
Citation: Govorov, M.; Beconytė, G.;
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Abstract: The paper presents the results of the investigation of the applicability of spatiotempo-
ral kernel density estimation (KDE) methods for density mapping of violent crime in Lithuania.
Spatiotemporal crime research helps to understand and control specific types of crime, thereby con-
tributing to Sustainable Development Goals. The target dataset contained 135,989 records of the events
registered by the police of Lithuania from 2015–2018 that were classified as violent. The research fo-
cused on choosing appropriate KDE functions and their parameters for modeling the spatiotemporal
point pattern of this particular type of crime. The aim was to estimate density, mass, and intensity
function(s) so that they can be used in further confirmatory spatial modeling. The application-driven
objective was to obtain reliable and practically interpretable KDE surfaces of crime events. Several
options for improving and extending the investigated KDE methods are demonstrated.

Keywords: crime events; spatial point pattern; probability mass and density functions; bandwidth
selectors; relative risk estimator

1. Introduction

Kernel density estimation (KDE) is a multipurpose non-parametric technique. It is
used to estimate the probability density function (PDF), probability mass function (PMF)
of a random variable, intensity function of a point process, relative risk function, spatial
regression function, and other quantitative measures. It can be used for the exploratory
and confirmatory analysis of spatial and temporal data and cartographic visualization.
KDE-based maps are used in spatial criminology to understand the spatial structures of
crime, their distribution, differences, and temporal trends. Being an instrument for targeted
crime prevention, crime mapping is important for the achievement of the Sustainable
Development Goals: “Peace, justice and strong institutions” and “Sustainable cities and
communities”. A detailed understanding of the density and intensity of crime in a territory
helps to plan prevention measures properly and to use anti-crime resources more efficiently.

Kernel smoothing with continuous PDF is a well-established approach for the estima-
tion of density and intensity of spatial surfaces based on a sampled dataset [1]. Discrete
kernel estimations of PMF have been far less investigated, especially for multivariate
spatiotemporal estimations [2].

In this paper, we demonstrate the application of multivariate KDE that combines two
types of kernel functions: spherical multivariate kernel function and product kernel func-
tion. We implemented the KDE procedures to estimate PDF and PMF for a spatiotemporal
dataset of violent crime events in Lithuania. Different KDE techniques have been tested on
the spatial point pattern process data. Our approach allows increasing the quality of KDE
techniques by considering the data-driven characteristics of a spatiotemporal dataset. The
originality of the approach lies in:

• application of different methods for bandwidth selection for estimation of PDF/
PMF kernels;
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• application of a bivariate radial kernel function for estimation in the spatial dimensions;
• using a product kernel function to combine temporal dimension with spatial dimension;
• applying an unconstrained bandwidth matrix for spatial anisotropic smoothing in

directions different to those of the coordinate axes.

2. Background and Related Works

Univariate KDE is known as Rosenblatt’s (1956) and Parzen’s (1962) window method
and is used to estimate the underlying PDF of a sample dataset with no assumptions on the
underlying parametric distribution of the dataset [3,4]. KDE determines the contribution of
each data point to the density function and can be applied to data drawn from a complicated
distribution. It has been demonstrated that univariate KDE works well for observation
data with inhomogeneous dispersions and thus is suitable for spatial and spatiotemporal
point pattern datasets with high heterogeneity and anisotropy [5].

Univariate KDE has been extended to estimate multivariate densities based on the
same principle: compute an average of densities centered at the events or grid points. A
multivariate kernel can be obtained by two common techniques: by a derivation of univari-
ate kernels or by using a spherical or radial-symmetric kernels with l2 Euclidean vector
norm (length of the vector) multivariate kernel function [3,4,6]. In the first case, kernels
over multidimensional inputs can be constructed by multiplying or averaging different
types of univariate kernels [7]. The product of kernels is more appropriate for bounded or
partially bounded distributions without correlation between the components [8]. In the
second case, radial-symmetric kernels are estimated from data within a sphere around a
location or grid point [3]. In the general case, a multivariate kernel of the second type can
be constructed with other types of vector norms (l1, l2, l3, . . . , l∞) and not only with the
sphere l2 norm.

The variables can be partially bounded (e.g., non-negative), completely bounded
(e.g., in the unit interval), or of discrete (count, categorical) data types. Count data can be
unordered or ordered. The classical symmetric PDF estimators (e.g., Epanechnikov and
Gaussian kernels) presume that the underlying data are naturally continuous, which is
frequently not the case. Thus, a symmetric kernel may be not suitable for discrete bounded
datasets and, instead, other types of kernels should be used [2,7,9].

