
EV at vc, but can be updated by the algorithm later (line 18).
Example 3: Let us assume that path v0 → v1 →

v2 → v3 → v4 → v5 is the input guide path
(see Figure 11). Charging stations are denoted by Si, and
superscript identifiers F and S stand for faster and slower
chargers, respectively. In the example, the power of slow
charging is γ , and the power of fast charging is 3γ . Each
station is mapped to the vertex of the road network and has
an associated average waiting time for the relevant arrival-
time window. For example, SF1 is a faster charger with an
average waiting time of 10min, and it is mapped to v1.
Vertical dashed lines indicate the border of the reachable area
from a particular vertex with a battery level of mSoC = 0.8.
The final reachable location from the trip source v0 is
between vertices v2 and v3 (see v0r ), meaning EV will have
to stop and charge at either v1 or v2. According to the
algorithm, the stations are scored, and the optimal best is
selected. Let us assume that SoC = 0.64 when arriving at
SF1 , and SoC = 0.08 when arriving at SS2 . In this example,
SF1 has a charger that is three times faster than the one
at SS2 , but it also has five times longer average waiting
time. It takes approximately 20min and 60min to charge an
empty battery to the desired mSoC = 0.8 at F and S type
charging station, respectively. Thus, charging at SF1 , including
waiting time, will take 4min+ 10min = 14min and at SS2—
55min+ 2min = 57min. However, charging at S1 does not
provide sufficient energy to skip S2, as the reachable area
v1r is before v3. Another option is to stop at both charging
stations. After charging at SF1 , the state of charge upon arrival
at SS2 will be SoC = 0.24. With this option, the total time
spent at charging stations will be 14min+ 45min = 59min,
which is longer than just charging at SS2 . Thus, S

S
2 is selected

as the first charging stop.
Since reaching the destination v5, after fully charging

at SS2 is impossible, the algorithm builds the route further
by evaluating the next available charging stations. Station
SF3 with a three times faster charging option is further down
the route. At this point, the algorithm evaluates if the battery
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should be fully charged at SS2 as the faster charger S3 is
available later. The algorithm calculates how much to charge
at SS2 to have enough energy to reach SF3 , since the charging
curve isn’t linear. It should be charged at SS2 until the charging
speed is faster than the minimal speed at SF3 . Therefore it
is enough to charge at SS2 up to SoC = 0.32, which would
only take (with waiting time) in total 18min + 2min =
20 min. After fully charging at SF3 , it is possible to reach the
destination, v5, as the remaining path Pv3,v5 falls within the
reachable area.

Note that the presented algorithm has a linear complexity
in terms of the length of the guide path. Depending on the
implementation details of the underlying traffic modeling
system, the main costs of the algorithm most probably lie
in the computation of the CAT profiles of the legs of the
computed route.

IV. EXPERIMENTS
To compare the proposed CAT profile model to simpler but
less representative models, an experimental simulation study
was performed. First, we briefly describe an experimental
setup, followed by the presentation of the results of the
experiments.

A. EXPERIMENTAL SETUP
The experiments were run on the CAT profiles implemented
as a C++ simulation on top of the multi-component
simulation testbed [8] that integrates various open data such
as road network data, free-flow travel time data, charging
station data, and daily traffic distribution data. The testbed
architecture also includes a semi-synthetic data generator to
prepare the missing data, such as congestion travel times
and energy consumption along the road edges. Figure 12
presents a generalized software architecture. The legs of
the routes used in the experiments are computed by the
KaTCH router [16], which is a time-dependent earliest-arrival
router implemented in C++ and based on time-dependent
contraction hierarchies [17].

The data generated by the testbed generator is managed
by the PostgreSQL database management system with the
PostGIS extension. First, the data is used to extract a
graph with time-dependent travel-time edge weights. This
graph is used by the router. Next, using the generated
data, the testbed provides implementations of the main
functions used to compute CAT profiles: the travel-time
function, tt (Definition 4), the energy-consumption function,
ec (Definition 8), including its version that works on a
sub-interval of the travel-time interval (Definition 10), the
waiting-time function, wt (Definition 6), and the inverse
charging function, ch−1 (Definition 7).

With these building blocks in place, the main defi-
nitions from Sections II-D and II-E were implemented
as C++ classes. The source code, data, and other

FIGURE 12. Generalized test-bed architecture (adapted from [8]).

experimental artifacts have been made available.1 A
web-based demonstration and visualization system was also
developed [18].
In the following, we briefly describe the testbed and

semi-synthetic data generation. Barauskas et. al [8] describe
the data sources and the workings of the testbed in greater
detail. The testbed uses a road network exported from
OpenStreetMap [19] and keeps the essential edge data, such
as type, length, direction, lane number, and speed limit.
CGIAR-CSI SRTM 90m Digital Elevation Data [20], [21]
was utilized to calculate the slopes on road segments and
energy consumption and recuperation along the trip. Finally,
data of charging stations [22] include more than 12 thousand
charging stations in Germany and a number of chargers of
each supported connection type for each station.

The road-network data is augmented with traffic infor-
mation using the SUMO road-traffic simulator [23]. The
random trip simulation follows the so-called gravity model
in cities, which models that interaction between any two
locations declines with increasing distance (travel time)
between them, meaning that most of the trips are short
and located in city centers. The number of trips decreases
with increasing distance from a city center. The applied
Gawron algorithm [24], [25], [26] allows achieving close
to real-world behavior of driver routing. The output of the
SUMO simulation is the travel time on each edge during
the peak congestion hour. The testbed uses 24-hour traffic
volume distribution in Germany from TomTom [27] for the
so-called travel-time profile that captures time-dependent
variability of travel time in between the free-flow and
congestion times. The free-flow and congestion travel times
are calibrated using external travel time data — Google
Maps [28].
The testbed evaluates energy consumption along the

route employing the Vehicle Energy Model [29], [30]. The
model considers vehicle mass, time-variant vehicle speed
and altitude, energy losses caused by air, rolling friction,

1MIDAS Open Access Research Data Archive:
http://doi.org/10.18279/MIDAS.DALTRA_CAT-PROFILE.208030
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curve resistance, and constant vehicle energy consumers like
heaters or AC.

The testbed also provides time-dependent waiting-time
intervals. They were generated based on the best charging
time of the charging station, the number of connections for
fast/slow charging, and the highest average speed among
the edges that intersect with a predefined buffer around the
charging station. As modeled in [31], in business premises,
the peak of the number of arriving cars is at 8:00. The highest
power demand is during 11:00–13:00. Most cars leave at
17:00. Thus, we created a power demand plan for regular
working day in business premises with an increase/decrease
percent for each hour. The piece-wise linear EV charging
functions were implemented to approximate real sample
charging curves.

For the experiments, trips between random pairs of sources
and destinations were generated using the KaTCH router.
Each set consists of 1000 paths, and each set groups paths of
similar length: from 200 km, up to 700km. For each graph
point in the experiments, 200 routes are taken randomly
from all the generated routes. Next, to have a controlled
experiment, the same model charger is placed artificially on
each route when the battery is depleted. This is repeated up
to three times along the route unless the route ends earlier.

B. EXPERIMENTAL RESULTS
To the best of our knowledge, there is no prior study that takes
its outset in the similar set of modeling assumptions as this
paper, thus, the goal of our experimental study is to compare
the proposed CAT profiles to a simpler but intuitive baseline
model under the same assumptions. We consider bounding-
boxes that capture the expected arrival time interval and the
expected arrival charge interval as such a baseline model.
Such bounding boxes are not split into 1-sized elements and
there are no probabilities associated (uniformity is assumed).

1) THE METRICS
CAT profiles are essentially representations of probability
distributions. Their structure is meaningful only if the said
distributions are non-uniform. To measure whether that is
true, the relative entropy (or Kullback–Leibler divergence)
from the uniform distribution is calculated

DKL(P∥Q) =
∑
x

P(x)log
(
P(x)
Q(x)

)
where x is a CAT profile element, P(x) is its corresponding
probability and Q(x) is its probability if the distribution is
uniform. The latter is calculated by dividing the time-interval
length of the element by the time-interval length of the whole
CAT profile.

The results of the experiments are presented in a grid of
graphs in Figure 13. The columns correspond to the five
metrics measured in the experiments. They are, from left to
right:

1) The relative entropy, described above.

TABLE 2. Experimental parameters (default in bold).