The estimation of a discrete kernel of a PMF has been far less often applied than the
estimation of a continuous symmetric kernel of a PDF. For example, Aitchison and Aitken’s
kernel [10] can be used for unordered discrete or categorical variables; Wang and van
Ryzin’s kernel [11] can be used for ordered discrete variables [7]. Discrete asymmetric
kernel methods have been extensively investigated by Kiessé, Kokonendji, and Somé [2,8];
they have constructed discrete kernels from known discrete PMFs such as Poisson, binomial,
and negative binomial [2,12].

In a multivariate setting, a joint density function can be defined for a combination
of discrete (unordered and ordered) and continuous variables, i.e., for both quantitative
and qualitative data. The method of estimating a joint PDF/PMF has been extended using
generalized product kernels [7] presuming the absence of correlation in its multivariate
components. Kokonendji and Somé [8] introduced spherical kernel estimators of unknown
densities on partially or fully bounded supports with correlation structures.

There are three main parameters of KDE. Most researchers agree that the most impor-
tant component of the KDE function is the bandwidth h. The KDE function itself is arguably
acknowledged to be of secondary importance to the bandwidth [3,4]. The third aspect of
KDE is a method of edge correction that minimizes boundary bias. The consequences of
the boundary problem in multivariate KDE can be much more severe than in univariate
KDE because the boundary region increases with the number of dimensions [13].

Bandwidth selection is crucial in both univariate and multivariate estimations of a
kernel of PDF, PMF, relative risk, and regression functions. There can be strong contextual
justifications for choosing a particular bandwidth size h. For example, temporal bandwidth
of one month may be appropriate for the analysis of seasonal changes.
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There are numerous studies on optimal histogram bandwidth selection for particular
data-driven choices. A measure of distance between the true density f and its kernel density
estimator f̂h(·) is used to evaluate the performance of the estimator f̂h(·). Common auto-
mated methods of bandwidth h selection are based on the optimization of mean integrated
squared error (MISE), integrated squared error (ISE), or other similar distance/error mea-
sures. Different optimization measures lead to different speculations on which bandwidth
h is optimal. Based on ISE and MISE measures, two classes of methods are distinguished:
the cross-validation (CV) methods and the plug-in (PL) methods ([14] and references
therein). Many versions of CV and PL (including the rule-of-thumb methods) and their
hybrids are used for density estimation [3–5,15–17]. New techniques for estimating optimal
bandwidths for multivariate kernel functions emerge, such as likelihood cross-validation,
Bayesian approaches, bootstrapping, extrapolation-based, mixing bandwidth selectors,
neural networks, and others ([5,18] and references therein) that can be classified as CV, PL,
or hybrid.

3. Method: Crime Events as Spatial Point Process

Criminal events are registered with spatiotemporal coordinates and can be represented
as a set of 3D event points. Such events can be modeled statistically as a space–time process
of a random point pattern in a time sequence dimension and a finite two-dimensional
coordinate space. If the temporal extent (duration) of each crime event is negligible as
each random event is observed within a short time interval, then such a temporal model
is called an event process. The spatial point process collected over an observation period
is referred to as the summary process. Mathematic expressions of time-dimensional and
space-dimensional point processes differ. The natural order is characteristic of the temporal
dimension while it is absent in spatial dimensions. The methods of analysis of the spatial
point process are well established [16,19,20]. There are different approaches to how to
extend these methods for the analysis of spatiotemporal point process data.

One approach for modeling spatiotemporal point process data is adding marks (labels)
to the spatial point events. The quantitative marks describe the time of occurrences [20].
Otherwise, the spatial location may be viewed as a component of a multidimensional mark
for a temporal point process [19]. In both ways, the spatiotemporal point process can be
formalized as an inhomogeneous process. Inhomogeneous point patterns are designed
specifically for applications in which non-uniformity of space and/or time is important.

A spatiotemporal point process with time marks can be modeled mathematically in
different ways [15,16]. One of the possible methods is to use an inhomogeneous Poisson
point process for the disjoint interval counts that are stochastically independent. The first-
moment measure of the Poisson spatial point process is the estimated intensity function,
proportional to the density or mass functions (PDFs or/and PMFs) [21].

The inhomogeneous Poisson point process model is a constant risk model that does not
presume dependencies between crime events. In the inhomogeneous Poisson point process
model, each person faces the same risk of being affected by crime during the observation
period, regardless of location. Thus, the occurrences of crime are not uniformly distributed
over space; on the contrary, they are concentrated in populated places. More crime events
can be expected in the areas with higher population densities, and clusters appear. It is
assumed that such events are Poisson spatial point processes with intensity proportional to
the population density. It is the model of constant crime risk.

In KDE, there are a variety of methods to adjust (by ratio, re-weight, and transform)
kernel density for underlying covariates such as human population. The common method
of adjusting an inhomogeneous background due to spatial variation in the human popula-
tion density can be implemented as the spatial relative risk or density ratio function first
proposed by Bithell [22]. The function is the crime risk function at locations (x, y) derived
as the ratio of two KDE bivariate functions—crime events and the population at risk over
the same region. Then, the ratio of the PDF/PMF of the two-point processes is an indication
of the spatially varying risk of crime.
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In this study, we concentrated on the choice of bandwidth and kernel function for a
trivariate KDE applied to crime events with two spatial and one temporal coordinate. The
problem of edge correction has been left for future consideration. In this study, we have
applied boundary corrections implemented in KDE algorithms.

Bandwidth selection. The main issues are: (1) the width of spatial (h) and temporal (λ)
bandwidth and (2) whether the bandwidths should be of the same size or variable and,
if variable, then whether they should be adaptive. Estimating the bandwidth matrix for
three-dimensional time–space is not a trivial task, because time and space have different
natural ordering and, in the case of crime events, are heterogeneous. The same bandwidth
cannot be applied to time and space coordinate directions.

Time resolution (time interval width λ) and spatial resolution (spatial bandwidth
h) can be chosen independently from each other using spatial or temporal PDF or/and
PMF, correspondingly. If there are no preferences for the spatial or time intervals, a
spatiotemporal PDF or/and PMF [7] can be used to jointly estimate optimal space–time
bandwidths as a product of multivariate kernels [4]. In criminology, it is often assumed
that crime events obey the Poisson distribution or over-dispersed variant of the Poisson
probability function such as a negative binomial [23]. In our experiments, the bandwidth
was selected based on the assumption of a Poisson point process.

Choice of the kernel function. A kernel function can affect the quality of the bandwidth
estimation [2]. Appropriate PMF kernels, e.g., negative binomial kernels, should be used
for discrete data types. In the case of crime events, it must be considered that the data are
discrete counts, ordered in the time dimension, and unordered in the spatial dimensions.

Several studies investigated bandwidth selection for the estimation of bivariate discrete
PMF kernels ([2,7,24,25] and references therein). The first class includes Dirac-type sym-
metric kernels such as discrete triangular [24], Aitchison–Aitken [10], Wang–van Ryzin [11],
and discrete Epanechnikov [25] kernel functions. The other class of kernels contains discrete
asymmetric non-Dirac type kernels constructed from PDFs such as Poisson, binomial, and
negative binomial [2]. A kernel estimator for count data is generally estimated as

f̂ (x) =
1
n

n

∑
i=1

L(Xi, x, λ)

where L(·) is a discrete symmetric or asymmetric, Dirac or non-Dirac type kernel function
appropriate for smoothing discrete data; Xi is the location of the univariate event and x
is the location of the estimate; λ is the kernel bandwidth parameter. For example, the
univariate discrete kernel function of ordered time variable t [11] can be defined as

L(Ti, t, λ) =

{
1− λ, if Ti = t

(1−λ)
2 λ|Ti−t|, if Ti 6= t

For discrete-ordered data, the MISE optimization technique of univariate time band-
width selection was proposed by Shimazaki and Shinomoto [26]. It is based on the assump-
tion that the event pattern is described by an inhomogeneous Poisson point process [15].
This optimization technique can be applied to any kernel function of the Dirac type. The
results of applying this and other ordered discrete kernels techniques for bandwidth selec-
tions are presented in the Results section.

For a two-dimensional homogenous spatial point process, bivariate product kernels
based on the product of two univariate kernels can be used under the assumption that
there are no interactions between x and y coordinates of the observed crime event locations.
In the case when a radial-symmetric kernel with the same bandwidth in x and y directions
is used, the amount of smoothing is the same in each coordinate direction. Then, the
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underlying bivariate PDF is approximated by the most common KDE function f̂ (x, y)
without edge correction at a location x, y [3]:

f̂ (x, y) =
1

nh2

n

∑
i=1

K
(d(x,y),i

h

)
where x and y are 2-dimensional (2D) spatial coordinates within a bounded study region; K
is a 2D, second-order, zero-centered, radially symmetric continuous bimodal fixed kernel
function; d(x,y),i is the Euclidean distance between event point i and location (x, y); h is the
kernel bandwidth that is scaled equally in all directions or the radius of the circle for a
circular kernel.

Adaptive KDE in location (x, y), which is referred to as the balloon estimator [17], is

f̂ (x, y) =
1
n

n

∑
i=1

K
( d(x,y),i

hi

)
h2

i

This adaptation reduces the smoothing in areas of high event density (densely popu-
lated places) and increases the smoothing in areas where the events are relatively sparse (in
rural areas).