2) The relative difference in time-interval lengths of
bounding boxes and CAT profiles. Naturally, the time
intervals get longer as the uncertainty grows for longer
routes with more charging stops. It is interesting to see
whether there is a difference in growth between the two
types of models.

3) The relative shift of the 75% percentile of arrival
time, when compared to the same percentile under the
uniformity assumption of the corresponding bounding
box (the shift is relative to the length of the arrival time
interval of the bounding box).

4) The absolute shift of the said 75%percentile in seconds.
Using this metric and the previous one, we explore how
the two modeling approaches answer queries about the
probable arrival time. Naturally, the CAT profile is a
more detailed model, but does its complexity pay off in
terms of the accuracy of arrival time queries?

5) The number of CAT elements in the profile. Using this
metric we study how fast the uncertainty grows for
longer routes with more charging stops.

All graphs include three settings on the x-axis and the
results after each of the three consecutive charging stops
along the route are shown in different colors. Each result is
represented by the maximum observed value of the measured
metric (upper curve; star marks in the figure) and the average
value (lower curve; square marks in the figure).

2) THE RESULTS
The first row in Figure 13 shows the results of the experiments
with different maximum charging levels in kWh applied at
a charging station. The second row shows the results when
changing the length of the departure time interval. Note that
while Definition 17 gets the departure time point as an input,
it is trivial to extend it to get a time interval instead. This is
so because, starting from the second leg, departure times are
intervals stemming from the CAT profiles of previous legs.
Finally, the third row gives the results of experiments with
different time granularities. Without changing anything in the
underlying simulation, the experiment adjusts 1—the size of
a CAT element in a profile. Table 2 summarizes the values
used for these parameters.

The first column of the results shows that the relative
entropy is significantly above zero, signifying that CAT
profiles capture probability distributions significantly dif-
ferent from uniform. Further, the difference becomes more
pronounced for routes with more legs—Figure 13a demon-
strates that adding one charging stop increases the relative
entropy by approximately 0.1. As expected, Figure 13k shows
that increasing 1, and thus decreasing the time granularity,
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FIGURE 13. Experimental results (each row of graphs is associated with the same tested parameter on the x-axis, and each column of graphs
identifies the same tested parameter on the y-axis).

produces CAT profiles consisting of fewer elements and, thus,
more similar to simple bounding boxes.

The experiments in the second column of the results test
how CAT profiles limit the growth of uncertainty in routes
with charging stops when compared to simple bounding
boxes that do not capture the interdependence between travel
time and energy use (cf. the end of Section II-E). The
experiments show that the reduction of the length of the
predicted arrival time interval is only a few percent and,
interestingly, it is greatest for the routes with a single charging
stop (light blue band in the graphs). This is mostly due to the
fact that the long trips of the experiments use major roads
outside urban areas where the variation of speed (travel time)
is not big.

The third and the fourth columns of graphs show the
experimental results where the difference between the
modeling power of CAT profiles and simple bounding boxes
is most clear. As hinted by the measurements of the relative
entropy, the probability distribution captured by the CAT
profiles is not uniform. That is why the 75% percentile
of arrival time substantially differs from the one implied

by the uniform distribution. As expected, the difference is
more pronounced for multi-leg routes (compare the red band
representing routes with three charging stops with the blue
band for routes with a single charging stop). For example, for
routes with three charging stops, the arrival time predicted by
the two models differs by up to 20 minutes.

As expected, the last column of graphs shows that increas-
ing the length of the departure time interval (Figure 13j)
or decreasing 1 (Figure 13o) increases the number of
CAT profile elements while changing the charging level has
virtually no effect (Figure 13e).
In summary, the experiments demonstrate the modeling

power of CAT profiles, especially when used to compute the
likely arrival time of long-distance EV routes.