The selection of bivariate bandwidths for a spatially inhomogeneous and anisotropic
point process presents many challenges when it comes to selecting the correct amount of
smoothing. There are several parametrization classes of bivariate bandwidth matrix [4,8]
that can be considered if the spatial point process is inhomogeneous and anisotropic.
Choosing a diagonal bandwidth matrix (independent bandwidths in x and y directions) will
sometimes be adequate for an inhomogeneous process, however, for an isotropic process,
a full bandwidth matrix to smooth in directions different from those of the coordinate
axes [27] can result in better performance. A spatial bivariate kernel can be used to form a
multivariate KDE as

f̂ (x, y) =
1
n

n

∑
i=1

1
|H|K

(
H−1d(x,y),i

)
where |H| is the determinant of the 2 × 2 symmetric positive definite bandwidth
matrix |H|.

In the case of the count data of crime events, the spatial kernel can be obtained as
a radial-symmetric PDF kernel or as a product of two unordered discrete bivariate PMF
kernels. In the first case, a radial-symmetric kernel can be used to estimate a 2× 2 full band-
width matrix that considers both the axis-specific smoothing and the relative orientation of
the kernel [3,4]. The full bandwidth matrices consider different correlation structures in
the data sample [8]. In the second case, a product kernel assumes independence between
the x and y coordinates, and the product kernel is defined by two bandwidths in the x
and y directions. However, to consider anisotropy in diagonal directions, the data can be
pre-rotated, and then a diagonal bandwidth matrix can be used for a product kernel [4]. A
bivariate product of two univariate kernel estimators is implemented as

f̂ (x, y) =
1
n

n

∑
i=1

2

∏
p=1

1
hp

K
(d(x,y),i,p

hp

)

where hp is the bandwidth in dimension p and di,(x,y),p is the Euclidean distance between
event point i and location (x, y) in the dimension p.

The estimation of space–time bandwidths for crime point events can be based on
a product of PDFs/PMFs. Multiplying two kernels, each of which depends only on a
single input dimension, results in a prior probability distribution over functions that vary
across both dimensions. Thus, a spatiotemporal trivariate function can be a product of
the discrete-ordered (time) kernel and the second kernel that can be (a) a product of two
spatial discrete unordered PMF kernels or (b) a radial-symmetric PDF kernel. Optimized
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data-driven bandwidths, in both space and time dimensions, can be estimated from such a
trivariate function [5,7,24].

The generalized trivariate product KDE for the spatiotemporal domain at x, y, t is
defined as:

f̂ (x, y, t) =
1

nh2λ

n

∑
i=1

K
(d(x,y),i

h

)
L
(

dt,i

λ

)
where K and L are kernel probability densities or/and mass functions; t is the time of
occurrence of the event at location x, y; h and λ are spatial and temporal bandwidths.
Jointly optimal bandwidth selection methods for spatiotemporal density functions can be
naturally extended from the spatial-only setting [5].

The spatial relative risk function can be employed for handling the inhomogeneity
in the distribution of the data. If both the kernel bivariate densities of crime events Ke(·)
and the population at risk Kp(·) are estimated through their KDE processes, then the joint
spatial relative risk function r̂(x, y) can be expressed as the ratio of densities describing,
respectively, the spatial distribution of crime events and the controls (population at risk
background) as:

r̂(x, y) =
1

neh2
e
∑ne

i=1 Ke

( d(x,y),i
he

)
1

nph2
p
∑

np
j=1 Kp

( d(x,y),j
hp

)
where he and hp are the bandwidths for both kernel functions. Application of this function
to spatiotemporal crime events and population data is based on the assumption that the
population density remains unchanged over the observational period that is within the
10-year census interval. Then, the trivariate relative risk KD estimator with a constant
denominator becomes

r̂(x, y, t) =
T 1

neh2
e λ

∑ne
i=1 Ke

( d(x,y),i
he

)
L
(

dt,i
λ

)
1

nph2
p

nc
∑

j=1
Kp

( d(x,y),j
hp

)
where T is the length of the period under consideration [18]. Estimation of individual
jointly optimal bandwidths he, hp, and λ for a spatiotemporal relative risk function is
complicated, especially with time-static control densities [5]. According to [28], there are
benefits of using a common jointly optimal spatial bandwidth he = hp for both events
and background controls. For locally adaptive spatial kernel density, the use of a single
bandwidth function for both events and controls is recommended [18,28]. An example of
such a function is

hi(x, y) = h0αi(x, y)

where h0 is the global bandwidth and αi(x, y) is the i th local bandwidth factor (1, 1982).
Bandwidth selection methods for standalone spatiotemporal density functions can be
extended from the spatial-only setting, but data-driven, to jointly optimize bandwidth
selection for a spatiotemporal relative risk estimate which is not straightforwardly adapt-
able [5].