V. RELATED WORK
Data models for EV routing usually consist of a road
network, traffic information, charging stations, and EV with
its properties. Depending on the problem to be solved,
different parts of the model are important.
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A. ROAD NETWORK, TRAFFIC INFORMATION, AND
ENERGY CONSUMPTION
In most recent studies on EV routing, the road network
is modeled as a directed weighted graph where charging
stations are a subset of vertices. Then, an edge weight is a
combination of driving time and energy consumption needed
to traverse the edge. Baum et al. [32] enhance the road
network graph with auxiliary data: functions that model
travel time and energy consumption, including minimum
and maximum travel times for graph edges. Each vertex
representing a charging station has a charging function that
maps the charging time and the arrival state of charge to the
departure state of charge. The charging function propagation
algorithm uses labels of constant size, and each label stores
data about all trade-offs between charging time and state of
charge. Nunzio et al. [33] assign the energy required to travel
along an edge as its cost. The proposed energy consumption
model considers both accelerations and the impact of the
road infrastructure, separating the costs of all the possible
turning movements in the transportation network using the
adjoint graph. In another study [34], authors generate a speed
profile on each arc of the routing graph depending on the
dynamic traffic data retrieved from online routing services.
We assume a speed profile for each leg of the route. As we
focus on modeling uncertainty, this limits the accumulation
of uncertainty that would happen if speed profiles of many
individual edges were concatenated into a leg of a route.

Fiori et al. [35] study how driving habits influence
energy consumption. Results show that drivers who sacri-
fice travel time experience significant energy consumption
savings due to regeneration. The minimum consumption
was observed when many vehicles were assigned to the
congested and low-speed arterial routes. The study applied an
energy consumptionmodel that includes instantaneous speed,
acceleration, and grade information. Petkevičius et al. [36]
experiment on a large dataset derived from a fleet of largely
identical EVs and demonstrate how deep learning can be used
to predict energy-consumption interval for a path, which is
directly applicable when computing a CAT profile.

To traverse an edge of the road networkmight take different
time depending on the current traffic situation. Hu et al. [5]
assign a time-dependent, uncertain weight to each edge
based on historical GPS records. They propose to maintain
compact histograms to ensure their accuracy. Pedersen et
al. [4] propose an algorithm to instantiate time-dependent,
uncertain edge weights that satisfy FIFO property and
time-dependent, uncertain contraction hierarchies to support
stochastic routing. They also use histograms to represent
travel cost distribution when traversing an edge. Note that
CAT profiles are in effect arrival-time histograms augmented
with charge intervals.

B. CHARGING STATIONS AND CHARGING FUNCTIONS
Baum et al. [37] use a realistic consumption model that
includes vehicle speed, the slope of the road, and additional

coefficients. Zündorf [38] uses a function that assigns a
charging time to the charging stations. Piecewise linear
functions are used. Montoya et al. [39] consider nonlinear
charging functions and adding a charging mode to the
charging station in the model. To track charging level,
breakpoints of the piecewise linear approximation are used
similarly to Zündorf [38]. They also propose a hybrid
metaheuristic that combines iterated local search. De Cauwer
et al. [40] use the model that makes a data-driven (road
information, weather information, and temporal data) energy
consumption prediction using energy consumption as a cost
function.

C. ROUTING
Although routing algorithms are not the focus of our work,
we briefly survey the main EV routing studies and the
modeling assumptions made in these studies. Baum et al. [37]
emphasize that route planning for electric vehicles should
include path and speed recommendations as large speed
might increase battery consumption. Battery capacity is an
additional constraint, thus, the authors consider a constrained
shortest path. The authors introduce the tradeoff function that
maps the desired travel time to energy consumption along the
graph edge. The mapped value can be negative if the vehicle
recuperates. Also, such a setup introduces bounds: very slow
movement can interfere traveling of other vehicles, and fast
movement is very inefficient.

Rajan and Ravishankar [41] research EV routing when
both travel time and energy consumption are stochastic. They
generalize the Charging Function Propagation algorithm [2]
for this setting. The travel time on each edge is a random
variable with a known probability distribution, estimated
from real traffic data. The energy consumption along the edge
is a function which maps travel time to the battery energy
depleted by travel. In contrast to our work, while travel time
and energy consumption are stochastic, they are not time
dependent.

Asghari et al. [42] stress that to find the most reliable route,
the probability distribution of travel times of the route have to
be computed. The authors address the problem of computing
link travel time distributions to support the estimation of
the travel time given a link-entrance-time. Andelmin and
Bartolini [43] model the green vehicle routing problem by
using a multigraph. The nodes represent customers, and arcs
— trips from one customer to another. One arc defines
one possible sequence of charging stations visited on the
way. The path between two nodes has cardinality that is a
number of fuel stations visited along the trip. They compute
non-dominated refuel paths that for each pair of fuel stations
on the path should include a path that has cardinality less
than or equal to cardinality of the shortest path between the
particular fuel stations.