4. Case Study: Crime of Violence in Lithuania from 2015–2018

The above-described KDE techniques have been tested with the spatiotemporal dataset
of the crime events in Lithuania. The entire geocoded dataset of criminal events registered
by Lithuanian police from 2015–2018 contains 2.78 million records, out of which 1.36 million
belong to groups that have been in previous studies recognized as strongly dependent on
spatial factors (socio-demographic patterns of population, patterns of infrastructure, urban
and landscape structures): crime of violence, theft, destruction of or damage to property,
drug-related crime, and public nuisance [9].
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The reason for studying these data is the crime statistics in Lithuania, which are
relatively extensive compared to the European Union, especially in particular cities. It
is often argued that whereas international institutions use generalized official statistics
and present Lithuania as a dangerous country, the real picture is different: the majority of
crime in open space is thefts and public nuisance; homicides are mostly committed without
aforethought malice, due to excessive consumption of alcohol or, more rarely, drugs. Thus,
we selected the records that represent the most serious crimes only—crimes of violence that
encompass assault, physical abuse (including sexual abuse), threatening behavior, home
invasion, murder, and manslaughter; a total of 135,989 records, with the yearly average
of 34,000. The violent crime rate significantly differs in densely (more than 100 people
per square kilometer, 70.5% of all events) and sparsely (less than 100 people per square
kilometer, 29.5%) populated areas: relative averages per 1000 population are 10.7 and 13.1,
correspondingly [29].

Common kernel density maps show the peculiarities of the spatial distribution over
the territory; however, they are often compiled without paying due attention to the actual
spatial and temporal distribution of data, kernel function, and bandwidth. This study
targets these aspects and is aimed at optimal density estimation for this part of crime data
that is most sensitive.

As was expected, spatial exploratory analysis (p -values of Pearson chi-squared, likeli-
hood ratio, and Freeman–Tukey tests of homogeneity using the quadrat counts method) led
to the rejection of the null hypothesis of complete spatial randomness (CSR) for the crime
events. The alternative hypothesis is that the process is an inhomogeneous Poisson process.
The likelihood ratio test for a Poisson point process model with a covariate effect [15]
showed that population density significantly (p < 0.01) contributes to the distribution
of crime.

A series of experiments on kernel estimations for the crime count data were performed.
The experiments were conducted in four steps: (1) bandwidths were calculated; (2) kernel
functions were derived based on the estimated bandwidths; (3) the kernel surfaces were
calculated and plotted as density maps; (4) point process residual R(B) was calculated to
compare the results.

Experiments with bandwidth. The most popular automatic CV, PL, and hybrid band-
width selection methods were tested. The set of tested methods included the methods for
estimations of univariate, bivariate, and multivariate bandwidths in the spatiotemporal
domain; isotropic bandwidth, diagonal bandwidth, and full/unconstrained bandwidth ma-
trix; fixed, adaptive/variable, and mixed bandwidths. In Table 1, the most representative
results of bandwidth estimations for the target dataset are presented.

Selecting an optimal amount of smoothing is cast into a formal mathematical frame-
work as an example of a bias–variance trade-off. The choice of a particular optimal band-
width is related to the data sample size and the complexity of the data distribution. Several
bandwidth selection methods, mainly CV-based (SCV and LCV unconstrained selector)
methods, yielded completely unsatisfactory results and are not included in Table 1. The
failure can be due to (a) discretization effects and data rounding of a very large dataset
and/or (b) intrinsic assumptions about the dependence between points that are not true
for the test dataset with density regions of different shapes and sizes, multimodalities, and
asymmetries.
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Table 1. Experimental results of bandwidth selection.

Bandwidth Selectors

Univariate/
Isotropic Anisotropic/Diagonal,

Meters
Full Matrix,

MetersSpatial Fixed or Adaptive
(Interval), Meters Time, Days

Cross-validation (CV)

Least squares CV (LSCV) for bivariate,
edge-corrected KDE [30], “sparr” package 195

Likelihood CV (LCV) for bivariate,
edge-corrected KDE [30], “sparr” package 315

Likelihood CV (LCV) [31], “spatstat” package 630

Biased CV (BSV) for bivariate data [32],
“ks” package

11,769
8187

12,706 7599
7599 9056

Smoothed CV (SCV) [33,34], “ks” package 58.9 4207
3169

4651 −2785
−2785 3541

Abramson–Hall–Marron [35] rule’s adaptive
selector over global bandwidth from LCV,
“spatstat” package

205–3150

CV for spatial smoothing of marks [30],
“spatstat” package 19.5

Least squares CV (LSCV) derived from a single
value [36], “sm” package 5877 7312

5212

Plug-in (PL)

Normal scale selector by Silverman
rule-of-thumb [3], ‘sparr” and “sm” packages 10,574 35.5 12,348

8801

Normal scale selector over product kernel with
the Silverman rule-of-thumb [7], “np” package

13,080
9322

Direct Sheathe and Jones’ rule-of-thumb at
level 2, 2-dimensional data [4], “ks” package 15.0 1182

843
1408 −842
−842 1004

Direct Sheathe and Jones’ rule-of-thumb at
level 2, 3-dimensional data [27], “ks” package 49.8 4007

2934

4125 −2463 28
−2463 3132 −14

28 −14 53

Normal mixture with four mixture components
[37] “ks” package

12,166
8404

12,368 −7338
−7338 8765

Normal scale [33], “ks” package 11,397
8123

12,348 −7385
−7385 8801

Bivariate by Scott rule-of-thumb [17], “spatstat”
package 10,425 12,347

8802

Abramson–Hall–Marron [35] (1988) rule’s
adaptive selector over global bandwidth from
Scott’s rule, “spatstat” package

3248–50,000

Oversmoothing Terrell “rule-of-thumb” [5],
“sparr” package 11,469 35.5

Cronie and van Lieshout’s criterion [38],
“spatstat” package 10,845

Shimazaki and Shinomoto [26] PL method 29.2

Mixed [39]

α = β = 1 2500

α = 2, β = 1 1500

α = 1,β = 2 3900
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The results confirm the expectation that fixed CV-based methods (especially ordinary
LSCV) would produce very small undersmooth isotropic bandwidths. Most of the tested
selectors estimate bandwidths to be less than 1000 m. Thus, CV methods lead to a small
bias but a large variance—they are not appropriate for data with high variability. The LSCV
selectors do not perform well for large samples either [14]. Modified CV methods such as
SCV and BCV account for much less variation without increasing too much in bias, in our
case, they produced more realistic bandwidths.

The PL selectors always have a smaller (asymptotic) variance compared to CV meth-
ods but often a larger bias. The PL estimates are more stable and generate oversmooth
bandwidths. There is an assumption that practically no other bandwidth selector has to
date outperformed the asymptotic properties of the sophisticated PL methods [14]. From
our tests, most PL selectors suggest spatial bandwidths of around 10,000 m. Only Sheathe
and Jones’ rule-of-thumb generates relatively small bandwidths, however, there are no
objective methods to choose the arbitrary level parameter.

These findings suggest investigating mixing methods that combine different band-
widths and/or KDE estimators. Bandwidth mixtures might produce stable results. The
mixture can be carried out by different methods, one of the simplest being using the dif-
ferent CV and PL bandwidth proportions on a logarithmic multiplicative scale described
in [14]. Even in practical settings, a simple average of CV and PL bandwidths may perform
much better than its two alternatives [39]. The combination of CV and PL is a compromise
giving biases lying between the ISE and the MISE minimizing methods. The following
formula can be used to calculate three types of CV and PL mixture bandwidths:

hmix =
(

ĥα
CV ĥβ

PL

) 1
α+β

where the three possible combinations are α = β = 1, α = 1, β = 2, and α = 1, β = 2. In
Table 1, combinations of ĥPL = 10, 000 and ĥCV = 600 are used.

PDF/PMF estimation and mapping: A set of rounded fixed (10,000, 5000, 2000, and
600 m) and adaptive bandwidths and three kernel functions (Gaussian, Epanechnikov, and
quartic) were tested to generate kernel estimators. The study resulted in a series of maps
outlining kernel density regions of violent crime events. The outcomes of violent crime
KDEs with classic bivariate radial-symmetric kernels with isotropic and anisotropic fixed
and isotropic adaptive bandwidths are shown in Table 2.

Table 2. Bivariate radial-symmetric kernels with isotropic and anisotropic fixed and isotropic adaptive
bandwidths.

KDE Estimation Method Bandwidth, Meters Point Process Residual
R(B) of 135,984 Events Density Map

Spatial Bivariate Gaussian
Isotropic 10,000 (fixed) 8284

(6.09%)
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Table 2. Cont.

KDE Estimation Method Bandwidth, Meters Point Process Residual
R(B) of 135,984 Events Density Map

Spatial Bivariate Gaussian
Isotropic 5000 (fixed) 2806

(2.06%)
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Table 2. Cont.

KDE Estimation Method Bandwidth, Meters Point Process Residual
R(B) of 135,984 Events Density Map

Spatial Bivariate Gaussian
Diagonal Anisotropic

2000
1400

(diagonal matrix)

2254
(1.66%)
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Table 2. Cont.

KDE Estimation Method Bandwidth, Meters Point Process Residual
R(B) of 135,984 Events Density Map

Isotropic Spatial Gaussian
Adaptive Abramson LSCV

5500 (global h0)
5500 (pilot hpl)

6833
(5.02%)
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Three sets of bandwidths, estimated with PL, CV, and mixture selectors, were tested
to create KDE surfaces. As expected, surfaces with smaller bandwidths produced smaller
biases. At the same bandwidth scale, the best estimates are produced with the full ma-
trix/unconstrained bandwidths and adaptive bandwidths.