Yang et al. [44] present a path-centric paradigm to
estimate path cost accurately and efficiently. They enhance
an edge-centric model with a path weight function that
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returns the joint distribution of travel costs along the edges
of the path. Joint distributions of non-unit paths are derived
based on distributions of unit paths (single edges). The joint
distribution captures the dependency of the travel cost among
edges. Multi-dimensional histograms are used to describe
joint distributions.

We model a route between start and destination locations
as a sequence of paths between charging stations, where each
path has a CAT profile associated with it. Combining CAT
profiles of paths produces a CAT profile of the whole route.

VI. CONCLUSION AND FUTURE WORK
The paper contributes with a CAT profile model to support
detailed route planning for long-distance EV trips. Assuming
time-dependent likely intervals of travel time and energy use
for paths in a road-network as well as time-dependent waiting
times and charging curves of chargers, the model captures
arrival-time probability distribution and the corresponding
expected arrival charge levels at the end of a route with
possible charging stops.

Experimental study performed on rich semi-synthetic
data demonstrates the advantages of CAT profiles when
compared to a simpler bounding-box model. Specifically,
CAT profiles capture inherently non-uniform arrival time
probability distributions which results in more accurate
predictions of probable arrival time, especially for long routes
with charging stops.

As an interesting direction for future work, we envision
research on filter-refinement routing algorithms, that could
use CAT profiles for the detailed planning of the most
promising routes, identified using simple and more cost-
effective methods. Additionally, it would be interesting to
explore methods for more efficient computations of CAT
profiles, as the current experiments focused on exploring
the properties of the model, but did not focus on efficient
computation.

APPENDIX
RESTRICTED TRAVEL-TIME FUNCTION
Restricted travel-time function t̂t⊢(P, ts, ta) computes the
interval of possible travel times given an interval of departure
times, ts = [t⊢s , t⊣s ], and an interval of arrival times, ta =
[t⊢a , t⊣a ].

The start of the interval t̂t⊢ is defined as follows:

t̂t⊢(P, ts, ta)

=



t⊢a − t
⊣
s if ι⊣ ≤ t⊢a − t

⊣
s

min (ι⊣, tt ′) if
t⊢a − t

⊣
s < ι⊣ ≤ t⊣a − t

⊣
s ∧ (1)

ι⊢ ≤ t⊢a − t
⊢
s (2)

min (ι⊢, ι⊣) if
t⊢a − t

⊣
s < ι⊣ ≤ t⊣a − t

⊣
s ∧

ι⊢ > t⊢a − t
⊢
s (3)

min (ι⊢, tt ′′) if ι⊣ > t⊣a − t
⊣
s ∧ ι⊢ ≥ t⊢a − t

⊢
s (4)

tt ′ if ι⊣ > t⊣a − t
⊣
s ∧ ι⊢ < t⊢a − t

⊢
s (5)

FIGURE 14. Computing the lower bound of the restricted travel-time
function.

where

ι⊢ = tt⊢(P, t⊢s ), ι
⊣
= tt⊢(P, t⊣s )

tt ′=xtion(at⊢,tt⊢(P,·)), tt ′′=xtion(at⊣, tt⊢(P, ·))

xtion(ta, bf (·)) =
1ι(ta − t⊢s )+1ts · ι⊢

1ts +1ι

1ι = ι⊣ − ι⊢, 1ts = t⊣s − t
⊢
s

The end of the interval t̂t⊣ is a mirror case and can be defined
in the same manner.

Figure 14 illustrates all five cases of Definition 12. Blue
lines show the different cases for the lower bound of the
travel-time function. Black points identify points to consider,
when calculating the lower bound of restricted travel-time
function in cases marked with numbers. In all cases except
case (1), the points are on the line. The restricted travel-time
function value of case (1) is represented as a point on line
at⊢ at t = t⊣s . In cases (2) and (4), the minimal value should
be selected out of both identified points on line (2) and (4),
respectively, and both values are equal in the figure (see
tt-axis). Case (3) considers the points where the line intersects
t = t⊢s and t = t⊣s . Finally, case (5) means that the minimal
value of the travel function is at the point where the line
intersects with the lower bound of the arrival time interval.
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