The KDE surfaces with unconstrained bandwidth selectors work better than their
isotropic and diagonal counterparts as the crime point patterns have mass oriented obliquely
to the coordinate axes. Isotropic KDE surfaces with adaptive bandwidth also yield im-
provements compared to fixed bandwidth isotropic surfaces as, in practice, the smoothing
regimen rule of Abramson [35] is well-suited to spatial data, which often exhibit marked
(in this case population density) heterogeneity [30]. At present, using unconstrained
bandwidth matrices in adaptive settings remains a challenge.

Validation of estimates: Several types of errors can be considered for bandwidth selec-
tion and measurement of KDE performance [4,40]: pointwise error (e.g., the mean squared
error (MSE)), uniform error (e.g., integrated squared error (ISE), mean integrated square
error (MISE) and its approximation asymptotic mean integrated square error (AMISE)), the
integrated standard error for the intensity function, etc.

In this case, the accuracy of the KDE approximations cannot be directly measured
by ISE, as the true density functions are complex and unknown. The MISE/AMISE is
generally used in bandwidth selection to measure the overall performance of a bandwidth
selector for a particular kernel function and PDF. There are different realizations of AMISE,
which are difficult to compare. If the model is an inhomogeneous point Poisson process, to
compare performances of the above KDE surfaces, the point process residuals for the study
area B are used. The point process residual R(B) for the study region B is defined as the
observed minus the expected number of points falling in the study area as per:

R(B) = n(A ∩ B)−
x

B

λ̂(u, v)dudv

where A = {x, y} is the set of points (x, y) in two-dimensional space R2—the observed
point pattern; n((x, y) ∩ B) is the number of points of (x, y) in the region B; and λ̂(u, v)
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is the intensity of the fitted KDE in any spatial location. The probabilities can be con-
verted into intensities by multiplying the probabilities in any one cell by the total number
of incidents.

The values of the point process residual R(B) are shown in the second column of
Table 3. Residuals can be considered as measures of bias between the observed and
expected (recalculated from the estimated intensity λ̂(u, v) within B) point patterns. Clear
winners from all surfaces by the R(B) values are adaptive and full matrix anisotropic
undersmooth estimates.

Table 3. Spatiotemporal slices of the joint density at a given space–time location (x; t) with isotropic
spatial bandwidths and temporal bandwidths.

Dates 1 January 2018 1 March 2018 17 June 2018

Number of crime events 324 37 172

Spatiotemporal fixed
bandwidth isotropic slice,
h = 10, 000, λ = 30
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The choice of the kernel function type has not much impact on the visual appearance
of a KDE surface. However, with the same other parameters, Gaussian density produces
better results in terms of point process residual R(B).

The Gaussian kernel is one of the smoothest possible KDEs and so the optimal value
of h is usually large. If this is then applied to non-normal data, it tends to induce over-
smoothing.

Spatiotemporal estimations: Several methods were used to estimate the fixed tem-
poral bandwidth (see Table 1). The most prominent outcomes are: (1) using Sheathe and
Jones’ rule-of-thumb resulted in temporal bandwidth of 15 days, (2) the bandwidth for
smoothing of the temporal margin computed using the Shimazaki and Shinomoto [26] PL
method with the Poisson assumption is 30 days, and (3) Silverman [3] and oversmoothing
“rule-of-thumb” methods produced temporal bandwidth of 35 days. Temporal slices of
trivariate density surfaces show seasonal changes in the distribution of violent crime. As
an example, trivariate joint density surfaces for the days with the lowest, medium, and the
highest total number of crime events in 2018 are presented in Table 3. These surfaces were
calculated using Fernando and Hazelton’s [18] function which is the product of spatial and
temporal KDEs. Isotropic smoothing with fixed bandwidth in the spatial margin was used.
The graph in Figure 1 illustrates the periodical character of biweekly crime event counts.
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Figure 1. Variation of total violent crime count over time.

Relative risk estimation: A population point pattern was generated inside a 1 sq. km
polygon grid that covers the entire territory of the country. Points were placed randomly
within the grid cells. The number of points was generated proportionally to the population
within each grid cell.

Jointly optimal fixed and adaptive bandwidths for the spatial relative risk function
were calculated by using the LSCV selector. The common jointly optimal fixed spatial
bandwidths for the Gaussian KDE relative risk function result approximately at 2375, 850,
and 1400 m by using selectors based on MISE, a weighted MISE, and AMISE, respectively.

The relative risk density surfaces are presented in Table 4. Areas of average risk
density where r̂(x, y) ∼= 0 and f̂c(x, y) ∼= f̂p(x, y)) are represented in yellow. Peaks (red)
in the surface r̂(x, y) > 0 show a higher localized concentration of crime relative to the
population density in the suburbs, while depressions (blue) r̂(x, y) < 0 indicate territories
with relatively low crime rates.

Table 4. Estimated log-transformed relative risk surfaces for relative crime/population density.

Jointly Optimal Bandwidth for
Gaussian KDE Relative Risk Function

Estimated Log-Transformed Relative
Risk Surface

Regions with Significantly Increased
Crime Risk

Fixed smoothing.
Jointly optimal global bandwidth at
2000 m.
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The third column of Table 4 shows asymptotic p-value surfaces with tolerance areas (in
blue) from an upper-tailed test at a significant 5% threshold of heightened risk [1]. Tolerance
areas represent regions of potentially anomalous activity with significantly increased crime
risk relative to the background population density.

The experiments have been conducted using R Studio with the contributed packages
sparr, spatstat, ks, np, kedd, KernSmooth, sm, and Ake, and QGIS plugins. ESRI ArcGIS
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software has been used for dataset preparation and visualization purposes. R scripts are
available upon request.

5. Discussion and Conclusions

Detailed analysis of the distribution of crime in Lithuania [29,41] allowed asserting that
crime patterns are relatively homogeneous within a 500 to 2000 m radius and very strongly
correlated with population density, especially in densely populated areas. Variations of
violent crime are inhomogeneously distributed and usually have seasonal character. Thus,
the bandwidth estimation methods for KDE that have yielded a spatial bandwidth smaller
than 5000 m and temporal bandwidth of 15 to 60 days appear adequate and applicable.
The likelihood CV fixed bandwidth selector can be considered the best choice. Of the tested
KDE functions with a 2000 m bandwidth, adaptive and unconstrained estimators yielded the
smallest point process residual.

The KDE of violent crime events in Lithuania of 2015–2018 allowed for outlining
the regions with different intensities of crime. Naturally, the clusters appear in densely
populated areas, but different levels of smoothing allow for representations of a crime
surface at different scales. For a better understanding of the situation, crime events are
modeled as an inhomogeneous Poisson point process with population counts as covariates.
In such a setup, the KDE relative risk surfaces are estimated, and it becomes possible
to highlight the regions with heightened and reduced risk of crime on the population
background.

The outcomes—PMF surfaces—can be used in different applications beyond the
simple visualization of the estimated density. Multivariate analysis methods, including
kernel regression, kernel discriminant analysis, trend dynamic estimation, density level-
set estimation, unsupervised and supervised learning, and density ridge estimation for
PCA [33,42], can be applied to refine the outcomes. PDF surfaces can be a building block
for more complicated semiparametric and other models.

Crime analysis usually involves big data. In the presented study, 135,984 crime
event points and 586,952 population points (one point represents 5 people) were analyzed.
In such settings, KDE estimations are very computationally expensive, especially for
selecting optimal bandwidths. Memory issues occurred for bandwidth estimations using
bootstrapping and some cross-validation methods in adaptive, mixed data type, and
spatiotemporal settings.

Sometimes it is possible to determine bandwidth subjectively (usually one-dimensional
and fixed isotropic bandwidth settings). In 2–3D, adaptive, and anisotropic situations it is
very beneficial to have the bandwidth automatically selected from the data even with some
prior knowledge about the structure of the data.

It is known that KDE performs poorly for high-dimensional data (d > 3), but even
in 3D, many bandwidth selectors are unstable and produce unrealistic outputs. Different
optimization measures lead to different definitions of optimal bandwidth h or/and λ.
If the dataset is very large and inhomogeneous, CV selectors might fail. There are no
exact rules on how to choose some parameters of the selectors, e.g., pilot bandwidths
for adaptive estimation often have arbitrary specifications and might have an impact on
KDE estimations. Thus, there is no universally reliable procedure to select the optimal
bandwidth and only an expert in the field might confirm the validity of the result.

A key finding of this study is that it definitely makes a difference which bandwidth
selector is chosen; not only in numerical terms but also for the quality of density estimation
for which this bandwidth is used. Different bandwidth selectors have generated very
different results that are difficult to validate quantitatively. Especially challenging is the
validation of the methods that use unconstrained bandwidth matrices, that cannot be
assessed by an expert.

Enhanced bandwidth selectors can significantly improve the residual R(B) in the
point process. The general conclusion from these experiments is that adaptive bandwidths
work better for a large dataset with complex spatial patterns. An unconstrained bandwidth
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matrix is useful when a large probability mass is oriented away from the coordinate
directions, as in the case of our dataset. The use of adaptive bandwidth selectors with an
unconstrained bandwidth matrix would potentially be the best choice.

The developed methodology, selected bandwidths, and generated PDF surfaces will
be used for further analysis to investigate correlations between different types of crime
events, specific covariate effects on the process of crime pattern distribution, regionalization
of multitype spatial point pattern by using neural networks [43], and evaluation of trend
dynamics of crimes. These methods and the maps they produce enhance research and
application of crime analysis and public safety.
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